1
|
Lan J, Zou J, Xin H, Sun J, Han T, Sun M, Niu M. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J Control Release 2025; 381:113589. [PMID: 40032007 DOI: 10.1016/j.jconrel.2025.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
The problem of antimicrobial resistance (AMR) has caused global concern due to its great threat to human health. Evidences are emerging for a critical role of biofilms, one of the natural protective mechanisms developed by bacteria during growth, in resisting commonly used clinical antibiotics. Advances in nanomedicines with tunable physicochemical properties and unique anti-biofilm mechanisms provide opportunities for solving AMR risks more effectively. In this review, we summarize the five "A" stages (adhesion, amplification, alienation, aging and allocation) of biofilm formation and mechanisms through which they protect the internal bacteria. Aimed at the characteristics of biofilms, we emphasize the design "THAT" principles (targeting, hacking, adhering and transport) of nanomedicines in their interactions with biofilms and internal bacteria. Furthermore, recent progresses in multimodal antibacterial nanomedicines, including biofilms disruption and bactericidal activity, and the types of currently available antibiofilm nanomedicines contained organic and inorganic nanomedicines are outlined and highlighted their potential applications in the development of preclinical research. Last but not least, we offer a perspective for the effectiveness of nanomedicines designed to address AMR and challenges associated with their clinical translation.
Collapse
Affiliation(s)
- Jiaming Lan
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - He Xin
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
2
|
Kaur A, Babaliari E, Bolanos-Garcia VM, Kefalogianni M, Psilodimitrakopoulos S, Kavatzikidou P, Ranella A, Ghorbani M, Stratakis E, Eskin DG, Tzanakis I. Assessment of aqueous graphene as a cancer therapeutics delivery system. Sci Rep 2025; 15:15396. [PMID: 40316695 PMCID: PMC12048647 DOI: 10.1038/s41598-025-98406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Graphene is a nanomaterial used in health and oncology settings. However, several reports have raised the alarm about potential toxicity. This study addressed this concern and determined the in vitro cytotoxicity of few-layer graphene (FLG) flakes produced in bespoke ultrasonic reactors using benign methods. The use of graphene flakes as a potential sensitising agent and a carrier for drug delivery in cancer cells was evaluated. To this end, aqueous based FLG suspensions were systematically characterised using UV-Vis, Raman spectroscopy and High-resolution Transmission electron microscopy (HR-TEM). Cell toxicity characterisation (e.g., cell viability assays using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and cell membrane integrity) of FLG in water were performed together with charge coupled device (CCD) and second harmonic generation (SHG) imaging of live cells in graphene solutions. Collectively, our findings show that NIH 3T3 mouse fibroblast and human fibroblast cells survival was higher than 80% and 90%, respectively upon treatment with the FLG fraction (~ 16 µg/ml ) recovered after centrifugation at 2000 revolutions per minute (RPM). In contrast, the cervical cancer cell line HeLa exposed to similar concentrations of FLG flakes resulted in approximately 30% cell death arguing in favour of a sensitising effect in cervical cancer cells.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK.
| | - Eleftheria Babaliari
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, Heraklion, 70013, Greece
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
- Oxford Target Therapeutics Ltd., OX3 0BP, Oxford, UK
| | - Mary Kefalogianni
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, Heraklion, 70013, Greece
- Department of Physics, University of Crete, Heraklion, 70013, Greece
| | - Sotiris Psilodimitrakopoulos
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, Heraklion, 70013, Greece
| | - Paraskevi Kavatzikidou
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, Heraklion, 70013, Greece
| | - Anthi Ranella
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, Heraklion, 70013, Greece
| | - Morteza Ghorbani
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul, 34956, Turkey
| | - Emmanuel Stratakis
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, Heraklion, 70013, Greece
- Department of Physics, University of Crete, Heraklion, 70013, Greece
| | - Dmitry G Eskin
- Brunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, London, UB8 3PH, UK
| | - Iakovos Tzanakis
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK.
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
| |
Collapse
|
3
|
Aryanti PTP, Nugroho FA, Kusmala YY. Heparin and heparin-like modifications in hemodialysis membranes: Current innovations and future directions. Biotechnol Adv 2025; 80:108527. [PMID: 39922509 DOI: 10.1016/j.biotechadv.2025.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Heparinized hemodialysis membranes represent a significant advancement in improving the biocompatibility and anticoagulant properties of dialysis treatments. This review explores the current challenges and innovations in developing these membranes, focusing on the incorporation of heparin and heparin-like substances to reduce protein adsorption, platelet adhesion, and clot formation. The methods for heparin immobilization, including covalent bonding, layer-by-layer assembly, and blending, offer promising results in enhancing membrane performance. However, issues such as long-term stability, large-scale production, and cost-effectiveness remain critical barriers to their widespread adoption. The review also highlights the role of surface activation techniques and nanotechnology in improving the functionality of heparinized membranes. Advanced methods like plasma treatment and polymer grafting provide better heparin attachment, while nanomaterial integration allows for improved blood compatibility and controlled heparin release. Despite these innovations, challenges such as heparin degradation, uneven coating, and the complexity of scaling up remain unresolved. Future research should focus on optimizing heparin distribution, enhancing durability, and making the production process more cost-efficient. This paper outlines potential interdisciplinary approaches, such as bioinspired materials and nanotechnology applications, to address these challenges and pave the way for next-generation hemodialysis membranes that are safer, more effective, and more accessible.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Dept., Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia.
| | - Febrianto Adi Nugroho
- Chemical Engineering Dept., Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia
| | - Yudith Yunia Kusmala
- Internal Medicine Dept, Faculty of Medicine, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia
| |
Collapse
|
4
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Arnold AM, Singh J, Sydlik SA. The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications. Biomacromolecules 2025; 26:2015-2042. [PMID: 40101190 PMCID: PMC12004540 DOI: 10.1021/acs.biomac.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Functional graphenic materials (FGMs) are materials derived from graphene oxide (GO) that hold a plethora of applications from electronics to nanomedicine. In this Perspective, we examine the history and evolution of biomedical applications of this carbon-based macromolecule. Following the carbon nanotube (CNT) movement, GO and FGMs became nanocarbons of interest because of their low cost and versatile functionality. The tunable chemistry enabled our work on FGMs coupled with biomacromolecules and allows FGMs to plays an important role in many biomedical applications, from tissue regeneration to controlled delivery. As we work to develop this material, it is critical to consider toxicity implications─in fresh materials as well as in degradation products. With this understanding, FGMs also hold potential roles in human health and environmental sustainability, making FGMs an important contemporary biomacromolecule.
Collapse
Affiliation(s)
- Anne M. Arnold
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Juhi Singh
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Stefanie A. Sydlik
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, 346 Hamerschlag
Drive, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Abdelmoneim D, Eldomany EB, El-Adl M, Farghali A, El-Sayed G, El-Sherbini ES. Possible protective effect of natural flavanone naringenin-reduced graphene oxide nanosheets on nonalcoholic fatty liver disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4071-4086. [PMID: 39414698 PMCID: PMC11978702 DOI: 10.1007/s00210-024-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Utilizing naringenin as a safe, natural compound for reducing graphene oxide and to determine whether Nar-RGO more effectively mitigates the harmful effects of HFFD-induced NAFLD compared to crude naringenin. Using a straightforward experimental setup, we utilize the bioactive flavonoid naringenin (NAR) as the reducing agent to synthesize naringenin-reduced graphene oxide nanosheets (Nar-RGO). Naringenin loading on graphene oxide was validated using electroscopic methods (SEM and TEM) and zeta potential measurements. Utilization of reduced graphene oxide for naringenin encapsulation resulted in a significant improvement in hepatic steatosis, insulin resistance, oxidative stress, and signs of inflammation in HFFD-induced NAFLD compared to crude naringenin. This study demonstrates that Nar-RGO exhibits significantly greater efficacy compared to free naringenin. Therefore, it can be used as a promising medicine in counteracting high-fat-fructose diet (HFFD)-induced NAFLD.
Collapse
Affiliation(s)
- Doaa Abdelmoneim
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Ehab B Eldomany
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed El-Adl
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Farghali
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gehad El-Sayed
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - El Said El-Sherbini
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Zhou X, Sun X, Chen G, Chen Y, Zhang Z, Qian Z, Zeng Q, Miao J. Physicochemical Properties and Biocompatibility of Injectable Hydroxyapatite Cement and Its Application in Compressive Tibial Plateau Fractures. J Biomed Mater Res B Appl Biomater 2025; 113:e35565. [PMID: 40099378 DOI: 10.1002/jbm.b.35565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Injectable carbonated hydroxyapatite (ICHA) cement was developed by adding 2% Hydroxypropyl methylcellulose (HPMC) to carbonated hydroxyapatite (CHA) cement, improving its rheological properties and injectability for minimally invasive orthopedic use. The cement's physical and chemical properties, including curing time, strength, porosity, and consistency, were tested in vitro. Scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to analyze the cured cement. Bone marrow stromal cells were cultured with ICHA cement extracts and specimens to test cell growth (MTT assay) and cytotoxicity. In vivo, the cement was implanted into rabbit muscles to assess inflammation and capsule formation, along with other biocompatibility tests, including hemolysis and pyrogen testing. ICHA cement sets without heat generation, with a 9-min initial setting time and a 15-min final setting time, similar to CHA cement. The strength reaches 20 MPa after 1 day and peaks at 35 MPa after 7 days. Its porosity is slightly higher than CHA cement, and it resists dilution well, preventing disintegration in water. The consistency of ICHA cement is lower than CHA cement at different time points (p < 0.001), showing a logarithmic change pattern. With adjustable setting time, good resistance to dilution, and compressive strength similar to cancellous bone, ICHA cement is well suited for clinical use. Its composition closely resembles natural bone, offering strong fixation and stability for tibial plateau healing, which supports early movement and reduces the risk of joint stiffness and post-traumatic arthritis.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, China
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiang Sun
- Department of Neurosurgery, The Third Central Hospital of Tianjin, Tianjin, China
| | - Guangdong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yang Chen
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zepei Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Qiang Zeng
- Institute of Occupational Health, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Li S, Wang W, Liu S, Du Y, Zhao N. Evolved enzymes in the metabolism of biological poly-acids: Applications in otolaryngological biocatalysis. Int J Biol Macromol 2025; 302:140068. [PMID: 39837444 DOI: 10.1016/j.ijbiomac.2025.140068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
This study explores evolved Hyaluronidase, Lipase, and Elastase's identification, characterization, and therapeutic potential to enhance tissue regeneration and drug delivery systems in otolaryngology. Hyaluronidase variant H5 exhibited a turnover number (k_cat) of 1500 min-1, a 200 % increase over wild-type (500 min-1), demonstrating superior hyaluronic acid degradation. Similarly, lipase variant L2 reached 1200 min-1 (400 min-1 wild-type), and elastase variant E3 showed a turnover of 2200 min-1 (1000 min-1 wild-type). Kinetic analyses revealed improved Km and Vmax values across variants, with Hyaluronidase Variant H5 achieving Km = 1.5 μM and Vmax = 3000 μM/min. Molecular Dynamics (MD) simulations indicated structural stability (average RMSD ~1.5 Å for H5) and strong hydrogen bonding (180 bonds), enhancing catalytic efficiency. In vitro assays demonstrated a 40 % enhancement in tissue regeneration and increased epithelial cell proliferation (100 % for Hyaluronidase Variant H5 vs. 60 % wild-type). In vivo studies in rabbits revealed a 30 % reduction in recovery time post-sinus surgery and a 50 % reduction in scar tissue formation. These findings underscore the potential of evolved enzymes in advancing drug delivery (DD) and tissue repair (TR), with implications for broader applications in wound healing and inflammatory diseases.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Wei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Shengnan Liu
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Yaqi Du
- Department of Gastroenterology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| |
Collapse
|
9
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 PMCID: PMC11874808 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
10
|
Shenasa N, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzor A, Salah Mansoor A, Athab ZH, Bayat H, Diznab FA. Review of carbonaceous nanoparticles for antibacterial uses in various dental infections. Nanotoxicology 2025; 19:180-215. [PMID: 39885656 DOI: 10.1080/17435390.2025.2454277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The mouth cavity is the second most complex microbial community in the human body. It is composed of bacteria, viruses, fungi, and protozoa. An imbalance in the oral microbiota may lead to various conditions, including caries, soft tissue infections, periodontitis, root canal infections, peri-implantitis (PI), pulpitis, candidiasis, and denture stomatitis. Additionally, several locally administered antimicrobials have been suggested for dentistry in surgical and non-surgical applications. The main drawbacks are increased antimicrobial resistance, the risk of upsetting the natural microbiota, and hypersensitivity responses. Because of their unique physiochemical characteristics, nanoparticles (NPs) can circumvent antibiotic-resistance mechanisms and exert antimicrobial action via a variety of new bactericidal routes. Because of their anti-microbial properties, carbon-based NPs are becoming more and more effective antibacterial agents. Periodontitis, mouth infections, PI, dentin and root infections, and other dental diseases are among the conditions that may be treated using carbon NPs (CNPs) like graphene oxide and carbon dots. An outline of the scientific development of multifunctional CNPs concerning oral disorders will be given before talking about the significant influence of CNPs on dental health. Some of these illnesses include Periodontitis, oral infections, dental caries, dental pulp disorders, dentin and dental root infections, and PI. We also review the remaining research and application barriers for carbon-based NPs and possible future problems.
Collapse
Affiliation(s)
- Naghmeh Shenasa
- Science Endodontics Department, Shahrekord University of Medical, Shahrekord, Iran
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Hannaneh Bayat
- Dental Surgery, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Abedi Diznab
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Karimata T, Xu W, Kumagai N. DiQuinoline-MonoQuinazoline: A Flat Proton Binder and its Application as a Polyaromatic Hydrocarbon Scavenger and G4 Ligand. Chemistry 2025; 31:e202404335. [PMID: 39679944 DOI: 10.1002/chem.202404335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
A new miniaturized framework for graphitic material featuring three neighboring pyridinic nitrogen atoms is disclosed. The quinoline/quinazoline hybridized pseudo trimeric macrocycle, DiQuinoline(Q)-MonoQuinazolines(Qz), Q2Qz1, was readily synthesized from the key macrocyclic amide precursor in a modular fashion. Its central cavity strongly captures a proton, and the thus-formed positively charged, highly planar architecture exhibits supramolecular complexation through π-interactions. Q2Qz1, with its unique properties, was applied as a scavenger for toxic polyaromatic hydrocarbons and as a G-quartet ligand for potential therapeutic agent for cancer chemotherapy.
Collapse
Affiliation(s)
- Taiga Karimata
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Wei Xu
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagwa-ku, Tokyo, 141-0021, Japan
| |
Collapse
|
12
|
Sellers GS, Poirier MA, Mayberry TG, Cowan BC, Wakefield MR, Fang Y. From conventional to cutting edge: an exploration of osteosarcoma treatments. Med Oncol 2025; 42:81. [PMID: 39982613 DOI: 10.1007/s12032-025-02629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Osteosarcoma is a highly aggressive cancer in children and young adults that has a remarkably high mortality rate upon metastasis. Current standard treatments have remained largely unchanged for nearly five decades, focusing on a combination of chemotherapy with high-dose methotrexate, doxorubicin, and cisplatin, complemented by aggressive surgical resections. Despite this lack of change, recent advancements in medical research have spurred hope for more effective and less invasive approaches to managing osteosarcoma. In this review, we provide an overview of existing therapeutic modalities, including chemotherapy regimens tailored to tumor stage and patient response, radiation therapies aimed at local tumor control, and advanced surgical techniques such as limb-sparing procedures. Additionally, we explore two promising future treatments that are currently under investigation for osteosarcoma cases: targeted therapies utilizing nanomaterials like graphene oxide and innovative oncolytic viruses. This review highlights potential breakthroughs in treatment options while identifying areas that warrant further investigation in the management of osteosarcoma. Considering the limited advancements in treatment over the past decades, identifying and highlighting novel and effective therapies is vital for improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Garen S Sellers
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA, 50266, USA
| | - McKade A Poirier
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA, 50266, USA
| | - Trenton G Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Braydon C Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA, 50266, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
13
|
Erwardt P, Szymczak B, Wiśniewski M, Maciejewski B, Świdziński M, Strzelecki J, Nowak W, Roszek K. l-Asparaginase Immobilized on Nanographene Oxide as an Efficient Nanobiocatalytic Tool for Asparagine Depletion in Leukemia Cells. Bioconjug Chem 2025; 36:253-262. [PMID: 39808739 PMCID: PMC11843607 DOI: 10.1021/acs.bioconjchem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance. Recent research has explored alternative formulations and delivery methods to enhance its efficacy and minimize adverse effects. One promising approach involves the immobilization of l-ASNase onto nanostructured materials, offering improved enzymatic activity and biocompatibility of the support. We harnessed an E. coli l-ASNase type II preparation to develop a novel strategy of enzyme immobilization on graphene oxide (GO)-based support. We compared GO and nanographene oxide (nGO) in terms of their biocompatibility and influence on enzyme parameters. The obtained l-ASNase on the nGO nanobiocatalyst maintains enzymatic activity and increases its stability, selectively acting on K562 leukemia cells without cytotoxic influence on normal endothelial cells. In the case of treated K562 cells, we confirmed enlargement in the cell and nucleus size, disturbance in the cell cycle (interphase and metaphase), and increased apoptosis rate. The potential therapeutic possibilities of immobilized l-ASNase on leukemia cell damage are also discussed, highlighting the importance of further research in this area for advancing cancer therapy.
Collapse
Affiliation(s)
- Paulina Erwardt
- Department
of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland
| | - Bartosz Szymczak
- Department
of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| | - Marek Wiśniewski
- Department
of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland
| | - Bartosz Maciejewski
- Department
of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| | - Michał Świdziński
- Department
of Cellular and Molecular Biology, Faculty of Biological and Veterinary
Sciences, Nicolaus Copernicus University
in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| | - Janusz Strzelecki
- Department
of Biophysics, Institute of Physics, Faculty of Physics, Astronomy
and Informatics, Nicolaus Copernicus University
in Torun, ul. Grudziądzka
5, 87-100 Torun, Poland
| | - Wiesław Nowak
- Department
of Biophysics, Institute of Physics, Faculty of Physics, Astronomy
and Informatics, Nicolaus Copernicus University
in Torun, ul. Grudziądzka
5, 87-100 Torun, Poland
| | - Katarzyna Roszek
- Department
of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
14
|
Joshi R, Ravindran K V, Lahiri I. Graphene-based materials and electrochemical biosensors: an overview. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143001. [PMID: 39908672 DOI: 10.1088/1361-648x/adb2d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Graphene, an exceptional two-dimensional material, has attracted significant attention from the scientific community. Its unique physiochemical properties make it a suitable candidate for many applications in the field of biotechnology and medical sciences. High specific surface area, exceptionally high electrical conductivity, and good biocompatibility of graphene give it a large scope in disease diagnosis and biosensing applications. This review aims at presenting the advances in the journey of graphene-based materials and their successful implication as electrochemical nanobiosensors. The first part of the review summarizes the history, structure, and recent developments in the large-scale production of graphene. It further includes the sensing mechanism, the recent trends in biosensing, and improvements in graphene-based biosensors. The comparative analysis shows graphene-based electrochemical biosensors to have high sensitivity, long-term stability, and low detection limits compared to the various other biosensors.
Collapse
Affiliation(s)
- Rita Joshi
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Veena Ravindran K
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Indranil Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
15
|
Zhu Y, Wang T, He Z, Liu M, Zhang C, Sun G, Wang Q. Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:152-168. [PMID: 39225005 DOI: 10.1080/09205063.2024.2397211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Graphene oxide (GO) is widely used in bone tissue engineering due to its good biocompatibility and proliferation, and is often used in combination with other hydrogels, which not only reduces the cytotoxicity of GO but also improves the mechanical properties of the hydrogels. We developed injectable carboxymethyl chitosan (CMC)/hydroxyethyl cellulose (HEC)/β-tricalcium phosphate (β-TCP)/GO hydrogel via hydrogen bonding cross-linked between (CMC) and (HEC), also, calcium cross-linked by β-TCP was also involved to further improvement of mechanical properties of the hydrogel, and incorporate different concentration of GO in these hydrogel systems. The characterization of the novel hydrogel was tested by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The swelling ratio and mechanical properties were investigated, the results showed that the addition of GO was able to reduce the swelling rate of hydrogels and improve their mechanical properties, with the best effect in the case of 1 mg/mL content. In vivo experimental studies showed that the hydrogel significantly promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), with the best effect at a concentration of 2 mg/mL. The results of the cellular experiments were similar. Therefore, the novel environment-friendly and non-toxic injectable CMC/HEC/β-TCP/GO hydrogel system may have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Yaru Zhu
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen He
- School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunfang Zhang
- Shanghai Pudong New Area Medical Emergency Center, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Wang
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Uzdrowska K, Knap N, Konieczna L, Kamm A, Kuban-Jankowska A, Gierałtowska J, Belka M, Baran M, Chlanda A, Kowiorski KM, Żołnierski A, Gulczynski J, Lipińska L, Bączek T, Izycka-Swieszewska E, Górska-Ponikowska M. Combined Graphene Oxide with 2-Methoxyestradiol for Effective Anticancer Therapy in-vitro Model. Int J Nanomedicine 2025; 20:933-950. [PMID: 39850060 PMCID: PMC11756907 DOI: 10.2147/ijn.s498947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets. Methods The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described. Results It was shown that the inhibition of PTP1B phosphotyrosine phosphatase is one of the mechanisms of action of GO functionalised with 2-ME (GO-2-ME). This is a very important result, considering the fact that 2-ME itself has no inhibitory properties against this phosphatase. Discussion Graphene oxide flakes embroidered with 2-methoxyestradiol molecules may be a promising solution, bringing a new and important effect in the form of improving the bioavailability of the therapeutic substance, ie 2-ME. An appropriate dosage of GO-2-ME/rGO-2-ME, in which GO/rGO is a carrier of 2-methoxyestradiol (2-ME), can ensure effective penetration of the active substance through biological boundaries/membranes and controlled modification of cell signalling, ultimately leading to the selective elimination of malignant cells.
Collapse
Affiliation(s)
- Katarzyna Uzdrowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lucyna Konieczna
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Anna Kamm
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Gierałtowska
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Mariusz Belka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Baran
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Adrian Chlanda
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Warsaw, Poland
| | | | | | - Jacek Gulczynski
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Ludwika Lipińska
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Tomasz Bączek
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Izycka-Swieszewska
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
17
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Serrano-Belmonte I, Cascales-Pérez FJ, Pérez-Fernández V, Martínez-Cánovas A, Tudela-Mulero MR, Rosales-Leal JI. Effects of adding graphene fibers to polymethyl methacrylate on biocompatibility and surface characterization. J Prosthet Dent 2025; 133:281.e1-281.e8. [PMID: 39232936 DOI: 10.1016/j.prosdent.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
STATEMENT OF PROBLEM Interim fixed prostheses are used provisionally to provide esthetics and maintain function until placement of the definitive prosthesis. Polymethyl methacrylate (PMMA) has been widely used as an interim material but has mechanical limitations that can be improved with the addition of nanomaterials such as graphene fibers (PMMA-G). However, studies on the biocompatibility of this material are lacking. PURPOSE The purpose of this in vitro study was to determine the biocompatibility and cytotoxic effects of PMMA compared with PMMA-G in periodontal ligament stem cells (PDLSCs) by measuring the viability and cell apoptosis of those cells subjected to different concentrations of both compounds by elution, as well as the surface characterization of these materials. MATERIAL AND METHODS Sterile Ø20×15-mm specimens of PMMA and PMMA-G were covered with Dulbecco modified Eagle medium for 24 hours to be the subsequent eluent. PDLSCs were seeded in 6 plates of 96 wells at dilutions 1/1, 1/2, 1/4, and 1/8 for each material. Three plates for the cell viability assay with MTT and 3 plates for the cell apoptosis assay with Hoechst 33342 staining were used in turn to subdivide the measurements at 24, 48, and 72 hours. The Kruskal-Wallis test was used to compare the data obtained in the different dilutions at different times and the Mann-Whitney test to compare both materials. Topography and wetting were analyzed for surface characterization. The Student t test of paired measurements was used to compare the different surfaces for each parameter (α=.05 for all tests). RESULTS In both the cell viability assay (MTT) and the cell apoptosis assay, the test did not identify statistically significant differences in PMMA and PMMA-G with respect to the control group in the different dilutions at different times (P>.05). When comparing both materials, no statistically significant differences (P=.268) were found in either trial. PMMA-G had lower roughness and kurtosis and higher wetting than PMMA. CONCLUSIONS Both PMMA and PMMA-G were found to be biocompatible materials with no significant differences between them after cell viability and apoptosis testing. PMMA-G had higher wettability and lower roughness than PMMA.
Collapse
Affiliation(s)
- Ildefonso Serrano-Belmonte
- Assistant Professor, School of Dentistry, Faculty of Medicine, University Dental Clinic, Morales Meseguer General University Hospital, University of Murcia, Murcia, Spain.
| | - Francisco Javier Cascales-Pérez
- Graduate student, School of Dentistry, Faculty of Medicine, University Dental Clinic, Morales Meseguer General University Hospital, University of Murcia, Murcia, Spain
| | - Virginia Pérez-Fernández
- Professor, Institute of Biomedical Research (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Ascensión Martínez-Cánovas
- Assistant Professor, School of Dentistry, Faculty of Medicine, University Dental Clinic, Morales Meseguer General University Hospital, University of Murcia, Murcia, Spain
| | | | | |
Collapse
|
19
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
20
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, Stegarescu A, Tripon S, Soran ML, Bâldea I. Natrium Alginate and Graphene Nanoplatelets-Based Efficient Material for Resveratrol Delivery. Gels 2024; 11:15. [PMID: 39851987 PMCID: PMC11765397 DOI: 10.3390/gels11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
In this study, alginate-based composite beads were developed for the delivery of resveratrol, a compound with therapeutic potential. Two formulations were prepared: one with sodium alginate and resveratrol (AR) and another incorporating graphene nanoplatelets (AGR) to improve drug release control. The beads were formed by exploiting alginate's ability to gel via ionic cross-linking. For the AGR formulation, sodium alginate was dissolved in water, and graphene was dispersed in isopropyl alcohol to achieve smaller flakes. Resveratrol was dissolved in an ethanol/water mixture and added to the graphene dispersion; the resulting solution was mixed with the alginate one. For the AR formulation, the resveratrol solution was mixed directly with the alginate solution. Both formulations were introduced into a calcium chloride solution to form the beads. The release of resveratrol was studied in phosphate-buffered saline at different pH values. Results showed that the presence of graphene in the AGR sample increased drug release, particularly at pH 6.8, indicating a pH-driven release mechanism. Kinetic analysis revealed that the Higuchi model best describes the release mechanism. Finally, cytotoxicity tests showed the biocompatibility of the system in normal human cells. These findings suggest that graphene-enhanced alginate matrices have significant potential for controlled drug delivery applications.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
- R.A.I.T. 88 S.R.L, Via Pieve Torina 64/66, 00156 Rome, Italy;
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Stefano Bellucci
- R.A.I.T. 88 S.R.L, Via Pieve Torina 64/66, 00156 Rome, Italy;
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Septimiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
- Electron Microscopy Center, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
21
|
Li L, Shanmugasundaram A, Kim J, Oyunbaatar NE, Kanade PP, Cha SE, Lim D, Lee CH, Kim YB, Lee BK, Kim ES, Lee DW. Graphene SU-8 Platform for Enhanced Cardiomyocyte Maturation and Intercellular Communication in Cardiac Drug Screening. ACS NANO 2024; 18:33293-33309. [PMID: 39591586 DOI: 10.1021/acsnano.4c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cell culture substrates designed for myocardial applications are pivotal in promoting the maturation and functional integration of cardiomyocytes. However, traditional in vitro models often inadequately mimic the diverse biochemical signals and electrophysiological properties of mature cardiomyocytes. Herein, we propose the application of monolayer graphene, transferred onto SU-8 cantilevers integrated with a microelectrode array, to evaluate its influence on the structural, functional, and electro-mechano-physiological properties of cardiomyocytes. The monolayer graphene, prepared using chemical vapor deposition, is adeptly transferred to the target substrates via thermal release tape. The electrical conductivity of these graphene-enhanced SU-8 substrates is about 1600 S/cm, markedly surpassing that of previously reported cell culture substrates. Immunofluorescence staining and Western blot analyses reveal that the electrically conductive graphene significantly enhances cardiomyocyte maturation and cardiac marker expression compared to bare SU-8 substrates. Cardiomyocytes cultured on graphene-transferred substrates exhibit conduction velocity approximately 3.4 times greater than that of the control group. Such improvements in cardiac marker expression, mechano-electrophysiological performance lead to better responsiveness to cardiovascular drugs, such as Verapamil and Isoproterenol. While the graphene monolayer does not fully replicate the complex environment found in native cardiac tissue, its use on SU-8 substrates offers a feasible approach for accelerating cardiomyocyte maturation and facilitating drug screening applications.
Collapse
Affiliation(s)
- Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Arunkumar Shanmugasundaram
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jongyun Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Pooja P Kanade
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Northern Ireland, Belfast BT7 1NN, U.K
| | - Seong-Eung Cha
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daeyun Lim
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Young-Baek Kim
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Bong-Kee Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
22
|
Zhang Y, Zhu Y, Deng T, Du Y. Exploring and Anticipating the Applications of Organic Room-Temperature Phosphorescent Materials in Biomedicine and Dentistry. Int J Nanomedicine 2024; 19:13201-13216. [PMID: 39670197 PMCID: PMC11636246 DOI: 10.2147/ijn.s492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
As popular materials, organic room-temperature phosphorescent (RTP) materials have been studied and developed in many fields. RTP materials have the characteristics of a high signal-to-noise ratio (SNR) and high reactive oxygen species (ROS) quantum yield, which can achieve clear bioimaging and efficient ability of anti-tumor and antibacterial, and have received extensive attention from researchers for imaging, tumor therapy, and antibacterial treatment. Moreover, owing to their flexible molecular structures and various synthesis systems and methods, it may be possible to design and synthesize materials according to individual physiologic environments of patients in medical applications, making bioimaging more accurate and greatly improving tumor and bacterial killing rates. So they have great development potential in the medical field. On the basis of introducing the mechanism of RTP materials that emit phosphorescence and generate ROS, this review summarizes the medical applications of RTP materials from three aspects-bioimaging, tumor treatment and antibacterial treatment-to provide a basis for their application in the field of stomatology.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yeyuhan Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
23
|
Dulal M, Afroj S, Islam MR, Zhang M, Yang Y, Hu H, Novoselov KS, Karim N. Closed-Loop Recycling of Wearable Electronic Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407207. [PMID: 39359036 PMCID: PMC11636061 DOI: 10.1002/smll.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Wearable electronic textiles (e-textiles) are transforming personalized healthcare through innovative applications. However, integrating electronics into textiles for e-textile manufacturing exacerbates the rapidly growing issues of electronic waste (e-waste) and textile recycling due to the complicated recycling and disposal processes needed for mixed materials, including textile fibers, electronic materials, and components. Here, first closed-loop recycling for wearable e-textiles is reported by incorporating the thermal-pyrolysis of graphene-based e-textiles to convert them into graphene-like electrically conductive recycled powders. A scalable pad-dry coating technique is then used to reproduce graphene-based wearable e-textiles and demonstrate their potential healthcare applications as wearable electrodes for capturing electrocardiogram (ECG) signals and temperature sensors. Additionally, recycled graphene-based textile supercapacitor highlights their potential as sustainable energy storage devices, maintaining notable durability and retaining ≈94% capacitance after 1000 cycles with an areal capacitance of 4.92 mF cm⁻2. Such sustainable closed-loop recycling of e-textiles showcases the potential for their repurposing into multifunctional applications, promoting a circular approach that potentially prevents negative environmental impact and reduces landfill disposal.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Department of Textile Engineering ManagementBangladesh University of Textiles (BUTEX)Tejgaon Industrial AreaDhaka1208Bangladesh
| | - Shaila Afroj
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Faculty of Environment, Science and EconomyDepartment of EngineeringUniversity of ExeterExeterEX4 4QFUK
| | - Md Rashedul Islam
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Department of Wet Process EngineeringBangladesh University of Textiles (BUTEX)Tejgaon Industrial AreaDhaka1208Bangladesh
| | - Minglonghai Zhang
- School of Fashion and Textilesthe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Yadie Yang
- School of Fashion and Textilesthe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Hong Hu
- School of Fashion and Textilesthe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Nazmul Karim
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
- Department of Fashion and TextilesUniversity of SouthamptonSouthamptonSO23 8DLUK
| |
Collapse
|
24
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Strojny-Cieślak B, Jaworski S, Wierzbicki M, Pruchniewski M, Sosnowska-Ławnicka M, Szczepaniak J, Lange A, Koczoń P, Zielińska-Górska M, Chwalibóg ES. The cytocompatibility of graphene oxide as a platform to enhance the effectiveness and safety of silver nanoparticles through in vitro studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67317-67338. [PMID: 37824053 PMCID: PMC11685253 DOI: 10.1007/s11356-023-30151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The increasing emergence of antibiotic-resistant bacteria and the need to reduce the use of antibiotics call for the development of safe alternatives, such as silver nanoparticles. However, their potential cytotoxic effect needs to be addressed. Graphene oxide provides a large platform that can increase the effectiveness and safety of silver nanoparticles. Graphene oxide and silver nanoparticles complex applied as a part of an innovative material might have direct contact with human tissues, such as skin, or might be inhaled from aerosol or exfoliated pieces of the complex. Thereby, the safety of the prepared complex has to be evaluated carefully, employing a range of methods. We demonstrated the high cytocompatibility of graphene oxide and the graphene oxide-silver nanoparticles complex toward human cell lines, fetal foreskin fibroblasts (HFFF2), and lung epithelial cells (A549). The supporting platform of graphene oxide also neutralized the slight toxicity of bare silver nanoparticles. Finally, in studies on Staphylococcus aureus and Pseudomonas aeruginosa, the number of bacteria reduction was observed after incubation with silver nanoparticles and the graphene oxide-silver nanoparticles complex. Our findings confirm the possibility of employing a graphene oxide-silver nanoparticles complex as a safe agent with reduced silver nanoparticles' cytotoxicity and antibacterial properties.
Collapse
Affiliation(s)
- Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska-Ławnicka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marlena Zielińska-Górska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz Chwalibóg
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
27
|
Santos-Silva T, Viana IS, Queiroz ABPS, de Oliveira FS, Horvath-Pereira BDO, da Silva-Júnior LN, Araujo MS, Canola PA, Dias LGGG, Soares MM, Miglino MA. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. J Funct Biomater 2024; 15:311. [PMID: 39452609 PMCID: PMC11508647 DOI: 10.3390/jfb15100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.
Collapse
Affiliation(s)
- Thamires Santos-Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Inácio Silva Viana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Andrea Barros Piazzon S. Queiroz
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (A.B.P.S.Q.); (F.S.d.O.)
| | - Fabrício Singaretti de Oliveira
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (A.B.P.S.Q.); (F.S.d.O.)
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Paulo Alescio Canola
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Luís Gustavo Gosuen G. Dias
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Marcelo Melo Soares
- Institute of Orofacial Osteogenesis Rehabilitation S/S Ltda., Vila Olímpia 04532-060, SP, Brazil;
| | - Maria Angelica Miglino
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil
| |
Collapse
|
28
|
Sheng M, Wang S, Zhu H, Liu Z, Zhou G. Computational applications for the discovery of novel antiperovskites and chalcogenide perovskites: a review. Front Chem 2024; 12:1468434. [PMID: 39464385 PMCID: PMC11502337 DOI: 10.3389/fchem.2024.1468434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Novel perovskites pertain to newly discovered or less studied variants of the conventional perovskite structure, characterized by distinctive properties and potential for diverse applications such as ferroelectric, optoelectronic, and thermoelectric uses. In recent years, advancements in computational methods have markedly expedited the discovery and design of innovative perovskite materials, leading to numerous pertinent reports. However, there are few reviews that thoroughly elaborate the role of computational methods in studying novel perovskites, particularly for state-of-the-art perovskite categories. This review delves into the computational discovery of novel perovskite materials, with a particular focus on antiperovskites and chalcogenide perovskites. We begin with a discussion on the computational methods applied to evaluate the stability and electronic structure of materials. Next, we highlight how these methods expedite the discovery process, demonstrating how rational simulations contribute to researching novel perovskites with improved performance. Finally, we thoroughly discuss the remaining challenges and future outlooks in this research domain to encourage further investigation. We believe that this review will be highly beneficial both for newcomers to the field and for experienced researchers in computational science who are shifting their focus to novel perovskites.
Collapse
Affiliation(s)
- Ming Sheng
- College of Engineering, Shandong Xiehe University, Jinan, China
| | - Suqin Wang
- College of Engineering, Shandong Xiehe University, Jinan, China
| | - Hui Zhu
- College of Engineering, Shandong Xiehe University, Jinan, China
| | - Zhuang Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Guangtao Zhou
- College of Engineering, Shandong Xiehe University, Jinan, China
| |
Collapse
|
29
|
Hassen A, Moawed EA, Bahy R, El Basaty AB, El-Sayed S, Ali AI, Tayel A. Synergistic effects of thermally reduced graphene oxide/zinc oxide composite material on microbial infection for wound healing applications. Sci Rep 2024; 14:22942. [PMID: 39358395 PMCID: PMC11447095 DOI: 10.1038/s41598-024-73007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Infections originating from pathogenic microorganisms can significantly impede the natural wound-healing process. To address this obstacle, innovative bio-active nanomaterials have been developed to enhance antibacterial capabilities. This study focuses on the preparation of nanocomposites from thermally reduced graphene oxide and zinc oxide (TRGO/ZnO). The hydrothermal method was employed to synthesize these nanocomposites, and their physicochemical properties were comprehensively characterized using X-ray diffraction analysis (XRD), High-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FT-IR), Raman spectroscopy, UV-vis, and field-emission scanning electron microscopy (FE-SEM) techniques. Subsequently, the potential of TRGO/ZnO nanocomposites as bio-active materials against wound infection-causing bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, was evaluated. Furthermore, the investigated samples show disrupted bacterial biofilm formation. A reactive oxygen species (ROS) assay was conducted to investigate the mechanism of nanocomposite inhibition against bacteria and for further in-vivo determination of antimicrobial activity. The MTT assay was performed to ensure the safety and biocompatibility of nanocomposite. The results suggest that TRGO/ZnO nanocomposites have the potential to serve as effective bio-active nanomaterials for combating pathogenic microorganisms present in wounds.
Collapse
Affiliation(s)
- A Hassen
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt.
| | - E A Moawed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| | - Rehab Bahy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, El Fayoum, 63514, Egypt
| | - A B El Basaty
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Nanotechnoloy Center, Helwan University, Helwan Al Sharqia, Cairo, 11722, Egypt
| | - S El-Sayed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
| | - Ahmed I Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Department of Applied Physics, Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Suwon, 446-701, Republic of Korea
| | - A Tayel
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| |
Collapse
|
30
|
Mokhtari F, Nam HY, Ruhparwar A, Raad R, Razal JM, Varley RJ, Wang CH, Foroughi J. Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices. J Mater Chem B 2024; 12:9727-9739. [PMID: 39224031 DOI: 10.1039/d4tb01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-performance biocompatible composite materials are gaining attention for their potential in various fields such as neural tissue scaffolds, bio-implantable devices, energy harvesting, and biomechanical sensors. However, these devices currently face limitations in miniaturization, finite battery lifetimes, fabrication complexity, and rigidity. Hence, there is an urgent need for smart and self-powering soft devices that are easily deployable under physiological conditions. Herein, we present a straightforward and efficient fabrication technique for creating flexible/stretchable fiber-based piezoelectric structures using a hybrid nanocomposite of polyvinylidene fluoride (PVDF), reduced graphene oxide (rGO), and barium-titanium oxide (BT). These nanocomposite fibers are capable of converting biomechanical stimuli into electrical signals across various structural designs (knit, braid, woven, and coil). It was found that a stretchable configuration with higher output voltage (4 V) and a power density (87 μW cm-3) was obtained using nanocomposite coiled fibers or knitted fibers, which are ideal candidates for real-time monitoring of physiological signals. These structures are being proposed for practical transition to the development of the next generation of fiber-based biomedical devices. The cytotoxicity and cytocompatibility of nanocomposite fibers were tested on human mesenchymal stromal cells. The obtained results suggest that the developed fibers can be utilized for smart scaffolds and bio-implantable devices.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Hui Yin Nam
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Arjang Ruhparwar
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
| | - Raad Raad
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Javad Foroughi
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
31
|
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
32
|
Tene T, Bellucci S, Pachacama J, Cuenca-Lozano MF, Tubon-Usca G, Guevara M, La Pietra M, Cruz Salazar Y, Scarcello A, Arias Polanco M, Gahramanli LR, Vacacela Gomez C, Caputi LS. A Facile and Green Approach for the Preparation of Silver Nanoparticles on Graphene Oxide with Favorable Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1455. [PMID: 39269117 PMCID: PMC11397097 DOI: 10.3390/nano14171455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Herein, we introduce a simple precipitation method for preparing graphene oxide-silver nanoparticle (GO/AgNP) composites, utilizing Calendula officinalis (C. officinalis) seed extract as both a reducing and stabilizing agent. Our research combines the sustainable preparation of graphene oxide (GO) with the green synthesis of silver nanoparticles (AgNPs), aiming to explore the potential of the obtained composite as a novel antibacterial material. To establish a benchmark, the synthesis was also performed using sodium citrate, a conventional reducing agent. The resultant GO/AgNP composites were characterized through several analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, X-ray diffraction (XRD), infrared (IR) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy, confirming the successful functionalization of GO with AgNPs. The antibacterial effectiveness of the composites was systematically assessed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with nanoparticle concentrations spanning from 0 to 250 µg/mL, utilizing mostly disk diffusion and colony-forming unit (CFU) count assays. The AgNPs were characterized by a size range of 15-50 nm. Notably, the GO/AgNP composite prepared using C. officinalis seed extract demonstrated superior antibacterial activity at all tested concentrations, outperforming both pure GO and the GO/AgNP composite prepared with sodium citrate. The most pronounced antibacterial effect was observed at a concentration of 32.0 µg/mL. Therefore, this innovative synthesis approach may offer a valuable contribution to the development of new therapeutic agents to combat bacterial infections, suggesting further exploration into antibacterial coatings or potential drug development.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| | - Joseth Pachacama
- Surface Nanoscience Group, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - María F Cuenca-Lozano
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Gabriela Tubon-Usca
- Grupo de Investigación en Materiales Avanzados (GIMA), Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
| | - Marco Guevara
- Faculty of Mechanical Engineering, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
| | - Matteo La Pietra
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Yolenny Cruz Salazar
- Surface Nanoscience Group, Department of Physics, University of Calabria, 87036 Rende, Italy
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
| | - Andrea Scarcello
- Surface Nanoscience Group, Department of Physics, University of Calabria, 87036 Rende, Italy
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
| | - Melvin Arias Polanco
- Laboratorio de Nanotecnología, Area de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo, Santo Domingo 10602, Dominican Republic
| | - Lala Rasim Gahramanli
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
- Nanoresearch Laboratory, Excellent Center, Baku State University, Baku AZ 1148, Azerbaijan
| | - Cristian Vacacela Gomez
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
| | - Lorenzo S Caputi
- Surface Nanoscience Group, Department of Physics, University of Calabria, 87036 Rende, Italy
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
33
|
Li Z, Qi J, Fu S, Luan J, Wang Q. Effects of nanographene oxide on adipose-derived stem cell cryopreservation. Cell Tissue Bank 2024; 25:805-830. [PMID: 38844606 DOI: 10.1007/s10561-024-10140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 09/06/2024]
Abstract
Cryoinjury mitigation is key in cell cryopreservation. Here, we aimed to assess the effectiveness of nanographene oxide (nano-GO) for improving cryoprotectant agents (CPAs) in human adipose stem cell (hADSC) cryopreservation. For in vitro experiments, nano-GO (5 μg/mL) was added to the CPAs in the control, and passage (P) 2 hADSCs were collected and cryopreserved for around two weeks. We compared cytotoxicity, cell viability, immunophenotypes, proliferation, cell apoptosis, and tri-lineage differentiation. In vivo, studies used lipoaspirate to create non-enriched or hADSC-enriched fat tissues by combining it with PBS or hADSCs cryopreserved with the aforementioned CPAs. Each nude mouse received a 0.3 mL subcutaneous injection of the graft. At 12 weeks, the grafts were harvested. Histology, adipocyte-associated genes and protein, vascular density and angiogenic cytokines, macrophage infiltration, and inflammatory cytokines were analyzed. Nano-GO CPA contributed to increased cell viability, improved cell recovery, and lowered levels of early apoptosis. Nano GO at concentrations of 0.01-100 μg/mL caused no cytotoxicity to hADSCs. The absence of nano GOs in the intracellular compartments of the cells was confirmed by transmission electron microscopy. The fat grafts from the CPA-GO group showed more viable adipocytes and significantly increased angiogenesis compared to the PBS and CPA-C groups. Adding hADSCs from the CPA-GO group to the graft reduced macrophage infiltration and MCP-1 expression. Nano-GO plays an anti-apoptotic role in the cryopreservation of hADSCs, which could improve the survival of transplanted fat tissues, possibly via improved angiogenesis and lower inflammatory response in the transplanted adipose tissue.
Collapse
Affiliation(s)
- Zifei Li
- Facial and Cervical Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33 Badachu Road, Shijingshan, Beijing, 100144, People's Republic of China
| | - Jun Qi
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China.
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Badachu Road, Shijingshan Dist., Beijing, 100144, People's Republic of China.
| |
Collapse
|
34
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
35
|
Wu Q, Yuan Z, Fang Y, Wu L, Bo Z, Peng C, Wu B. Natural product of angelica essential oil developed as a stable Pickering emulsion for joint interface lubrication. Colloids Surf B Biointerfaces 2024; 240:113993. [PMID: 38810464 DOI: 10.1016/j.colsurfb.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Development of high-performance joint injection lubricants has become the focus in the field of osteoarthritis treatment. Herein, natural product of angelica essential oil combined with the graphene oxide were prepared to the stable Pickering emulsion as a biological lubricant. The tribological properties of the Pickering emulsion under different friction conditions were studied. The lubricating mechanism was revealed and the biological activities were evaluated. Results showed that the prepared Pickering emulsion displayed superior lubrication property at the Ti6Al4V biological material interface. The maximum friction reduction and anti-wear abilities of the Pickering emulsion were improved by 36% and 50% compared to water, respectively. This was primarily due to the action of the double-layer lubrication films composed of the graphene oxide and angelica essential oil molecules. It was worth noting that the friction reduction effect of the Pickering emulsion at the natural cartilage interface was higher about 19% than that of HA used in clinic for OA commonly. In addition, the Pickering emulsion also displayed antioxidant activity and cell biocompatibility, showing a good clinical application prospect in the future.
Collapse
Affiliation(s)
- Qian Wu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ziji Yuan
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Fang
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liangbin Wu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zihan Bo
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengjun Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China.
| | - Bo Wu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
36
|
Pereira R, Lins RBE, Lima EFDS, Mainardi MDCAJ, Stamboroski S, Rischka K, Aguiar FHB. Properties of a Dental Adhesive Containing Graphene and DOPA-Modified Graphene. Polymers (Basel) 2024; 16:2081. [PMID: 39065398 PMCID: PMC11280573 DOI: 10.3390/polym16142081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Graphene is a promising biomaterial. However, its dispersion in aqueous medium is challenging. This study aimed to modify graphene nanoparticles with L-dopa to improve the properties of experimental dental adhesives. Adhesives were formulated with 0% (control), 0.25%, 0.5%, and 0.75% of graphene, modified or not. Particle modification and dispersion were microscopically assessed. Degree of conversion was tested by Fourier-transform infrared spectroscopy. Flexural strength and modulus of elasticity were evaluated by a 3-point flexural test. Bond strength was tested by shear. To test water sorption/solubility, samples were weighed during hydration and dehydration. Antibacterial activity was tested by Streptococcus mutans colony-forming units quantification. Cytotoxicity on fibroblasts was evaluated through a dentin barrier test. The modification of graphene improved the particle dispersion. Control presented the highest degree of conversion, flexural strength, and bond strength. In degree of conversion, 0.25% of groups were similar to control. In bond strength, groups of graphene modified by L-dopa were similar to Control. The modulus of elasticity was similar between groups. Cytotoxicity and water sorption/solubility decreased as particles increased. Compared to graphene, less graphene modified by L-dopa was needed to promote antibacterial activity. By modifying graphene with L-dopa, the properties of graphene and, therefore, the adhesives incorporated by it were enhanced.
Collapse
Affiliation(s)
- Renata Pereira
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | | | - Elton Faria de Souza Lima
- Federal Institute of Education, Science and Technology of Goiás (IFG—Campus Uruaçu), Rua Formosa, Qd 28 e 29—Loteamento Santana, Uruaçu 76400-000, GO, Brazil;
| | - Maria do Carmo Aguiar Jordão Mainardi
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | - Stephani Stamboroski
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | - Klaus Rischka
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany;
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba 13414-903, SP, Brazil; (R.P.); (M.d.C.A.J.M.); (F.H.B.A.)
| |
Collapse
|
37
|
Xin L, Zhao H, Peng M, Zhu Y. Roles of Two-Dimensional Materials in Antibiofilm Applications: Recent Developments and Prospects. Pharmaceuticals (Basel) 2024; 17:950. [PMID: 39065800 PMCID: PMC11279904 DOI: 10.3390/ph17070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Biofilm-associated infections pose a significant challenge in healthcare, constituting 80% of bacterial infections and often leading to persistent, chronic conditions. Conventional antibiotics struggle with efficacy against these infections due to the high tolerance and resistance induced by bacterial biofilm barriers. Two-dimensional nanomaterials, such as those from the graphene family, boron nitride, molybdenum disulfide (MoS2), MXene, and black phosphorus, hold immense potential for combating biofilms. These nanomaterial-based antimicrobial strategies are novel tools that show promise in overcoming resistant bacteria and stubborn biofilms, with the ability to circumvent existing drug resistance mechanisms. This review comprehensively summarizes recent developments in two-dimensional nanomaterials, as both therapeutics and nanocarriers for precision antibiotic delivery, with a specific focus on nanoplatforms coupled with photothermal/photodynamic therapy in the elimination of bacteria and penetrating and/or ablating biofilm. This review offers important insight into recent advances and current limitations of current antibacterial nanotherapeutic approaches, together with a discussion on future developments in the field, for the overall benefit of public health.
Collapse
Affiliation(s)
- Lei Xin
- Department of Ultraasound, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Hongkun Zhao
- Outpatient Department, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Min Peng
- Department of Ultraasound, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
38
|
Singh R, Rawat H, Kumar A, Gandhi Y, Kumar V, Mishra SK, Narasimhaji CV. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon 2024; 10:e33542. [PMID: 39040352 PMCID: PMC11261797 DOI: 10.1016/j.heliyon.2024.e33542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
In this discourse, we delve into the manifold applications of graphene-based nanomaterials (GBNs) in the realm of biomedicine. Graphene, characterized by its two-dimensional planar structure, superconductivity, mechanical robustness, chemical inertness, extensive surface area, and propitious biocompatibility, stands as an exemplary candidate for diverse biomedical utility. Graphene include various distinctive characteristics of its two-dimensional planar structure, enormous surface area, mechanical and chemical stability, high conductivity, and exceptional biocompatibility. We investigate graphene and its diverse derivatives, which include reduced graphene oxides (rGOs), graphene oxides (GOs), and graphene composites, with a focus on elucidating the unique attributes relevant to their biomedical utility. In this review article it highlighted the unique properties of graphene, synthesis methods of graphene and functionalization methods of graphene. In the quest for novel materials to advance regenerative medicine, researchers have increasingly turned their attention to graphene-based materials, which have emerged as a prominent innovation in recent years. Notably, it highlights their applications in the regeneration of various tissues, including nerves, skeletal muscle, bones, skin, cardiac tissue, cartilage, and adipose tissue, as well as their influence on induced pluripotent stem cells, marking significant breakthroughs in the field of regenerative medicine. Additionally, this review article explores future prospects in this evolving area of study.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Sujeet K. Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | | |
Collapse
|
39
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
40
|
Asadi M, Ghorbani SH, Mahdavian L, Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J Transl Med 2024; 22:611. [PMID: 38956651 PMCID: PMC11218089 DOI: 10.1186/s12967-024-05438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The application of graphene-based nanocomposites for therapeutic and diagnostic reasons has advanced considerably in recent years due to advancements in the synthesis and design of graphene-based nanocomposites, giving rise to a new field of nano-cancer diagnosis and treatment. Nano-graphene is being utilized more often in the field of cancer therapy, where it is employed in conjunction with diagnostics and treatment to address the complex clinical obstacles and problems associated with this life-threatening illness. When compared to other nanomaterials, graphene derivatives stand out due to their remarkable structural, mechanical, electrical, optical, and thermal capabilities. The high specific surface area of these materials makes them useful as carriers in controlled release systems that respond to external stimuli; these compounds include drugs and biomolecules like nucleic acid sequences (DNA and RNA). Furthermore, the presence of distinctive sheet-like nanostructures and the capacity for photothermal conversion have rendered graphene-based nanocomposites highly favorable for optical therapeutic applications, including photothermal treatment (PTT), photodynamic therapy (PDT), and theranostics. This review highlights the current state and benefits of using graphene-based nanocomposites in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on graphene-based nanocomposites applications in cancer treatment, including smart drug delivery systems, PTT, and PDT. Lastly, the biocompatibility of graphene-based nanocomposites is also discussed to provide a unique overview of the topic.
Collapse
Affiliation(s)
- Mahnaz Asadi
- Department of Chemistry, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | | | - Leila Mahdavian
- Department of Chemistry, Doroud Branch, Islamic Azad University, Doroud, Iran.
| | | |
Collapse
|
41
|
Krukiewicz K, Contessotto P, Nedjari S, Martino MM, Redenski I, Gabet Y, Speranza G, O'Brien T, Altankov G, Awaja F. Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models. BIOMATERIALS ADVANCES 2024; 161:213867. [PMID: 38669824 DOI: 10.1016/j.bioadv.2024.213867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the pro-osteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| | - Paolo Contessotto
- Department of Molecular Medicine, Università degli Studi di Padova, Padua, Italy.
| | - Salima Nedjari
- Molecular Dynamics at Cell-Biomaterial Interface, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| | - Idan Redenski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | | | - Timothy O'Brien
- Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| | - George Altankov
- ICREA & Institute for Bioengineering of Catalonia, Barcelona, Spain; Medical University Pleven, Bulgaria
| | - Firas Awaja
- Department of Medicine, University of Galway, Galway, Ireland; Engmat Ltd., Clybaun Road, Galway, Ireland.
| |
Collapse
|
42
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
43
|
Sahm BD, Ferreira I, Carvalho-Silva JM, Vilela Teixeira AB, Uchôa Teixeira JV, Lisboa-Filho PN, Alves OL, Cândido dos Reis A. Structure-properties correlation of acrylic resins modified with silver vanadate and graphene. Heliyon 2024; 10:e32029. [PMID: 38868038 PMCID: PMC11168394 DOI: 10.1016/j.heliyon.2024.e32029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
This study aimed to incorporate β-AgVO3 and rGO into self-curing (SC) and heat-curing (HC) acrylic resins and to evaluate their physicochemical, mechanical, and antimicrobial properties while correlating them with the characterized material structure. Acrylic resin samples were prepared at 0 % (control), 0.5 %, 1 %, and 3 % for both nanoparticles. The microstructural characterization was assessed by scanning electron microscopy (SEM) (n = 1) and energy dispersive X-ray spectroscopy (EDS) (n = 1). The physicochemical and mechanical tests included flexural strength (n = 10), Knoop hardness (n = 10), roughness (n = 10), wettability (n = 10), sorption (n = 10), solubility (n = 10), porosity (n = 10), and color evaluation (n = 10). The microbiological evaluation was performed by counting colony-forming units (CFU/mL) and cell viability (n = 8). The results showed that the β-AgVO3 samples showed lower counts of Candida albicans, Pseudomonas aeruginosa, and Streptococcus mutans due to their promising physicochemical properties. The mechanical properties were maintained with the addition of β-AgVO3. The rGO samples showed higher counts of microorganisms due to the increase in physicochemical properties. It can be concluded that the incorporation of β-AgVO3 into acrylic resins could be an alternative to improve the antimicrobial efficacy and performance of the material.
Collapse
Affiliation(s)
- Beatriz Danieletto Sahm
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Izabela Ferreira
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - João Marcos Carvalho-Silva
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Vilela Teixeira
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | - Oswaldo Luiz Alves
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andréa Cândido dos Reis
- Departament of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
44
|
Sim HJ, Marinkovic K, Xiao P, Lu H. Graphene Oxide Strengthens Gelatine through Non-Covalent Interactions with Its Amorphous Region. Molecules 2024; 29:2700. [PMID: 38893573 PMCID: PMC11173959 DOI: 10.3390/molecules29112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Graphene oxide (GO) has attracted huge attention in biomedical sciences due to its outstanding properties and potential applications. In this study, we synthesized GO using our recently developed 1-pyrenebutyric acid-assisted method and assessed how the GO as a filler influences the mechanical properties of GO-gelatine nanocomposite dry films as well as the cytotoxicity of HEK-293 cells grown on the GO-gelatine substrates. We show that the addition of GO (0-2%) improves the mechanical properties of gelatine in a concentration-dependent manner. The presence of 2 wt% GO increased the tensile strength, elasticity, ductility, and toughness of the gelatine films by about 3.1-, 2.5-, 2-, and 8-fold, respectively. Cell viability, apoptosis, and necrosis analyses showed no cytotoxicity from GO. Furthermore, we performed circular dichroism, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses to decipher the interactions between GO and gelatine. The results show, for the first time, that GO enhances the mechanical properties of gelatine by forming non-covalent intermolecular interactions with gelatine at its amorphous or disordered regions. We believe that our findings will provide new insight and help pave the way for potential and wide applications of GO in tissue engineering and regenerative biomedicine.
Collapse
Affiliation(s)
- Hak Jin Sim
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (H.J.S.); (K.M.)
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK;
| | - Katarina Marinkovic
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (H.J.S.); (K.M.)
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK;
| | - Ping Xiao
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK;
- Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (H.J.S.); (K.M.)
| |
Collapse
|
45
|
Nabitabar M, Shaterian M, Danafar H, Enhessari M. Multi-wall carbon Nanotube surface-based functional nanoparticles for stimuli-responsive dual pharmaceutical compound delivery. Sci Rep 2024; 14:12073. [PMID: 38802442 PMCID: PMC11649913 DOI: 10.1038/s41598-024-59745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Carbon nanotubes (CNTs) have the potential to serve as delivery systems for medicinal substances and gene treatments, particularly in cancer treatment. Co-delivery of curcumin (CUR) and Methotrexate (MTX) has shown promise in cancer treatment, as it uses fewer drugs and has fewer side effects. This study used MTX-conjugated albumin (BSA)-based nanoparticles (BSA-MTX) to enhance and assess the efficiency of CUR. In-vitro cytotoxicity tests, DLS, TEM, FTIR, UV/Vis, SEM, and DSC studies assessed the formulations' physical and chemical properties. The Proteinase K enzyme was used to severe amidic linkages between MTX and BSA. The findings demonstrated the efficacy of using ƒ-MWCNT-CUR-BSA-MTX as a vehicle for efficient co-delivery of CUR and MTX in cancer treatment. The MTT colorimetric method was used to evaluate the effect of chemical and medicinal compounds. Cell division was studied using the MTT method to investigate the effect of pure MWCNT, pure CUR, MTX-BSA, and ƒ-MWCNT-CUR-MTX-BSA. Studies on cell lines have shown that the combination of curcumin and MTX with CNT can increase and improve the effectiveness of both drugs against cancer. A combination of drugs curcumin and methotrexate simultaneously had a synergistic effect on MCF-7 cells, which indicated that these drugs could potentially be used as a strategy for both prevention and treatment of breast cancer. Also, ƒ-MWCNT-CUR-MTX-BSA was found to have a significant effect on cancer treatment with minimal toxicity compared to pure curcumin, pure MTX-BSA, MTX, and ƒ-MWCNT alone. Unique properties such as a high ratio of specific surface area to volume, high chemical stability, chemical adsorption ability, high capacity of drug and biomolecules of carbon nanotubes, as well as multiple drug loading at the same time The combination of ƒ-MWCNT-CUR-BSA MTX significantly impacts cancer therapy), are desirable as an alternative option for targeted drug delivery and high therapeutic efficiency.
Collapse
Affiliation(s)
- Masoumeh Nabitabar
- Chemistry Department, Faculty of Science, Zanjan University, Zanjan, Iran
| | - Maryam Shaterian
- Chemistry Department, Faculty of Science, Zanjan University, Zanjan, Iran.
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Enhessari
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie-Anorganische Chemie, Freie Universität Berlin, Fabeckstr, Germany
| |
Collapse
|
46
|
de la Parra S, Fernández-Pampín N, Garroni S, Poddighe M, de la Fuente-Vivas D, Barros R, Martel-Martín S, Aparicio S, Rumbo C, Tamayo-Ramos JA. Comparative toxicological analysis of two pristine carbon nanomaterials (graphene oxide and aminated graphene oxide) and their corresponding degraded forms using human in vitro models. Toxicology 2024; 504:153783. [PMID: 38518840 DOI: 10.1016/j.tox.2024.153783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Despite the wide application of graphene-based materials, the information of the toxicity associated to some specific derivatives such as aminated graphene oxide is scarce. Likewise, most of these studies analyse the pristine materials, while the available data regarding the harmful effects of degraded forms is very limited. In this work, the toxicity of graphene oxide (GO), aminated graphene oxide (GO-NH2), and their respective degraded forms (dGO and dGO-NH2) obtained after being submitted to high-intensity sonication was evaluated applying in vitro assays in different models of human exposure. Viability and ROS assays were performed on A549 and HT29 cells, while their skin irritation potential was tested on a reconstructed human epidermis model. The obtained results showed that GO-NH2 and dGO-NH2 substantially decrease cell viability in the lung and gastrointestinal models, being this reduction slightly higher in the cells exposed to the degraded forms. In contrast, this parameter was not affected by GO and dGO which, conversely, showed the ability to induce higher levels of ROS than the pristine and degraded aminated forms. Furthermore, none of the materials is skin irritant. Altogether, these results provide new insights about the potential harmful effects of the selected graphene-based nanomaterials in comparison with their degraded counterparts.
Collapse
Affiliation(s)
- Sandra de la Parra
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Natalia Fernández-Pampín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Sebastiano Garroni
- Department of Chemical, Physics, Mathematics and Natural Science, University of Sassari, Via Vienna 2, Sassari 07100, Italy
| | - Matteo Poddighe
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemical, Physics, Mathematics and Natural Science, CR-INSTM, University of Sassari, Via Vienna, 2, Sassari 07100, Italy
| | - Dalia de la Fuente-Vivas
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Santiago Aparicio
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain; Department of Chemistry, Universidad de Burgos, Burgos 09001, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.
| |
Collapse
|
47
|
Cao H, Zhang X, Wang H, Ding B, Ge S, Zhao J. Effects of Graphene-Based Nanomaterials on Microorganisms and Soil Microbial Communities. Microorganisms 2024; 12:814. [PMID: 38674758 PMCID: PMC11051958 DOI: 10.3390/microorganisms12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The past decades have witnessed intensive research on the biological effects of graphene-based nanomaterials (GBNs) and the application of GBNs in different fields. The published literature shows that GBNs exhibit inhibitory effects on almost all microorganisms under pure culture conditions, and that this inhibitory effect is influenced by the microbial species, the GBN's physicochemical properties, the GBN's concentration, treatment time, and experimental surroundings. In addition, microorganisms exist in the soil in the form of microbial communities. Considering the complex interactions between different soil components, different microbial communities, and GBNs in the soil environment, the effects of GBNs on soil microbial communities are undoubtedly intertwined. Since bacteria and fungi are major players in terrestrial biogeochemistry, this review focuses on the antibacterial and antifungal performance of GBNs, their antimicrobial mechanisms and influencing factors, as well as the impact of this effect on soil microbial communities. This review will provide a better understanding of the effects of GBNs on microorganisms at both the individual and population scales, thus providing an ecologically safe reference for the release of GBNs to different soil environments.
Collapse
Affiliation(s)
- Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Xiao Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Sai Ge
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China;
| | - Jianguo Zhao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| |
Collapse
|
48
|
Makaras T, Jakubowska-Lehrmann M, Jurgelėnė Ž, Šemčuk S. Exploring the Effects of Graphene-Based Nanoparticles on Early Salmonids Cardiorespiratory Responses, Swimming and Nesting Behavior. J Xenobiot 2024; 14:484-496. [PMID: 38651379 PMCID: PMC11036200 DOI: 10.3390/jox14020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Graphene-based nanomaterials are exceptionally attractive for a wide range of applications, raising the likelihood of the release of graphene-containing nanoparticles into aquatic environments. The growing use of these carbon nanomaterials in different industries highlights the crucial need to investigate their environmental impact and evaluate potential risks to living organisms. The current investigation evaluated the nanotoxicity of graphene (nanoflakes) and graphene oxide (GO) nanoparticles on the cardiorespiratory responses (heart rate, gill ventilation frequency), as well as the swimming and nesting behavioral parameters of early stage larvae and juvenile salmonids. Both short-term (96 h) and long-term (23 days) exposure experiments were conducted using two common species: brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The findings demonstrated notable alterations in fish nesting behavior, swimming performance, and cardiorespiratory functions, indicating the potential toxicity of nanoparticles. This impact was observed at both physiological and whole-organismal levels in salmonids at early stages. Future investigations should explore different types of nanocarbons and their potential enduring effects on fish population structure, considering not only individual survival but also broader aspects of development, including feeding, reproductive, and other social dynamics.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania;
| | | | - Živilė Jurgelėnė
- Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania;
| | - Sergej Šemčuk
- Center for Physical Sciences and Technology, Saulėtekio Av. 3, 02300 Vilnius, Lithuania;
| |
Collapse
|
49
|
Sengupta J, Hussain CM. Point-of-care devices engaging green graphene: an eco-conscious and sustainable paradigm. NANOSCALE 2024; 16:6900-6914. [PMID: 38511341 DOI: 10.1039/d3nr06367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The healthcare landscape has experienced a profound and irreversible transformation, primarily driven by the emergence of nanomaterial-assisted point-of-care (POC) devices. The inclusion of nanomaterials in POC devices has revolutionized healthcare by enabling rapid, on-site diagnostics with minimal infrastructure requirements. Among the materials poised to lead this technological revolution, green graphene emerges as a compelling contender. It possesses a unique combination of exceptional material properties and environmentally conscious attributes. These attributes include its substantial surface area, unparalleled electrical conductivity, and inherent biocompatibility. This article embarks on an exploration of POC devices incorporating green graphene. It meticulously dissects the intricacies of their design, performance characteristics, and diverse applications. Throughout the exposition, the transformative impact of green graphene on the advancement of POC diagnostics takes centre stage. It underscores the material's potential to drive sustainable and effective healthcare solutions, marking a significant milestone in the evolution of healthcare technology.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata-700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
| |
Collapse
|
50
|
Ramadan MA, Sharaky M, Gad S, Ahmed HA, Jaremko M, Emwas AH, Faid AH. Anticancer effect and laser photostability of ternary graphene oxide/chitosan/silver nanocomposites on various cancer cell lines. Nanomedicine (Lond) 2024; 19:709-722. [PMID: 38323335 DOI: 10.2217/nnm-2023-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Aims: The development of nanocomposites (NCs) of antitumor activity provides a new paradigm for fighting cancer. Here, a novel NC of green synthetic silver nanoparticles (AgNPs), graphene oxide (GO) and chitosan (Cs) NPs was developed. Materials & methods: The prepared GO/Cs/Ag NCs were analyzed using various techniques. Cytotoxicity of the NCs was evaluated against different cancer cell lines by Sulforhodamine B (SRB) assay. Results: GO/Cs/Ag NCs are novel and highly stable. UV-Vis showed two peaks at 227 and 469 nm, indicating the decoration of AgNPs on the surface of GO/Cs NPs. All tested cell lines were affected by GO/Cs NPs and GO/Cs/Ag NCs. Conclusion: The results indicate that GO/Cs/Ag NCs were present on tested cell lines and are a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Science (NILES) Cairo University (CU), Giza, Egypt
| | - Marwa Sharaky
- Pharmacology Unit- Cancer Biology Department - National Cancer Institute - Cairo University, Cairo, Egypt
- City of Scientific Research & Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sara Gad
- City of Scientific Research & Technological Applications (SRTA-City), Alexandria, Egypt
| | - Hoda A Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Mariusz Jaremko
- Biological & Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science & Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science & Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amna H Faid
- Department of Laser Science and Interaction, National Institute of Laser Enhanced Science (NILES) Cairo University, Giza, Egypt
| |
Collapse
|