1
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
2
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
3
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
4
|
Zhang J, Tan LJ, Jung H, Jung J, Lee J, Lee G, Park S, Moon B, Choi K, Shin S. Association of smoking and dietary polycyclic aromatic hydrocarbon exposure on the prevalence of metabolic syndrome in Korean adults. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:831-839. [PMID: 37019984 DOI: 10.1038/s41370-023-00541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are potentially hazardous to human health. Dietary exposure is recognized as one of the major pathways of exposure to PAHs among humans. While some PAH exposures have been associated with metabolic syndrome (MetS) in the general population, most epidemiological studies are based on urinary metabolites of a few noncarcinogenic PAHs. OBJECTIVE To investigate the association between estimates of dietary exposure to major carcinogenic PAHs and MetS in Korean adults. METHODS Multi-cycle Korean National Health and Nutrition Examination Survey (KNHANES) database (n = 16,015) and PAH measurement data from the total diet survey were employed to estimate daily PAH intake for each participating adult. After adjusting for potential confounders, multinomial logistic regression analysis was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) between PAHs and MetS of the participating adults. RESULTS Benzo(a)pyrene exposure was associated with an increased risk of MetS in men (OR = 1.30; 95% Cl: 1.03-1.63; P-trend = 0.03). In women, however, only chrysene and low high-density lipoprotein (HDL-c) were positively associated with an increased risk of MetS (OR = 1.24; 95% CI: 1.03-1.48; P-trend = 0.0172). Among men, smokers were at an increased risk for MetS, regardless of whether they were exposed to low or high total PAHs and benzo(a)pyrene levels. SIGNIFICANCE Our findings suggested that PAHs are associated with the risk of MetS and MetS components in Korean adults. In particular, it was confirmed that smoking may influence the relationship between PAH exposure and MetS.Further prospective cohort studies are required to confirm the causal relationship between PAHs and MetS. IMPACT STATEMENT Epidemiological studies on PAH exposure are often hampered by a lack of reliable exposure estimates, as biomonitoring of urine does not capture exposure to more toxic PAHs. Using multi-cycle KNHANES data and the measurement data from a total diet survey of Korea, we could develop a personalized PAH intake estimate for each participating adult and assessed the association with MetS.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Hyein Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Jongseok Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - JiYun Lee
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Gowoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Suhyun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
5
|
Ren G, Wu K, An J, Shang Y, Zheng K, Yu Z. Toxicity Assessment of Octachlorostyrene in Human Liver Carcinoma (HepG2) Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14272. [PMID: 36361152 PMCID: PMC9654554 DOI: 10.3390/ijerph192114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Octachlorostyrene (OCS) is a ubiquitous persistent organic pollutant; however, information regarding the toxicological effects of OCS remains limited. In this study, we studied the toxicity mechanisms of OCS using human liver carcinoma (HepG2) cells. The results showed that OCS reduced cell viability in a time- and dose-dependent manner. Compared with that in the control, the level of reactive oxygen species (ROS) was significantly increased in all treated HepG2 cells. We also found that (1) OCS induced damage in the HepG2 cells via the apoptotic signaling pathway, (2) OCS increased intracellular free Ca2+ concentration (>180%), and (3) following exposure to 80 μM OCS, there was an increase in mitochondrial transmembrane potential (MMP, ~174%), as well as a decrease in ATP levels (<78%). In conclusion, OCS is cytotoxic and can induce apoptosis, in which ROS and mitochondrial dysfunction play important roles; however, the observed increase in MMP appears to indicate that HepG2 is resistant to the toxicity induced by OCS.
Collapse
Affiliation(s)
- Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kangming Wu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kewen Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Wang F, Wang Y, Wang Y, Jia T, Chang L, Ding J, Zhou L. Urinary polycyclic aromatic hydrocarbon metabolites were associated with hypertension in US adults: data from NHANES 2009-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80491-80501. [PMID: 35716300 DOI: 10.1007/s11356-022-21391-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely existing organic pollutants in the environment, and their persistence in the environment makes us have to pay continuous attention to their health effects. However, since the American Heart Association updated its definition of hypertension in 2017, few studies have explored the relationship. This study aimed to investigate the relationship between PAH exposure and hypertension after the updated definition of hypertension and explore whether body mass index (BMI) moderates this relationship. A total of 6332 adult participants from the 2009-2016 National Health and Nutrition Examination Survey (NHANES) were examined. Multiple logistic regression and restricted cubic splines were used to analyze the association between urinary polycyclic aromatic hydrocarbon metabolites and hypertension, and the dose-response relationship. Weighted quantile sum (WQS) regression was applied to blood pressure to reveal multiple exposure effects and the relative weights of each PAH. The prevalence of hypertension in the study population was 48.52%. There was a positive dose-response relationship between high exposure to 1-hydroxynaphthalene, 2&3-hydroxyphenanthrene, and the risk of hypertension. Naphthalene metabolites accounted for the most significant proportion of systolic blood pressure, and phenanthrene metabolites accounted for the most significant proportion of diastolic blood pressure. Obese individuals with high PAH exposure were at greater risk for hypertension than individuals with low PAH exposure and normal BMI. Higher prevalence rate and stronger association of metabolites with outcomes were obtained in the general population of the USA under the new guideline. High levels of exposure to PAHs were positively associated with the risk of hypertension, and these effects were modified by BMI.
Collapse
Affiliation(s)
- Fang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China.
| | - Yuying Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Yu Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Teng Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Li Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Jie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Li Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| |
Collapse
|
7
|
Zhang W, Xie HQ, Li Y, Zhou M, Zhou Z, Wang R, Hahn ME, Zhao B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128084. [PMID: 34952507 PMCID: PMC9039345 DOI: 10.1016/j.jhazmat.2021.128084] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/01/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.
Collapse
Affiliation(s)
- Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Zhou
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Hammond CL, Roztocil E, Gupta V, Feldon SE, Woeller CF. More than Meets the Eye: The Aryl Hydrocarbon Receptor is an Environmental Sensor, Physiological Regulator and a Therapeutic Target in Ocular Disease. FRONTIERS IN TOXICOLOGY 2022; 4:791082. [PMID: 35295218 PMCID: PMC8915869 DOI: 10.3389/ftox.2022.791082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor originally identified as an environmental sensor of xenobiotic chemicals. However, studies have revealed that the AHR regulates crucial aspects of cell growth and metabolism, development and the immune system. The importance of the AHR and AHR signaling in eye development, toxicology and disease is now being uncovered. The AHR is expressed in many ocular tissues including the retina, choroid, cornea and the orbit. A significant role for the AHR in age-related macular degeneration (AMD), autoimmune uveitis, and other ocular diseases has been identified. Ligands for the AHR are structurally diverse organic molecules from exogenous and endogenous sources. Natural AHR ligands include metabolites of tryptophan and byproducts of the microbiome. Xenobiotic AHR ligands include persistent environmental pollutants such as dioxins, benzo (a) pyrene [B (a) P] and polychlorinated biphenyls (PCBs). Pharmaceutical agents including the proton pump inhibitors, esomeprazole and lansoprazole, and the immunosuppressive drug, leflunomide, activate the AHR. In this review, we highlight the role of the AHR in the eye and discuss how AHR signaling is involved in responding to endogenous and environmental stimuli. We also present the emerging concept that the AHR is a promising therapeutic target for eye disease.
Collapse
Affiliation(s)
| | | | | | | | - Collynn F. Woeller
- Flaum Eye Institute, Rochester, NY, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- *Correspondence: Collynn F. Woeller,
| |
Collapse
|
9
|
Rico de Souza A, Traboulsi H, Wang X, Fritz JH, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front Immunol 2021; 12:630427. [PMID: 33659010 PMCID: PMC7917085 DOI: 10.3389/fimmu.2021.630427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a prevalent respiratory toxicant that remains a leading cause of death worldwide. Cigarette smoke induces inflammation in the lungs and airways that contributes to the development of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Due to the presence of aryl hydrocarbon receptor (AhR) ligands in cigarette smoke, activation of the AhR has been implicated in driving this inflammatory response. However, we have previously shown that the AhR suppresses cigarette smoke-induced pulmonary inflammation, but the mechanism by which the AhR achieves its anti-inflammatory function is unknown. In this study, we use the AhR antagonist CH-223191 to inhibit AhR activity in mice. After an acute (3-day) cigarette smoke exposure, AhR inhibition was associated with significantly enhanced neutrophilia in the airways in response to cigarette smoke, mimicking the phenotype of AhR-deficient mice. We then used genetically-modified mouse strains which express an AhR that can bind ligand but either cannot translocate to the nucleus or bind its cognate response element, to show that these features of the AhR pathway are not required for the AhR to suppress pulmonary neutrophilia. Finally, using the non-toxic endogenous AhR ligand FICZ, we provide proof-of-concept that activation of pulmonary AhR attenuates smoke-induced inflammation. Collectively, these results support the importance of AhR activity in mediating its anti-inflammatory function in response to cigarette smoke. Further investigation of the precise mechanisms by which the AhR exerts is protective functions may lead to the development of therapeutic agents to treat people with chronic lung diseases that have an inflammatory etiology, but for which few therapeutic options exist.
Collapse
Affiliation(s)
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xinyu Wang
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Jorg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Liang S, Zhang J, Ning R, Du Z, Liu J, Batibawa JW, Duan J, Sun Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol 2020; 17:61. [PMID: 33276797 PMCID: PMC7716453 DOI: 10.1186/s12989-020-00391-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Ambient and indoor air pollution contributes annually to approximately seven million premature deaths. Air pollution is a complex mixture of gaseous and particulate materials. In particular, fine particulate matter (PM2.5) plays a major mortality risk factor particularly on cardiovascular diseases through mechanisms of atherosclerosis, thrombosis and inflammation. A review on the PM2.5-induced atherosclerosis is needed to better understand the involved mechanisms. In this review, we summarized epidemiology and animal studies of PM2.5-induced atherosclerosis. Vascular endothelial injury is a critical early predictor of atherosclerosis. The evidence of mechanisms of PM2.5-induced atherosclerosis supports effects on vascular function. Thus, we summarized the main mechanisms of PM2.5-triggered vascular endothelial injury, which mainly involved three aspects, including vascular endothelial permeability, vasomotor function and vascular reparative capacity. Then we reviewed the relationship between PM2.5-induced endothelial injury and atherosclerosis. PM2.5-induced endothelial injury associated with inflammation, pro-coagulation and lipid deposition. Although the evidence of PM2.5-induced atherosclerosis is undergoing continual refinement, the mechanisms of PM2.5-triggered atherosclerosis are still limited, especially indoor PM2.5. Subsequent efforts of researchers are needed to improve the understanding of PM2.5 and atherosclerosis. Preventing or avoiding PM2.5-induced endothelial damage may greatly reduce the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Joe Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
11
|
Association between urinary polycyclic aromatic hydrocarbons and hypertension in the Korean population: data from the Second Korean National Environmental Health Survey (2012-2014). Sci Rep 2020; 10:17142. [PMID: 33051516 PMCID: PMC7555493 DOI: 10.1038/s41598-020-74353-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental and occupational pollutants derived from incomplete combustion of organic materials, including wood and fossil fuels. Epidemiological studies have evaluated the association between PAH exposure and hypertension or cardiovascular disease in the general population, but the evidence is limited. In this study, we evaluated the association between urinary PAH metabolites and hypertension in the Korean adult population. A total of 6478 adults who participated in the Second Korean National Environmental Health Survey (2012–2014) were included. The differences in urinary concentrations of four PAH metabolites, including 1-hydroxypyrene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, and 2-naphthol, were compared according to hypertension status using a general linear model. Adjusted odds ratios (aORs) for hypertension were calculated according to the quartile groups of urinary PAH metabolites after adjusting for age, sex, body mass index (BMI), smoking, and alcohol consumption in multiple logistic regression analyses. The estimated mean concentrations of urinary 1-hydroxyphenanthrene were significantly higher in the hypertension group than in the non-hypertension group. In 1-hydroxyphenanthrene, the OR for hypertension was significantly higher in the third and fourth quartile groups than in the first quartile group (third: OR 1.707, 95% CI 1.203–2.423, fourth: OR 1.604, 95% CI 1.158–2.223). No significant associations were detected for the other metabolites. Our results suggest an association between exposure to PAHs and hypertension in a Korean adult population. Further studies are required to evaluate the effects of low-dose long-term exposure to PAHs on hypertension and cardiovascular disease.
Collapse
|
12
|
Bock KW. Aryl hydrocarbon receptor (AHR)-mediated inflammation and resolution: Non-genomic and genomic signaling. Biochem Pharmacol 2020; 182:114220. [PMID: 32941865 DOI: 10.1016/j.bcp.2020.114220] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Inflammation, an old medical problem, is being recognized as an active, well orchestrated biological process. When dysregulated, chronic inflammation may ensue, leading to tissue-dependent diseases. Depending upon the ligand and cellular context, aryl hydrocarbon receptor (AHR) may accelerate or attenuate inflammation and subsequent resolution. Three examples are discussed in which AHR modulates inflammation by a mixture of genomic and non-genomic signaling pathways: (i) AHR-agonistic bacterial virulence factors are leading to both microbial defense and resolution of inflammatory responses. (ii) TCDD-mediated persistent AHR activation initially leads to inflammation by non-genomic signaling, and may potentially lead to chronic inflammation. (iii) AHR may modulate anti-inflammatory actions in obesity-mediated non-alcoholic fatty liver disease (NAFLD): Hepatic lipotoxicity triggers generation of danger-associated molecular patterns (DAMPs) that facilitate the development of hepatitis. AHR is mainly involved in the resolution phase by induction of lipoxin A4 and Il-22. Moderate AHR activation by phytochemicals and microbial AHR ligands may facilitate resolution. In control of inflammation, AHR appears to integrate environmental conditions with coordinated cellular functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
13
|
Roztocil E, Hammond CL, Gonzalez MO, Feldon SE, Woeller CF. The aryl hydrocarbon receptor pathway controls matrix metalloproteinase-1 and collagen levels in human orbital fibroblasts. Sci Rep 2020; 10:8477. [PMID: 32439897 PMCID: PMC7242326 DOI: 10.1038/s41598-020-65414-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid eye disease (TED) affects 25–50% of patients with Graves’ Disease. In TED, collagen accumulation leads to an expansion of the extracellular matrix (ECM) which causes destructive tissue remodeling. The purpose of this study was to investigate the therapeutic potential of activating the aryl hydrocarbon receptor (AHR) to limit ECM accumulation in vitro. The ability of AHR to control expression of matrix metalloproteinase-1 (MMP1) was analyzed. MMP1 degrades collagen to prevent excessive ECM. Human orbital fibroblasts (OFs) were treated with the pro-scarring cytokine, transforming growth factor beta (TGFβ) to induce collagen production. The AHR ligand, 6-formylindolo[3,2b]carbazole (FICZ) was used to activate the AHR pathway in OFs. MMP1 protein and mRNA levels were analyzed by immunosorbent assay, Western blotting and quantitative PCR. MMP1 activity was detected using collagen zymography. AHR and its transcriptional binding partner, ARNT were depleted using siRNA to determine their role in activating expression of MMP1. FICZ induced MMP1 mRNA, protein expression and activity. MMP1 expression led to a reduction in collagen 1A1 levels. Furthermore, FICZ-induced MMP1 expression required both AHR and ARNT, demonstrating that the AHR-ARNT transcriptional complex is necessary for expression of MMP1 in OFs. These data show that activation of the AHR by FICZ increases MMP1 expression while leading to a decrease in collagen levels. Taken together, these studies suggest that AHR activation could be a promising target to block excessive collagen accumulation and destructive tissue remodeling that occurs in fibrotic diseases such as TED.
Collapse
Affiliation(s)
- Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, Rochester, New York, 14642, USA. .,Department of Environmental Medicine School of Medicine and Dentistry, University of Rochester, Rochester, New York, 14642, USA.
| |
Collapse
|
14
|
Pohjanvirta R, Viluksela M. Novel Aspects of Toxicity Mechanisms of Dioxins and Related Compounds. Int J Mol Sci 2020; 21:E2342. [PMID: 32231017 PMCID: PMC7177642 DOI: 10.3390/ijms21072342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Dioxins and related compounds are common environmental contaminants. Although their levels have gone down, they are still of concern, in particular regarding developmental toxicity. The adverse effects of these compounds are mediated by the aryl hydrocarbon receptor (AHR), whose canonical signaling pathway has been unveiled in fair detail. The alternative (non-genomic) pathways are much more obscure. AHR has also proven to be a master regulator of numerous physiological phenomena, which has led to the search of selective AHR modulators with low toxicity. Papers of this Special Issue address the developmental toxicity of dioxins and related compounds as well as selective modulators of AHR and both its canonical and alternative signaling pathways. In addition, new optical and stereoscopic methods for the detection of dioxins are presented. As a whole, this Special Issue provides an up-to-date view on a wide variety of aspects related to dioxin toxicity mechanisms from both original research articles and reviews.
Collapse
Affiliation(s)
- Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), P.O. Box 95, FI-70701 Kuopio, Finland
| |
Collapse
|
15
|
Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J. Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease? Cardiovasc Toxicol 2020; 19:198-209. [PMID: 30955163 DOI: 10.1007/s12012-019-09518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
17
|
Le Goff M, Lagadic-Gossmann D, Latour R, Podechard N, Grova N, Gauffre F, Chevance S, Burel A, Appenzeller BMR, Ulmann L, Sergent O, Le Ferrec E. PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113171. [PMID: 31539851 DOI: 10.1016/j.envpol.2019.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
Collapse
Affiliation(s)
- Manon Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France; EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Remi Latour
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology-Lorraine University, Campus Aiguillettes, B.P. 70239, F-54506, Vandoeuvre-lès-Nancy, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, 1 A-B Thomas Edisson, Luxembourg
| | - Lionel Ulmann
- EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
18
|
Kaur K, Mohammadpour R, Jaramillo IC, Ghandehari H, Reilly C, Paine R, Kelly KE. Application of a Quartz Crystal Microbalance to Measure the Mass Concentration of Combustion Particle Suspensions. JOURNAL OF AEROSOL SCIENCE 2019; 137:105445. [PMID: 32863423 PMCID: PMC7448758 DOI: 10.1016/j.jaerosci.2019.105445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Researchers studying the biological effects of combustion particles typically rely on suspending particles in de-ionized (DI) water, buffer, and/or media prior to in vitro or in vivo experiments. However, the hydrophobic nature of combustion particles makes it difficult to obtain well-suspended, evenly dispersed mixtures, which also makes it difficult to obtain equivalent dosing and endpoint comparisons. This study explored the use of a quartz crystal microbalance (QCM) to measure the mass concentration of combustion particle suspensions. It compared the QCM mass concentration to that estimated by placing a known mass of combustion particles in DI water. It also evaluated the effect of drop volume and combustion particle type on QCM measurements. The results showed that QCM is a promising direct method for measuring suspended combustion particle mass concentrations, and it is particularly effective for quantifying concentrations of difficult-to-suspend particles and for combustion particles placed in polystyrene containers, which can lead to substantial particle losses.
Collapse
Affiliation(s)
| | | | | | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Department of Pulmonary Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
19
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
20
|
Kaur K, Jaramillo IC, Mohammadpour R, Sturrock A, Ghandehari H, Reilly C, Paine R, Kelly KE. Effect of collection methods on combustion particle physicochemical properties and their biological response in a human macrophage-like cell line. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1170-1185. [PMID: 31342848 PMCID: PMC6801061 DOI: 10.1080/10934529.2019.1632626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
In vitro studies are a first step toward understanding the biological effects of combustion-derived particulate matter (cdPM). A vast majority of studies expose cells to cdPM suspensions, which requires a method to collect cdPM and suspend it in an aqueous media. The consequences of different particle collection methods on particle physiochemical properties and resulting biological responses are not fully understood. This study investigated the effect of two common approaches (collection on a filter and a cold plate) and one relatively new (direct bubbling in DI water) approach to particle collection. The three approaches yielded cdPM with differences in particle size distribution, surface area, composition, and oxidative potential. The directly bubbled sample retained the smallest sized particles and the bimodal distribution observed in the gas-phase. The bubbled sample contained ∼50% of its mass as dissolved species and lower molecular weight compounds, not found in the other two samples. These differences in the cdPM properties affected the biological responses in THP-1 cells. The bubbled sample showed greater oxidative potential and cellular reactive oxygen species. The scraped sample induced the greatest TNFα secretion. These findings have implications for in vitro studies of air pollution and for efforts to better understand the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | - Anne Sturrock
- Division of Pulmonary and Critical Care Medicine, University of Utah
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
21
|
Vogel CFA, Kado SY, Kobayashi R, Liu X, Wong P, Na K, Durbin T, Okamoto RA, Kado NY. Inflammatory marker and aryl hydrocarbon receptor-dependent responses in human macrophages exposed to emissions from biodiesel fuels. CHEMOSPHERE 2019; 220:993-1002. [PMID: 31543100 PMCID: PMC6858841 DOI: 10.1016/j.chemosphere.2018.12.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 05/27/2023]
Abstract
Biodiesel or renewable diesel fuels are alternative fuels produced from vegetable oil and animal tallow that are being considered to help reduce the use of petroleum-based fuels and emissions of air pollutants including greenhouse gases. Here, we analyzed the gene expression of inflammatory marker responses and the cytochrome P450 1A1 (CYP1A1) enzyme after exposure to diesel and biodiesel emission samples generated from an in-use heavy-duty diesel vehicle. Particulate emission samples from petroleum-based California Air Resource Board (CARB)-certified ultralow sulfur diesel (CARB ULSD), biodiesel, and renewable hydro-treated diesel all induced inflammatory markers such as cyclooxygenase-2 (COX)-2 and interleukin (IL)-8 in human U937-derived macrophages and the expression of the xenobiotic metabolizing enzyme CYP1A1. Furthermore, the results indicate that the particle emissions from CARB ULSD and the alternative diesel fuel blends activate the aryl hydrocarbon receptor (AhR) and induce CYP1A1 in a dose- and AhR-dependent manner which was supported by the AhR luciferase reporter assay and gel shift analysis. Based on a per mile emissions with the model year 2000 heavy duty vehicle tested, the effects of the alternative diesel fuel blends emissions on the expression on inflammatory markers like IL-8 and COX-2 tend to be lower than emission samples derived from CARB ULSD fuel. The results will help to assess the potential benefits and toxicity from biofuel use as alternative fuels in modern technology diesel engines.
Collapse
Affiliation(s)
- Christoph Franz Adam Vogel
- Department of Environmental Toxicology, USA; Center for Health and the Environment, University of California, Davis, USA.
| | - Sarah Y Kado
- Center for Health and the Environment, University of California, Davis, USA
| | | | | | - Patrick Wong
- Department of Environmental Toxicology, USA; Environmental Protection Agency, Air Resources Board, Sacramento, CA, USA
| | - Kwangsam Na
- Environmental Protection Agency, Air Resources Board, Sacramento, CA, USA
| | | | - Robert A Okamoto
- Environmental Protection Agency, Air Resources Board, Sacramento, CA, USA
| | - Norman Y Kado
- Department of Environmental Toxicology, USA; Center for Health and the Environment, University of California, Davis, USA; Environmental Protection Agency, Air Resources Board, Sacramento, CA, USA
| |
Collapse
|
22
|
Genome-Wide Transcriptional and Functional Analysis of Human T Lymphocytes Treated with Benzo[ α]pyrene. Int J Mol Sci 2018; 19:ijms19113626. [PMID: 30453624 PMCID: PMC6274903 DOI: 10.3390/ijms19113626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental contaminants, known to affect T lymphocytes. However, the molecular targets and pathways involved in their immunotoxic effects in human T lymphocytes remain unknown. Here, we analyzed the gene expression profile of primary human T lymphocytes treated with the prototypical PAH, benzo[α]pyrene (B[α]P), using a microarray-based transcriptome analysis. After a 48 h exposure to B[α]P, we identified 158 genes differentially expressed in T lymphocytes, including not only genes well-known to be affected by PAHs such as the cytochromes P450 (CYP) 1A1 and 1B1, but also others not previously shown to be targeted by B[α]P such as genes encoding the gap junction beta (GJB)-2 and 6 proteins. Functional enrichment analysis revealed that these candidates were significantly associated with the aryl hydrocarbon (AhR) and interferon (IFN) signaling pathways; a marked alteration in T lymphocyte recruitment was also observed. Using functional tests in transwell migration experiments, B[α]P was then shown to significantly decrease the chemokine (C-X-C motif) ligand 12-induced chemotaxis and transendothelial migration of T lymphocytes. In total, this study opens the way to unsuspected responsive pathway of interest, i.e., T lymphocyte migration, thus providing a more thorough understanding of the molecular basis of the immunotoxicity of PAHs.
Collapse
|
23
|
Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochem Pharmacol 2018; 158:1-12. [PMID: 30248327 DOI: 10.1016/j.bcp.2018.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022]
Abstract
In its classical genomic mode of action, the aryl hydrocarbon receptor (AhR) acts as a ligand activated transcription factor regulating expression of target genes such as CYP1A1 and CYP1B1. Some ligands may also trigger more rapid nongenomic responses through AhR, including calcium signaling (Ca2+). In the present study we observed that pyrene induced a relatively rapid increase in intracellular Ca2+-concentrations ([Ca2+]i) in human microvascular endothelial cells (HMEC-1) and human embryonic kidney cells (HEK293) that was attenuated by AhR-inhibitor treatment and/or transient AhR knockdown by RNAi. In silico molecular docking based on homology models, suggested that pyrene is not able to bind to the human AhR in the agonist conformation. Instead, pyrene docked in the antagonist conformation of the AhR PAS-B binding pocket, although the interaction differed from antagonists such as GNF-351 and CH223191. Accordingly, pyrene did not induce CYP1A1 or CYP1B1, but suppressed CYP1-expression by benzo[a]pyrene (B[a]P) in HMEC-1 cells, confirming that pyrene act as an antagonist of AhR-induced gene expression. Use of pharmacological inhibitors and Ca2+-free medium indicated that the pyrene-induced AhR nongenomic [Ca2+]i increase was initiated by Ca2+-release from intracellular stores followed by a later phase of extracellular Ca2+-influx, consistent with store operated calcium entry (SOCE). These effects was accompanied by an AhR-dependent reduction in ordered membrane lipid domains, as determined by di-4-ANEPPDHQ staining. Addition of cholesterol inhibited both the pyrene-induced [Ca2+]i-increase and alterations in membrane lipid order. In conclusion, we propose that pyrene binds to AhR, act as an antagonist of the canonical genomic AhR/Arnt/CYP1-pathway, reduces ordered membrane lipid domains, and activates AhR nongenomic Ca2+-signaling from intracellular stores.
Collapse
|