1
|
Buonvino S, Di Giuseppe D, Filippi J, Martinelli E, Seliktar D, Melino S. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems. Adv Healthc Mater 2024; 13:e2400040. [PMID: 38739022 DOI: 10.1002/adhm.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Indexed: 05/14/2024]
Abstract
3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, 00133, Italy
- NAST Center- University of Rome Tor Vergata, via della ricerca scientifica, Rome, 00133, Italy
| |
Collapse
|
2
|
de Souza F, Gupta RK. Bacteria for Bioplastics: Progress, Applications, and Challenges. ACS OMEGA 2024; 9:8666-8686. [PMID: 38434856 PMCID: PMC10905720 DOI: 10.1021/acsomega.3c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.
Collapse
Affiliation(s)
- Felipe
Martins de Souza
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
| | - Ram K. Gupta
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
- Department
of Chemistry, Pittsburgh State University, 1701 South Broadway Street, Pittsburgh, Kansas 66762, United States
| |
Collapse
|
3
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
4
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
5
|
Liguori A, Petri E, Gualandi C, Dolci LS, Marassi V, Petretta M, Zattoni A, Roda B, Grigolo B, Olivotto E, Grassi F, Focarete ML. Controlled Release of H 2S from Biomimetic Silk Fibroin-PLGA Multilayer Electrospun Scaffolds. Biomacromolecules 2023; 24:1366-1376. [PMID: 36749903 PMCID: PMC10015463 DOI: 10.1021/acs.biomac.2c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The possibility of incorporating H2S slow-release donors inside biomimetic scaffolds can pave the way to new approaches in the field of tissue regeneration and anti-inflammatory treatment. In the present work, GYY4137, an easy-to-handle commercially available Lawesson's reagent derivative, has been successfully incorporated inside biomimetic silk fibroin-based electrospun scaffolds. Due to the instability of GYY4137 in the solvent needed to prepare silk fibroin solutions (formic acid), the electrospinning of the donor together with the silk fibroin turned out to be impossible. Therefore, a multilayer structure was realized, consisting of a PLGA mat containing GYY4137 sandwiched between two silk fibroin nanofibrous layers. Before their use in the multilayer scaffold, the silk fibroin mats were treated in ethanol to induce crystalline phase formation, which conferred water-resistance and biomimetic properties. The morphological, thermal, and chemical properties of the obtained scaffolds were thoroughly characterized by SEM, TGA, DSC, FTIR, and WAXD. Multilayer devices showing two different concentrations of the H2S donor, i.e., 2 and 5% w/w with respect to the weight of PLGA, were analyzed to study their H2S release and biological properties, and the results were compared with those of the sample not containing GYY4137. The H2S release analysis was carried out according to an "ad-hoc" designed procedure based on a validated high-performance liquid chromatography method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer scaffolds and its tunability by acting on the donor's concentration inside the PLGA nanofibers. Finally, the devices were tested in biological assays using bone marrow-derived mesenchymal stromal cells showing the capacity to support cell spreading throughout the scaffold and prevent cytotoxicity effects in serum starvation conditions. The resulting devices can be exploited for applications in the tissue engineering field since they combine the advantages of controlled H2S release kinetics and the biomimetic properties of silk fibroin nanofibers.
Collapse
Affiliation(s)
- Anna Liguori
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Elisabetta Petri
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Chiara Gualandi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Luisa S. Dolci
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Valentina Marassi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Mauro Petretta
- RegenHu
Company, Z.I Du Vivier
22, CH-1690 Villaz-St-Pierre, Switzerland
| | - Andrea Zattoni
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Barbara Roda
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Brunella Grigolo
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Eleonora Olivotto
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Letizia Focarete
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| |
Collapse
|
6
|
Fan J, Pung E, Lin Y, Wang Q. Recent development of hydrogen sulfide-releasing biomaterials as novel therapies: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:250-263. [PMID: 36846507 PMCID: PMC9947736 DOI: 10.12336/biomatertransl.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) has been reported as an endogenous gasotransmitter that contributes to the modulation of a myriad of biological signalling pathways, which includes maintaining homeostasis in living organisms at physiological concentrations, controlling protein sulfhydration and persulfidation for signalling processes, mediating neurodegeneration, and regulating inflammation and innate immunity, etc. As a result, researchers are actively exploring effective approaches to evaluate the properties and the distribution of H2S in vivo. Furthermore, the regulation of the physiological conditions of H2S in vivo introduces the opportunity to further study the molecular mechanisms by which H2S regulates cellular functions. In recent years, many H2S-releasing compounds and biomaterials that can deliver H2S to various body systems have been developed to provide sustained and stable H2S delivery. Additionally, various designs of these H2S-releasing biomaterials have been proposed to aid in the normal conduction of physiological processes, such as cardioprotection and wound healing, by modulating different signalling pathways and cell functionalities. Using biomaterials as a platform to control the delivery of H2S introduces the opportunity to fine tune the physiological concentration of H2S in vivo, a key to many therapeutic applications. In this review, we highlight recent research works concerning the development and application of H2S-releasing biomaterials with a special emphasis to different release triggering conditions in in vivo studies. We believe that the further exploration of the molecular mechanisms underlying H2S donors and their function when incorporated with various biomaterials will potentially help us understand the pathophysiological mechanisms of different diseases and assist the development of H2S-based therapies.
Collapse
Affiliation(s)
- Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Pung
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
7
|
Robert B, Subramaniam S. Gasotransmitter-Induced Therapeutic Angiogenesis: A Biomaterial Prospective. ACS OMEGA 2022; 7:45849-45866. [PMID: 36570231 PMCID: PMC9773187 DOI: 10.1021/acsomega.2c05599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Gasotransmitters such as NO, H2S, and CO have emerged as key players in the regulation of various pathophysiological functions, prompting the development of gas therapy for various pathogeneses. Deficient production of gasotransmitters has been linked to various diseases such as hypertension, endothelial dysfunction, myocardial infarction, ischemia, and impaired wound healing, as they are involved in the regulatory action of angiogenesis. A better understanding of the regulatory mechanisms has given new hope to address the vascular impairment caused by the breakthroughs in gasotransmitters as therapeutics. However, the unstable nature and poor target specificity of gas donors limit the full efficacy of drugs. In this regard, biomaterials that possess excellent biocompatibility and porosity are ideal drug carriers to deliver the gas transmitters in a tunable manner for therapeutic angiogenesis. This review article provides a comprehensive discussion of biomaterial-based gasotransmitter delivery approaches for therapeutic angiogenesis. The critical role of gasotransmitters in modulating angiogenesis during tissue repair as well as their challenges and future directions are demonstrated.
Collapse
Affiliation(s)
- Becky Robert
- Biomaterials
and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Sadhasivam Subramaniam
- Biomaterials
and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
- Department
of Extension and Career Guidance, Bharathiar
University, Coimbatore 641046, India
| |
Collapse
|
8
|
Suflet DM, Popescu I, Pelin IM, David G, Serbezeanu D, Rîmbu CM, Daraba OM, Enache AA, Bercea M. Phosphorylated Curdlan Gel/Polyvinyl Alcohol Electrospun Nanofibres Loaded with Clove Oil with Antibacterial Activity. Gels 2022; 8:gels8070439. [PMID: 35877524 PMCID: PMC9319135 DOI: 10.3390/gels8070439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Fibrous membranes based on natural polymers obtained by the electrospinning technique are a great choice for wound dressings. In order to promote an efficient wound repair, and to avoid antibiotics, antibacterial plant extracts can be incorporated. In the present work, the new electrospun nanofibre membranes based on monobasic phosphate curdlan (PCurd) and polyvinyl alcohol (PVA) were obtained for the first time. To establish the adequate mixing ratio for electrospinning, the behaviour of the PCurd and PVA mixture was studied by viscometry and rheology. In order to confer antimicrobial activity with the nanofibre membrane, clove essential oil (CEO) was incorporated into the electrospun solution. Well-defined and drop-free nanofibres with a diameter between 157 nm and 110 nm were obtained. The presence of CEO in the obtained nanofibres was confirmed by ATR–FTIR spectroscopy, by the phenolic and flavonoid contents, and by the antioxidant activity of the membranes. In physiological conditions, CEO was released from the membrane after 24 h. The in vivo antimicrobial tests showed a good inhibitory activity against E. coli and higher activity against S. aureus. Furthermore, the viability cell test showed the lack of cytotoxicity of the nanofibre membrane with and without CEO, confirming its potential use in wound treatment.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
- Correspondence:
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Irina M. Pelin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Geta David
- Department of Natural and Synthetic Polymers, Gh. Asachi Technical University, Bd. D. Mangeron 73, 700050 Iasi, Romania;
| | - Diana Serbezeanu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Cristina M. Rîmbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Aleea Mihail Sadoveanu 8, 700489 Iasi, Romania;
| | - Oana M. Daraba
- Faculty of Medical Dentistry, Apollonia University, Pacurari 11, 700511 Iasi, Romania;
| | - Alin A. Enache
- ApelLaser S.A., Str. Vanatorilor 25, Ilfov, 077135 Mogosoaia, Romania;
| | - Maria Bercea
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| |
Collapse
|
9
|
Ruiz-Ramírez LR, Álvarez-Ortega O, Donohue-Cornejo A, Espinosa-Cristóbal LF, Farias-Mancilla JR, Martínez-Pérez CA, Reyes-López SY. Poly-ε-Caprolactone-Hydroxyapatite-Alumina (PCL-HA-α-Al 2O 3) Electrospun Nanofibers in Wistar Rats. Polymers (Basel) 2022; 14:2130. [PMID: 35683803 PMCID: PMC9182750 DOI: 10.3390/polym14112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Biodegradable polymers of natural origin are ideal for the development of processes in tissue engineering due to their immunogenic potential and ability to interact with living tissues. However, some synthetic polymers have been developed in recent years for use in tissue engineering, such as Poly-ε-caprolactone. The nanotechnology and the electrospinning process are perceived to produce biomaterials in the form of nanofibers with diverse unique properties. Biocompatibility tests of poly-ε-caprolactone nanofibers embedded with hydroxyapatite and alumina nanoparticles manufactured by means of the electrospinning technique were carried out in Wistar rats to be used as oral dressings. Hydroxyapatite as a material is used because of its great compatibility, bioactivity, and osteoconductive properties. The PCL, PCL-HA, PCL-α-Al2O3, and PCL-HA-α-Al2O3 nanofibers obtained in the process were characterized by infrared spectroscopy and scanning electron microscopy. The nanofibers had an average diameter of (840 ± 230) nm. The nanofiber implants were placed and tested at 2, 4, and 6 weeks in the subcutaneous tissue of the rats to give a chronic inflammatory infiltrate, characteristic foreign body reaction, which decreased slightly at 6 weeks with the addition of hydroxyapatite and alumina ceramic particles. The biocompatibility test showed a foreign body reaction that produces a layer of collagen and fibroblasts. Tissue loss and necrosis were not observed due to the coating of the material, but a slight decrease in the inflammatory infiltrate occurred in the last evaluation period, which is indicative of the beginning of the acceptance of the tested materials by the organism.
Collapse
Affiliation(s)
- Luis Roberto Ruiz-Ramírez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (L.R.R.-R.); (O.Á.-O.)
| | - Oskar Álvarez-Ortega
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (L.R.R.-R.); (O.Á.-O.)
| | - Alejandro Donohue-Cornejo
- Departamento de Estomatología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (A.D.-C.); (L.F.E.-C.)
| | - León Francisco Espinosa-Cristóbal
- Departamento de Estomatología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (A.D.-C.); (L.F.E.-C.)
| | - José Rurik Farias-Mancilla
- Institute of Engineering and Technology, Autonomous University of the City of Juárez, UACJ, Ciudad Juárez 32310, Mexico; (J.R.F.-M.); (C.A.M.-P.)
| | - Carlos A. Martínez-Pérez
- Institute of Engineering and Technology, Autonomous University of the City of Juárez, UACJ, Ciudad Juárez 32310, Mexico; (J.R.F.-M.); (C.A.M.-P.)
| | - Simón Yobanny Reyes-López
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (L.R.R.-R.); (O.Á.-O.)
| |
Collapse
|
10
|
Hemoglobin I from Lucina pectinata on Collagen Scaffold: A Prospective Hydrogen Sulfide Scavenger. J CHEM-NY 2022. [DOI: 10.1155/2022/5101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S), independently of being a toxic gas with a characteristic smell of rotten eggs, is a crucial signaling molecule with significant physiological functions. Given the rapid diffusivity of the gas, it is a challenge to develop robust sensors and biomarkers to quantify free or bound H2S. In addition, there is the need to further develop a robust biosystem to efficiently trap or scavenge H2S from different producing environments. The work presented here uses recombinant met-aquo rHbI (rHbI-H2O) immobilization techniques on collagen to determine its ability to bind H2S due to its high affinity (
M-1). The hemeprotein will function as a scavenger on this scaffold system. UV-Vis absorption and UV-Vis diffuse reflectance (%R) spectroscopy of rHbI-H2O and rHbI-sulfide (rHbI-H2S) complex in solution and collagen scaffold demonstrated that the heme chromophore retains its reactivity and properties. UV-Vis diffuse reflectance measurements, transformed using the Kubelka-Munk function (K-M function), show a linear correlation (
and 0.9916) of rHbI-H2O and rHbI-H2S within concentrations from 1 μM to 35 μM for derivatives. The extraordinary affinity of rHbI-H2O for H2S suggests recombinant met-aquo HbI in a collagen scaffold is an excellent scavenger moiety for hydrogen sulfide. These findings give insight into H2S trapping using the rHbI-H2O-collagen scaffold, where the rHbI-H2S concentration can be determined. Future pathways are to work toward the development of a met-aquo rHbI collagen solution capable of being printed as single drops on polymer, cotton or chromatographic paper. Upon exposure of these matrixes to H2S, the rHbI-H2S complex is formed and its concentration determined using UV-Vis diffuse reflectance technique.
Collapse
|
11
|
Garavand F, Rouhi M, Jafarzadeh S, Khodaei D, Cacciotti I, Zargar M, Razavi SH. Tuning the Physicochemical, Structural, and Antimicrobial Attributes of Whey-Based Poly (L-Lactic Acid) (PLLA) Films by Chitosan Nanoparticles. Front Nutr 2022; 9:880520. [PMID: 35571878 PMCID: PMC9097867 DOI: 10.3389/fnut.2022.880520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Recently, the research and innovation to produce raw materials from microbial processes has gained much attention due to their economic and environmental impacts. Lactic acid is a very important microbial product due to its wide application in the food, pharmaceutical, cosmetic, and chemical industries. In the current study, poly (L-lactic acid) (PLLA) was produced by the ring opening polymerization (ROP) technique of L-lactic acid recovered from whey fermentation, and was used for the production of nanocomposites films reinforced with chitosan nanoparticles (CNPs) (average diameter ca. 100–200 nm). Three different CNPs concentrations, namely 1, 3, and 5% w/w, were tested, and their influence on the physical, mechanical, thermal, antibacterial and structural attributes of PLLA film was assessed. The results showed that the addition of CNPs up to 3% caused a significant improvement in water vapor permeability, appearance, tensile strength and elongation at break. The antibacterial properties of nanocomposites followed a dose-depended pattern as a result of CNPs addition. Therefore, the best inhibitory effects on Escherichia coli and Staphylococcus aureus was made by the addition of 5% of CNPs and lower dosages slightly affected the growth of pathogens or didn't cause any inhibitory effects (in 1% of CNPs). It can be concluded that the incorporation of CNPs into the PLLA matrix allows to improve the structural, thermal, physical, mechanical and antibacterial properties of the polymer, generating promising systems for food packaging and biomedical applications.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, County Cork, Ireland
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- *Correspondence: Farhad Garavand
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, WA, Australia
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Galway-Mayo Institute of Technology (GMIT), Galway, Ireland
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Rome, Italy
- Ilaria Cacciotti
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, Australia
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Seyed Hadi Razavi
| |
Collapse
|
12
|
Xia W, Peng G, Hu Y, Dou G. Desired properties and corresponding improvement measures of electrospun nanofibers for membrane distillation, reinforcement, and self‐healing applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weihai Xia
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Guangjian Peng
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Yahao Hu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Guijing Dou
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| |
Collapse
|
13
|
Salahshoori I, Ramezani Z, Cacciotti I, Yazdanbakhsh A, Hossain MK, Hassanzadeganroudsari M. Cisplatin uptake and release assessment from hydrogel synthesized in acidic and neutral medium: An experimental and molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Li MX, Li L, Zhou SY, Cao JH, Liang WH, Tian Y, Shi XT, Yang XB, Wu DY. A biomimetic orthogonal-bilayer tubular scaffold for the co-culture of endothelial cells and smooth muscle cells. RSC Adv 2021; 11:31783-31790. [PMID: 35496878 PMCID: PMC9041441 DOI: 10.1039/d1ra04472a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
In blood vessels, endothelial cells (ECs) grow along the direction of blood flow, while smooth muscle cells (SMCs) grow circumferentially along the vessel wall. To mimic this structure, a polycaprolactone (PCL) tubular scaffold with orthogonally oriented bilayer nanofibers was prepared via electrospinning and winding. ECs were cultured on the inner layer of the scaffold with axial nanofibers and SMCs were cultured on the outer layer of the scaffold with circumferential nanofibers. Fluorescence images of the F-actin distribution of ECs and SMCs indicated that cells adhered, stretched, and proliferated in an oriented manner on the scaffold. Moreover, layers of ECs and SMCs formed on the scaffold after one month of incubation. The expression levels of platelet-endothelial cell adhesion molecule 1 (PECAM-1) and a contractile SMC phenotype marker in the EC/SMC co-culture system were much higher than those in individual culture systems, thus demonstrating that the proposed biomimetic scaffold promoted the intercellular junction of ECs and preserved the contractile phenotype of SMCs. To mimic blood vessels, a polycaprolactone tubular scaffold was prepared via electrospinning and winding. Endothelial cells were cultured on the inner layer with axial nanofibers and smooth muscle cells were cultured on the outer layer with circumferential nanofibers.![]()
Collapse
Affiliation(s)
- Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wei-Hua Liang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ye Tian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xue-Tao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology Guangzhou 510006 P. R. China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University Beijing 100029 P. R. China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
15
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
16
|
Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Luo L, Wu Y, Liu C, Zou Y, Huang L, Liang Y, Ren J, Liu Y, Lin Q. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chem 2021; 336:127669. [PMID: 32758804 DOI: 10.1016/j.foodchem.2020.127669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Curcumin was recently attracted great interest owing to its multiple bioactivities; however, the use of curcumin was hindered by its poor solubility and stability. In this study, curcumin-nisin-soy soluble polysaccharide nanoparticles (Cur-Nisin-SSPS-NPs, size = 118.76 nm) have been successfully elaborated to improve the application of curcumin. The formation of Cur-Nisin-SSPS-NPs was mediated by amphiphilic and positively charged nisin: SSPS encapsulated nisin, which was mainly driven by electrostatic attraction. And nisin-SSPS complex encapsulated curcumin mainly through hydrophobic interactions between nisin and curcumin. The encapsulation efficiency of curcumin (91.66%) in this novel nanocarriers was significantly higher than that in nanoparticles prepared by a single SSPS (31.82%) or nisin (41.69%), most likely because more hydrophobic regions of nisin were exposed after interacting with SSPS through electrostatic interaction. Consequently, this facile and green nanocarriers improved the solubility/dispersibility and stability of curcumin and nisin, as well as endowed SSPS-based nanoparticles with antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Lijuan Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chun Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuan Zou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liang Huang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Liang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingli Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
18
|
Karimi S, Bagher Z, Najmoddin N, Simorgh S, Pezeshki-Modaress M. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application. Int J Biol Macromol 2020; 167:796-806. [PMID: 33278440 DOI: 10.1016/j.ijbiomac.2020.11.199] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022]
Abstract
The design of 3D hydrogel constructs to elicit highly controlled cell response is a major field of interest in developing tissue engineering. The bioactivity of encapsulated cells inside pure alginate hydrogel is limited by its relatively inertness. Combining short nanofibers within a hydrogel serves as a promising method to develop a cell friendly environment mimicking the extracellular matrix. In this paper, we fabricated alginate hydrogels incorporating different magnetic short nanofibers (M.SNFs) content for olfactory ecto-mesenchymal stem cells (OE-MSCs) encapsulation. Wet-electrospun gelatin and superparamagnetic iron oxide nanoparticles (SPIONs) nanocomposite nanofibers were chopped using sonication under optimized conditions and subsequently embedded in alginate hydrogels. The storage modulus of hydrogel without M.SNFs as well as with 1 and 5 mg/mL of M.SNFs were in the range of nerve tissue. For cell encapsulation, OE-MSCs were used as a new hope for neuronal regeneration due to their neural crest origin. Resazurin analyses and LIVE/DEAD staining confirmed that the composite hydrogels containing M.SNFs can preserve the cell viability after 7 days. Moreover, the proliferation rate was enhanced in M.SNF/hydrogels compared to alginate hydrogel. The presence of SPIONs in the short nanofibers can accelerate neural-like differentiation of OE-MSCs rather than the sample without SPIONs.
Collapse
Affiliation(s)
- Sarah Karimi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Ceci C, Graziani G, Faraoni I, Cacciotti I. Strategies to improve ellagic acid bioavailability: from natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. NANOTECHNOLOGY 2020; 31:382001. [PMID: 32380485 DOI: 10.1088/1361-6528/ab912c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ellagic acid (EA) is a polyphenolic compound whose dietary consumption is mainly associated with the intake of red fruits, including pomegranates, strawberries, blackberries, blackcurrants, raspberries, grapes or dried fruits, like walnuts and almonds. A number of studies indicate that EA exerts health-beneficial effects against several chronic pathologies associated with oxidative damage, including different kinds of cancer, cardiovascular and neurodegenerative diseases. Furthermore, EA possesses wound-healing properties, antibacterial and antiviral effects, and acts as a systemic antioxidant. However, clinical applications of this polyphenol have been hampered and prevented by its poor water solubility (9.7 ± 3.2 μg ml-1 in water) and pharmacokinetic profile (limited absorption rate and plasma half-life <1 h after ingestion of pomegranate juice), properties due to the chemical nature of the organic heterotetracyclic compound. Little has been reported on efficient strategies to enhance EA poor oral bioavailability, including chemical structure modifications, encapsulation within nano-microspheres to be used as carriers, and molecular dispersion in polymer matrices. In this review we summarize the experimental approaches investigated so far in order to improve EA pharmacokinetics, supporting the hypothesis that enhancement in EA solubility is a feasible route for increasing its oral absorption.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1 00133, Rome, Italy
| | | | | | | |
Collapse
|
20
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
21
|
Comas F, Latorre J, Ortega F, Oliveras-Cañellas N, Lluch A, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. Redox Biol 2020; 42:101668. [PMID: 32800520 PMCID: PMC8113015 DOI: 10.1016/j.redox.2020.101668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we aimed to investigate the impact of permanent cystathionine-β-Synthase (CBS) gene knockdown in human telomerase reverse transcriptase (hTERT) immortalized human adipose-derived mesenchymal stem cells (ASC52telo) and in their capacity to differentiate into adipocytes. CBS gene KD in ASC52telo cells led to increased cellular inflammation (IL6, CXCL8, TNF) and oxidative stress markers (increased intracellular reactive oxygen species and decreased reduced glutathione levels) in parallel to decreased H2S production and rejuvenation (LC3 and SIRT1)-related gene expression. In addition, CBS gene KD in ASC52telo cells resulted in altered mitochondrial respiratory function, characterised by decreased basal respiration (specifically proton leak) and spare respiratory capacity, without significant effects on cell viability and proliferation. In this context, shCBS-ASC52telo cells displayed enhanced adipogenic (FABP4, ADIPOQ, SLC2A4, CEBPA, PPARG)-, lipogenic (FASN, DGAT1)- and adipocyte (LEP, LBP)-related gene expression markers, decreased expression of proinflammatory cytokines, and increased intracellular lipid accumulation during adipocyte differentiation compared to control ASC52telo cells. Otherwise, the increased adipogenic potential of shCBS-ASC52telo cells was detrimental to the ability to differentiate into osteogenic linage. In conclusion, this study demonstrated that permanent CBS gene KD in ASC52telo cells promotes a cellular senescence phenotype with a very increased adipogenic potential, promoting a non-physiological enhanced adipocyte differentiation with excessive lipid storage.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain; Department of Medicine, Universitat de Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain; Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
22
|
Solaberrieta I, Jiménez A, Cacciotti I, Garrigós MC. Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene Oxide) Nanofibers. Polymers (Basel) 2020; 12:E1323. [PMID: 32531945 PMCID: PMC7361710 DOI: 10.3390/polym12061323] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aloe Vera is an ancient medicinal plant especially known for its beneficial properties for human health, due to its bioactive compounds. In this study, nanofibers with antioxidant activity were successfully obtained by electrospinning technique with the addition of a natural Aloe Vera skin extract (AVE) (at 0, 5, 10 and 20 wt% loadings) in poly(ethylene oxide) (PEO) solutions. The successful incorporation of AVE into PEO was evidenced by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (ABTS) and ferric reducing power (FRAP) assays. The incorporation of AVE introduced some changes in the PEO/AVE nanofibers morphology showing bimodal diameter distributions for AVE contents in the range 10-20 wt%. Some decrease in thermal stability with AVE addition, in terms of decomposition onset temperature, was also observed and it was more evident at high loading AVE contents (10 and 20 wt%). High encapsulation efficiencies of 92%, 76% and 105% according to DPPH, FRAP and ABTS assays, respectively, were obtained at 5 wt% AVE content, retaining AVE its antioxidant capacity in the PEO/AVE electrospun nanofibers. The results suggested that the obtained nanofibers could be promising materials for their application in active food packaging to decrease oxidation of packaged food during storage.
Collapse
Affiliation(s)
- Ignacio Solaberrieta
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| | - Ilaria Cacciotti
- Department of Engineering, University of Rome “Niccolò Cusano”, INSTM RU, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
| | - Maria Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| |
Collapse
|
23
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
24
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
25
|
De Santis M, Cacciotti I. Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. NANOTECHNOLOGY 2020; 31:252001. [PMID: 32101794 DOI: 10.1088/1361-6528/ab7a2d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In in vivo postsurgery monitoring, the use of wireless biodegradable implantable sensors has gained and is gaining a lot of interest, particularly in cases of monitoring for a short period of time. The employment of biodegradable materials allows the circumvention of secondary surgery for device removal. Additionally, the use of wireless communication for data elaboration avoids the need for transcutaneous wires. As such, it is possible to prevent possible inflammation and infections associated with long-term implants which are not wireless. It is expected that microfabricated biodegradable sensors will have a strong impact in acute or transient biomedical applications. However, the design of such high-performing electronic systems, both fully biodegradable and wireless, is very complex, particularly at small scales. The associated technologies are still in their infancy and should be more deeply and extensively investigated in animal models and, successively, in humans, before being clinically implemented. In this context, the present review aims to provide a complete overview of wireless biodegradable implantable sensors, covering the vital signs to be monitored, the wireless technologies involved, and the biodegradable materials used for the production of the devices, as well as designed devices and their applications. In particular, both their advantages and drawbacks are highlighted, and the key challenges faced, mainly associated with fabrication techniques, and control over degradation kinetics and biocompatibility of the device, are reported and discussed.
Collapse
Affiliation(s)
- Michele De Santis
- University of Rome 'Niccolò Cusano', Engineering Department, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
| | | |
Collapse
|
26
|
Glutathione-Allylsulfur Conjugates as Mesenchymal Stem Cells Stimulating Agents for Potential Applications in Tissue Repair. Int J Mol Sci 2020; 21:ijms21051638. [PMID: 32121252 PMCID: PMC7084915 DOI: 10.3390/ijms21051638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
The endogenous gasotransmitter H2S plays an important role in the central nervous, respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells (cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and migration in a concentration dependent manner with respect to the control. GSGa treatment promoted an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion and commitment to differentiation. These results highlight the effects of H2S-natural donors as biochemical factors that promote MSC homing, increasing their safety profile and efficacy after transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems for cardiac muscle tissue repair and regeneration.
Collapse
|
27
|
Cacciotti I, Pallotto F, Scognamiglio V, Moscone D, Arduini F. Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110744. [PMID: 32279763 DOI: 10.1016/j.msec.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Herein we report a multiplated and biopolymeric-based optical bioassay for organophosphate detection based on the use of acetylcholinesterase (AChE) as biocomponent and biopolymeric electrospun fibrous mats as eco-designed supports for AChE immobilisation. The principle of the detection relays on the decrease of enzymatic activity due to the capability of the organophosphorus pesticides to irreversibly inhibit AChE, which is optically detected using Ellman colorimetric method. The proposed bioassay consists in a novel, cost-effective, and multiplex-based 96-well system, in combination with customised biopolymeric membranes modified with AChE, with the aim to deliver a sustainable analytical tool. Indeed, the designed set-up should provide and guarantee several advantages, including: i) the re-use of plastic multi-plate with the only replacement of polymer dishes in the case of inhibition absence; ii) the exploiting of the properties of the immobilised enzyme, i.e. multiple analysis using the same amount of enzyme, reducing the AChE amount for analysis. In detail, three different biopolymers (i.e. polylactic acid (PLA), polycaprolactone (PCL), and poly-hydroxybutyrate-co-hydroxyvalerate (PHBV)) were investigated and morphologically characterised, as supports for enzyme immobilisation, to identify the optimal one. Among them, PHBV was selected as the best support to immobilise AChE by cross-linking method. The analytical features of the bioassay were then assessed by measuring standard solutions of paraoxon in a range of concentrations between 10 and 100 ppb, achieving a linear range up to 60 ppb and a detection limit of 10 ppb. Thus, the suitability of this sustainable bioassay to detect organophosphate at ppb level was demonstrated.
Collapse
Affiliation(s)
- Ilaria Cacciotti
- University of Rome "Niccolò Cusano", Department of Engineering, Via Don Carlo Gnocchi 3, 00166 Roma, Italy.
| | - Francesca Pallotto
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Danila Moscone
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Fabiana Arduini
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, s.r.l. via Renato Rascel 30, 00128 Rome, Italy
| |
Collapse
|
28
|
Sunzini F, De Stefano S, Chimenti MS, Melino S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int J Mol Sci 2020; 21:ijms21041180. [PMID: 32053981 PMCID: PMC7072783 DOI: 10.3390/ijms21041180] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 01/12/2023] Open
Abstract
The social and economic impact of chronic inflammatory diseases, such as arthritis, explains the growing interest of the research in this field. The antioxidant and anti-inflammatory properties of the endogenous gasotransmitter hydrogen sulfide (H2S) were recently demonstrated in the context of different inflammatory diseases. In particular, H2S is able to suppress the production of pro-inflammatory mediations by lymphocytes and innate immunity cells. Considering these biological effects of H2S, a potential role in the treatment of inflammatory arthritis, such as rheumatoid arthritis (RA), can be postulated. However, despite the growing interest in H2S, more evidence is needed to understand the pathophysiology and the potential of H2S as a therapeutic agent. Within this review, we provide an overview on H2S biological effects, on its role in immune-mediated inflammatory diseases, on H2S releasing drugs, and on systems of tissue repair and regeneration that are currently under investigation for potential therapeutic applications in arthritic diseases.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection Immunity and Inflammation, University of Glasgow, 120 University, Glasgow G31 8TA, UK;
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Susanna De Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Maria Sole Chimenti
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-0672594410
| |
Collapse
|
29
|
Kaur K, Carrazzone RJ, Matson JB. The Benefits of Macromolecular/Supramolecular Approaches in Hydrogen Sulfide Delivery: A Review of Polymeric and Self-Assembled Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:79-95. [PMID: 31691577 PMCID: PMC6918872 DOI: 10.1089/ars.2019.7864] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Significance: Cell homeostasis and redox balance are regulated in part by hydrogen sulfide (H2S), a gaseous signaling molecule known as a gasotransmitter. Given its biological roles, H2S has promising therapeutic potential, but controlled delivery of this reactive and hazardous gas is challenging due to its promiscuity, rapid diffusivity, and toxicity at high doses. Macromolecular and supramolecular drug delivery systems are vital for the effective delivery of many active pharmaceutical ingredients, and H2S stands to benefit greatly from the tunable physical, chemical, and pharmacokinetic properties of polymeric and/or self-assembled drug delivery systems. Recent Advances: Several types of H2S-releasing macro- and supramolecular materials have been developed in the past 5 years, and the field is expanding quickly. Slow-releasing polymers, polymer assemblies, polymer nano- and microparticles, and self-assembled hydrogels have enabled triggered, sustained, and/or localized H2S delivery, and many of these materials are more potent in biological assays than analogous small-molecule H2S donors. Critical Issues: H2S plays a role in a number of (patho)physiological processes, including redox balance, ion channel regulation, modulation of inducible nitric oxide synthase, angiogenesis, blood pressure regulation, and more. Chemical tools designed to (i) deliver H2S to study these processes, and (ii) exploit H2S signaling pathways for treatment of diseases require control over the timing, rate, duration, and location of release. Future Directions: Development of new material approaches for H2S delivery that enable long-term, triggered, localized, and/or targeted delivery of the gas will enable greater understanding of this vital signaling molecule and eventually expedite its clinical application.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia
| | - Ryan J. Carrazzone
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
30
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Du M, Kavanagh D, Kalia N, Zhang Z. Characterising the mechanical properties of haematopoietic and mesenchymal stem cells using micromanipulation and atomic force microscopy. Med Eng Phys 2019; 73:18-29. [DOI: 10.1016/j.medengphy.2019.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022]
|
32
|
Hydrogen Sulfide in Bone Tissue Regeneration and Repair: State of the Art and New Perspectives. Int J Mol Sci 2019; 20:ijms20205231. [PMID: 31652532 PMCID: PMC6834365 DOI: 10.3390/ijms20205231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of hydrogen sulfide (H2S) in the regulation of multiple physiological functions has been clearly recognized in the over 20 years since it was first identified as a novel gasotransmitter. In bone tissue H2S exerts a cytoprotective effect and promotes bone formation. Just recently, the scientific community has begun to appreciate its role as a therapeutic agent in bone pathologies. Pharmacological administration of H2S achieved encouraging results in preclinical studies in the treatment of systemic bone diseases, such as osteoporosis; however, a local delivery of H2S at sites of bone damage may provide additional opportunities of treatment. Here, we highlight how H2S stimulates multiple signaling pathways involved in various stages of the processes of bone repair. Moreover, we discuss how material science and chemistry have recently developed biomaterials and H2S-donors with improved features, laying the ground for the development of H2S-releasing devices for bone regenerative medicine. This review is intended to give a state-of-the-art description of the pro-regenerative properties of H2S, with a focus on bone tissue, and to discuss the potential of H2S-releasing scaffolds as a support for bone repair.
Collapse
|
33
|
Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:471-482. [DOI: 10.1016/j.msec.2019.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
|
34
|
Natural Hydrogen Sulfide Donors from Allium sp. as a Nutraceutical Approach in Type 2 Diabetes Prevention and Therapy. Nutrients 2019; 11:nu11071581. [PMID: 31336965 PMCID: PMC6682899 DOI: 10.3390/nu11071581] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties-that are still not completely known-of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.
Collapse
|
35
|
Han C, Zhou J, Liu B, Liang C, Pan X, Zhang Y, Zhang Y, Wang Y, Shao L, Zhu B, Wang J, Yin Q, Yu XY, Li Y. Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:322-332. [DOI: 10.1016/j.msec.2019.01.122] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/10/2023]
|
36
|
Liang W, Chen J, Li L, Li M, Wei X, Tan B, Shang Y, Fan G, Wang W, Liu W. Conductive Hydrogen Sulfide-Releasing Hydrogel Encapsulating ADSCs for Myocardial Infarction Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14619-14629. [PMID: 30939870 DOI: 10.1021/acsami.9b01886] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) exhibits extensive protective actions in cardiovascular systems, such as anti-inflammatory and stimulating angiogenesis, but its therapeutic potential is severely discounted by the short half-life and the poorly controlled releasing behavior. Herein, we developed a macromolecular H2S prodrug by grafting 2-aminopyridine-5-thiocarboxamide (a small-molecule H2S donor) on partially oxidized alginate (ALG-CHO) to mimic the slow and continuous release of endogenous H2S. In addition, tetraaniline (a conductive oligomer) and adipose-derived stem cells (ADSCs) were introduced to form a stem cell-loaded conductive H2S-releasing hydrogel through the Schiff base reaction between ALG-CHO and gelatin. The hydrogel exhibited adhesive property to ensure a stable anchoring to the wet and beating hearts. After myocardial injection, longer ADSCs retention period and elevated sulfide concentration in rat myocardium were demonstrated, accompanied by upregulation of cardiac-related mRNA (Cx43, α-SMA, and cTnT) and angiogenic factors (VEGFA and Ang-1) and downregulation of inflammatory factors (tumor necrosis factor-α). Echocardiography and histological analysis strongly demonstrated an increase in the ejection fraction value and smaller infarction size, suggesting a remarkable improvement of the cardiac functions of Sprague-Dawley rats. The ADSC-loaded conductive hydrogen sulfide-releasing hydrogel dramatically promoted the therapeutic effects, offering a promising therapeutic strategy for treating myocardial infarction.
Collapse
Affiliation(s)
- Wei Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Lingyan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities , Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai 200233 , China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yingying Shang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
37
|
Jamróz E, Kulawik P, Kopel P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers (Basel) 2019; 11:E675. [PMID: 31013855 PMCID: PMC6523406 DOI: 10.3390/polym11040675] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
38
|
Gaggi G, Izzicupo P, Di Credico A, Sancilio S, Di Baldassarre A, Ghinassi B. Spare Parts from Discarded Materials: Fetal Annexes in Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20071573. [PMID: 30934825 PMCID: PMC6479500 DOI: 10.3390/ijms20071573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
One of the main aims in regenerative medicine is to find stem cells that are easy to obtain and are safe and efficient in either an autologous or allogenic host when transplanted. This review provides an overview of the potential use of the fetal annexes in regenerative medicine: we described the formation of the annexes, their immunological features, the new advances in the phenotypical characterization of fetal annexes-derived stem cells, the progressions obtained in the analysis of both their differentiative potential and their secretoma, and finally, the potential use of decellularized fetal membranes. Normally discarded as medical waste, the umbilical cord and perinatal tissue not only represent a rich source of stem cells but can also be used as a scaffold for regenerative medicine, providing a suitable environment for the growth and differentiation of stem cells.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
39
|
Jiang B, Na J, Wang L, Li D, Liu C, Feng Z. Eco-Innovation in Reusing Food By-Products: Separation of Ovalbumin from Salted Egg White Using Aqueous Two-Phase System of PEG 1000/(NH₄)₂SO₄. Polymers (Basel) 2019; 11:E238. [PMID: 30960222 PMCID: PMC6419032 DOI: 10.3390/polym11020238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
For the purpose of reducing pollution and the rational use of salted egg white, which is a byproduct of the manufacturing process of salted egg yolk, an aqueous two-phase system (ATPS) composed of polyethylene glycols (PEG 1000) and (NH₄)₂SO₄ was investigated to selectively separate ovalbumin (OVA) from salted egg white. With the aim of optimizing the selective separation of OVA using ATPS, a response surface method (RSM) experiment was carried out on the basis of a single-factor experiment. The OVA was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS⁻PAGE), reversed-phase high-performance liquid chromatography (RP-HPLC), liquid chromatography-nano electrospray ionization mass spectrometry (Nano LC-ESI-MS/MS), and Fourier transform infrared spectroscopy (FT-IR). Under the optimal conditions, the recovery yield of OVA through ATPS (Y) and the purity of OVA (P) could reach 89.25% and 96.28%, respectively. In conclusion, OVA was successfully separated from the salted egg white by PEG/(NH₄)₂SO₄ ATPS.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Jiaxin Na
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Lele Wang
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Dongmei Li
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| |
Collapse
|
40
|
Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Zheng Z, Chen A, He H, Chen Y, Chen J, Albashari AA, Li J, Yin J, He Z, Wang Q, Wu J, Wang Q, Kang J, Xian M, Wang X, Xiao J. pH and enzyme dual-responsive release of hydrogen sulfide for disc degeneration therapy. J Mater Chem B 2019; 7:611-618. [PMID: 32254794 DOI: 10.1039/c8tb02566e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The collagen hydrogel controllably releases hydrogen sulfide by responding to pH and enzymes for disc degeneration therapy.
Collapse
|
42
|
Min Q, Liu J, Li J, Wan Y, Wu J. Chitosan-Polylactide/Hyaluronic Acid Complex Microspheres as Carriers for Controlled Release of Bioactive Transforming Growth Factor-β1. Pharmaceutics 2018; 10:pharmaceutics10040239. [PMID: 30453642 PMCID: PMC6321178 DOI: 10.3390/pharmaceutics10040239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 01/10/2023] Open
Abstract
Chitosan(CH)-polylactide(PLA) copolymers containing varied PLA percentages were synthesized using a group-protection method and one of them with solubility in water-based solvents was used to prepare CH-PLA/hyaluronic acid (HA) complex microspheres for the delivery of transforming growth factor-β1 (TGF-β1). An emulsification processing method was developed for producing TGF-β1-loaded CH-PLA/HA microspheres using sodium tripolyphosphate (TPP) as ionic crosslinker and the size of the microspheres was devised to the micron level in order to achieve high encapsulating efficiency. The encapsulating efficiency, swelling property and release administration of the microspheres could be synergistically regulated by PLA component, the applied TPP dose and the incorporated HA amount. In comparison to CH/HA microspheres, the CH-PLA/HA microspheres had greatly reduced TGF-β1 release rates and were able to administrate the TGF-β1 release at controlled rates over a significant longer period of time. The released TGF-β1 was detected to be bioactive when compared to the free TGF-β1. These results suggest that the presently developed CH-PLA/HA complex microspheres have promising potential in delivering TGF-β1 for cartilage repair applications where the applied TGF-β1 amount in the early stage needs to be low whilst the sustained TGF-β1 release at an appropriate dose in the later stage has to be maintained.
Collapse
Affiliation(s)
- Qing Min
- School of pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| | - Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiliang Wu
- School of pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|