1
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Yu C, Wu G. Deciphering the multifaceted role of EXO1 in female-related cancers: implications for prognosis and therapeutic responsiveness. Front Immunol 2025; 16:1591505. [PMID: 40433389 PMCID: PMC12107352 DOI: 10.3389/fimmu.2025.1591505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background Aberrant function or overactivation of exonuclease 1 (EXO1) may be associated with cancer tumor development, drug resistance, and response to immunotherapy in female-related cancers. Methods By analyzing RNA-sequencing data from The Cancer Genome Atlas database, combined with validation through quantitative polymerase chain reaction experiments, we explored the expression levels of EXO1 in breast cancer (BRCA) cell lines and assessed its multidimensional roles in various female-related cancers. Results Our experiments revealed elevated expression of EXO1 in BRCA cell lines, consistent with the RNA-sequencing data. The high expression of EXO1 is associated with poor prognosis in various female-related cancers, especially in BRCA and UCEC. It significantly correlates with clinical and pathological characteristics. In specific cancer subtypes like the basal-like subtype of BRCA, high EXO1 expression is associated with a better prognosis. Genetic mutation analysis indicates a higher frequency of EXO1 gene mutations in uterine sarcoma and BRCA. DNA methylation levels may play a role in the regulation of EXO1 gene expression in some cancers. EXO1 expression is correlated with various factors within the tumor immune microenvironment and may be associated with the sensitivity to anticancer drugs. Conclusion EXO1 exhibits multidimensional roles in female-related cancers as a prognostic biomarker and potentially influences tumor immune therapy responses and drug sensitivities. Further studies are needed to fully understand the complex mechanisms underlying these associations and to explore potential therapeutic strategies targeting EXO1.
Collapse
Affiliation(s)
| | - Guoying Wu
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
3
|
Pathare ADS, Džigurski J, Pujol-Gualdo N, Rukins V, Peters M, Estonian Biobank Research Team
, Mägi R, Salumets A, Saare M, Laisk T. A large-scale genome-wide association study on female genital tract polyps highlights role of DNA repair, cell proliferation, and cell growth. Hum Reprod 2025; 40:750-763. [PMID: 39986329 DOI: 10.1093/humrep/deaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/05/2025] [Indexed: 02/24/2025] Open
Abstract
STUDY QUESTION Can a large-scale genome-wide association study (GWAS) meta-analysis identify genomic risk loci and likely involved genes for female genital tract (FGT) polyps, provide insights into the biological mechanism underlying their development, and inform of potential overlap with other traits, including endometrial cancer? SUMMARY ANSWER GWAS meta-analysis of FGT polyps highlights potentially shared mechanisms between polyp development and cancerous processes. WHAT IS KNOWN ALREADY Small-scale candidate gene studies have focused on biological processes such as oestrogen stimulation and inflammation to clarify the biology behind FGT polyps. However, the exact mechanism for the development of polyps is still elusive. At the same time, a genome-wide approach, which has become the gold standard in complex disease genetics, has never been used to uncover the genetics of the FGT polyps. STUDY DESIGN, SIZE, DURATION We performed a GWAS meta-analysis including a total of 36 984 women with FGT polyps (International Classification of Diseases (ICD-10) diagnosis code N84) and 420 993 female controls (without N84 code) of European ancestry from the FinnGen study (11 092 cases and 94 394 controls), Estonian Biobank (EstBB, 14 008 cases and 112 799 controls), and the Pan-UKBB study (11 884 cases and 213 800 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS GWAS meta-analysis and functional annotation of GWAS signals were performed to identify genetic risk loci and prioritize genes in associated loci. To explore associations with other traits, we performed a look-up of associated variants across multiple traits and health conditions, genetic correlation analysis, and phenome-wide association study (PheWAS) with ICD-10 diagnosis codes. MAIN RESULTS AND THE ROLE OF CHANCE Our GWAS meta-analysis revealed 16 significant (P < 5 × 10-8) genomic risk loci. Based on exonic variants in GWAS signals, we prioritized EEFSEC, ODF3, PRIM1, PLCE1, LRRC34/MYNN, EXO1, and CHEK2 which are involved in DNA repair, cell proliferation, and cell growth. Several of the identified genomic loci have previously been linked to endometrial cancer and/or uterine fibroids, highlighting the potentially shared mechanisms underlying tissue overgrowth and cancerous processes. Genetic correlation analysis revealed a positive correlation with body mass index and reproductive traits, that can be classified as symptoms or risk factors of endometrial polyps (EPs), whereas a negative correlation was observed between FGT polyps and both menopause (genetic correlation estimate (rg) = -0.29, SE = 0.08, P = 8.8×10-4) and sex hormone-binding globulin (SHBG) (rg = -0.22, SE = 0.04, P = 2.4×10-8). On the phenotypic level, the strongest associations were observed with endometriosis, uterine fibroids, and excessive, frequent, and irregular menstruation. LARGE SCALE DATA The complete GWAS summary statistics will be made available after publication through the GWAS Catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION In this study, we focused broadly on FGT polyps and did not differentiate between the polyp subtypes. Considering the prevalence of FGT polyp subtypes, we assumed that most women included in the study had EPs. Further research on the expression profile of FGT polyps could complement the GWAS study to substantiate the functional importance of the identified variants. WIDER IMPLICATIONS OF THE FINDINGS The study findings have the potential to significantly enhance our understanding of the genetic mechanisms involved, paving the way for future functional follow-up, which in turn could improve the diagnosis, risk assessment, and targeted treatment options, since surgery is the only line of treatment available for diagnosed polyps. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by European Union through the European Regional Development Fund Project No. 2014-2020.4.01.15-0012 GENTRANSMED. Computations were performed in the High-Performance Computing Center of the University of Tartu. The study was also supported by the Estonian Research Council (grant no. PRG1076 and MOBJD1056) and Horizon 2020 innovation grant (ERIN, grant no. EU952516). All the authors declared no conflict of interest.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jelisaveta Džigurski
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Valentina Rukins
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
Collaborators
Andres Metspalu, Tonu Esko, Mari Nelis, Georgi Hudjashov, Lili Milani,
Collapse
|
4
|
Liu Z, Huang S, Luo R, Shi X, Xiu M, Wang Y, Wang R, Zhang W, Lv M, Tang X. EXO1's pan-cancer roles: diagnostic, prognostic, and immunological analyses through bioinformatics. Discov Oncol 2025; 16:310. [PMID: 40074873 PMCID: PMC11903978 DOI: 10.1007/s12672-025-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with human exonuclease 1 (EXO1) emerging as a key player in DNA repair and damage response pathways, critical for genomic stability and tumor evolution. The aim of this study was to conduct a comprehensive pan-cancer analysis to elucidate the multifaceted roles of EXO1 in various malignancies. Leveraging public databases including TCGA, GTEx, HPA, cBioPortal, UALCAN, STRING, CancerSEA and TISIDB database, we examined EXO1's expression, diagnostic potential, prognostic significance, mutational characteristics, functional roles, and immunological effects across different cancer types. EXO1 was found to be upregulated in multiple cancers, with significant diagnostic potential as indicated by high AUC values in ROC analyses. Elevated EXO1 expression correlated with adverse prognosis in several cancer types, including breast, lung, and pancreatic cancers. Epigenetic alterations, including DNA methylation and mRNA modifications, were also associated with EXO1 expression. Enrichment analyses identified EXO1-related genes involved in DNA recombination, replication, and repair, with GSEA implicating EXO1 in cell cycle regulation and DNA processing pathways. Importantly, immunogenomic analyses revealed EXO1's significant role in modulating the tumor microenvironment, as it is associated with immune cell infiltration and cytokine expression, suggesting its involvement in tumor immunology and immune response regulation. These results implied that EXO1 as a significant biomarker with prognostic and diagnostic potential across various malignancies, suggesting its potential as a therapeutic target and its involvement in immunomodulatory processes within the tumor microenvironment.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People' Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People' Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Rui Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Mingzhu Xiu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Yizhou Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Ruiyu Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Muhan Lv
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China.
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Liu B, Yang X, Wang H, Liu P, Feng Q, Xu C, Song Z. Identification of hub genes for the diagnosis and prognosis in triple negative breast cancer using transcriptome and differential methylation integration analysis. J Cancer 2025; 16:2026-2040. [PMID: 40092695 PMCID: PMC11905416 DOI: 10.7150/jca.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Introduction: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It is highly invasive and aggressive, making it the subtype of breast cancer with the poorest prognosis. Currently, systemic chemotherapy is the primary treatment option, but targeted therapies remain unavailable. Therefore, there is an urgent need to identify novel biomarkers for the early diagnosis and treatment of TNBC. Methods: We conducted an integrated analysis of transcriptome and methylation data to identify methylation-regulated differentially expressed genes (MDEGs). Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network analysis were performed on MDEGs to investigate the impact of hub genes on the diagnosis and prognosis of TNBC. Subsequently, the expression levels and DNA methylation patterns of key genes were validated in the TNBC cell line MDA-MB-231 and the normal breast epithelial cell line MCF-10A using reverse transcription quantitative PCR (RT-qPCR) and quantitative methylation-specific PCR (qMSP). Results: A total of 98 upregulated and 87 downregulated genes were identified through transcriptomic profiling integration analysis. By incorporating methylation data, we further identified 22 genes with high expression of hypomethylation (hypo-MDEGs) and 32 genes with low expression of hypermethylation (hyper-MDEGs). The hypo-MDEGs were primarily involved in nuclear division, organelle fission, spindle formation, chromosome and kinetochore development, and protein binding. KEGG pathway analysis revealed that these genes were enriched in progesterone-mediated oocyte maturation, cell cycle regulation, and oocyte meiosis. Hyper-MDEGs were associated with cell proliferation, hormone response, pain, extracellular matrix composition, and binding to sulfur compounds, heparin, and glycosaminoglycans. PPI network analysis identified seven hub genes-EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23-which were all significantly overexpressed in TNBC tissues and positively correlated with each other (p < 0.05). Receiver operating characteristic curve analysis showed that the area under the curve (AUC) for all seven genes exceeded 0.9 (p < 0.05), suggesting strong diagnostic potential. Kaplan-Meier survival analysis indicated that KIF11, CCNB1, and PLK1 were associated with a higher hazard ratio (HR > 1, p < 0.05) in TNBC. In vitro validation experiments demonstrated that, compared to MCF-10A cells, MDA-MB-231 cells exhibited higher mRNA expression levels of KIF11, CCNB1, and PLK1, while their DNA methylation levels were lower. Conclusions: This study identified seven hypo-MDEGs, including EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23, which are involved in the regulation of the cell cycle and mitotic processes and have significant potential as diagnostic biomarkers for TNBC. Notably, elevated expression of KIF11, CCNB1, and PLK1 is associated with poor prognosis in patients with TNBC. These findings contribute to an improved understanding of the epigenetic molecular mechanisms underlying TNBC progression and highlight novel biomarkers that may enhance the accuracy of TNBC diagnosis and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Baoe Liu
- Department of Breast Disease Center, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Huxia Wang
- Department of Breast Disease Center, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - Peijun Liu
- The first affiliated hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhangjun Song
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| |
Collapse
|
6
|
Lu M, Wu J, Gao Q, Jin R, An C, Ma T. To cleave or not and how? The DNA exonucleases and endonucleases in immunity. Genes Dis 2025; 12:101219. [PMID: 39759116 PMCID: PMC11697192 DOI: 10.1016/j.gendis.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2025] Open
Abstract
DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors. In addition, genomic instability caused by exonuclease mutations contributes to the development of various autoimmune diseases. This review summarizes the DNA exonucleases and endonucleases which have critical functions in immunity and associated diseases.
Collapse
Affiliation(s)
- Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
7
|
Wang J, Liu F, Heng J, Li G. Identification of EXO1 as a potential biomarker associated with prognosis and tumor immune microenvironment for specific human cancers. Mamm Genome 2025; 36:262-279. [PMID: 39718579 DOI: 10.1007/s00335-024-10092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Exonuclease 1 (EXO1) is an evolutionarily conserved exonuclease, which have function on maintaining genomic stability. Elevated expression of EXO1 has been reported in certain cancers. However, a comprehensive pan-cancer analysis of EXO1 is still lacking and its role in human cancer development remains poorly understood. This study aims to investigate the genetic alterations and expression perturbations of EXO1 and evaluate its potential clinical relevance in different cancer types. By employing powerful bioinformatics tools and utilizing data sourced from The Cancer Genome Atlas and the Genotype-Tissue Expression datasets, a comprehensive pan-cancer analysis of EXO1 was conducted, including an examination of gene expression, alterations in genetics, DNA methylation patterns, survival outcomes, clinical traits, immune features, and functional enrichment analysis. EXO1 was found to be highly expressed across 20 tumor types, including lung adenocarcinoma, lung squamous cell carcinoma, and breast invasive carcinoma. The expression levels of EXO1 are frequently associated with later clinical stages and unfavorable outcomes. Genetic alterations in EXO1 were predominantly found to be amplified in a pan-cancer context. A total of 131 missense mutations, 24 truncation mutations, 1 in-frame mutation, 6 splice site mutations, and 1 fusion mutation were identified. Interestingly, a significant co-occurrence of alterations in EXO1 with other ten gene alterations were identified. The expression of EXO1 in multiple tumors showed a significant correlation with tumor mutational burden, microsatellite instability, and genes related to immunological checkpoints. In most types of cancer, a strong correlation exists between the expression of EXO1 and the infiltration of CD4+ Th2 cells, memory CD4+ T cells, myeloid-derived suppressor cells, and common lymphoid progenitors. Analysis of 150 genes related to EXO1 demonstrate an enrichment in processes such as cell cycle regulation, DNA damage repair, and relevant signaling pathways, suggesting a possible mechanism through which EXO1 may facilitate tumor development. This study offers a deep insight into the role of EXO1 in different types of human cancers, indicating that EXO1 could act as an important prognostic biomarker and a therapeutic target for certain types of cancer.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Obstetrics and Gynecology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Fen Liu
- Department of Obstetrics and Gynecology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, China
| | - Jianfu Heng
- Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Guoli Li
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61# Jiefang West Road, Changsha, 410005, Hunan, China.
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, China.
- Hunan Engineering Research Center for Kidney Disease Prevention and Rehabilitation, Changsha, China.
| |
Collapse
|
8
|
Li Z, Lin X, Yang Y, Tian M, Zhang L, Huang F, Wen X, Wei Z, Tian Y. EXO1 is a key gene for lung-resident memory T cells and has diagnostic and predictive values for lung adenocarcinoma. Sci Rep 2025; 15:4002. [PMID: 39893221 PMCID: PMC11787328 DOI: 10.1038/s41598-025-88126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a very common and lethal kind of lung malignancy. An increasing number of studies indicated that tissue-resident memory T (TRM) cells played significant roles in anti-cancer immunity. In our previous study, EXO1 was found to be a core gene for TRM cells in the prognosis of LUAD. However, the roles of EXO1 in the tumor microenvironment, and its application in the diagnosis and prognosis prediction of LUAD are still inadequately explored. In this study, the RNA expression, DNA methylation, CNV, somatic mutation data of EXO1, and the corresponding patients' clinical information from publicly available databases were analyzed using bioinformatic methods. The results were validated through immunohistochemical staining of EXO1 in LUAD samples. The results showed EXO1 was aberrantly highly expressed in LUAD tissues. High expression of EXO1 was a risky factor for LUAD patients. The expression level of EXO1 was associated with many clinical features such as TNM stages. It can also distinguish normal tissues and LUAD tumor tissues accurately. EXO1 expression was correlated with the infiltration of immune cells, and high expression of EXO1 was an adverse effect on LUAD patients receiving anti-PD-1/PD-L1 immunotherapy. Moreover, patients with EXO1 mutation had worse DSS, DFI and PFI.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, P.R. China
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, P.R. China
| | - Yuanhui Yang
- Department of Pathology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, P.R. China
| | - Mei Tian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, P.R. China
| | - Lu Zhang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Fujing Huang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Xiao Wen
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, 250014, Jinan, P.R. China.
| | - Yuan Tian
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China.
| |
Collapse
|
9
|
Mashayekhi F, Ganje C, Caron MC, Heyza JR, Gao Y, Zeinali E, Fanta M, Li L, Ali J, Mersaoui SY, Schmidt JC, Godbout R, Masson JY, Weinfeld M, Ismail IH. PNKP safeguards stalled replication forks from nuclease-dependent degradation during replication stress. Cell Rep 2024; 43:115066. [PMID: 39671289 DOI: 10.1016/j.celrep.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/04/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024] Open
Abstract
Uncontrolled degradation and collapse of stalled replication forks (RFs) are primary sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse remain to be fully elaborated. Here, we show that polynucleotide kinase-phosphatase (PNKP) localizes at stalled forks and protects stalled forks from excessive degradation. The loss of PNKP results in nucleolytic degradation of nascent DNA at stalled RFs. This mechanism is different from the BRCA2-dependent fork protection pathway, which protects stalled forks from excessive MRE11-dependent nucleolytic degradation. Our research shows that hydroxyurea treatment leads to increased misincorporation of ribonucleotides in DNA, which in turn traps TOP1 on stalled RFs. We have also found that reducing the levels of TOP1 or TDP1 in cells can reverse the degradation of nascent DNA observed in PNKP-deficient cells. In summary, our data suggest that PNKP plays a role in maintaining the stability of stalled RFs.
Collapse
Affiliation(s)
- Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Cassandra Ganje
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Joshua R Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Yuandi Gao
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Elham Zeinali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Mesfin Fanta
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Lei Li
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Jana Ali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Sofiane Yacine Mersaoui
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Jens C Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
10
|
Elfar G, Aning O, Ngai T, Yeo P, Chan J, Sim S, Goh L, Yuan J, Phua C, Yeo J, Mak S, Goh B, Chow PH, Tam W, Ho Y, Cheok C. p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis. Nucleic Acids Res 2024; 52:12351-12377. [PMID: 39315696 PMCID: PMC11551750 DOI: 10.1093/nar/gkae811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.
Collapse
Affiliation(s)
- Gamal Ahmed Elfar
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Obed Aning
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Tsz Wai Ngai
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Pearlyn Yeo
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Joel Wai Kit Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shang Hong Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leonard Goh
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
- Surgery Academic ClinicalProgramme, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chit Fang Cheok
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
11
|
Ducos C, Aba N, Rosselli F, Fresneau B, Al Ahmad Nachar B, Zidane M, de Vathaire F, Benhamou S, Haddy N. Genetic Risk of Second Malignant Neoplasm after Childhood Cancer Treatment: A Systematic Review. Cancer Epidemiol Biomarkers Prev 2024; 33:999-1011. [PMID: 38801411 DOI: 10.1158/1055-9965.epi-24-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Second malignant neoplasm (SMN) is one of the most severe long-term risks for childhood cancer survivors (CCS), significantly impacting long-term patient survival. While radiotherapy and chemotherapy are known risk factors, the observed inter-individual variability suggests a genetic component contributing to the risk of SMN. This article aims to conduct a systematic review of genetic factors implicated in the SMN risk among CCS. Searches were performed in PubMed, Scopus, and Web of Sciences. Eighteen studies were included (eleven candidate gene studies, three genome-wide association studies, and four whole exome/genome sequencing studies). The included studies were based on different types of first cancers, investigated any or specific types of SMN, and focused mainly on genes involved in drug metabolism and DNA repair pathways. These differences in study design and methods used to characterize genetic variants limit the scope of the results and highlight the need for further extensive and standardized investigations. However, this review provides a valuable compilation of SMN risk-associated variants and genes, facilitating efficient replication and advancing our understanding of the genetic basis for this major risk for CCS.
Collapse
Affiliation(s)
- Claire Ducos
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Naïla Aba
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer Villejuif, France
| | - Brice Fresneau
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Baraah Al Ahmad Nachar
- CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée Ligue Nationale Contre le Cancer Villejuif, France
| | - Monia Zidane
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Florent de Vathaire
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Simone Benhamou
- Oncostat Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| | - Nadia Haddy
- Radiation Epidemiology Team, Center for Research in Epidemiology and Population Health, INSERM Unit 1018, University Paris Saclay, Villejuif, France
| |
Collapse
|
12
|
Chatterjee T, Tiwari A, Gupta R, Shukla H, Varshney A, Mishra S, Habib S. A Plasmodium apicoplast-targeted unique exonuclease/FEN exhibits interspecies functional differences attributable to an insertion that alters DNA-binding. Nucleic Acids Res 2024; 52:7843-7862. [PMID: 38888125 PMCID: PMC11260460 DOI: 10.1093/nar/gkae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.
Collapse
Affiliation(s)
- Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritika Gupta
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
13
|
García-Rodríguez N, Domínguez-García I, Domínguez-Pérez MD, Huertas P. EXO1 and DNA2-mediated ssDNA gap expansion is essential for ATR activation and to maintain viability in BRCA1-deficient cells. Nucleic Acids Res 2024; 52:6376-6391. [PMID: 38721777 PMCID: PMC11194085 DOI: 10.1093/nar/gkae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
DNA replication faces challenges from DNA lesions originated from endogenous or exogenous sources of stress, leading to the accumulation of single-stranded DNA (ssDNA) that triggers the activation of the ATR checkpoint response. To complete genome replication in the presence of damaged DNA, cells employ DNA damage tolerance mechanisms that operate not only at stalled replication forks but also at ssDNA gaps originated by repriming of DNA synthesis downstream of lesions. Here, we demonstrate that human cells accumulate post-replicative ssDNA gaps following replicative stress induction. These gaps, initiated by PrimPol repriming and expanded by the long-range resection factors EXO1 and DNA2, constitute the principal origin of the ssDNA signal responsible for ATR activation upon replication stress, in contrast to stalled forks. Strikingly, the loss of EXO1 or DNA2 results in synthetic lethality when combined with BRCA1 deficiency, but not BRCA2. This phenomenon aligns with the observation that BRCA1 alone contributes to the expansion of ssDNA gaps. Remarkably, BRCA1-deficient cells become addicted to the overexpression of EXO1, DNA2 or BLM. This dependence on long-range resection unveils a new vulnerability of BRCA1-mutant tumors, shedding light on potential therapeutic targets for these cancers.
Collapse
Affiliation(s)
- Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Iria Domínguez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - María del Carmen Domínguez-Pérez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
14
|
Liu Z, Zhang Q, Zhang H, Yi Z, Ma H, Wang X, Wang J, Liu Y, Zheng Y, Fang W, Huang P, Liu X. Colorectal cancer microbiome programs DNA methylation of host cells by affecting methyl donor metabolism. Genome Med 2024; 16:77. [PMID: 38840170 PMCID: PMC11151592 DOI: 10.1186/s13073-024-01344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) arises from complex interactions between host and environment, which include the gut and tissue microbiome. It is hypothesized that epigenetic regulation by gut microbiota is a fundamental interface by which commensal microbes dynamically influence intestinal biology. The aim of this study is to explore the interplay between gut and tissue microbiota and host DNA methylation in CRC. METHODS Metagenomic sequencing of fecal samples was performed on matched CRC patients (n = 18) and healthy controls (n = 18). Additionally, tissue microbiome was profiled with 16S rRNA gene sequencing on tumor (n = 24) and tumor-adjacent normal (n = 24) tissues of CRC patients, while host DNA methylation was assessed through whole-genome bisulfite sequencing (WGBS) in a subset of 13 individuals. RESULTS Our analysis revealed substantial alterations in the DNA methylome of CRC tissues compared to adjacent normal tissues. An extensive meta-analysis, incorporating publicly available and in-house data, identified significant shifts in microbial-derived methyl donor-related pathways between tumor and adjacent normal tissues. Of note, we observed a pronounced enrichment of microbial-associated CpGs within the promoter regions of genes in adjacent normal tissues, a phenomenon notably absent in tumor tissues. Furthermore, we established consistent and recurring associations between methylation patterns of tumor-related genes and specific bacterial taxa. CONCLUSIONS This study emphasizes the pivotal role of the gut microbiota and pathogenic bacteria in dynamically shaping DNA methylation patterns, impacting physiological homeostasis, and contributing to CRC tumorigenesis. These findings provide valuable insights into the intricate host-environment interactions in CRC development and offer potential avenues for therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qingqing Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhongyuan Yi
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huihui Ma
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jingjing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Yang Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ping Huang
- Department of Surgery, The Third Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
15
|
Hermawan A, Ikawati M, Putri DDP, Fatimah N, Prasetio HH. Nobiletin Inhibits Breast Cancer Stem Cell by Regulating the Cell Cycle: A Comprehensive Bioinformatics Analysis and In Vitro Experiments. Nutr Cancer 2024; 76:638-655. [PMID: 38721626 DOI: 10.1080/01635581.2024.2348217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Inhibiting breast cancer stem cell (BCSC) signaling pathways is a strategic method for successfully treating breast cancer. Nobiletin (NOB) is a compound widely found in orange peel that exhibits a toxic effect on various types of cancer cells, and inhibits the signaling pathways that regulate the properties of BCSCs; however, the effects of NOB on BCSCs remain elusive. The purpose of this study was to determine the target genes of NOB for inhibiting BCSCs using in vitro three-dimensional breast cancer cell culture (mammospheres) and in silico approaches. We combined in vitro experiments to develop mammospheres and conducted cytotoxicity, next-generation sequencing, and bioinformatics analyses, such as gene ontology, the Reactome pathway enrichment, network topology, gene set enrichment analysis, hub genes selection, genetic alterations, prognostic value related to the mRNA expression, and mRNA and protein expression of potential NOB target genes that inhibit BCSCs. Here, we show that NOB inhibited BCSCs in mammospheres from MCF-7 cells. We also identified CDC6, CHEK1, BRCA1, UCHL5, TOP2A, MTMR4, and EXO1 as potential NOB targets inhibiting BCSCs. NOB decreased G0/G1, but increased the G2/M cell population. These findings showed that NOB is a potential therapeutic candidate for BCSCs treatment by regulating cell cycle.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| |
Collapse
|
16
|
Bowman J, Lynch VJ. Rapid evolution of genes with anti-cancer functions during the origins of large bodies and cancer resistance in elephants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582135. [PMID: 38463968 PMCID: PMC10925141 DOI: 10.1101/2024.02.27.582135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
17
|
van de Kooij B, Schreuder A, Pavani R, Garzero V, Uruci S, Wendel TJ, van Hoeck A, San Martin Alonso M, Everts M, Koerse D, Callen E, Boom J, Mei H, Cuppen E, Luijsterburg MS, van Vugt MATM, Nussenzweig A, van Attikum H, Noordermeer SM. EXO1 protects BRCA1-deficient cells against toxic DNA lesions. Mol Cell 2024; 84:659-674.e7. [PMID: 38266640 DOI: 10.1016/j.molcel.2023.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/14/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Anne Schreuder
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Garzero
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Sidrit Uruci
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Tiemen J Wendel
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Arne van Hoeck
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands
| | - Marta San Martin Alonso
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Dana Koerse
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jasper Boom
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands; Hartwig Medical Foundation, Amsterdam 1098 XH, the Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands.
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands.
| |
Collapse
|
18
|
Liu Q, Li G, Baladandayuthapani V. Pan-Cancer Drug Response Prediction Using Integrative Principal Component Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560366. [PMID: 37873111 PMCID: PMC10592913 DOI: 10.1101/2023.10.03.560366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The pursuit of precision oncology heavily relies on large-scale genomic and pharmacological data garnered from preclinical cancer model systems such as cell lines. While cell lines are instrumental in understanding the interplay between genomic programs and drug response, it well-established that they are not fully representative of patient tumors. Development of integrative methods that can systematically assess the commonalities between patient tumors and cell-lines can help bridge this gap. To this end, we introduce the Integrative Principal Component Regression (iPCR) model which uncovers both joint and model-specific structured variations in the genomic data of cell lines and patient tumors through matrix decompositions. The extracted joint variation is then used to predict patient drug responses based on the pharmacological data from preclinical models. Moreover, the interpretability of our model allows for the identification of key driver genes and pathways associated with the treatment-specific response in patients across multiple cancers. We demonstrate that the outputs of the iPCR model can assist in inferring both model-specific and shared co-expression networks between cell lines and patients. We show that iPCR performs favorably compared to competing approaches in predicting patient drug responses, in both simulation studies and real-world applications, in addition to identifying key genomic drivers of cancer drug responses.
Collapse
|
19
|
Sinnarasan VSP, Paul D, Das R, Venkatesan A. Gastric Cancer Biomarker Candidates Identified by Machine Learning and Integrative Bioinformatics: Toward Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37229622 DOI: 10.1089/omi.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gastric cancer (GC) is among the leading causes of cancer-related deaths worldwide. The discovery of robust diagnostic biomarkers for GC remains a challenge. This study sought to identify biomarker candidates for GC by integrating machine learning (ML) and bioinformatics approaches. Transcriptome profiles of patients with GC were analyzed to identify differentially expressed genes between the tumor and adjacent normal tissues. Subsequently, we constructed protein-protein interaction networks so as to find the significant hub genes. Along with the bioinformatics integration of ML methods such as support vector machine, the recursive feature elimination was used to select the most informative genes. The analysis unraveled 160 significant genes, with 88 upregulated and 72 downregulated, 10 hub genes, and 12 features from the variable selection method. The integrated analyses found that EXO1, DTL, KIF14, and TRIP13 genes are significant and poised as potential diagnostic biomarkers in relation to GC. The receiver operating characteristic curve analysis found KIF14 and TRIP13 are strongly associated with diagnosis of GC. We suggest KIF14 and TRIP13 are considered as biomarker candidates that might potentially inform future research on diagnosis, prognosis, or therapeutic targets for GC. These findings collectively offer new future possibilities for precision/personalized medicine research and development for patients with GC.
Collapse
Affiliation(s)
| | - Dahrii Paul
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajesh Das
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Amouda Venkatesan
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
20
|
A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene. Nat Commun 2023; 14:381. [PMID: 36693839 PMCID: PMC9873647 DOI: 10.1038/s41467-023-35802-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.
Collapse
|
21
|
Hong MJ, Park JE, Lee SY, Lee JH, Choi JE, Kang HG, Do SK, Jeong JY, Shin KM, Lee WK, Seok Y, Choi SH, Lee YH, Seo H, Yoo SS, Lee J, Cha SI, Kim CH, Park JY. Exonuclease 1 genetic variant is associated with clinical outcomes of pemetrexed chemotherapy in lung adenocarcinoma. J Cancer 2022; 13:3701-3709. [PMID: 36606188 PMCID: PMC9809306 DOI: 10.7150/jca.78498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Pemetrexed is an anti-folate agent which is one of the most frequently used chemotherapy agents for non-squamous non-small cell lung cancer (NSCLC) patients. However, clinical response to pemetrexed chemotherapy and survival outcome of patients varies significantly. We evaluated whether the genetic variants in miRNA target sites may affect the treatment outcome of pemetrexed chemotherapy in lung adenocarcinoma patients. One hundred SNPs in miRNA binding regions in cancer-related genes were obtained from the crosslinking, ligation, and sequencing of hybrids (CLASH) and CancerGenes database, and the associations with the response to pemetrexed chemotherapy and survival outcomes were investigated in 314 lung adenocarcinoma patients. Two polymorphisms, EXO1 rs1047840G>A and CAMKK2 rs1653586G>T, were significantly associated with worse chemotherapy response (adjusted odds ratio [aOR] = 0.41, 95% CI = 0.24-0.68, P = 0.001, under dominant model; and aOR = 0.33, 95% CI = 0.16-0.67, P = 0.002, under dominant model, respectively) and worse OS (adjusted hazard ratio [aHR] = 1.34, 95% CI = 1.01-1.77, P = 0.04, under dominant model; and aHR = 1.50, 95% CI = 1.06-2.13, P = 0.02, under dominant model, respectively) in multivariate analyses. Significantly increased luciferase activity was noted in EXO1 rs1047840 A allele compared to G allele. In conclusion, two SNPs in miRNA binding sites, especially EXO1 rs1047840G>A, were associated with the chemotherapy response and survival outcome in lung adenocarcinoma patients treated with pemetrexed.
Collapse
Affiliation(s)
- Mi Jeong Hong
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,✉ Corresponding authors: Shin Yup Lee, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2632; Fax: +82-53-200-2027, E-mail: ; Jae Yong Park, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2631; Fax: +82-53-200-2027, E-mail:
| | - Jang Hyuck Lee
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin Eun Choi
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sook Kyung Do
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Ki Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yangki Seok
- Department of Thoracic Surgery, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.,✉ Corresponding authors: Shin Yup Lee, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2632; Fax: +82-53-200-2027, E-mail: ; Jae Yong Park, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2631; Fax: +82-53-200-2027, E-mail:
| |
Collapse
|
22
|
Shi Q, Yao XY, Wang HY, Li YJ, Zhang XX, Sun C. Breast cancer-associated SNP rs72755295 is a cis-regulatory variation for human EXO1. Genet Mol Biol 2022; 45:e20210420. [PMID: 36255267 PMCID: PMC9631386 DOI: 10.1590/1678-4685-gmb-2021-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women. A previous genome-wide association study reports that rs72755295, a SNP locating at intron of EXO1 (exonuclease 1), is associated with breast cancer. Due to the complete linkage disequilibrium between rs72755295 and rs4149909, a nonsynonymous mutation for EXO1, rs4149909 is supposed to be the causal SNP. Since EXO1 is overexpressed in breast carcinoma samples, we hypothesized that the genetic variations in this locus might confer breast cancer risk by regulating EXO1 expression. To substantiate this, a functional genomics study was performed. The dual luciferase assay indicated that G of rs72755295 presents significantly higher relative enhancer activity than A, thus verifying that this SNP can influence gene expression in breast cell. Through chromosome conformation capture it was disclosed that the enhancer containing rs72755295 can interact with the EXO1 promoter. RNA-seq analysis indicated that EXO1 expression is dependent on the rs72755295 genotype. By chromatin immunoprecipitation, the transcription factor PAX6 (paired box 6) was recognized to bind the region spanning rs72755295. In electrophoretic mobility shift assay, G of rs72755295 displays obviously higher binding affinity with nuclear protein than A. Our results indicated that rs72755295 is a cis-regulatory variation for EXO1 and might confer breast cancer risk besides rs4149909.
Collapse
Affiliation(s)
- Qiang Shi
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Xing-Yuan Yao
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Hong-Yan Wang
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Ya-Jie Li
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Xin-Xin Zhang
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Chang Sun
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
23
|
Mao P, Wu S, Fan Y. Upregulation of EXO1 caused by homology-dependent repair confers cisplatin resistance to gastric cancer cells. Can J Physiol Pharmacol 2022; 100:903-914. [PMID: 35767882 DOI: 10.1139/cjpp-2022-0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homology-dependent repair (HDR) pathway is involved in DNA damage response (DDR), which is crucial to cancer cell survival after treatment with DNA damage agents, including cisplatin (CDDP). Here, we explored the interactions between EXO1, a core gene in the HDR pathway, and CDDP resistance in gastric cancer (GC). Using bioinformatics analysis, we identified the HDR pathway as the most amplified pathway in DDR in GC. In addition, EXO1 was the core gene in the HDR pathway and showed the most significant amplification in GC. The amplification of EXO1 resulted in higher EXO1 expression in cancerous tissues, with malignant prognostic effects. Moreover, we upregulated or downregulated EXO1 in GC cells to examine its effects on the cell malignant phenotype and CDDP resistance in vitro and in vivo. Depletion of EXO1 inhibited cell proliferatory, migratory and invasive activities, and provided apoptosis resistance to GC cells. EXO1 expression was elevated in CDDP-resistant cells. Ectopic expression of EXO1 increased the resistance of GC cells to CDDP, while downregulation of EXO1 increased the sensitivity of GC cells. Taken together, our study indicates that the HDR pathway is an important player in CDDP resistance in GC through the regulation of EXO1.
Collapse
Affiliation(s)
- Pengfei Mao
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Department of Gastroenterology, Suzhou, China;
| | - Suxiao Wu
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Department of Gastroenterology, Suzhou, China;
| | - Yuejuan Fan
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Department of Gastroenterology, Suzhou, China;
| |
Collapse
|
24
|
Ma J, Jin J, Lu H, Zhang J, Li Y, Cai X. Exonuclease 1 is a Potential Diagnostic and Prognostic Biomarker in Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:889414. [PMID: 35769911 PMCID: PMC9234278 DOI: 10.3389/fmolb.2022.889414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) represents a global health challenge. Effective biomarkers are required for an early diagnosis to improve the survival rates of HCC patients. Exonuclease 1 (EXO1) plays a significant role in the DNA repair and recombination mechanisms. This study aimed to investigate the diagnostic and prognostic roles of EXO1 in HCC. Methods: We analyzed the EXO1 expression levels in various cancers including HCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. RNA sequencing data were analyzed using the R packages to determine differentially expressed genes (DEGs) between high- and low-EXO1 expressing HCC tissues from the TCGA–LIHC database. A Spearman’s correlation analysis was performed to determine the association between EXO1 expression and immune cell infiltration, and immune checkpoint genes and TP53. MethSurv and CBioPortal databases were used to evaluate the DNA methylation changes and genetic alterations in the EXO1 gene. A logistic regression analysis was performed to determine the association between EXO1 expression and the clinicopathological characteristics of the HCC patients. The diagnostic and prognostic predictive values of EXO1 were evaluated using the Kaplan–Meier (K-M) survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, and Cox regression analysis. Results: EXO1 expression levels were significantly higher in the tumor tissues and serums of HCC patients compared to the corresponding controls. The DEGs associated with EXO1 were significantly enriched in the cell proliferation pathways. EXO1 expression levels significantly correlated with immune cell infiltration, immune checkpoint genes, and TP53 in the HCC tissues. The DNA methylation status in five CpG islands of the EXO1 gene was associated with the prognosis of HCC. EXO1 expression levels in the HCC tissues were associated with the tumor grades, alpha-fetoprotein (AFP) levels, and the tumor stages. Cox regression analysis showed that EXO1 was a potential independent risk factor for the overall survival (OS) and disease-specific survival (DSS) of HCC patients. ROC curve analysis showed that EXO1 expression levels accurately distinguished HCC tissues from the adjacent normal liver tissues. Conclusion: Our study demonstrated that EXO1 was a potential diagnostic and prognostic biomarker, and a promising therapeutic target in HCC.
Collapse
|
25
|
Yang J, Chen Z, Gong Z, Li Q, Ding H, Cui Y, Tang L, Li S, Wan L, Li Y, Ju S, Ding C, Zhao J. Immune Landscape and Classification in Lung Adenocarcinoma Based on a Novel Cell Cycle Checkpoints Related Signature for Predicting Prognosis and Therapeutic Response. Front Genet 2022; 13:908104. [PMID: 35646074 PMCID: PMC9130860 DOI: 10.3389/fgene.2022.908104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignancies with the highest mortality globally, and it has a poor prognosis. Cell cycle checkpoints play a central role in the entire system of monitoring cell cycle processes, by regulating the signalling pathway of the cell cycle. Cell cycle checkpoints related genes (CCCRGs) have potential utility in predicting survival, and response to immunotherapies and chemotherapies. To examine this, based on CCCRGs, we identified two lung adenocarcinoma subtypes, called cluster1 and cluster2, by consensus clustering. Enrichment analysis revealed significant discrepancies between the two subtypes in gene sets associated with cell cycle activation and tumor progression. In addition, based on Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, we have developed and validated a cell cycle checkpoints-related risk signature to predict prognosis, tumour immune microenvironment: (TIME), immunotherapy and chemotherapy responses for lung adenocarcinoma patients. Results from calibration plot, decision curve analysis (DCA), and time-dependent receiver operating characteristic curve (ROC) revealed that combining age, gender, pathological stages, and risk score in lung adenocarcinoma patients allowed for a more accurate and predictive nomogram. The area under curve for lung adenocarcinoma patients with 1-, 3-, 5-, and 10-year overall survival was: 0.74, 0.73, 0.75, and 0.81, respectively. Taken together, our proposed 4-CCCRG signature can serve as a clinically useful indicator to help predict patients outcomes, and could provide important guidance for immunotherapies and chemotherapies decision for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zetian Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Tang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shiqin Li
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Wan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Yu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Lu Z, Mao W, Yang H, Santiago-O'Farrill JM, Rask PJ, Mondal J, Chen H, Ivan C, Liu X, Liu CG, Xi Y, Masuda K, Carrami EM, Chen M, Tang Y, Pang L, Lakomy DS, Calin GA, Liang H, Ahmed AA, Vankayalapati H, Bast RC. SIK2 inhibition enhances PARP inhibitor activity synergistically in ovarian and triple-negative breast cancers. J Clin Invest 2022; 132:146471. [PMID: 35642638 PMCID: PMC9151707 DOI: 10.1172/jci146471] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARP inhibitors) have had an increasing role in the treatment of ovarian and breast cancers. PARP inhibitors are selectively active in cells with homologous recombination DNA repair deficiency caused by mutations in BRCA1/2 and other DNA repair pathway genes. Cancers with homologous recombination DNA repair proficiency respond poorly to PARP inhibitors. Cancers that initially respond to PARP inhibitors eventually develop drug resistance. We have identified salt-inducible kinase 2 (SIK2) inhibitors, ARN3236 and ARN3261, which decreased DNA double-strand break (DSB) repair functions and produced synthetic lethality with multiple PARP inhibitors in both homologous recombination DNA repair deficiency and proficiency cancer cells. SIK2 is required for centrosome splitting and PI3K activation and regulates cancer cell proliferation, metastasis, and sensitivity to chemotherapy. Here, we showed that SIK2 inhibitors sensitized ovarian and triple-negative breast cancer (TNBC) cells and xenografts to PARP inhibitors. SIK2 inhibitors decreased PARP enzyme activity and phosphorylation of class-IIa histone deacetylases (HDAC4/5/7). Furthermore, SIK2 inhibitors abolished class-IIa HDAC4/5/7-associated transcriptional activity of myocyte enhancer factor-2D (MEF2D), decreasing MEF2D binding to regulatory regions with high chromatin accessibility in FANCD2, EXO1, and XRCC4 genes, resulting in repression of their functions in the DNA DSB repair pathway. The combination of PARP inhibitors and SIK2 inhibitors provides a therapeutic strategy to enhance PARP inhibitor sensitivity for ovarian cancer and TNBC.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Experimental Therapeutics
| | | | | | | | | | | | - Hu Chen
- Department of Bioinformatics & Computational Biology, and
| | - Cristina Ivan
- Department of Experimental Therapeutics.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Yuanxin Xi
- Department of Bioinformatics & Computational Biology, and
| | - Kenta Masuda
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Eli M Carrami
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Meng Chen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yitao Tang
- Department of Bioinformatics & Computational Biology, and.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Lan Pang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Han Liang
- Department of Bioinformatics & Computational Biology, and.,Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | |
Collapse
|
27
|
Oxidative Stress and Deregulated DNA Damage Response Network in Lung Cancer Patients. Biomedicines 2022; 10:biomedicines10061248. [PMID: 35740268 PMCID: PMC9219789 DOI: 10.3390/biomedicines10061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.
Collapse
|
28
|
Bioinformatics Analysis and Experimental Study of Exonuclease 1 Gene in Lung Adenocarcinoma. Biochem Genet 2022; 60:1934-1945. [PMID: 35169964 DOI: 10.1007/s10528-022-10190-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022]
Abstract
The objective of this study is to examine the role of Human Exonuclease 1(EXO1) gene in the diagnosis and prognosis of lung adenocarcinoma (LUAD), and predict the signal pathways EXO1 involved in. The clinical parameters and EXO1 expression datasets of LUAD patients were obtained from The Cancer Genome Atlas (TCGA), Oncomine and Gene Expression Omnibus (GEO) database. Wilcoxon rank-sum test was performed to determine whether EXO1 expression was upregulated in LUAD. The correlation between EXO1 expression and clinicopathological parameters was analyzed by Chi-square test, and Kaplan-Meier survival analysis and COX regression models were adopted to analyze and verify the correlation of EXO1 expression with OS of LUAD patients for the exploration of prognostic value of EXO1 in LUAD patients. The signaling pathway related to EXO1 was predicted by gene set enrichment analysis (GSEA). In addition, sera from LUAD patients and healthy subjects were collected, and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was conducted to detect EXO1 expression. EXO1 expression was upregulated in LUAD patients with respect to normal individuals. EXO1 expression was negatively correlated with the prognosis and thus could independently predict the prognosis of LUAD patients. EXO1 gene was involved in 128 signal pathways, of which 9 pathways may be closely related. EXO1 was highly expressed in the blood of LUAD patients. High EXO1 expression can serve as an independent risk factor for poor prognosis, and the expression of serum EXO1 has certain diagnostic value for LUAD.
Collapse
|
29
|
da Silva RB, Bertoldo WDR, Naves LL, de Vito FB, Damasceno JD, Tosi LRO, Machado CR, Pedrosa AL. Specific Human ATR and ATM Inhibitors Modulate Single Strand DNA Formation in Leishmania major Exposed to Oxidative Agent. Front Cell Infect Microbiol 2022; 11:802613. [PMID: 35059327 PMCID: PMC8763966 DOI: 10.3389/fcimb.2021.802613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucila Langoni Naves
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Bernadelli de Vito
- Departamento de Clínica Médica, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luiz Ricardo Orsini Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
30
|
Novel Genetic Prognostic Signature for Lung Adenocarcinoma Identified by Differences in Gene Expression Profiles of Low- and High-Grade Histological Subtypes. Biomolecules 2022; 12:biom12020160. [PMID: 35204661 PMCID: PMC8961607 DOI: 10.3390/biom12020160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
The 2021 WHO classification proposed a pattern-based grading system for early-stage invasive non-mucinous lung adenocarcinoma. Lung adenocarcinomas with high-grade patterns have poorer outcomes than those with lepidic-predominant patterns. This study aimed to establish genetic prognostic signatures by comparing differences in gene expression profiles between low- and high-grade adenocarcinomas. Twenty-six (9 low- and 17 high-grade adenocarcinomas) patients with histologically “near-pure” patterns (predominant pattern comprising >70% of tumor areas) were selected retrospectively. Using RNA sequencing, gene expression profiles between the low- and high-grade groups were analyzed, and genes with significantly different expression levels between these two groups were selected for genetic prognostic signatures. In total, 196 significant candidate genes (164 upregulated and 32 upregulated in the high- and low-grade groups, respectively) were identified. After intersection with The Cancer Genome Atlas–Lung Adenocarcinoma prognostic genes, three genes, exonuclease 1 (EXO1), family with sequence similarity 83, member A (FAM83A), and disks large-associated protein 5 (DLGAP5), were identified as prognostic gene signatures. Two independent cohorts were used for validation, and the areas under the time-dependent receiver operating characteristic were 0.784 and 0.703 in the GSE31210 and GSE30219 cohorts, respectively. Our result showed the feasibility and accuracy of this novel three-gene prognostic signature for predicting the clinical outcomes of lung adenocarcinoma.
Collapse
|
31
|
Das R, Kundu S, Laskar S, Choudhury Y, Ghosh SK. In silico assessment of DNA damage response gene variants associated with head and neck cancer. J Biomol Struct Dyn 2022; 41:2090-2107. [PMID: 35037836 DOI: 10.1080/07391102.2022.2027817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancer (HNC), the sixth most common cancer globally, stands first in India, especially Northeast India, where tobacco usage is predominant, which introduces various carcinogens leading to malignancies by accumulating DNA damages. Consequently, the present work aimed to predict the impact of significant germline variants in DNA repair and Tumour Suppressor genes on HNC development. WES in Ion ProtonTM platform on 'discovery set' (n = 15), followed by recurrence assessment of the observed variants on 'confirmation set' (n = 40) using Sanger Sequencing was performed on the HNC-prevalent NE Indian populations. Initially, 53 variants were identified, of which seven HNC-linked DNA damage response gene variants were frequent in the studied populations. Different tools ascertained the biological consequences of these variants, of which the non-coding variants viz. EXO1_rs4150018, RAD52_rs6413436, CHD5_rs2746066, HACE1_rs6918700 showed risk, while FLT3_rs2491227 and BMPR1A_rs7074064 conferred protection against HNC by affecting transcriptional regulation and splicing mechanism. Molecular Dynamics Simulation of the full-length p53 model predicted that the observed coding TP53_rs1042522 variant conferred HNC-risk by altering the structural dynamics of the protein, which displayed difficulty in the transition between active and inactive conformations due to high-energy barrier. Subsequent pathway and gene ontology analysis revealed that EXO1, RAD52 and TP53 variants affected the Double-Strand Break Repair pathway, whereas CHD5 and HACE1 variants inactivated DNA repair cascade, facilitating uncontrolled cell proliferation, impaired apoptosis and malignant transformation. Conversely, FLT3 and BMPR1A variants protected against HNC by controlling tumorigenesis, which requires experimental validation. These findings may serve as prognostic markers for developing preventive measures against HNC.
Collapse
Affiliation(s)
- Raima Das
- Department of Biotechnology, Assam University, Silchar, India
| | - Sharbadeb Kundu
- Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia, West India
| | - Shaheen Laskar
- Department of Biotechnology, Assam University, Silchar, India
| | | | | |
Collapse
|
32
|
A Novel Four-Gene Signature as a Potential Prognostic Biomarker for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:1452801. [PMID: 34950206 PMCID: PMC8691992 DOI: 10.1155/2021/1452801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and mortality rates. However, a reliable prognostic signature has not yet been confirmed. Thus, the purpose of the present study was to develop a biomarker with high specificity and sensitivity for the diagnosis and prognosis of patients with HCC. The mRNA expression profiles of HCC were obtained from the GSE19665, GSE41804, and TCGA databases. Subsequently, 193 differentially expressed genes (DEGs) were identified from the intersection of the data from the three datasets. Bioinformatics analysis showed that the identified DEGs are related to the cell cycle, oocyte meiosis, and p53 signaling pathway, among other factors, in cancers. A protein-protein interaction (PPI) and a functional analysis were performed to investigate the biological function of the DEGs and obtain the candidate genes using the MCODE of Cytoscape. The candidate genes were introduced into the TCGA database for survival analysis, and the four candidate genes that were hub genes and meaningful for survival were retained for further verification. We validated the gene and protein expression and determined the prognosis of our patient cohort. In addition, we evaluated the biological functions regulating tumor cell proliferation and metastasis in vitro. According to the ROC curve analysis of gene expression in clinical samples, it was found that the four genes can be used to predict the diagnosis. A survival analysis based on data from the TCGA database and clinical samples showed that the four genes may be used as biomarkers for providing prognoses for patients. The cell functional experiments revealed that these four genes were related to tumor proliferation, migration, and invasion. In conclusion, the genes identified in the present study could be used as markers to diagnose and predict the prognosis of patients with HCC and guide targeted therapy.
Collapse
|
33
|
Yan S, Gao S, Zhou P. Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
34
|
Lin T, Zhang Y, Lin Z, Peng L. ZWINT is a Promising Therapeutic Biomarker Associated with the Immune Microenvironment of Hepatocellular Carcinoma. Int J Gen Med 2021; 14:7487-7501. [PMID: 34744456 PMCID: PMC8566006 DOI: 10.2147/ijgm.s340057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background The prognosis of patients with advanced hepatocellular carcinoma (HCC) is still poor, effective therapeutic targets are needed. ZW10 interacting kinetochore protein (Zwint) is an essential component of the mitotic spindle checkpoint and is upregulated in cancers. Disappointing, the role of ZWINT in HCC has not been fully illuminated. Methods Multiple tools, including TIMER2.0, Oncomine, GEPIA2, UALCAN, LinkedOmics, Kaplan-Meier Plotter, cBioPortal, and MethSurv, etc. were applied to comprehensively analyze the expression, genetic alternations, clinicopathological relevance, prognostic value, and DNA methylation of ZWINT, along with its correlations with immune infiltration in HCC. Besides, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) analysis were performed for the correlated genes of ZWINT, closely interconnected clusters and hub proteins in the PPI network were discovered to learn the underlying biological mechanisms. Results We found ZWINT was significantly upregulated in diverse cancers including HCC, compared with the corresponding normal controls. ZWINT upregulation was significantly associated with unfavorable clinicopathological features and survivals of HCC patients. Genetic alternations of ZWINT frequently occurred, which were linked to worse outcomes of HCC patients. The results of GSEA displayed ZWINT and its correlated genes might be components of condensed chromosomes and spindles, which participated in biological processes and signaling pathways involving DNA replication, cytokinesis, and cell cycle checkpoint, etc. Three highly interconnected clusters and 10 hub proteins were identified from the PPI network constructed with the correlated genes of ZWINT. Moreover, ZWINT expression was found positively correlated with infiltration levels of various immune cells, especially myeloid-derived suppressor cells. Conclusion This study demonstrated ZWINT might be a promising unfavorable prognostic biomarker and a therapeutic target of HCC, which could regulate HCC progression through cell division and immunosuppression.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Yingzhao Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
35
|
Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. Int J Mol Sci 2021; 22:ijms222111771. [PMID: 34769200 PMCID: PMC8584064 DOI: 10.3390/ijms222111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.
Collapse
|
36
|
ZGRF1 promotes end resection of DNA homologous recombination via forming complex with BRCA1/EXO1. Cell Death Discov 2021; 7:260. [PMID: 34552057 PMCID: PMC8458317 DOI: 10.1038/s41420-021-00633-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic stability, the mammalian cells has evolved a coordinated response to DNA damage, including activation of DNA repair and cell cycle checkpoint processes. Exonuclease 1 (EXO1)-dependent excision of DNA ends is important for the initiation of homologous recombination (HR) repair of DNA breaks, which is thought to play a key role in activating the ATR-CHK1 pathway to induce G2/M cell cycle arrest. But the mechanism is still not fully understood. Here, we report that ZGRF1 forms complexes with EXO1 as well as other repair proteins and promotes DNA repair through HR. ZGRF1 is recruited to DNA damage sites in a MDC1-RNF8-BRCA1 dependent manner. Furthermore, ZGRF1 is important for the recruitment of RPA2 to DNA damage sites and the following ATR-CHK1 mediated G2/M checkpoint in response to irradiation. ZGRF1 null cells show increased sensitivity to many DNA-damaging agents, especially PARPi and irradiation. Collectively,our findings identify ZGRF1 as a novel regulator of DNA end resection and G2/M checkpoint. ZGRF1 is a potential target of radiation and PARPi cancer therapy.
Collapse
|
37
|
Yılmaz H, Toy HI, Marquardt S, Karakülah G, Küçük C, Kontou PI, Logotheti S, Pavlopoulou A. In Silico Methods for the Identification of Diagnostic and Favorable Prognostic Markers in Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22179601. [PMID: 34502522 PMCID: PMC8431757 DOI: 10.3390/ijms22179601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common type of acute leukemia in adults, is mainly asymptomatic at early stages and progresses/recurs rapidly and frequently. These attributes necessitate the identification of biomarkers for timely diagnosis and accurate prognosis. In this study, differential gene expression analysis was performed on large-scale transcriptomics data of AML patients versus corresponding normal tissue. Weighted gene co-expression network analysis was conducted to construct networks of co-expressed genes, and detect gene modules. Finally, hub genes were identified from selected modules by applying network-based methods. This robust and integrative bioinformatics approach revealed a set of twenty-four genes, mainly related to cell cycle and immune response, the diagnostic significance of which was subsequently compared against two independent gene expression datasets. Furthermore, based on a recent notion suggesting that molecular characteristics of a few, unusual patients with exceptionally favorable survival can provide insights for improving the outcome of individuals with more typical disease trajectories, we defined groups of long-term survivors in AML patient cohorts and compared their transcriptomes versus the general population to infer favorable prognostic signatures. These findings could have potential applications in the clinical setting, in particular, in diagnosis and prognosis of AML.
Collapse
Affiliation(s)
- Hande Yılmaz
- Izmir Biomedicine and Genome Center, Balcova, 35340 Izmir, Turkey; (H.Y.); (H.I.T.); (G.K.); (C.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340 Izmir, Turkey
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center, Balcova, 35340 Izmir, Turkey; (H.Y.); (H.I.T.); (G.K.); (C.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340 Izmir, Turkey
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Balcova, 35340 Izmir, Turkey; (H.Y.); (H.I.T.); (G.K.); (C.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340 Izmir, Turkey
| | - Can Küçük
- Izmir Biomedicine and Genome Center, Balcova, 35340 Izmir, Turkey; (H.Y.); (H.I.T.); (G.K.); (C.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340 Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Balcova, 35340 Izmir, Turkey
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece;
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany;
- Correspondence: (S.L.); (A.P.)
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, 35340 Izmir, Turkey; (H.Y.); (H.I.T.); (G.K.); (C.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340 Izmir, Turkey
- Correspondence: (S.L.); (A.P.)
| |
Collapse
|
38
|
Zhou CS, Feng MT, Chen X, Gao Y, Chen L, Li LD, Li DH, Cao YQ. Exonuclease 1 (EXO1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Lung Adenocarcinoma. Onco Targets Ther 2021; 14:1033-1048. [PMID: 33623391 PMCID: PMC7894803 DOI: 10.2147/ott.s286274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exonuclease 1 (EXO1) has been identified to be highly expressed in different human malignancies, but its expression and prognostic role in lung adenocarcinoma (LUAD) remain unknown. Materials and Methods Two independent cohorts extracted from public databases and one cohort from our center were analyzed in this study. Expression levels of EXO1 in LUAD tissues and paired para-cancer tissues were detected. The prognostic value of EXO1 in LUAD patients was evaluated in the three cohorts. Enrichment analyses were performed to explore the possible underlying biological pathways. Moreover, we also explored the correlations between EXO1 and tumor-infiltrating immune cells and evaluated the impact of EXO1 knock-down on the migration of lung cancer cells. Results In this study, we found that EXO1 was highly expressed in LUAD tissues compared with para-cancerous tissues in public databases (p < 0.01), which was consistent with our data (p < 0.01). Survival analysis indicated that high expression of EXO1 was associated with poor prognosis in LUAD (p < 0.01). Enrichment analyses indicated that biological pathways like cell cycle regulation, DNA damage and repair, immune response, neuroactive ligand-receptor interaction, may be associated with EXO1 aberrant expression. Moreover, high expression of EXO1 was correlated with decreased infiltrating B cells (p < 0.01) and CD4+ T cells (p < 0.01) levels, and low infiltrating levels of B cells (p < 0.01) and dendritic cells (DCs) (p < 0.05) indicated poor overall survival (OS) in LUAD. Additionally, in vitro experiments suggested that knockdown of EXO1 may inhibit the migratory ability of lung cancer cells. Conclusion In conclusion, EXO1 is a potential prognostic biomarker in LUAD, and correlates with infiltrating levels of immune cells in the tumor microenvironment. Further prospective validation of EXO1 in lung cancer is warranted.
Collapse
Affiliation(s)
- Chang-Shuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ming-Tao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liang-Dong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - De-Heng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Qun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Liu J, Zhang J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:135. [PMID: 33569437 PMCID: PMC7867906 DOI: 10.21037/atm-20-7922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Breast cancer is the most common cancer and leading cause of cancer mortality in women worldwide. Exonuclease 1 (EXO1), a protein with 5' to 3' exonuclease and RNase H activity, could be involved in mismatch repair and recombination. This study aims to investigate the prognostic value of EXO1 in breast cancer and explore the association between EXO1 expression and breast carcinogenesis. Methods The data of 1,215 breast cancer susceptibility gene (BRCA) samples were obtained from The Cancer Genome Atlas (TCGA). Real-time quantitative polymerase chain reaction (RT-qPCR) further verified the elevated mRNA expression level of EXO1 in human BRCA cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was proved to be correlated with its expression level. Besides, Kaplan-Meier analysis, differentially expressed genes and function enrichment analysis were performed. Results Analysis of data from The Cancer Genome Atlas (TCGA) revealed that the EXO1 expression level in breast cancer tissues was significantly increased. Real-time quantitative polymerase chain reaction (RT-qPCR) supported the elevated mRNA expression level of EXO1 in human breast cancer cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was shown to be correlated with its expression level. Kaplan-Meier analysis showed that elevated EXO1 was an indicator of poor breast cancer prognosis. Furthermore, differentially expressed genes and function enrichment analysis indicated that the cell cycle pathway and cardiac muscle contraction pathway were activated and inhibited respectively in breast cancer samples with high EXO1 expression. Conclusions Therefore, this study shows that elevated EXO1 expression is associated with carcinogenesis and poor prognosis in breast cancer, and might be a biomarker for breast cancer treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jin Zhang
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
40
|
Cao X, Sun Y, Lu P, Zhao M. Fluorescence imaging of intracellular nucleases-A review. Anal Chim Acta 2020; 1137:225-237. [PMID: 33153605 DOI: 10.1016/j.aca.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Nucleases play crucial roles in maintaining genomic integrity. Visualization of intracellular distribution and translocation of nucleases are of great importance for understanding the in-vivo physiological functions of these enzymes and their roles in DNA repair and other cellular signaling pathways. Here we review the recently developed approaches for fluorescence imaging of nucleases in various eukaryotic cells. We mainly focused on the immunofluorescence techniques, the genetically encoded fluorescent probes and the chemically synthesized fluorescent DNA-substrate probes that enabled in-situ visualization of the subcellular localization of nucleases and their interactions with other protein/DNA molecules within cells. The targeted nucleases included important endonucleases, 3' exonucleases and 5' exonucleases that were involved in the DNA damage repair pathways and the intracellular DNA degradation. The advantages and limitations of the available tools were summarized and discussed.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng Lu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
41
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
42
|
Morton LM, Karyadi DM, Hartley SW, Frone MN, Sampson JN, Howell RM, Neglia JP, Arnold MA, Hicks BD, Jones K, Zhu B, Dagnall CL, Karlins E, Yeager MS, Leisenring WM, Yasui Y, Turcotte LM, Smith SA, Weathers RE, Miller J, Sigel BS, Merino DM, Berrington de Gonzalez A, Bhatia S, Robison LL, Tucker MA, Armstrong GT, Chanock SJ. Subsequent Neoplasm Risk Associated With Rare Variants in DNA Damage Response and Clinical Radiation Sensitivity Syndrome Genes in the Childhood Cancer Survivor Study. JCO Precis Oncol 2020; 4:PO.20.00141. [PMID: 32923912 PMCID: PMC7469586 DOI: 10.1200/po.20.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Radiotherapy for childhood cancer is associated with elevated subsequent neoplasm (SN) risk, but the contribution of rare variants in DNA damage response and radiation sensitivity genes to SN risk is unknown. PATIENTS AND METHODS We conducted whole-exome sequencing in a cohort of childhood cancer survivors originally diagnosed during 1970 to 1986 (mean follow-up, 32.7 years), with reconstruction of doses to body regions from radiotherapy records. We identified patients who developed SN types previously reported to be related to radiotherapy (RT-SNs; eg, basal cell carcinoma [BCC], breast cancer, meningioma, thyroid cancer, sarcoma) and matched controls (sex, childhood cancer type/diagnosis, age, SN location, radiation dose, survival). Conditional logistic regression assessed SN risk associated with potentially protein-damaging rare variants (SnpEff, ClinVar) in 476 DNA damage response or radiation sensitivity genes with exact permutation-based P values using a Bonferroni-corrected significance threshold of P < 8.06 × 10-5. RESULTS Among 5,105 childhood cancer survivors of European descent, 1,108 (21.7%) developed at least 1 RT-SN. Out-of-field RT-SN risk, excluding BCC, was associated with homologous recombination repair (HRR) gene variants (patient cases, 23.2%; controls, 10.8%; odds ratio [OR], 2.6; 95% CI, 1.7 to 3.9; P = 4.79 × 10-5), most notably but nonsignificantly for FANCM (patient cases, 4.0%; matched controls, 0.6%; P = 9.64 × 10-5). HRR variants were not associated with likely in/near-field RT-SNs, excluding BCC (patient cases, 12.7%; matched controls, 12.9%; P = .92). Irrespective of radiation dose, risk for RT-SNs was also associated with EXO1 variants (patient cases, 1.8%; controls, 0.4%; P = 3.31 × 10-5), another gene implicated in DNA double-strand break repair. CONCLUSION In this large-scale discovery study, we identified novel associations between RT-SN risk after childhood cancer and potentially protein-damaging rare variants in genes involved in DNA double-strand break repair, particularly HRR. With replication, these results could affect screening recommendations for childhood cancer survivors and risk-benefit assessments of treatment approaches.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Danielle M. Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stephen W. Hartley
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Megan N. Frone
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rebecca M. Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph P. Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Michael A. Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH
| | - Belynda D. Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Casey L. Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Meredith S. Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Wendy M. Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | | | - Susan A. Smith
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rita E. Weathers
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Byron S. Sigel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diana M. Merino
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amy Berrington de Gonzalez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Margaret A. Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. Int J Mol Sci 2020; 21:ijms21145098. [PMID: 32707690 PMCID: PMC7403987 DOI: 10.3390/ijms21145098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan–Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs’ potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.
Collapse
|
44
|
Singh AK, Talseth-Palmer B, McPhillips M, Lavik LAS, Xavier A, Drabløs F, Sjursen W. Targeted sequencing of genes associated with the mismatch repair pathway in patients with endometrial cancer. PLoS One 2020; 15:e0235613. [PMID: 32634176 PMCID: PMC7340288 DOI: 10.1371/journal.pone.0235613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
Germline variants inactivating the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome that implies an increased cancer risk, where colon and endometrial cancer are the most frequent. Identification of these pathogenic variants is important to identify endometrial cancer patients with inherited increased risk of new cancers, in order to offer them lifesaving surveillance. However, several other genes are also part of the MMR pathway. It is therefore relevant to search for variants in additional genes that may be associated with cancer risk by including all known genes involved in the MMR pathway. Next-generation sequencing was used to screen 22 genes involved in the MMR pathway in constitutional DNA extracted from full blood from 199 unselected endometrial cancer patients. Bioinformatic pipelines were developed for identification and functional annotation of variants, using several different software tools and custom programs. This facilitated identification of 22 exonic, 4 UTR and 9 intronic variants that could be classified according to pathogenicity. This study has identified several germline variants in genes of the MMR pathway that potentially may be associated with an increased risk for cancer, in particular endometrial cancer, and therefore are relevant for further investigation. We have also developed bioinformatics strategies to analyse targeted sequencing data, including low quality data and genomic regions outside of the protein coding exons of the relevant genes.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Talseth-Palmer
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Department of Research and Development, Møre og Romsdal Hospital Trust, Molde, Norway
| | - Mary McPhillips
- NSW Health Pathology, Molecular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | | | - Alexandre Xavier
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Sjursen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
45
|
Yang G, Dong K, Zhang Z, Zhang E, Liang B, Chen X, Huang Z. EXO1 Plays a Carcinogenic Role in Hepatocellular Carcinoma and is related to the regulation of FOXP3. J Cancer 2020; 11:4917-4932. [PMID: 32626539 PMCID: PMC7330697 DOI: 10.7150/jca.40673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exonuclease 1 (EXO1), a member of the RAD2 nuclease family, was first described as possessing 5' to 3' nuclease activity and 5' structure-specific endonuclease activity. Here, we show that EXO1 is significantly upregulated in HCC tumor tissues and that high EXO1 expression is significantly correlated with liver cirrhosis. We further demonstrate that EXO1 knockdown decreases proliferation and colony forming abilities of HCC cells in vitro and tumorigenicity in vivo, as well as decreases migration and invasive capabilities of HCC cells. Alternatively, EXO1 overexpression significantly increases the proliferation, colony forming ability, and migration and invasive capabilities of HCC cells in vitro. Additionally, we truncated a region upstream of the transcription start site (TSS) of EXO1 and used the region with the strongest transcriptional activity to predict that the transcription factor FOXP3 can bind to the EXO1 promoter. Bioinformatics analysis found that FOXP3 was positively correlated with EXO1 and luciferase reporter assays and RT-PCR confirmed that FOXP3 could enhance the transcriptional activity of EXO1. CCK-8 assays showed that depletion of FOXP3 further reduces cell proliferation ability after knocking down of EXO1 in vitro. Taken together, our findings indicate that EXO1 acts as an oncogene in HCC and its expression level is related to FOXP3 activity.
Collapse
Affiliation(s)
- Guang Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshuai Dong
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital, Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binyong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Nodder SB, Gummuluru S. Illuminating the Role of Vpr in HIV Infection of Myeloid Cells. Front Immunol 2019; 10:1606. [PMID: 31396206 PMCID: PMC6664105 DOI: 10.3389/fimmu.2019.01606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication in vivo. Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure in vivo, remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests that its major importance lies in overcoming restriction to virus replication in non-cycling myeloid cell populations, such as macrophages and dendritic cells. HIV-1 replication is attenuated in the absence of Vpr in myeloid cells such as monocyte-derived dendritic cells (MDDCs) and macrophages, and is correlated with the ability of Vpr to overcome a post-integration transcriptional defect in these cells. Intriguingly, recent identification of the human hub silencing (HUSH) complex as a target for DCAFCRL4-mediated degradation by numerous ancestral SIV Vpr alleles, and the Vpr paralog Vpx, signifies the potential function of HIV-1 Vpr to alter yet-to-be identified chromatin remodeling complexes and prevent host-mediated transcriptional repression of both invading viral genomes and pro-inflammatory responses. Myeloid cells constitute an important bridge between innate and adaptive immune responses to invading pathogens. Here, we seek to illustrate the numerous means by which Vpr manipulates the myeloid cellular environment and facilitates virus replication, myeloid cell-dependent HIV transmission, and systemic virus dissemination.
Collapse
Affiliation(s)
- Sarah Beth Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
47
|
Special Issue on DNA Replication Stress: Summary of Topics Covered. Int J Mol Sci 2019; 20:ijms20122934. [PMID: 31208075 PMCID: PMC6627082 DOI: 10.3390/ijms20122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022] Open
Abstract
A Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to mechanisms mediated at the molecular and cellular levels to respond to adverse genomic perturbations and DNA replication stress (https://www [...].
Collapse
|
48
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. DNA Repair (Amst) 2019; 78:1-6. [PMID: 30928815 DOI: 10.1016/j.dnarep.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Evidence indicates that the age-related neuropathological mechanisms associated with DNA repair genes may contribute to cognitive aging and Alzheimer's disease. In this study, we hypothesize that single nucleotide polymorphisms (SNPs) within 155 DNA repair genes may be linked to cognitive aging independently and/or through complex interactions in an older Taiwanese population. A total of 3,730 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) was administered to all subjects, and MMSE scores were used to measure cognitive functions. Our data showed that out of 1,652 SNPs, the rs1776181 (P = 1.47 × 10-5), rs1776177 (P = 8.42 × 10-7), rs1635510 (P = 7.97 × 10-6), and rs2526698 (P = 7.06 × 10-6) SNPs in the EXO1 gene were associated with cognitive aging. The association with these SNP remained significant after performing Bonferroni correction. Additionally, we found that interactions between the EXO1 and RAD51C genes influenced cognitive aging (P = 0.002). Finally, we pinpointed the influence of interactions between EXO1 and physical activity (P < 0.001) as well as between DCLRE1C and physical activity (P < 0.001). Our study indicated that DNA repair genes may contribute to susceptibility in cognitive aging independently as well as through gene-gene and gene-physical interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA; Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, 02215, USA; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|