1
|
Figlioli G, Piovani D, Tsantes AG, Pugliese N, Nikolopoulos GK, Hassan C, Repici A, Lleo A, Aghemo A, Bonovas S. Burden of cancer attributable to high body mass index: A systematic analysis of the Global Burden of Disease Study 2021. Clin Nutr 2025; 48:144-152. [PMID: 40215883 DOI: 10.1016/j.clnu.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND High body mass index (BMI) is a well-established cancer risk factor. Reliable, updated data are essential for guiding public health policies and designing effective interventions to reduce the cancer burden associated with high BMI. METHODS Data from the Global Burden of Disease Study 2021 on cancer burden attributable to high BMI were analysed globally, stratified by sex, age, geographic region, cancer type, and socio-demographic index (SDI). Temporal trends in age-standardized rates from 1990 to 2021 were evaluated using estimated annual percentage changes. RESULTS In 2021, cancer attributable to high BMI resulted in 356.74 thousand deaths (95% uncertainty interval: 146.12-581.01) and 8.89 million (3.75-14.38) Disability-Adjusted Life Years (DALYs), with females bearing the largest burden. From 1990 to 2021, age-standardized rates of high BMI-related cancer deaths increased by 0.35% annually, while DALYs rose by 0.42% annually. In 2021, the burden of cancer deaths and DALYs attributable to high BMI varied considerably across geographical regions. Low-middle SDI regions experienced the largest increases in death and DALY rates attributable to high BMI, while these rates declined in high SDI regions. Colon and rectum cancers accounted for the greatest number of deaths and DALYs, while pancreatic cancer showed the most rapid growth in attributable burden. CONCLUSIONS High BMI is a major contributor to the global cancer burden, with significant variation by sex, cancer type, region, and SDI level. Targeted public health strategies are urgently needed to mitigate the growing impact of overweight and obesity on cancer.
Collapse
Affiliation(s)
- Gisella Figlioli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andreas G Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola Pugliese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
2
|
Pereira IC, Pedrosa-Santos ÁMC, Martins JA, Sousa AAD, Nobre TA, Torres LRDO, Silva FCCD, Severo JS, Sousa JMDCE, Torres-Leal FL. Bromelain and liver health: A comprehensive systematic review of preclinical studies. Clin Nutr ESPEN 2025; 66:437-445. [PMID: 39947465 DOI: 10.1016/j.clnesp.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Liver diseases pose a significant challenge to the well-being of the public, given their high prevalence and the potential to escalate to liver failure and hepatocellular carcinoma. The efficacy of current therapies is rather limited, resulting in the manifestation of severe side effects. Bromelain, derived from the pineapple plant, exhibits promising prospects for the treatment of inflammatory disorders, cancer, and wound healing, although its impact on liver functionality remains largely unexplored. OBJECTIVE To evaluate the efficiency of bromelain in liver injuries, we performed a systematic review of preclinical studies. METHOD Our search was conducted in August 2020 on PubMed and Scopus, employing the search terms "Liver disease," "Liver injury," and "Bromelain," with subsequent updates in December 2023. RESULTS Out of the 329 articles that were examined, only 7 fulfilled the criteria for inclusion. CONCLUSION Our research suggests that bromelain possesses both prophylactic and curative qualities in terms of liver damage, as supported by its ability to decrease enzyme levels, enhance liver structure, reduce oxidative stress markers, and regulate lipid metabolism. In summary, bromelain demonstrates a capacity to enhance liver function across a range of injury types.
Collapse
Affiliation(s)
- Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Laboratory of Metabolic Diseases Glauto Tuquarre (LabGT), Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil; Center for Open and Distance Education (CEAD), Federal University of Piaui, Teresina, Piauí, Brazil
| | | | - Jorddam Almondes Martins
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Laboratory of Metabolic Diseases Glauto Tuquarre (LabGT), Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil; Center for Open and Distance Education (CEAD), Federal University of Piaui, Teresina, Piauí, Brazil
| | - Athanara Alves de Sousa
- Laboratory of Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil; Center for Open and Distance Education (CEAD), Federal University of Piaui, Teresina, Piauí, Brazil
| | - Taline Alves Nobre
- Laboratory of Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil; Center for Open and Distance Education (CEAD), Federal University of Piaui, Teresina, Piauí, Brazil
| | | | | | - Juliana Soares Severo
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Laboratory of Metabolic Diseases Glauto Tuquarre (LabGT), Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil; Center for Open and Distance Education (CEAD), Federal University of Piaui, Teresina, Piauí, Brazil
| | | | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Laboratory of Metabolic Diseases Glauto Tuquarre (LabGT), Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil; Center for Open and Distance Education (CEAD), Federal University of Piaui, Teresina, Piauí, Brazil.
| |
Collapse
|
3
|
Popa ML, Ichim C, Anderco P, Todor SB, Pop-Lodromanean D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J Clin Med 2025; 14:2054. [PMID: 40142862 PMCID: PMC11943142 DOI: 10.3390/jcm14062054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
MicroRNAs (miRNAs) have emerged as crucial regulators in digestive pathologies, including inflammatory bowel disease (miR-31, miR-155, and miR-21), colorectal cancer (miR-21, miR-598, and miR-494), and non-alcoholic fatty liver disease (miR-21, miR-192, and miR-122). Their capacity to modulate gene expression at the post-transcriptional level makes them highly promising candidates for biomarkers and therapeutic interventions. However, despite considerable progress, their clinical application remains challenging. Research has shown that miRNA expression is highly dynamic, varying across patients, disease stages, and different intestinal regions. Their dual function as both oncogenes and tumor suppressors further complicates their therapeutic use, as targeting miRNAs may yield unpredictable effects. Additionally, while miRNA-based therapies hold great potential, significant hurdles persist, including off-target effects, immune activation, and inefficiencies in delivery methods. The intricate interplay between miRNAs and gut microbiota adds another layer of complexity, influencing disease mechanisms and treatment responses. This review examined the role of miRNAs in digestive pathologies, emphasizing their diagnostic and therapeutic potential. While they offer new avenues for disease management, unresolved challenges underscore the need for further research to refine their clinical application.
Collapse
Affiliation(s)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | | | | |
Collapse
|
4
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Basha EH, Hegab II, Ismail R, Atef MM, El-Deeb OS, Ibrahim RR, Ghanem HB, Eissa R, Taha MS, Mwafy SE, Rizk FH, Salem OM, Ghafar MTA, Hafez YM, Mashal S, Tabaa MME, El-Harty YM. Protective effects of Kaempferol on hepatic apoptosis via miR-26a-5p enhancement and regulation of TLR4/NF-κB and PKCδ in a rat model of nonalcoholic fatty liver. J Nutr Biochem 2025; 137:109833. [PMID: 39701472 DOI: 10.1016/j.jnutbio.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to evaluate kaempferol's, a dietary flavonoid widely present in plants, potential impact on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms. In this study, 60 adult male rats were used and divided into a control group receiving a standard pellet diet, a kaempferol-treated group receiving kaempferol (250 mg/kg), a high-fat diet (HFD) group receiving HFD, and a kaempferol-treated HFD group. At the end of the experiment, the total lipid profile and liver enzymes were assayed in the serum. Additionally, oxidative stress (malondialdehyde and superoxide dismutase), inflammatory (tumor necrosis factor-alpha), apoptotic (caspase 3) markers, and nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR4) concentrations were assayed in the liver tissues. Furthermore, miR-26a and PKCδ gene expression and beclin 1 immunohistochemical expression were determined in liver tissues. Our findings revealed that kaempferol significantly protects against the development of NAFLD in rats as well as inflammatory, oxidative, and apoptotic changes in their liver tissues by inhibiting PKCδ and the TLR-4/NF-κB signaling pathway while enhancing autophagy (Beclin 1 expression) via upregulating miR-26a expression. Accordingly, kaempferol holds promise as a complementary medication for the prevention of NAFLD. Nonetheless, more research is needed to fully understand its additional effects on liver tissue and to develop novel medications that activate miR-26a. A link between lipid metabolic abnormalities and miRNAs was demonstrated as upregulating miR-26a-5p by kaempferol mitigates the inflammation, apoptosis, and disrupted autophagy via regulating TLR4/NF-κB pathway and PKC in NAFLD.
Collapse
Affiliation(s)
- Eman H Basha
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Basic Medical Sciences, Physiology, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Islam Ibrahim Hegab
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Radwa Ismail
- Departments of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa Mohamed Atef
- Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-Deeb
- Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rowida Rafaat Ibrahim
- Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Bassiony Ghanem
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Departments of Medical biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Eissa
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Tanta University Tanta, Egypt
| | - Marwa S Taha
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Tanta University Tanta, Egypt; Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shorouk E Mwafy
- Departemnt of Pathology, Faculty of Medicine, Tanta University Tanta, Egypt
| | - Fatma H Rizk
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ola M Salem
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shimaa Mashal
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat, Menoufia, Egypt
| | - Yasmeen M El-Harty
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Hu S, Kang H, Bae M, Kim MB, Jang H, Corvino O, Pham TX, Lee Y, Smyth JA, Park YK, Lee JY. Histone Deacetylase 9 Deletion Inhibits Hepatic Steatosis and Adipose Tissue Inflammation in Male Diet-Induced Obese Mice. J Gastroenterol Hepatol 2025; 40:741-749. [PMID: 39730208 PMCID: PMC11875955 DOI: 10.1111/jgh.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
AIM The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions. METHODS We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks. RESULTS Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females. Consistently, hepatic expression of genes crucial for de novo lipogenesis was markedly suppressed only in male, but not female, Hdac9 KO mice. However, Hdac9 deletion had a minimal effect on hepatic inflammation and fibrosis. In WAT, Hdac9 KO showed less adipocyte hypertrophy, inflammation, and fibrosis in male mice compared with WT. In addition, indirect calorimetry demonstrated that male Hdac9 KO mice had significantly higher metabolic rates, respiratory exchange ratios, and energy expenditure without altering physical activities than WT, which was not observed in female mice. CONCLUSIONS Our findings indicate that global deletion of Hdac9 prevented the development of obesity, hepatic steatosis, and WAT inflammation and fibrosis in male mice with diet-induced obesity and MASH, suggesting that a sex-dependent role of HDAC9 may exist in the pathways mentioned above.
Collapse
Affiliation(s)
- Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Joan A Smyth
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Mansour RM, Abdel Mageed SS, Abulsoud AI, Sayed GA, Lutfy RH, Awad FA, Sadek MM, Shaker AAS, Mohammed OA, Abdel-Reheim MA, Elimam H, Doghish AS. From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH. Funct Integr Genomics 2025; 25:30. [PMID: 39888504 DOI: 10.1007/s10142-025-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH. In the current review, the latest development concerned with the activity of complex regulatory networks of miRNA in the incidence as well as the evolution of NAFLD is to be discussed, also conferring about the miRNAs' role in the onset, pathogenesis as well as diagnosis of NAFLD and NASH discussing miRNAs' role as diagnostic biomarkers and their therapeutic effects on NAFLD/NASH.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
8
|
Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K, Vlachomitros D, Katsanaki E, Kostelli G, Pililis S, Pliouta L, Kountouri A, Papanikolaou IS, Lambadiari V, Ikonomidis I. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J Clin Med 2025; 14:428. [PMID: 39860434 PMCID: PMC11765821 DOI: 10.3390/jcm14020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and it is not only the keystone precursor of eventual liver-related morbidity, but it also places patients at considerably higher cardiovascular risk, which is still a leading cause of death in these patients. The most important common underlying pathophysiological mechanisms in these diseases are primarily related to insulin resistance, chronic inflammation and oxidative stress. The presence of MASLD with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) elevates the risk for poor outcomes, thus this review highlights a method to the therapeutic approaches. Given the intertwined nature of MASLD, T2DM, and CVD, there is an urgent need for therapeutic strategies that address all three conditions. Although lifestyle changes are important as treatment, medication plays a crucial role in managing hyperglycemia, enhancing liver function and lowering cardiovascular risk. The onset and progression of MASLD should be addressed through a multifaceted therapeutic approach, targeting inflammatory, immune, metabolic, oxidative stress, hormonal and gutaxis pathways, alongside the treatment strategies for T2DM. In this review, we discuss the effects of antidiabetic drugs with an impact on both liver outcomes and cardiovascular risk in patients affected by MASLD, T2DM and CDV.
Collapse
Affiliation(s)
- Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Rimini 1, Chaidari, 12462 Athens, Greece;
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| |
Collapse
|
9
|
Wen W, Fan H, Zhang S, Hu S, Chen C, Tang J, You Y, Wang C, Li J, Luo L, Cheng Y, Zhou M, Zhao X, Tan T, Xu F, Fu X, Chen J, Dong P, Zhang X, Wang M, Feng Y. Associations between metabolic dysfunction-associated fatty liver disease and atherosclerotic cardiovascular disease. Am J Med Sci 2024; 368:557-568. [PMID: 38944203 DOI: 10.1016/j.amjms.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 313000, Zhejiang, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shenghui Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jie Li
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Lin Luo
- Hangzhou Ruolin Hospital Management Co. Ltd, Hangzhou, 310007, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, 311300, China
| | - Mengyun Zhou
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3900803, Japan
| | - Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Tao Tan
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Fangfang Xu
- Strategy Research and Knowledge Information Center, SAIC Motor Group, 200030, Shanghai, China
| | - Xinyan Fu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Juan Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Peng Dong
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| | - Yan Feng
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| |
Collapse
|
10
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
11
|
Kalligeros M, Henry L, Younossi ZM. Metabolic dysfunction-associated steatotic liver disease and its link to cancer. Metabolism 2024; 160:156004. [PMID: 39182603 DOI: 10.1016/j.metabol.2024.156004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Metabolic-dysfunction associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a growing global health concern with significant implications for oncogenesis. This review synthesizes current evidence on the association between MASLD and cancer risk, highlighting its role as a risk factor for both intrahepatic and extrahepatic malignancies. MASLD is increasingly recognized as a major cause of hepatocellular carcinoma (HCC), with its incidence rising in parallel with the prevalence of metabolic dysfunction. Furthermore, MASLD is associated with an elevated risk of various gastrointestinal cancers, including colorectal, esophageal, stomach, and pancreatic cancers. Beyond the digestive tract, evidence suggests that MASLD may also contribute to an increased risk of other cancers such as breast, prostate, thyroid, gynecological, renal and lung cancers. Understanding the mechanisms underlying these associations and the impact of MASLD on cancer risk is crucial for developing targeted screening and prevention strategies.
Collapse
Affiliation(s)
- Markos Kalligeros
- Division of Gastroenterology and Hepatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Linda Henry
- The Global NASH Council, Washington, DC, United States of America; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States of America; Center for Outcomes Research in Liver Diseases, Washington, DC, United States of America
| | - Zobair M Younossi
- The Global NASH Council, Washington, DC, United States of America; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States of America; Center for Outcomes Research in Liver Diseases, Washington, DC, United States of America.
| |
Collapse
|
12
|
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr Issues Mol Biol 2024; 46:11580-11592. [PMID: 39451567 PMCID: PMC11506734 DOI: 10.3390/cimb46100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the effects of acupuncture and warm acupuncture on the expression and mechanism of the AMP-activated protein kinase (AMPK) signalling pathway associated with lipid accumulation in the liver tissue of rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by a high-fat diet. Sprague-Dawley rats were categorised into four groups: control (CON), untreated MAFLD (MAFLD), and two MAFLD groups treated with acupuncture (ACU) and warm acupuncture (WA). The treatment groups underwent 16 application sessions over 8 weeks at the SP9 and BL18 acupoints. We measured the expression levels of AMPK, sterol regulatory element-binding protein1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), peroxisome proliferator-activated receptorα (PPARα), carnitine palmitoyltransferase1 (CPT1), and CPT2. AMPK was activated in both ACU and WA groups. WA downregulated both SREBP1 and ACC expression at the protein level, whereas the acupuncture treatment downregulated SREBP1 expression. Additionally, WA selectively induced the activation of signalling pathways related to AMPK, PPARα, CPT1, and CPT2 at the mRNA level. Histological observations confirmed that fat accumulation was reduced in both the ACU and the WA groups compared to the MAFLD group. The WA treatment-promoted amelioration of HFD-induced MAFLD may be related to the activation of the AMPK/SREBP1/ACC pathway in the liver.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Donghee Choi
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Junghye Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Taejin Choi
- DongHaeng Convalescent Hospital, Gwangju 61251, Republic of Korea;
| | - Daehwan Youn
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
13
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
14
|
Zhang J, Duan M, Wu S, Jiang S, Hu S, Chen W, Zhang J, Quan H, Yang W, Wang C. Comprehensive pharmacological and experimental study of Ginsenoside Re as a potential therapeutic agent for non-alcoholic fatty liver disease. Biomed Pharmacother 2024; 177:116955. [PMID: 38906030 DOI: 10.1016/j.biopha.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVE Ginsenoside Re, a unique tetracyclic triterpenoid compound found in ginseng, has been suggested in previous reports to improve non-alcoholic fatty liver disease (NAFLD) by modulating lipid imbalance. This study aims to elucidate the potential mechanisms of Ginsenoside Re in treating NAFLD through a combination of bioinformatics analysis and biological experiments. METHODS Network pharmacology methods were employed to systematically depict the effective components and mechanisms of Ginsenoside Re in improving NAFLD. Molecular docking was utilized to evaluate the binding affinity of Ginsenoside Re with NAFLD-related targets and identify potential targets. NAFLD-related target genes were obtained from the GEO database for gene enrichment analysis, revealing signaling pathways, biological processes, and gene differential expression. Finally, animal experiments were conducted to verify the mechanism of action of Ginsenoside Re in NAFLD. RESULTS Network pharmacology analysis revealed that Ginsenoside Re improves NAFLD by modulating targets such as AKT1 and TLR4, findings corroborated by molecular docking, GEO database analysis, and experimental validation. Further investigation found that Ginsenoside Re ameliorates lipid metabolism disorders and inflammatory responses induced by NAFLD by modulating the PI3K/AKT and TLR4/NF-κB signaling pathways. CONCLUSION Our study demonstrates the pharmacological effects of Ginsenoside Re in treating NAFLD, implicating multiple components, targets, and pathways. This provides a solid foundation for considering Ginsenoside Re as an alternative therapy for NAFLD, with promising clinical applications.
Collapse
Affiliation(s)
- Jinshan Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Mingfei Duan
- Department of Thyroid and Breast Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Shaohong Wu
- Medical College of Jinan University, Guangzhou, China
| | - Shan Jiang
- Medical College of Jinan University, Guangzhou, China
| | - Songhao Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junchang Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, China.
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Zyoud SH, Alalalmeh SO, Hegazi OE, Shakhshir M, Abushamma F, Al-Jabi SW. An examination of global research trends for exploring the associations between the gut microbiota and nonalcoholic fatty liver disease through bibliometric and visualization analysis. Gut Pathog 2024; 16:31. [PMID: 38961453 PMCID: PMC11223324 DOI: 10.1186/s13099-024-00624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a significant health issue. Emerging research has focused on the role of the gut microbiota in NAFLD, emphasizing the gut-liver axis. This study aimed to identify key research trends and guide future investigations in this evolving area. METHODS This bibliometric study utilized Scopus to analyze global research on the link between the gut microbiota and NAFLD. The method involved a search strategy focusing on relevant keywords in article titles, refined by including only peer-reviewed journal articles. The data analysis included bibliometric indicators such as publication counts and trends, which were visualized using VOSviewer software version 1.6.20 for network and co-occurrence analysis, highlighting key research clusters and emerging topics. RESULTS Among the 479 publications on the gut microbiota and NAFLD, the majority were original articles (n = 338; 70.56%), followed by reviews (n = 119; 24.84%). The annual publication count increased from 1 in 2010 to 118 in 2022, with a significant growth phase starting in 2017 (R2 = 0.9025, p < 0.001). The research was globally distributed and dominated by China (n = 231; 48.23%) and the United States (n = 90; 18.79%). The University of California, San Diego, led institutional contributions (n = 18; 3.76%). Funding was prominent, with 62.8% of the articles supported, especially by the National Natural Science Foundation of China (n = 118; 24.63%). The average citation count was 43.23, with an h-index of 70 and a citation range of 0 to 1058 per article. Research hotspots shifted their focus post-2020 toward the impact of high-fat diets on NAFLD incidence. CONCLUSIONS This study has effectively mapped the growing body of research on the gut microbiota-NAFLD relationship, revealing a significant increase in publications since 2017. There is significant interest in gut microbiota and NAFLD research, mainly led by China and the United States, with diverse areas of focus. Recently, the field has moved toward exploring the interconnections among diet, lifestyle, and the gut-liver axis. We hypothesize that with advanced technologies, new opportunities for personalized medicine and a holistic understanding of NAFLD will emerge.
Collapse
Affiliation(s)
- Sa'ed H Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Clinical Research Centre, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Samer O Alalalmeh
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Omar E Hegazi
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Faris Abushamma
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Department of Urology, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Samah W Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
| |
Collapse
|
16
|
Shi Y, Taherifard E, Saeed A, Saeed A. MASLD-Related HCC: A Comprehensive Review of the Trends, Pathophysiology, Tumor Microenvironment, Surveillance, and Treatment Options. Curr Issues Mol Biol 2024; 46:5965-5983. [PMID: 38921027 PMCID: PMC11202630 DOI: 10.3390/cimb46060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant burden on global healthcare systems due to its considerable incidence and mortality rates. Recent trends indicate an increase in the worldwide incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) and a shift in the etiology of HCC, with MASLD replacing the hepatitis B virus as the primary contributor to new cases of HCC. MASLD-related HCC exhibits distinct characteristics compared to viral HCC, including unique immune cell profiles resulting in an overall more immunosuppressive or exhausted tumor microenvironment. Furthermore, MASLD-related HCC is frequently identified in older age groups and among individuals with cardiometabolic comorbidities. Additionally, a greater percentage of MASLD-related HCC cases occur in noncirrhotic patients compared to those with viral etiologies, hindering early detection. However, the current clinical practice guidelines lack specific recommendations for the screening of HCC in MASLD patients. The evolving landscape of HCC management offers a spectrum of therapeutic options, ranging from surgical interventions and locoregional therapies to systemic treatments, for patients across various stages of the disease. Despite ongoing debates, the current evidence does not support differences in optimal treatment modalities based on etiology. In this study, we aimed to provide a comprehensive overview of the current literature on the trends, characteristics, clinical implications, and treatment modalities for MASLD-related HCC.
Collapse
Affiliation(s)
- Yuming Shi
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
| | - Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
17
|
Xu L, Fan YH, Zhang XJ, Bai L. Unraveling the relationship between histone methylation and nonalcoholic fatty liver disease. World J Hepatol 2024; 16:703-715. [PMID: 38818286 PMCID: PMC11135277 DOI: 10.4254/wjh.v16.i5.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits. Its complexity stems from genetic predisposition, environmental influences, and metabolic factors. Epigenetic processes govern various cellular functions such as transcription, chromatin structure, and cell division. In NAFLD, these epigenetic tendencies, especially the process of histone methylation, are intricately intertwined with fat accumulation in the liver. Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis. While early-stage NAFLD is reversible, its progression to severe stages becomes almost irreversible. Therefore, early detection and intervention in NAFLD are crucial, and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430060, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
18
|
Mubarak M. Changes in the terminology and diagnostic criteria of non-alcoholic fatty liver disease: Implications and opportunities. World J Gastrointest Pathophysiol 2024; 15:92864. [PMID: 38682023 PMCID: PMC11045356 DOI: 10.4291/wjgp.v15.i1.92864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Fatty liver disease (FLD) is a highly prevalent pathological liver disorder. It has many and varied etiologies and has heterogeneous clinical course and outcome. Its proper nomenclature and classification have been problematic since its initial recognition. Traditionally, it was divided into two main categories: Alcohol-associated liver disease and nonalcoholic FLD (NAFLD). Among these, the latter condition has been plagued with nomenclature and classification issues. The two main objections to its use have been the use of negative (non-alcoholic) and stigmatizing (fatty) terms in its nomenclature. Numerous attempts were made to address these issues but none achieved universal acceptance. Just recently, NAFLD has received a new nomenclature from an international collaborative effort based on a rigorous scientific methodology. FLD has been renamed steatotic liver disease (SLD), and NAFLD as metabolic dysfunction-associated SLD. Metabolic dysfunction-associated steatohepatitis was chosen as the replacement terminology for non-alcoholic steatohepatitis. This is a significant positive change in the nomenclature and categorization of FLD and will likely have a major impact on research, diagnosis, treatment, and prognosis of the disease in the future.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Javed I. Kazi Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Pakistan
| |
Collapse
|
19
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
20
|
Mentsiou Nikolaou E, Kalafati IP, Dedoussis GV. The Interplay between Endocrine-Disrupting Chemicals and the Epigenome towards Metabolic Dysfunction-Associated Steatotic Liver Disease: A Comprehensive Review. Nutrients 2024; 16:1124. [PMID: 38674815 PMCID: PMC11054068 DOI: 10.3390/nu16081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), described as the most prominent cause of chronic liver disease worldwide, has emerged as a significant public health issue, posing a considerable challenge for most countries. Endocrine-disrupting chemicals (EDCs), commonly found in daily use items and foods, are able to interfere with nuclear receptors (NRs) and disturb hormonal signaling and mitochondrial function, leading, among other metabolic disorders, to MASLD. EDCs have also been proposed to cause transgenerationally inherited alterations leading to increased disease susceptibility. In this review, we are focusing on the most prominent linking pathways between EDCs and MASLD, their role in the induction of epigenetic transgenerational inheritance of the disease as well as up-to-date practices aimed at reducing their impact.
Collapse
Affiliation(s)
- Evangelia Mentsiou Nikolaou
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, 17676 Athens, Greece; (E.M.N.); (G.V.D.)
| | - Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, 17676 Athens, Greece; (E.M.N.); (G.V.D.)
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, 17676 Athens, Greece; (E.M.N.); (G.V.D.)
| |
Collapse
|
21
|
Samy AM, Kandeil MA, Sabry D, Abdel-Ghany AA, Mahmoud MO. Exosomal miR-122, miR-128, miR-200, miR-298, and miR-342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR-4/FoxO3 pathway. Arch Pharm (Weinheim) 2024; 357:e2300631. [PMID: 38574101 DOI: 10.1002/ardp.202300631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 04/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disorder affecting a quarter of the global residents. Progression of NAFL into nonalcoholic steatohepatitis (NASH) may cause cirrhosis, liver cancer, and failure. Gut microbiota imbalance causes microbial components translocation into the circulation, triggering liver inflammation and NASH-related fibrosis. MicroRNAs (miRNAs) regulate gene expression via repressing target genes. Exosomal miRNAs are diagnostic and prognostic biomarkers for NAFL and NASH liver damage. Our work investigated the role of the gut microbiota in NAFLD pathogenesis via the lipopolysaccharide/toll-like receptor 4/Forkhead box protein O3 (LPS/TLR-4/FoxO3) pathway and certain miRNAs as noninvasive biomarkers for NAFL or its development to NASH. miRNA expression levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 50 NAFL patients, 50 NASH patients, and 50 normal controls. Plasma LPS, TLR-4, adiponectin, peroxisome proliferator-activated receptor γ (PPAR-γ), and FoxO3 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). In NAFL and NASH patients, miR-122, miR-128, FoxO3, TLR-4, LPS, and PPAR-γ were upregulated while miR-200, miR-298, miR-342, and adiponectin were downregulated compared with the normal control. The examined miRNAs might distinguish NAFL and NASH patients from the normal control using receiver operating characteristic analysis. Our study is the first to examine these miRNAs in NAFLD. Our findings imply that these are potentially promising biomarkers for noninvasive early NAFL diagnosis and NASH progression. Understanding the LPS/TLR-4/FoxO3 pathway involvement in NAFL/NASH pathogenesis may aid disease management.
Collapse
Affiliation(s)
- Ahmed M Samy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo, Egypt
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assuit branch, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
22
|
Liu Y, Li W, Zhang J, Yan Y, Zhou Q, Liu Q, Guan Y, Zhao Z, An J, Cheng X, He M. Associations of arsenic exposure and arsenic metabolism with the risk of non-alcoholic fatty liver disease. Int J Hyg Environ Health 2024; 257:114342. [PMID: 38401403 DOI: 10.1016/j.ijheh.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 μg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbin Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Hong S, Sun L, Hao Y, Li P, Zhou Y, Liang X, Hu J, Wei H. From NAFLD to MASLD: When metabolic comorbidity matters. Ann Hepatol 2024; 29:101281. [PMID: 38135250 DOI: 10.1016/j.aohep.2023.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION AND OBJECTIVES In a recent development, a cohort of hepatologists has proposed altering the nomenclature of non-alcoholic fatty liver disease (NAFLD) to metabolic-associated steatotic liver disease (MASLD), accompanied by modified diagnostic criteria. Our objective was to investigate the effect of the revised definition on identifying significant hepatic fibrosis. PATIENTS AND METHODS From Jan 2009 to Dec 2022, a total of 428 patients with biopsy-proven hepatic steatosis were diagnosed with NAFLD. Patients were classified into subgroups according to MASLD and Cryptogenic-SLD diagnostic criteria. The clinical pathological features were compared between these two groups. Risk factors for significant fibrosis were analysed in the MASLD group. In total, 329 (76.9 %) patients were diagnosed with MASLD, and 99 (23.1 %) were diagnosed with Cryptogenic-SLD. RESULTS Those with MASLD exhibited a higher degree of disease severity regarding histology features than Cryptogenic-SLD. The prevalence of significant fibrosis increased from 13 % to 26.6 % for one and two criteria present to 42.5 % for meeting three or more cardiometabolic risk factor (CMRF) criteria (p = 0.001). ALB (aOR:0.94,95 %CI:0.90-1.00; p = 0.030), lower levels of PLT (aOR:0.99, 95 %CI:0.99-1.00; p < 0.001), and more metabolic comorbidities (aOR:1.42,95 %CI:1.14-1.78; p = 0.012) were independent risk factors of significant fibrosis in MASLD. CONCLUSIONS The new nomenclature of MASLD and SLD is more applicable to identifying significant fibrosis than NAFLD. Patients with three or more cardiometabolic risk factors are at higher risk of fibrosis.
Collapse
Affiliation(s)
- Shan Hong
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yiwei Hao
- Department of Medical Records and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ping Li
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuling Zhou
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiuxia Liang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Julong Hu
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Yang Z, Zhang S, Liu X, Shu R, Shi W, Qu W, Liu D, Cai Z, Wang Y, Cheng X, Liu Y, Zhang XJ, Bai L, Li H, She ZG. Histone demethylase KDM1A promotes hepatic steatosis and inflammation by increasing chromatin accessibility in NAFLD. J Lipid Res 2024; 65:100513. [PMID: 38295985 PMCID: PMC10907224 DOI: 10.1016/j.jlr.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Siyao Zhang
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Xiang Liu
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Rui Shu
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Shi
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Weiyi Qu
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dianyu Liu
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Zhiwei Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ye Wang
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Yemao Liu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel) 2024; 14:272. [PMID: 38398781 PMCID: PMC10890557 DOI: 10.3390/life14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The bidirectional relationship between type 2 diabetes and (non-alcoholic fatty liver disease) NAFLD is indicated by the higher prevalence and worse disease course of one condition in the presence of the other, but also by apparent beneficial effects observed in one, when the other is improved. This is partly explained by their belonging to a multisystemic disease that includes components of the metabolic syndrome and shared pathogenetic mechanisms. Throughout the progression of NAFLD to more advanced stages, complex systemic and local metabolic derangements are involved. During fibrogenesis, a significant metabolic reprogramming occurs in the hepatic stellate cells, hepatocytes, and immune cells, engaging carbohydrate and lipid pathways to support the high-energy-requiring processes. The natural history of NAFLD evolves in a variable and dynamic manner, probably due to the interaction of a variable number of modifiable (diet, physical exercise, microbiota composition, etc.) and non-modifiable (genetics, age, ethnicity, etc.) risk factors that may intervene concomitantly, or subsequently/intermittently in time. This may influence the risk (and rate) of fibrosis progression/regression. The recognition and control of the factors that determine a rapid progression of fibrosis (or its regression) are critical, as the fibrosis stages are associated with the risk of liver-related and all-cause mortality.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3, Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; or
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureş, Romania
| |
Collapse
|
26
|
Zailaie SA, Khoja BB, Siddiqui JJ, Mawardi MH, Heaphy E, Aljagthmi A, Sergi CM. Investigating the Role of Non-Coding RNA in Non-Alcoholic Fatty Liver Disease. Noncoding RNA 2024; 10:10. [PMID: 38392965 PMCID: PMC10891858 DOI: 10.3390/ncrna10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that do not code for protein but play key roles in regulating cellular processes. NcRNAs globally affect gene expression in diverse physiological and pathological contexts. Functionally important ncRNAs act in chromatin modifications, in mRNA stabilization and translation, and in regulation of various signaling pathways. Non-alcoholic fatty liver disease (NAFLD) is a set of conditions caused by the accumulation of triacylglycerol in the liver. Studies of ncRNA in NAFLD are limited but have demonstrated that ncRNAs play a critical role in the pathogenesis of NAFLD. In this review, we summarize NAFLD's pathogenesis and clinical features, discuss current treatment options, and review the involvement of ncRNAs as regulatory molecules in NAFLD and its progression to non-alcoholic steatohepatitis (NASH). In addition, we highlight signaling pathways dysregulated in NAFLD and review their crosstalk with ncRNAs. Having a thorough understanding of the disease process's molecular mechanisms will facilitate development of highly effective diagnostic and therapeutic treatments. Such insights can also inform preventive strategies to minimize the disease's future development.
Collapse
Affiliation(s)
- Samar A. Zailaie
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Basmah B. Khoja
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Jumana J. Siddiqui
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Mawardi
- Medicine Department, Gastroenterology Section, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia;
| | - Emily Heaphy
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Amjad Aljagthmi
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
27
|
Hassan A, Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Bangay G, Al-Sawahli MM, Fouad MK, Zoair MA, Abdalrhman TI, Elebeedy D, Ibrahim IA, Mohamed AF, Abd El Maksoud AI. Synergistic Differential DNA Demethylation Activity of Danshensu ( Salvia miltiorrhiza) Associated with Different Probiotics in Nonalcoholic Fatty Liver Disease. Biomedicines 2024; 12:279. [PMID: 38397881 PMCID: PMC10886676 DOI: 10.3390/biomedicines12020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major hepatic disorder occurring in non-alcohol-drinking individuals. Salvianic acid A or Danshensu (DSS, 3-(3, 4-dihydroxyphenyl)-(2R)-lactic acid), derived from the root of Danshen (Salvia miltiorrhiza), has demonstrated heart and liver protective properties. In this work, we investigated the antioxidant activity and hepatoprotective activity of Danshensu alone and in combination with different agents, such as probiotic bacteria (Lactobacillus casei and Lactobacillus acidophilus), against several assays. The inhibition mechanism of the methylation gene biomarkers, such as DNMT-1, MS, STAT-3, and TET-1, against DSS was evaluated by molecular docking and RT-PCR techniques. The physicochemical and pharmacokinetic ADMET properties of DSS were determined by SwissADME and pkCSM. The results indicated that all lipid blood test profiles, including cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), were reduced after the oral administration of Danshensu combined with probiotics (L. casei and L. acidophilus) that demonstrated good, efficient free radical scavenging activity, measured using anti-oxidant assays. ADMET and drug-likeness properties certify that the DSS could be utilized as a feasible drug since DSS showed satisfactory physicochemical and pharmacokinetic ADMET properties.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Patrícia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas), Ctra. Madrid-Barcelona km. 33,600, 28805 Alcalá de Henares, Madrid, España
| | - Majid Mohammed Al-Sawahli
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt
| | - Marina K. Fouad
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Mohammad A. Zoair
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Tamer I. Abdalrhman
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Dalia Elebeedy
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt;
| | - Aly F. Mohamed
- Holding Company for Vaccine and Sera Production (VACSERA), Giza 22311, Egypt;
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
28
|
Mohamed AA, Al Dweik R, Abdelghafour RA, Ramadan A, Abbas AM, Samir HH, Muharram NM, Ahmed Elshiha RI, El-Salawy N, Ghaith D, Darwish MK, Abd El Salam SM, Sultan EA, Soliman AS, Ezz AL Arab M, Elamir AY, Mohamed AA, Hassanin ASA, Abouaggour AAM, Hafez W, Omran MM. Anthropometry, laboratory, and PNPLA3 polymorphisms in a novel model for early identification and evaluation of nonalcoholic fatty liver disease. INFORMATICS IN MEDICINE UNLOCKED 2024; 48:101513. [DOI: 10.1016/j.imu.2024.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
29
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
30
|
Tarcău BM, Vicaș LG, Filip L, Maghiar F, Șandor M, Pallag A, Jurca T, Mureșan ME, Marian E. Emerging Perspectives on the Set of Conditions That Lead to the Emergence of Metabolic Syndrome. J Pers Med 2023; 14:32. [PMID: 38248733 PMCID: PMC10820431 DOI: 10.3390/jpm14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic syndrome, as a medical condition, presents multifactorial complexity that is characterized by the resulting damage from genetic, environmental, and lifestyle factors (presence or absence of physical activity, food choices). Thus, metabolic syndrome qualifies unequivocally as a medical condition in which there are, simultaneously, several independent metabolic risk factors, namely, abdominal obesity, high triglyceride level, low HDL cholesterol level, arterial hypertension, and high glycemic level. Although age, sex, socio-economic status, and the precise definition of metabolic syndrome all influence the prevalence and risk of developing the condition, clinical and epidemiological studies clearly show that central obesity, as measured by an increased abdominal circumference, is the main risk factor. Thus, due to the growing global incidence of obesity, there has been an increase in the incidence of metabolic syndrome. Starting with obesity, all other metabolic risk factors are influenced: for example, as a result of insulin resistance with hyperglycemia, diabetes is linked to an increased risk of cardiovascular disease due to increased abdominal circumference. Through this review, we aimed to highlight the latest research studies and dietary nutritional interventions useful in the prevention of this disease but also implementation strategies for primary prevention among the healthy population.
Collapse
Affiliation(s)
- Bogdan M. Tarcău
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Laura G. Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Florin Maghiar
- Medical Department, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st December Square, 410073 Oradea, Romania;
| | - Mircea Șandor
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st December Square, 410073 Oradea, Romania;
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| | - Mariana Eugenia Mureșan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st December Square, 410073 Oradea, Romania;
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| |
Collapse
|
31
|
La Colla A, Cámara CA, Campisano S, Chisari AN. Mitochondrial dysfunction and epigenetics underlying the link between early-life nutrition and non-alcoholic fatty liver disease. Nutr Res Rev 2023; 36:281-294. [PMID: 35067233 DOI: 10.1017/s0954422422000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of 'developmental programming'. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review, we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD.
Collapse
Affiliation(s)
- Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carolina Anahí Cámara
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
32
|
Akkahadsee P, Sawangjit R, Phumart P, Chaiyakunapruk N, Sakloetsakun D. Systematic review and network meta-analysis of efficacy and safety of interventions for preventing anti-tuberculosis drug induced liver injury. Sci Rep 2023; 13:19880. [PMID: 37963954 PMCID: PMC10645982 DOI: 10.1038/s41598-023-46565-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Anti-tuberculosis drug induced liver injury (Anti-TB DILI) is the most common adverse events (AEs) necessitating therapy interruption but there is no preventing regimen. This study aimed to examine the efficacy and safety of herbs/alternative medicines for preventing anti-TB DILI. Relevant articles were identified through a systematic search in 5 international databases from inception till March 2022. All randomized controlled trials (RCT) assessing the effects of herbal or alternative medicines against anti-TB DILI were included. The network meta-analysis (NMA) was used to synthesize the evidence for preventing hepatotoxicity using a random-effects model. A total of 3423 patients from 14 RCTs were included. The NMA indicated that supplementation of Turmeric plus Tinospora cordifolia (RR 0.07; 95% CI 0.02 to 0.28), and N-acetyl cysteine (NAC) (RR 0.09; 95% CI 0.01 to 0.75) significantly reduced the incidence of anti-TB DILI compared with placebo. In addition, poly herbal product significantly reduced alkaline phosphatase (ALP) (MD - 21.80; 95% CI - 33.80 to - 9.80) and total bilirubin (Tbil) compared with placebo (MD - 0.51; 95% CI - 0.76 to - 0.26). There was no statistically significant difference in the occurrence of AEs in any intervention. In conclusion, Turmeric plus Tinospora cordifolia, NAC and poly-herbal product may provide benefit for preventing anti-TB DILI in TB patients. However, these findings are based on a small number of studies. Additional studies are warranted to confirm the findings.
Collapse
Affiliation(s)
- Pattaraporn Akkahadsee
- Master Degree of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, MahaSarakham, Thailand
| | - Ratree Sawangjit
- Clinical Trials and Evidence-Based Syntheses Research Unit (CTEBs RU), Mahasarakham University, MahaSarakham, Thailand.
| | - Panumart Phumart
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Duangkamon Sakloetsakun
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
33
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
34
|
Legaz I, Morales R, Bolarín JM, Collados-Ros A, Pons JA, Muro M. Is the Development of Ascites in Alcoholic Liver Patients Influenced by Specific KIR/HLA Gene Profiles? Biomedicines 2023; 11:2405. [PMID: 37760846 PMCID: PMC10525207 DOI: 10.3390/biomedicines11092405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Decompensated cirrhosis is the most common cause of ascites due to hemodynamic and renal alteration by continuous fluid leakage from the hepatic sinusoids and splanchnic capillaries into the interstitial space. Then, fluid leakage exceeds lymphatic return, leading to progressive fluid accumulation directly into the peritoneal cavity. Alcohol consumption is one of the main risks of developing alcoholic cirrhosis (AC), but not all AC patients develop ascites. Avoiding the development of ascites is crucial, given that it deteriorates prognosis and increases the patient mortality patient. The innate immune system plays a crucial role in cirrhosis through natural killer cells, which are abundant in the liver. The aim of this study was to analyze the KIR/HLA-C genetic profile in AC patients with and without ascites to understand this pathology and find predictive clinical susceptibility biomarkers that can help to establish risks and prevent the development of ascites in AC patients. A total of 281 AC patients with and without ascites were analyzed and compared with 319 healthy controls. Genomic DNA was extracted from peripheral blood in all groups. A PCR-SSO assay was performed for KIR/HLA genotyping analysis. A total of 16 activating and inhibitor KIR genes and their corresponding known ligands, epitopes of HLA-C, and their genotypes were analyzed. According to our analysis, C1 epitopes were statistically significantly decreased in AC patients with and without ascites. When comparing AC patients with ascites and healthy controls, a significant decrease in C1 epitope frequency was also observed. A statistically significant decrease was also found when comparing the C1C2 genotype in AC patients without ascites with controls. In conclusion, the absence of KIR2DL2 and KIR3DL1 genes may be a predisposing factor for the development of ascites in AC patients. The KIR2DS2/KIR2DL2 may could be involved in grade I ascites development, and the presence of the C1+ epitope and the homozygous C2C2 genotype may be protective genetic factors against ascites development in AC patients.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain (J.M.B.)
| | - Raquel Morales
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain (J.M.B.)
| | - José Miguel Bolarín
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain (J.M.B.)
| | - Aurelia Collados-Ros
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain (J.M.B.)
| | - José Antonio Pons
- Department of Hepatology, Liver Transplantation Unit Hospital Clinic Universitario, Virgen de la Arrixaca, IMIB-Arrixaca, 30120 Murcia, Spain
| | - Manuel Muro
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| |
Collapse
|
35
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Epigenetic Regulation in Lean Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:12864. [PMID: 37629043 PMCID: PMC10454848 DOI: 10.3390/ijms241612864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases, from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has been extensively reported among lean/nonobese individuals in recent years. Although lean patients demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension, and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a close association with environmental factors, genetic predisposition, and epigenetic modifications. In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation. Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights into the therapeutic options and noninvasive biomarkers that target this under-recognized and challenging disorder.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
36
|
Bartiromo M, Nardolillo M, Ferrara S, Russo G, Miraglia Del Giudice E, Di Sessa A. The challenging role of micro-RNAs in non-alcoholic fatty liver disease in children with obesity: is it time for a new era? Expert Rev Gastroenterol Hepatol 2023; 17:817-824. [PMID: 37497846 DOI: 10.1080/17474124.2023.2242245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION As the pediatric obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in childhood. Pediatric NAFLD pathophysiology is tangled and still unclear, but insulin resistance (IR), genetics, epigenetics, oxidative stress, and inflammation act as key players. Due to the increased cardiometabolic risk of these patients, several biomarkers have been proposed for early NAFLD identification, but their clinical utility is poor. Recently, hepatic dysregulation of microRNAs (miRNAs) has been linked to metabolic dysfunction, which in turn implied in NAFLD development. Evidence on the intriguing role of miRNAs in NAFLD pathogenesis has emerging especially in at-risk children such as those with obesity. However, pediatric evidence supporting their potential use as early noninvasive NAFLD tools is still limited but promising. AREAS COVERED We provided an overview on the emerging role of miRNAs in pediatric NAFLD by addressing some issues regarding their pathophysiological link with the metabolic milieu and their role as reliable NAFLD markers in children with obesity. EXPERT OPINION Strong evidence supports a potential role of miRNAs as early biomarkers of NAFLD in children with obesity. They might represent a valid diagnostic and targeted therapeutic tool due to its close pathogenic link with the metabolic milieu.
Collapse
Affiliation(s)
- Mario Bartiromo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Nardolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Serena Ferrara
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Russo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
37
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Patowary P, Chattopadhyay P, Das A. Therapeutic potential of bioactive phytoconstituents found in fruits in the treatment of non-alcoholic fatty liver disease: A comprehensive review. Heliyon 2023; 9:e15347. [PMID: 37101636 PMCID: PMC10123163 DOI: 10.1016/j.heliyon.2023.e15347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic liver condition affects a large number of people around the world with a frequency of 25% of all the chronic liver disease worldwide. Several targets viz. anti-inflammatory, anti-apoptotic and, anti-fibrotic factors, anti-oxidant and insulin-sensitizing pathways, metabolic regulators as well as repurposing traditional medications have been studied for the pharmacologic therapy of NAFLD. Newer pharmacotherapies like caspases blockade, agonists of PPAR and farnesoid X receptor agonists are currently being investigated in treating human NAFLD. However, NAFLD has no FDA-approved pharmacological therapy, therefore there is a considerable unmet therapy need. Apart from the conventional treatment regime, the current approaches to treating NAFLD include lifestyle interventions including healthy diet with adequate nutrition and physical activity. Fruits are known to play a key role in the well-being of human health. Fruits are loaded with a repertoire of bioactive phytoconstituents like catechins, phytosterols, proanthocyanidin, genestin, daidzen, resveratrol, magiferin found in fruits like pear, apricot, strawberries, oranges, apples, bananas, grapes, kiwi, pineapple, watermelon, peach, grape seed and skin, mango, currants, raisins, dried dates, passion fruit and many more. These bioactive phytoconstituents are reported to demonstrate promising pharmacological efficacy like reduction in fatty acid deposition, increased lipid metabolism, modulation of insulin signaling pathway, gut microbiota and hepatic inflammation, inhibition of histone acetyltransferase enzymatic activity to name a few. Not only fruits, but their derivatives like oils, pulp, peel, or their preparations are also found to be equally beneficial in various liver diseases like NAFLD, NASH. Although most of the fruits contains potent bioactive phytoconstituents, however, the presence of sugar in fruits put a question mark on the ameliorative property of the fruits and there has been contrasting reports on the glycemic control post fruit consumption in type 2 diabetic patients. This review is an attempt to summarize the beneficial effects of fruit phytoconstituents on NAFLD based on epidemiological, clinical and experimental evidence, focusing especially on their mechanisms of action.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Pompy Patowary
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784001, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
38
|
Shen N, Tang L, Qian Y, Pan J, Pan J, Miao H, Zhang H, Fang H, Yu X, Xing L. Serum miR-4488 as a potential biomarker of lean nonalcoholic fatty liver disease. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:173. [PMID: 36923095 PMCID: PMC10009574 DOI: 10.21037/atm-22-6620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Background In lean individuals, nonalcoholic fatty liver disease (NAFLD) is not a benign disease, and these patients have long-term morbidity and mortality similar to those of their nonlean counterparts. Finding biomarkers for noninvasive and early detection is urgent and microRNAs (miRNAs) show potential. The aims of this study were to investigate the potential role of serum miRNAs in the detection of lean NAFLD and to explore the possible pathogenesis of lean NAFLD. Methods A total of 498 patients with NAFLD and 98 healthy controls were included to compare the clinical characteristics of lean NAFLD patients [LNs: body mass index (BMI) <23 kg/m2], nonlean NAFLD patients (NLNs: BMI ≥23 kg/m2) and normal healthy individuals (HIs). A total of 14 serum samples were collected from 4 LNs, 6 NLNs and 4 HIs for high-throughput profiling to identify altered miRNA expression patterns in lean NAFLD. The candidate miRNA, miR-4488, was identified by filtering based on studies in a second independent cohort (31 LNs, 62 NLNs, 72 HIs) that included quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction network analyses were performed to investigate the potential molecular mechanism of miR-4488 in lean NAFLD. Results LNs were older and had a smaller waist circumference, lower levels of alanine aminotransferase, glutamyl transpeptidase, fasting insulin, and uric acid, lower HOMA-IR score, and higher levels of total cholesterol, high-density lipoprotein cholesterol, and hemoglobin (P<0.05). The serum level of miR-4488 was increased in LNs compared with HIs (P<0.0001) and NLNs (P=0.025). miR-4488 had acceptable performance in predicting [area under the curve (AUC) =0.794, 0.698] lean NAFLD. Moreover, GO and KEGG enrichment analyses revealed that the differentially expressed target genes were mainly involved in choline metabolism in cancer, the tumor-necrosis factor (TNF) signaling pathway and the p53 signaling pathway. PPI analysis identified ARHGAP1, SLC10A1 and SIX5 as the hub genes. Conclusions Taken together, our findings indicate that serum miR-4488 is a potential biomarker for diagnosing and predicting the pathogenetic mechanisms of lean NAFLD.
Collapse
Affiliation(s)
- Nan Shen
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Tang
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Preventive Health Department of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Qian
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielu Pan
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiashu Pan
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Miao
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Zhang
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Fang
- Preventive Health Department of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Yu
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjun Xing
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Ragab HM, Ezzat WM, Hassan EM, El Maksoud NA, Afify M, Abd El-Maksoud MDE, Elaziz WA. Significance of MiRNA-34a and MiRNA-192 as a risk factor for nonalcoholic fatty liver disease. J Genet Eng Biotechnol 2023; 21:13. [PMID: 36757530 PMCID: PMC9911573 DOI: 10.1186/s43141-023-00467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/14/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND AND AIMS NAFLD is one of the fast-growing health problems that affects up to 25% of people worldwide. Numerous miRNAs have been clarified as important regulators of liver pathophysiology, including NAFLD. Thus, we investigated the expression of the MiRNA-34a and MiRNA-192 as diagnostic markers for NAFLD. PATIENTS AND METHODS Blood samples were collected from NAFLD cases and healthy controls. The expression profile of both studied miRNAs was detected via real-time PCR analysis. RESULTS The present study showed that both studied miRNAs were upregulated in NAFLD patients compared to controls. Interestingly, miRNA-34a and MiRNA-192 are upregulated in NAFLD patients with early fibrosis compared to controls [with a fold change of 4.02 ± 11.49 (P = 0.05) and 18.43 ± 47.8 (P = 0.017), respectively]. However, miRNA-34a is downregulated in NAFLD patients with advanced fibrosis compared to controls, with fold expression of 0.65 ± 1.17 (P = 0.831). The area under the receiver operating characteristics (AUROC) for miRNA-34a and miRNA-192 were 0.790 and 0.643, respectively; furthermore, the sensitivities and specificities were 76.7%, 100% for miRNA-34a and 63.3%, and 93.3% for miRNA-192 (P < 0.05). Additionally, MiRNA34a was positively correlated with hypertension and fasting blood sugar, and it also was negatively correlated with hemoglobin level and total leucocyte count (P < 0.05). CONCLUSION The results obtained indicated that both studied miRNAs could potentially be used as diagnostic biomarkers for the early stage of liver fibrosis in NAFLD cases. Also, miRNA-34a was positively correlated with metabolic disorders associated with NAFLD such as hypertension and diabetes. However, their expression showed no association with advanced fibrosis. Thus, larger cohorts are necessitated to certify the utility of serum MiRNA-34a and MiRNA-192 in monitoring the deterioration of NAFLD.
Collapse
Affiliation(s)
- Halla M. Ragab
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Wafaa M. Ezzat
- grid.419725.c0000 0001 2151 8157Internal Medicine Department, National Research Centre, Dokki, Giza, Egypt
| | - Eman Mahmoud Hassan
- grid.419725.c0000 0001 2151 8157Clinical and Chemical Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Nabila Abd El Maksoud
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mie Afify
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed D. E. Abd El-Maksoud
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Wafaa Abd Elaziz
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
40
|
The Role of Red Cell Distribution Width as a Prognostic Marker in Chronic Liver Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24043487. [PMID: 36834895 PMCID: PMC9967940 DOI: 10.3390/ijms24043487] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Liver disease is one of the leading public health problems faced by healthcare practitioners regularly. As such, there has been a search for an inexpensive, readily available, non-invasive marker to aid in monitoring and prognosticating hepatic disorders. Recently, red blood cell distribution width (RDW) has been found to be associated with various inflammatory conditions with implications for its use as a potential marker for assessing disease progression and prognosis in multiple conditions. Multiple factors effect red blood cell production whereby a dysfunction in any process can lead to anisocytosis. Furthermore, a chronic inflammatory state leads to increased oxidative stress and produces inflammatory cytokines causing dysregulation and increased intracellular uptake and use of both iron and vitamin B12, which leads to a reduction in erythropoiesis causing an increase in RDW. This literature review reviews in-depth pathophysiology that may lead to an increase in RDW and its potential correlation with chronic liver diseases, including hepatitis B, hepatitis C, hepatitis E, non-alcoholic fatty liver disease, autoimmune hepatitis, primary biliary cirrhosis, and hepatocellular carcinoma. In our review, we examine the use of RDW as a prognostic and predictive marker for hepatic injury and chronic liver disease.
Collapse
|
41
|
Melton PE, Burton MA, Lillycrop KA, Godfrey KM, Rauschert S, Anderson D, Burdge GC, Mori TA, Beilin LJ, Ayonrinde OT, Craig JM, Olynyk JK, Holbrook JD, Pennell CE, Oddy WH, Moses EK, Adams LA, Huang RC. Differential DNA methylation of steatosis and non-alcoholic fatty liver disease in adolescence. Hepatol Int 2023; 17:584-594. [PMID: 36737504 PMCID: PMC9897882 DOI: 10.1007/s12072-022-10469-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Epigenetic modifications are associated with hepatic fat accumulation and non-alcoholic fatty liver disease (NAFLD). However, few epigenetic modifications directly implicated in such processes have been identified during adolescence, a critical developmental window where physiological changes could influence future disease trajectory. To investigate the association between DNA methylation and NAFLD in adolescence, we undertook discovery and validation of novel methylation marks, alongside replication of previously reported marks. APPROACH AND RESULTS We performed a DNA methylation epigenome-wide association study (EWAS) on DNA from whole blood from 707 Raine Study adolescents phenotyped for steatosis score and NAFLD by ultrasound at age 17. Next, we performed pyrosequencing validation of loci within the most 100 strongly associated differentially methylated CpG sites (dmCpGs) for which ≥ 2 probes per gene remained significant across four statistical models with a nominal p value < 0.007. EWAS identified dmCpGs related to three genes (ANK1, MIR10a, PTPRN2) that met our criteria for pyrosequencing. Of the dmCpGs and surrounding loci that were pyrosequenced (ANK1 n = 6, MIR10a n = 7, PTPRN2 n = 3), three dmCpGs in ANK1 and two in MIR10a were significantly associated with NAFLD in adolescence. After adjustment for waist circumference only dmCpGs in ANK1 remained significant. These ANK1 CpGs were also associated with γ-glutamyl transferase and alanine aminotransferase concentrations. Three of twenty-two differentially methylated dmCpGs previously associated with adult NAFLD were associated with NAFLD in adolescence (all adjusted p < 2.3 × 10-3). CONCLUSIONS We identified novel DNA methylation loci associated with NAFLD and serum liver biochemistry markers during adolescence, implicating putative dmCpG/gene regulatory pathways and providing insights for future mechanistic studies.
Collapse
Affiliation(s)
- Phillip E. Melton
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000 Australia ,grid.1012.20000 0004 1936 7910School of Global and Population Health, The University of Western Australia, Crawley, WA Australia
| | - M. A. Burton
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K. A. Lillycrop
- grid.5491.90000 0004 1936 9297Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK ,grid.430506.40000 0004 0465 4079NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - K. M. Godfrey
- grid.430506.40000 0004 0465 4079NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK ,grid.5491.90000 0004 1936 9297MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - S. Rauschert
- grid.1012.20000 0004 1936 7910Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - D. Anderson
- grid.1012.20000 0004 1936 7910Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - G. C. Burdge
- grid.5491.90000 0004 1936 9297School of Human Health and Development, Faculty of Medicine, University of Southampton, Southampton, UK
| | - T. A. Mori
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia
| | - L. J. Beilin
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia
| | - O. T. Ayonrinde
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia ,Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, Murdoch, WA Australia
| | - J. M. Craig
- grid.416107.50000 0004 0614 0346MCRI, Royal Children’s Hospital, Flemington Road, Parkville, VIC Australia ,grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC Australia
| | - J. K. Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, Murdoch, WA Australia ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | - J. D. Holbrook
- grid.5491.90000 0004 1936 9297MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - C. E. Pennell
- grid.266842.c0000 0000 8831 109XUniversity of Newcastle, Newcastle, NSW Australia
| | - W. H. Oddy
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000 Australia
| | - E. K. Moses
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000 Australia ,grid.1012.20000 0004 1936 7910School of Biomedical Sciences, University of Western Australia, Crawley, WA Australia
| | - L. A. Adams
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia
| | - R. C. Huang
- grid.1012.20000 0004 1936 7910Telethon Kids Institute, The University of Western Australia, Perth, Australia
| |
Collapse
|
42
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
43
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
44
|
Comparison of Body Composition, Muscle Strength and Cardiometabolic Profile in Children with Prader-Willi Syndrome and Non-Alcoholic Fatty Liver Disease: A Pilot Study. Int J Mol Sci 2022; 23:ijms232315115. [PMID: 36499438 PMCID: PMC9739027 DOI: 10.3390/ijms232315115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Syndromic and non-syndromic obesity conditions in children, such as Prader-Willi syndrome (PWS) and non-alcoholic fatty liver disease (NAFLD), both lower quality of life and increase risk for chronic health complications, which further increase health service utilization and cost. In a pilot observational study, we compared body composition and muscle strength in children aged 7−18 years with either PWS (n = 9), NAFLD (n = 14), or healthy controls (n = 16). Anthropometric and body composition measures (e.g., body weight, circumferences, skinfolds, total/segmental composition, and somatotype), handgrip strength, six minute-walk-test (6MWT), physical activity, and markers of liver and cardiometabolic dysfunction (e.g., ALT, AST, blood pressure, glucose, insulin, and lipid profile) were measured using standard procedures and validated tools. Genotyping was determined for children with PWS. Children with PWS had reduced lean body mass (total/lower limb mass), lower handgrip strength, 6MWT and increased sedentary activity compared to healthy children or those with NAFLD (p < 0.05). Children with PWS, including those of normal body weight, had somatotypes consistent with relative increased adiposity (endomorphic) and reduced skeletal muscle robustness (mesomorphic) when compared to healthy children and those with NAFLD. Somatotype characterizations were independent of serum markers of cardiometabolic dysregulation but were associated with increased prevalence of abnormal systolic and diastolic blood pressure Z-scores (p < 0.05). Reduced lean body mass and endomorphic somatotypes were associated with lower muscle strength/functionality and sedentary lifestyles, particularly in children with PWS. These findings are relevant as early detection of deficits in muscle strength and functionality can ensure effective targeted treatments that optimize physical activity and prevent complications into adulthood.
Collapse
|
45
|
Fu Y, Zhou Y, Shen L, Li X, Zhang H, Cui Y, Zhang K, Li W, Chen WD, Zhao S, Li Y, Ye W. Diagnostic and therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:973366. [PMID: 36408234 PMCID: PMC9666875 DOI: 10.3389/fphar.2022.973366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
The global incidence rate of non-alcoholic fatty liver disease (NAFLD) is approximately 25%. With the global increase in obesity and its associated metabolic syndromes, NAFLD has become an important cause of chronic liver disease in many countries. Despite recent advances in pathogenesis, diagnosis, and therapeutics, there are still challenges in its treatment. In this review, we briefly describe diagnostic methods, therapeutic targets, and drugs related to NAFLD. In particular, we focus on evaluating carbohydrate and lipid metabolism, lipotoxicity, cell death, inflammation, and fibrosis as potential therapeutic targets for NAFLD. We also summarized the clinical research progress in terms of drug development and combination therapy, thereby providing references for NAFLD drug development.
Collapse
Affiliation(s)
- Yajie Fu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yanzhi Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Linhu Shen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Xuewen Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Haorui Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yeqi Cui
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Ke Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Weiguo Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Yunfu Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| |
Collapse
|
46
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
47
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
48
|
Oses M, Cadenas‐Sanchez C, Medrano M, Galbete A, Miranda‐Ferrua E, Ruiz JR, Sánchez‐Valverde F, Ortega FB, Cabeza R, Villanueva A, Idoate F, Labayen I. Development of a prediction protocol for the screening of metabolic associated fatty liver disease in children with overweight or obesity. Pediatr Obes 2022; 17:e12917. [PMID: 35394122 PMCID: PMC9541234 DOI: 10.1111/ijpo.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The early detection and management of children with metabolic associated fatty liver disease (MAFLD) is challenging. OBJECTIVE To develop a non-invasive and accurate prediction protocol for the identification of MAFLD among children with overweight/obesity candidates to confirmatory diagnosis. METHODS A total of 115 children aged 8-12 years with overweight/obesity, recruited at a primary care, were enrolled in this cross-sectional study. The external validation was performed using a cohort of children with overweight/obesity (N = 46) aged 8.5-14.0 years. MAFLD (≥5.5% hepatic fat) was diagnosed by magnetic resonance imaging (MRI). Fasting blood biochemical parameters were measured, and 25 candidates' single nucleotide polymorphisms (SNPs) were determined. Variables potentially associated with the presence of MAFLD were included in a multivariate logistic regression. RESULTS Children with MAFLD (36%) showed higher plasma triglycerides (TG), insulin, homeostasis model assessment of insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate transaminase (AST), glutamyl-transferase (GGT) and ferritin (p < 0.05). The distribution of the risk-alleles of PPARGrs13081389, PPARGrs1801282, HFErs1800562 and PNLPLA3rs4823173 was significantly different between children with and without MAFLD (p < 0.05). Three biochemical- and/or SNPs-based predictive models were developed, showing strong discriminatory capacity (AUC-ROC: 0.708-0.888) but limited diagnostic performance (sensitivity 67%-82% and specificity 63%-69%). A prediction protocol with elevated sensitivity (72%) and specificity (84%) based on two consecutive steps was developed. The external validation showed similar results: sensitivity of 70% and specificity of 85%. CONCLUSIONS The HEPAKID prediction protocol is an accurate, easy to implant, minimally invasive and low economic cost tool useful for the early identification and management of paediatric MAFLD in primary care.
Collapse
Affiliation(s)
- Maddi Oses
- Institute for Sustainability & Food Chain Innovation (ISFOOD)University of NavarraPamplonaSpain,Navarra Institute for Health ResearchIdiSNAPamplonaSpain,Department of Health SciencesPublic University of Navarra, Campus de ArrosadiaPamplonaSpain
| | - Cristina Cadenas‐Sanchez
- Institute for Sustainability & Food Chain Innovation (ISFOOD)University of NavarraPamplonaSpain,Navarra Institute for Health ResearchIdiSNAPamplonaSpain,Department of Health SciencesPublic University of Navarra, Campus de ArrosadiaPamplonaSpain
| | - María Medrano
- Institute for Sustainability & Food Chain Innovation (ISFOOD)University of NavarraPamplonaSpain,Navarra Institute for Health ResearchIdiSNAPamplonaSpain,Department of Health SciencesPublic University of Navarra, Campus de ArrosadiaPamplonaSpain
| | - Arkaitz Galbete
- Navarrabiomed‐Hospital Complex of Navarra and Public University of Navarra IdisNAREDISSECPamplonaSpain
| | - Emiliano Miranda‐Ferrua
- Institute for Sustainability & Food Chain Innovation (ISFOOD)University of NavarraPamplonaSpain,Navarra Institute for Health ResearchIdiSNAPamplonaSpain,Department of Health SciencesPublic University of Navarra, Campus de ArrosadiaPamplonaSpain
| | - Jonatan R. Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, School of Sports ScienceUniversity of GranadaGranadaSpain,Instituto de Investigación Biosanitariaibs.GranadaGranadaSpain
| | | | - Francisco B. Ortega
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, School of Sports ScienceUniversity of GranadaGranadaSpain
| | - Rafael Cabeza
- Department of Electrical, Electronic and Communications Engineering, Institute of smart cities (ISC)Public University of NavarrePamplonaSpain
| | - Arantxa Villanueva
- Navarra Institute for Health ResearchIdiSNAPamplonaSpain,Department of Electrical, Electronic and Communications Engineering, Institute of smart cities (ISC)Public University of NavarrePamplonaSpain
| | - Fernando Idoate
- Department of Health SciencesPublic University of Navarra, Campus de ArrosadiaPamplonaSpain,Department of RadiologyMutua NavarraPamplonaSpain
| | - Idoia Labayen
- Institute for Sustainability & Food Chain Innovation (ISFOOD)University of NavarraPamplonaSpain,Navarra Institute for Health ResearchIdiSNAPamplonaSpain,Department of Health SciencesPublic University of Navarra, Campus de ArrosadiaPamplonaSpain
| |
Collapse
|
49
|
Ding J, Xia C, Cen P, Li S, Yu L, Zhu J, Jin J. MiR-103-3p promotes hepatic steatosis to aggravate nonalcoholic fatty liver disease by targeting of ACOX1. Mol Biol Rep 2022; 49:7297-7305. [PMID: 35606603 PMCID: PMC9304065 DOI: 10.1007/s11033-022-07515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for hepatocellular carcinoma, and alterations in miRNA expression are related to the development of NAFLD. However, the role of miRNAs in regulating the development of NAFLD is still poorly understood. METHODS We used qRT-PCR to detect the level of miR-103-3p in both cell and mouse models of NAFLD. Biochemical assays, DCF-DA assays, Oil red O staining and HE staining were used to detect the role of miR-103-3p in NAFLD development. Target genes of miR-103-3p were predicted using the TargetScan database and verified by qRT-PCR, western blot and dual-luciferase assays. RESULTS The expression of miR-103-3p increased in both NAFLD model cells and liver tissues from the NAFLD mouse model. Inhibition of miR-103-3p significantly alleviated the accumulation of lipid droplets in free fatty acid-treated L02 cells and liver tissues from mice with NAFLD. Inhibition of miR-103-3p reduced the contents of H2O2, TG, ALT, and AST and ROS production while increasing the ATP content. Moreover, the miR-103-3p antagomir alleviated liver tissue lesions in mice with NAFLD. Further studies identified ACOX1, a key enzyme for the oxidation and decomposition of fatty acids, as a direct target of miR-103-3p. CONCLUSIONS These findings identified a negative regulatory mechanism between ACOX1 and miR-103-3p that promotes the pathogenesis of NAFLD and suggested that inhibition of miR-103-3p may be a potential treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Caixia Xia
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Panpan Cen
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Siying Li
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Lifei Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
50
|
Sharma N, Sircar A, Anders HJ, Gaikwad AB. Crosstalk between kidney and liver in non-alcoholic fatty liver disease: mechanisms and therapeutic approaches. Arch Physiol Biochem 2022; 128:1024-1038. [PMID: 32223569 DOI: 10.1080/13813455.2020.1745851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver and kidney are vital organs that maintain homeostasis and injury to either of them triggers pathogenic pathways affecting the other. For example, non-alcoholic fatty liver disease (NAFLD) promotes the progression of chronic kidney disease (CKD), vice versa acute kidney injury (AKI) endorses the induction and progression of liver dysfunction. Progress in clinical and basic research suggest a role of excessive fructose intake, insulin resistance, inflammatory cytokines production, activation of the renin-angiotensin system, redox imbalance, and their impact on epigenetic regulation of gene expression in this context. Recent developments in experimental and clinical research have identified several biochemical and molecular pathways for AKI-liver interaction, including altered liver enzymes profile, metabolic acidosis, oxidative stress, activation of inflammatory and regulated cell death pathways. This review focuses on the current preclinical and clinical findings on kidney-liver crosstalk in NAFLD-CKD and AKI-liver dysfunction settings and highlights potential molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anannya Sircar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|