1
|
Song Y, Duan Y, Luo H, Yun L, Zhang M, Tran NT, Zheng H, Zhou Q, Li S. Establishment of mud crab (Scylla paramamosain) spermatogonial stem cell line: A potential tool for immunological research. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110349. [PMID: 40254085 DOI: 10.1016/j.fsi.2025.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Spermatogonial stem cells (SSCs) can differentiate into sperm and are important for studying on genetic information transmission of animals. However, the establishment of the SSC line in crustaceans is still in its infancy. This study aimed to establish a method for the isolation, culture, and identification of SSCs derived from the gonad of a marine crustacean (mud crab, Scylla paramamosain), and evaluate their differentiation ability and potential application in immunological research, in vitro. SSCs showed robust growth, proliferation, and passaging ability (up to 35 passages) in germ cell culture medium. Proteomic analysis showed that the protein expression profile of SSC was closely related to the gonadal tissue. SSCs were found to be able to express male-specific and pluripotent markers, such as CD9, PIWI, DDX4, DAZL, NANOG, SOX2, and EPHA1. Furthermore, SSCs were differentiated into osteoblasts and adipocytes under in vitro induction. Green fluorescent protein (GFP), packaged by lentivirus, was able to be overexpressed in SSCs after infection. In addition, the infection of white spot syndrome virus (WSSV) simulated the expression of inflammation-associated factors, including TRAF6, TNF-α, MyD88, Dorsal, and Relish, and apoptosis-related genes (BAX and Bcl2) in SSCs. Thus, SSCs were initially isolated and characterized from mud crabs for the first time. Our results proved that SSCs can be used in reproduction technology, germplasm conservation, and immunological studies in crustaceans.
Collapse
Affiliation(s)
- Ying Song
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanchuang Duan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Haiqing Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Linying Yun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Holtzhausen C, Heil L, Klingel K, Fox H, Gummert J, Gärtner A, Schmidt A, Krüger M, Kirfel G, van der Ven PFM, Milting H, Clemen CS, Schröder R, Fürst DO, Tiesmeier J. Sudden cardiac death, arrhythmogenic cardiomyopathy and intercalated disc pathology due to reduced filamin C protein levels: a matter of life and death. Hum Mol Genet 2025; 34:726-738. [PMID: 39895064 DOI: 10.1093/hmg/ddaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Mutations in the human FLNC gene encoding filamin C (FLNc) cause a broad spectrum of sporadic and familial cardiomyopathies and myopathies. We report on the genetic, clinical, morphological and biochemical findings in a German family harboring an FLNC variant that leads to severe cardiac disease comprising sudden cardiac death and arrhythmogenic cardiomyopathy. Genetic analysis identified a novel heterozygous FLNC variant in exon 16 (NM_001458.4:c.2495_2498delAGTA, het; p.K832TfsX45) in i) the index patient suffering from dilated cardiomyopathy necessitating heart transplantation, ii) a son, who died from sudden cardiac death, iii) a second son, who survived an episode of sudden cardiac arrest and iv) a third son affected by isolated skeletal muscle myopathy. FLNc protein levels were markedly reduced in cardiac tissue obtained from the index patient, implying that the p.K832TfsX45 FLNc variant most probably caused nonsense-mediated decay of the corresponding mRNA. Morphological analysis of the diseased cardiac tissue revealed extensive fibrotic remodeling, and marked degenerative changes of the contractile apparatus of cardiomyocytes and severe structural alterations of intercalated discs. Connexin-43 signal intensity at intercalated discs was diminished and FLNc labelling of myofibrils was attenuated or even absent. Proteome analyses demonstrated complex alterations of extracellular matrix and intercalated disc proteins. Our findings demonstrate that this novel, truncating FLNC mutation likely leads to haploinsufficiency, thereby causing a deleterious sequence of degenerative changes of cardiac tissue with extensive fibrotic remodeling and intercalated disc pathology as the structural basis for FLNC-related cardiomyopathy with life-threatening cardiac arrhythmias.
Collapse
MESH Headings
- Female
- Humans
- Male
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/pathology
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Arrhythmogenic Right Ventricular Dysplasia/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Connexin 43/metabolism
- Connexin 43/genetics
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Filamins/genetics
- Filamins/metabolism
- Mutation
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pedigree
Collapse
Affiliation(s)
- Christian Holtzhausen
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Lorena Heil
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henrik Fox
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Andreas Schmidt
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Marcus Krüger
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jens Tiesmeier
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MLK-Hospital, Voedestr. 79, Luebbecke, Campus OWL, Ruhr-University Bochum, 32312 Lübbecke, Germany
| |
Collapse
|
3
|
Wang X, Lang Z, Yan Z, Xu J, Zhang J, Jiao L, Zhang H. Dilated cardiomyopathy: from genes and molecules to potential treatments. Mol Cell Biochem 2025:10.1007/s11010-025-05269-0. [PMID: 40155570 DOI: 10.1007/s11010-025-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Dilated cardiomyopathy is a myocardial condition marked by the enlargement of the heart's ventricular chambers and the gradual decline in systolic function, frequently resulting in congestive heart failure. Dilated cardiomyopathy has obvious familial characteristics, and mutations in related pathogenic genes can account for about 50% of patients with dilated cardiomyopathy. The most common genes related to dilated cardiomyopathy include TTN, LMNA, MYH7, etc. With more and more research on these genes, it will undoubtedly provide more potential targets and therapeutic pathways for the treatment of dilated cardiomyopathy. In addition, myocardial inflammation, myocardial metabolism abnormalities and cardiomyocyte apoptosis all have an important impact on the pathogenesis of dilated cardiomyopathy. Approximately half of sudden deaths among children and adolescents, along with the majority of patients undergoing heart transplantation, stem from cardiomyopathy. Therefore, precise and prompt clinical diagnosis holds paramount importance. Currently, diagnosis primarily hinges on the patient's medical background and imaging tests, with the significance of genetic testing steadily gaining prominence. The primary treatment for dilated cardiomyopathy remains heart transplantation. However, the scarcity of donors and the risk of severe immune rejection underscore the pressing need for novel therapies. Presently, research is actively exploring preclinical treatments like stem cell therapy as potential solutions.
Collapse
Affiliation(s)
- Xiumei Wang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zekun Lang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zeyi Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jinyuan Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Lianhang Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China.
| |
Collapse
|
4
|
Di Giulio V, Canciello A, Carletti E, De Luca A, Giordano A, Morrione A, Berardinelli J, Russo V, Solari D, Cavallo LM, Barboni B. The dual nature of KLHL proteins: From cellular regulators to disease drivers. Eur J Cell Biol 2025; 104:151483. [PMID: 40101609 DOI: 10.1016/j.ejcb.2025.151483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The Kelch-like (KLHL) protein family, characterized by its conserved BTB, BACK, and Kelch domains, serves as substrate adaptors for Cullin 3-RING ligases (CRL3), facilitating the ubiquitination and degradation of specific target proteins. Through this mechanism, KLHL proteins regulate numerous physiological processes, including cytoskeletal organization, oxidative stress response, and cell cycle progression. Dysregulation of KLHL proteins-via mutations or abnormal expression-has been implicated in various pathological conditions, including neurodegenerative disorders, cancer, cardiovascular diseases, and hereditary syndromes. This review provides a comprehensive overview of the physiological and pathological roles of KLHL proteins, emphasizing their specific substrates and mechanisms of action. By integrating structural and mechanistic insights with translational research, this review underscores the potential of KLHL proteins as promising therapeutic targets, offering new opportunities to combat a wide spectrum of complex diseases.
Collapse
Affiliation(s)
- Verdiana Di Giulio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonella De Luca
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States; Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jacopo Berardinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Domenico Solari
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Luigi Maria Cavallo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| |
Collapse
|
5
|
Schoonvelde SA, Zwetsloot PP, Yap SC, Hirsch A, van Slegtenhorst MA, Verhagen JM, Michels M. Ventricular fibrillation in patients with pathogenic filamin C variants: Even a possibility with normal left ventricular ejection fraction and absent late gadolinium enhancement. HeartRhythm Case Rep 2025; 11:198-202. [PMID: 40182933 PMCID: PMC11962988 DOI: 10.1016/j.hrcr.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Affiliation(s)
- Stephan A.C. Schoonvelde
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter-Paul Zwetsloot
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Sing-Chien Yap
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Judith M.A. Verhagen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Ilchuk LA, Kochegarova KK, Baikova IP, Safonova PD, Bruter AV, Kubekina MV, Okulova YD, Minkovskaya TE, Kuznetsova NA, Dolmatova DM, Ryabinina AY, Mozhaev AA, Belousov VV, Ershov BP, Timashev PS, Filatov MA, Silaeva YY. Mutations in Filamin C Associated with Both Alleles Do Not Affect the Functioning of Mice Cardiac Muscles. Int J Mol Sci 2025; 26:1409. [PMID: 40003875 PMCID: PMC11855563 DOI: 10.3390/ijms26041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Filamin C (FLNC) is a structural protein of muscle fibers. Mutations in the FLNC gene are known to cause myopathies and cardiomyopathies in humans. Here we report the generation by a CRISPR/Cas9 editing system injected into zygote pronuclei of two mouse strains carrying filamin C mutations-one of them (AGA) has a deletion of three nucleotides at position c.7418_7420, causing E>>D substitution and N deletion at positions 2472 and 2473, respectively. The other strain carries a deletion of GA nucleotides at position c.7419_7420, leading to a frameshift and a premature stop codon. Homozygous animals (FlncAGA/AGA and FlncGA/GA) were embryonically lethal. We determined that FlncGA/GA embryos died prior to the E12.5 stage and illustrated delayed development after the E9.5 stage. We performed histological analysis of heart tissue and skeletal muscles of heterozygous strains carrying mutations in different combinations (FlncGA/wt, FlncAGA/wt, and FlncGA/AGA). By performing physiological tests (grip strength and endurance tests), we have shown that heterozygous animals of both strains (FlncGA/wt, FlncAGA/wt) are functionally indistinguishable from wild-type animals. Interestingly, compound heterozygous mice (FlncGA/AGA) are viable, develop normally, reach puberty and it was verified by ECG and Eco-CG that their cardiac muscle is functionally normal. Intriguingly, FlncGA/AGA mice demonstrated better results in the grip strength physiological test in comparison to WT animals. We also propose a structural model that explains the complementary interaction of two mutant variants of filamin C.
Collapse
Affiliation(s)
- Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ksenia K. Kochegarova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana E. Minkovskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Nadezhda A. Kuznetsova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna Yu. Ryabinina
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
| | - Andrey A. Mozhaev
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Vsevolod V. Belousov
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim A. Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
7
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2025; 155:298-315. [PMID: 38906272 PMCID: PMC12002393 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Dong J, Zhang W, Chen Q, Zha L. Identification of a Missense Mutation in the FLNC Gene from a Chinese Family with Restrictive Cardiomyopathy. J Multidiscip Healthc 2024; 17:5363-5373. [PMID: 39582878 PMCID: PMC11585995 DOI: 10.2147/jmdh.s494831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Objective Restrictive cardiomyopathy (RCM) is a heterogenous cardiomyopathy with various causes, and genetic variants take an important part of the pathogenesis. Whole-exome sequencing (WES) is effective to discover genes that cause genetic diseases. By using WES, we attempted to identify the genetic cause of an RCM family and clarify the clinical diagnosis of the patient and then provide a personalized treatment plan. Materials and Methods Blood samples were obtained from the proband and his healthy parents. WES and Sanger sequencing were performed to identify the possible pathogenic gene. Co-segregation analysis was conducted for candidate variants, and the allele frequency was checked in databases including Ensembl, Exome Aggregation Consortium (ExAC) and Human Gene Mutation Database (HGMD). Furthermore, the potential effect of variant was predicted using various-free software such as SIFT, Polyphen-2 and Mutation Taster and the conservation was tested using multiple sequence alignments by ClustalX. Results The proband was a 20 years old boy with severe heart failure symptoms including dyspnea, massive ascites, edema of both lower limbs and chest congestion. Echocardiography showed significant biatrial enlargement, normal left ventricular wall thickness and preserved systolic function of both ventricles. A missense mutation in FLNC (c.6451G>A, p.G2151S), encoded filamin-C was detected in proband by WES and Sanger sequencing, while it was not be found in his parents, we supposed that the FLNC mutation (c.6451G>A, p.G2151S) may be a de-novo mutation. Through multiple functional predictions, we found that it is a deleterious mutation and the mutation in filamin-C could alter its structure and normal function, contributing to RCM. Conclusion Here, an FLNC missense mutation (c.6451G>A, p.G2151S) known to be pathogenic in hypertrophic cardiomyopathy, was found to be associated with RCM, indicating the genetic overlap among cardiomyopathies. This study provides insights into Phenotype-Genotype Correlations of RCM in patients with FLNC mutations.
Collapse
Affiliation(s)
- Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenjuan Zhang
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Pediatric Cardiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People’s Republic of China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
9
|
Dong R, Zhou X, Zhang H, Shi B, Liu G, Liu Y. Novel FLNC variants in pediatric cardiomyopathy: an insight into disease mechanisms. Hum Genomics 2024; 18:118. [PMID: 39472949 PMCID: PMC11520881 DOI: 10.1186/s40246-024-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND FLNC gene variants have predominantly been reported in adult populations with cardiomyopathies, and early-onset cases are less common. The genotype-phenotype relationship indicates that dilated cardiomyopathy (DCM) is often associated with FLNC truncating variants. METHODS We conducted a comprehensive genetic analysis using next generation sequencing (NGS) to identify FLNC variants in patients with cardiovascular conditions. Detailed phenotypic and variant analyses were performed to characterize the clinical features and genetic alterations. Minigene assays and structural modeling were used to investigate the pathogenicity caused by the identified variants. RESULTS In a cohort of 58 patients, novel heterozygous FLNC variants, c.3962A > T (p.Glu1321Val) and c.7543C > T (p.Leu2515Phe), were identified in patients presenting with dilated and mixed restrictive/hypertrophic cardiomyopathies, respectively. The c.3962A > T variant disrupted normal splicing, as demonstrated through the splicing prediction tool and minigene studies, further emphasizing its pathogenic potential. CONCLUSION For missense variants of FLNC in patients with DCM, the splicing effect of the variant should be carefully checked. Early detection and intervention are crucial given the high risk of sudden cardiac death and severe cardiac complications.
Collapse
Affiliation(s)
- Rui Dong
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Xin Zhou
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Bingyi Shi
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| | - Guohua Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Department of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital, Jinan), Jinan, China.
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| |
Collapse
|
10
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
12
|
Mehdizadeh K, Soveizi M, Askarinejad A, Elahifar A, Masoumi T, Fazelifar AF, Asadian S, Maleki M, Kalayinia S. Combination of FLNC and JUP variants causing arrhythmogenic cardiomyopathy in an Iranian family with different clinical features. BMC Cardiovasc Disord 2024; 24:442. [PMID: 39180012 PMCID: PMC11342628 DOI: 10.1186/s12872-024-04126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) characterized by progressive myocardial loss and replacement with fibro-fatty tissue is a major cause of sudden cardiac death (SCD). In particular, ACM with predominantly left ventricular involvement, known as arrhythmogenic left ventricular cardiomyopathy (ALVC), has a poor prognosis. METHODS The proband underwent whole-exome sequencing (WES) to determine the etiology of ALVC. Family members were then analyzed using PCR and Sanger sequencing. Clinical evaluations including 12-lead ECG, transthoracic echocardiography, and cardiac MRI were performed for all available first-degree relatives. RESULTS WES identified two variants in the FLNC (c.G3694A) and JUP (c.G1372A) genes, the combination of which results in ALVC and SCD. CONCLUSION The present study comprehensively investigates the involvement of two discovered variants of FLNC and JUP in the pathogenesis of ALVC. More study is necessary to elucidate the genetic factors involved in the etiology of ALVC.
Collapse
Affiliation(s)
- Kasra Mehdizadeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Soveizi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Askarinejad
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Elahifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tannaz Masoumi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Arnautu DA, Cozma D, Lala IR, Arnautu SF, Tomescu MC, Andor M. Risk Assessment and Personalized Treatment Options in Inherited Dilated Cardiomyopathies: A Narrative Review. Biomedicines 2024; 12:1643. [PMID: 39200108 PMCID: PMC11351202 DOI: 10.3390/biomedicines12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the worldwide impact of heart failure, it is crucial to develop approaches that can help us comprehend its root cause and make accurate predictions about its outcome. This is essential for lowering the suffering and death rates connected with this widespread illness. Cardiomyopathies frequently result from genetic factors, and the study of heart failure genetics is advancing quickly. Dilated cardiomyopathy (DCM) is the most prevalent kind of cardiomyopathy, encompassing both genetic and nongenetic abnormalities. It is distinguished by the enlargement of the left ventricle or both ventricles, accompanied by reduced contractility. The discovery of the molecular origins and subsequent awareness of the molecular mechanism is broadening our knowledge of DCM development. Additionally, it emphasizes the complicated nature of DCM and the necessity to formulate several different strategies to address the diverse underlying factors contributing to this disease. Genetic variants that can be transmitted from one generation to another can be a significant contributor to causing family or sporadic hereditary DCM. Genetic variants also play a significant role in determining susceptibility for acquired triggers for DCM. The genetic causes of DCM can have a large range of phenotypic expressions. It is crucial to select patients who are most probable to gain advantages from genetic testing. The purpose of this research is to emphasize the significance of identifying genetic DCM, the relationships between genotype and phenotype, risk assessment, and personalized therapy for both those affected and their relatives. This approach is expected to gain importance once treatment is guided by genotype-specific advice and disease-modifying medications.
Collapse
Affiliation(s)
- Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan-Radu Lala
- Department of Cardiology, Western University Vasile Goldis, 310025 Arad, Romania
| | - Sergiu-Florin Arnautu
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Minodora Andor
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
14
|
Orozco Burbano JD, Palacios CH, Saldarriaga Giraldo CI, Durango Gutiérrez LF, Rendón Isaza JC. [Hypertrophic cardiomyopathy with mid-ventricular phenotype and filamin C mutation, an uncommon case report]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2024; 5:167-170. [PMID: 39411012 PMCID: PMC11473073 DOI: 10.47487/apcyccv.v5i3.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024]
Abstract
Hypertrophic cardiomyopathy has a different presentation spectrum, including left ventricular outflow tract obstruction. The most common phenotype is the asymmetric septal variant, with the mid-apical variant being rare. On the other hand, there are specific mutations associated with hypertrophic cardiomyopathy, with the Filamin C variant being an unusual condition in these patients. Therefore, we present the case of a 23-year-old male patient with a diagnosis of hypertrophic cardiomyopathy in whom a Filamin C variant was documented. Given the inadequate response and persistence of symptoms to medical management, a myectomy procedure was performed with a transapical approach, with subsequent improvement in clinical symptoms and outflow tract obstruction. This case illustrates a rare variant with a surgical approach different from the conventional transaortic approach, with marked improvement in symptoms.
Collapse
Affiliation(s)
- Juan D. Orozco Burbano
- Departamento de Cardiología Clínica, Universidad Pontificia Bolivariana, Medellín, Colombia.Universidad Pontificia BolivarianaDepartamento de Cardiología ClínicaUniversidad Pontificia BolivarianaMedellínColombia
- Clínica CardioVID, Medellín, Colombia.Clínica CardioVIDMedellínColombia
| | - Carlos H. Palacios
- Departamento de Cardiología Clínica, Universidad Nacional Federico Villarreal, Lima, Perú. Universidad Nacional Federico VillarrealDepartamento de Cardiología ClínicaUniversidad Nacional Federico VillarrealLimaPeru
| | - Clara I. Saldarriaga Giraldo
- Clínica CardioVID, Medellín, Colombia.Clínica CardioVIDMedellínColombia
- Departamento de cardiología e Insuficiencia cardiaca, Universidad Pontificia Bolivariana, Medellín, ColombiaUniversidad Pontificia BolivarianaDepartamento de cardiología e Insuficiencia cardiacaUniversidad Pontificia BolivarianaMedellínColombia
- Universidad de Antioquia. Medellín, Colombia.Universidad de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Luisa F. Durango Gutiérrez
- Clínica CardioVID, Medellín, Colombia.Clínica CardioVIDMedellínColombia
- Departamento de Ecocardiografía, Universidad Pontificia Bolivariana, Medellín, Colombia.Universidad Pontificia BolivarianaDepartamento de EcocardiografíaUniversidad Pontificia BolivarianaMedellínColombia
| | - Juan C. Rendón Isaza
- Clínica CardioVID, Medellín, Colombia.Clínica CardioVIDMedellínColombia
- Departamento de Cirugía Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia.Universidad Pontificia BolivarianaDepartamento de Cirugía CardiovascularUniversidad Pontificia BolivarianaMedellínColombia
| |
Collapse
|
15
|
Bueno Marinas M, Cason M, Bariani R, Celeghin R, De Gaspari M, Pinci S, Cipriani A, Rigato I, Zorzi A, Rizzo S, Thiene G, Perazzolo Marra M, Corrado D, Basso C, Bauce B, Pilichou K. A Comprehensive Analysis of Non-Desmosomal Rare Genetic Variants in Arrhythmogenic Cardiomyopathy: Integrating in Padua Cohort Literature-Derived Data. Int J Mol Sci 2024; 25:6267. [PMID: 38892455 PMCID: PMC11173278 DOI: 10.3390/ijms25116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.B.M.); (M.C.); (R.B.); (R.C.); (M.D.G.); (S.P.); (A.C.); (I.R.); (A.Z.); (S.R.); (G.T.); (M.P.M.); (D.C.); (B.B.); (K.P.)
| | | | | |
Collapse
|
16
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Yang Y, He X, Li F, He S, Liu M, Li M, Xia F, Su W, Liu G. Animal-derived food allergen: A review on the available crystal structure and new insights into structural epitope. Compr Rev Food Sci Food Saf 2024; 23:e13340. [PMID: 38778570 DOI: 10.1111/1541-4337.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.
Collapse
Affiliation(s)
- Yang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Shaogui He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian, China
| | - Mengsi Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Wenjin Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
18
|
Muranova LK, Vostrikova VM, Shatov VM, Sluchanko NN, Gusev NB. Interaction of the C-terminal immunoglobulin-like domains (Ig 22-24) of filamin C with human small heat shock proteins. Biochimie 2024; 219:146-154. [PMID: 38016530 DOI: 10.1016/j.biochi.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Small heat shock proteins are the well-known regulators of the cytoskeleton integrity, yet their complexes with actin-binding proteins are underexplored. Filamin C, a dimeric 560 kDa protein, abundant in cardiac and skeletal muscles, crosslinks actin filaments and contributes to Z-disc formation and membrane-cytoskeleton attachment. Here, we analyzed the interaction of a human filamin C fragment containing immunoglobulin-like domains 22-24 (FLNC22-24) with five small heat shock proteins (HspB1, HspB5, HspB6, HspB7, HspB8) and their α-crystallin domains. On size-exclusion chromatography, only HspB7 or its α-crystallin domain formed complexes with FLNC22-24. Despite similar isoelectric points of the small heat shock proteins analyzed, only HspB7 and its α-crystallin domain interacted with FLNC22-24 on native gel electrophoresis. Crosslinking with glutaraldehyde confirmed the formation of complexes between HspB7 (or its α-crystallin domain) and the filamin С fragment, inhibiting intersubunit FLNC crosslinking. These data are consistent with the structure modeling using Alphafold. Thus, the C-terminal fragment (immunoglobulin-like domains 22-24) of filamin C contains the site for HspB7 (or its α-crystallin domain) interaction, which competes with FLNC22-24 dimerization and its probable interaction with different target proteins.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Varvara M Vostrikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
19
|
Lazzarino M, Zanetti M, Chen SN, Gao S, Peña B, Lam CK, Wu JC, Taylor MRG, Mestroni L, Sbaizero O. Defective Biomechanics and Pharmacological Rescue of Human Cardiomyocytes with Filamin C Truncations. Int J Mol Sci 2024; 25:2942. [PMID: 38474188 PMCID: PMC10932268 DOI: 10.3390/ijms25052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.
Collapse
Affiliation(s)
- Marco Lazzarino
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Michele Zanetti
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Suet Nee Chen
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Shanshan Gao
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Brisa Peña
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Bioengineering Department, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Matthew R. G. Taylor
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Orfeo Sbaizero
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Engineering and Architecture Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
20
|
Liu Y, Tan Y, Luo Y, Li X, Hong H. Evidence of myofibrillar protein oxidation and degradation induced by exudates during the thawing process of bighead carp fillets. Food Chem 2024; 434:137396. [PMID: 37708574 DOI: 10.1016/j.foodchem.2023.137396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Oxidation of myofibrillar proteins (MPs) is considered as an important reason for the quality deterioration of frozen stored fish fillets, but the impact of the thawing process on the oxidation and thereby property changes of MPs has been largely neglected. In this study, we incubated MPs for 24 h at 4 °C with thawing exudates collected from fish fillets stored at -20 °C for 0-5 months to mimic the thawing process. Exudates treatment induced the increased content of carbonyls, Schiff bases, and dityrosine, structural changes, and the decreased water-holding capacity of MPs. SDS-PAGE and LC-MS/MS results indicated that exudates caused the degradation of MPs with the potential involvement of lipid oxidation products, hemoglobin, and proteases. Prolonged frozen storage decreased antioxidant enzyme activity and increased lipid oxidation products in exudates, which might be the reason for exudates from fillets frozen for longer periods can cause more severe oxidation and degradation of MPs.
Collapse
Affiliation(s)
- Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
21
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
22
|
Huang W, Zhang S, Lin J, Ding Y, Jiang N, Zhang J, Zhao H, Chen F. Rare loss-of-function variants in FLNB cause non-syndromic orofacial clefts. J Genet Genomics 2024; 51:222-229. [PMID: 37003352 DOI: 10.1016/j.jgg.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb-/- embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Shiying Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Nan Jiang
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Feng Chen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
23
|
Onnée M, Bénézit A, Bastu S, Nadaj-Pakleza A, Lannes B, Ader F, Thèze C, Cintas P, Cances C, Carlier RY, Metay C, Cossée M, Malfatti E. The FLNC Ala1186Val Variant Linked to Cytoplasmic Body Myopathy and Cardiomyopathy Causes Protein Instability. Biomedicines 2024; 12:322. [PMID: 38397924 PMCID: PMC10887408 DOI: 10.3390/biomedicines12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Filamin C-related disorders include myopathies and cardiomyopathies linked to variants in the FLNC gene. Filamin C belongs to a family of actin-binding proteins involved in sarcomere stability. This study investigates the pathogenic impact of the FLNC c.3557C > T (p.Ala1186Val) pathogenic variant associated with an early-onset cytoplasmic body myopathy and cardiomyopathy in three unrelated patients. We performed clinical imaging and myopathologic and genetic characterization of three patients with an early-onset myopathy and cardiomyopathy. Bioinformatics analysis, variant interpretation, and protein structure analysis were performed to validate and assess the effects of the filamin C variant. All patients presented with a homogeneous clinical phenotype marked by a severe contractural myopathy, leading to loss of gait. There was prominent respiratory involvement and restrictive or hypertrophic cardiomyopathies. The Ala1186Val variant is located in the interstrand loop involved in intradomain stabilization and/or interdomain interactions with neighbor Ig-like domains. 3D modeling highlights local structural changes involving nearby residues and probably impacts the protein stability, causing protein aggregation in the form of cytoplasmic bodies. Myopathologic studies have disclosed the prominent aggregation and upregulation of the aggrephagy-associated proteins LC3B and p62. As a whole, the Ala1186Val variant in the FLNC gene provokes a severe myopathy with contractures, respiratory involvement, and cardiomyopathy due to protein aggregation in patients' muscles.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; (M.O.); (S.B.)
| | - Audrey Bénézit
- Neurologie et Réanimation Pédiatrique, Assistance Publique–Hôpitaux de Paris, Université Paris Saclay, Département Médico-Universitaire Santé de l’Enfant et de l’Adolescent, Hôpital Raymond Poincaré, 92380 Garches, France;
| | - Sultan Bastu
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; (M.O.); (S.B.)
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord Est Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France;
- European Reference Network, EURO-NMD, Neuromuscular Centre at Hautepierre Hospital, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France
| | - Béatrice Lannes
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France;
| | - Flavie Ader
- Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Département Médico-Universitaire BioGem, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, 75013 Paris, France;
- Institut National de la Santé et de la Recherche Médicale UMRS1166, Université Paris Cité, 75006 Paris, France
| | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, Université de Montpellier, 34095 Montpellier, France;
| | - Pascal Cintas
- Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbes), Département de Neurologie, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (P.C.); (M.C.)
| | - Claude Cances
- Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbes), Unité de Neurologie Pédiatrique, Hôpital des Enfants, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Robert-Yves Carlier
- Assistance Publique–Hôpitaux de Paris, Groupe Hospitalier Universitaire Paris Saclay, Département Médico-Universitaire Smart Imaging, Service d’Imagerie Médicale, Institut National de la Santé et de la Recherche Médicale UMR1179, Hôpital Raymond Poincaré, 92380 Garches, France;
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Groupe Hospitalier La Pitié-Salpêtrière, 75013 Paris, France;
| | - Mireille Cossée
- Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbes), Département de Neurologie, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (P.C.); (M.C.)
- PhyMedExp, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, 34295 Montpellier, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; (M.O.); (S.B.)
- Assistance Publique–Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Hôpital Henri Mondor, 94000 Créteil, France
| |
Collapse
|
24
|
Jové-Juncà T, Crespo-Piazuelo D, González-Rodríguez O, Pascual M, Hernández-Banqué C, Reixach J, Quintanilla R, Ballester M. Genomic architecture of carcass and pork traits and their association with immune capacity. Animal 2024; 18:101043. [PMID: 38113634 DOI: 10.1016/j.animal.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Carcass and pork traits have traditionally been considered of prime importance in pig breeding programmes. However, the changing conditions in modern farming, coupled with antimicrobial resistance issues, are raising the importance of health and robustness-related traits. Here, we explore the genetic architecture of carcass and pork traits and their relationship with immunity phenotypes in a commercial Duroc pig population. A total of nine traits related to fatness, lean content and meat pH were measured at slaughter (∼190 d of age) in 378 pigs previously phenotyped (∼70 d of age) for 36 immunity-related traits, including plasma concentrations of immunoglobulins, acute-phase proteins, leukocytes subpopulations and phagocytosis. Our study showed medium to high heritabilities and strong genetic correlations between fatness, lean content and meat pH at 24 h postmortem. Genetic correlations were found between carcass and pork traits and white blood cells. pH showed strong positive genetic correlations with leukocytes and eosinophils, and strong negative genetic correlations with haemoglobin, haematocrit and cytotoxic T cell proportion. In addition, genome-wide association studies (GWASs) pointed out four significantly associated genomic regions for lean meat percentages in different muscles, ham fat, backfat thickness, and semimembranosus pH at 24 h. The functional annotation of genes located in these regions reported a total of 14 candidate genes, with BGN, DPP10, LEPR, LEPROT, PDE4B and SLC6A8 being the strongest candidates. After performing an expression GWAS for the expression of these genes in muscle, two signals were detected in cis for the BGN and SLC6A8 genes. Our results indicate a genetic relationship between carcass fatness, lean content and meat pH with a variety of immunity-related traits that should be considered to improve immunocompetence without impairing production traits.
Collapse
Affiliation(s)
- T Jové-Juncà
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - D Crespo-Piazuelo
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - O González-Rodríguez
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M Pascual
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - C Hernández-Banqué
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - J Reixach
- Selección Batallé S.A., Av. dels Segadors s/n, 17421 Riudarenes, Girona, Spain
| | - R Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
25
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Schoonvelde SAC, Ruijmbeek CWB, Hirsch A, van Slegtenhorst MA, Wessels MW, von der Thüsen JH, Baas AF, Stroeks SLVM, Verdonschot JAJ, van der Zwaag PA, Verhagen JMA, Michels M. Phenotypic variability of filamin C-related cardiomyopathy: Insights from a novel Dutch founder variant. Heart Rhythm 2023; 20:1512-1521. [PMID: 37562486 DOI: 10.1016/j.hrthm.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) can be caused by truncating variants in the filamin C gene (FLNC). A new pathogenic FLNC variant, c.6864_6867dup, p.(Val2290Argfs∗23), was recently identified in Dutch patients with DCM. OBJECTIVES The report aimed to evaluate the phenotype of FLNC variant carriers and to determine whether this variant is a founder variant. METHODS Clinical and genetic data were retrospectively collected from variant carriers. Cardiovascular magnetic resonance studies were reassessed. Haplotypes were reconstructed to determine a founder effect. The geographical distribution and age of the variant were determined. RESULTS Thirty-three individuals (of whom 23 [70%] were female) from 9 families were identified. Sudden cardiac death was the first presentation in a carrier at the age of 28 years. The median age at diagnosis was 41 years (range 19-67 years). The phenotype was heterogeneous. DCM with left ventricular dilation and reduced ejection fraction (<45%) was present in 11 (33%) individuals, 3 (9%) of whom underwent heart transplantation. Cardiovascular magnetic resonance showed late gadolinium enhancement in 13 (65%) of the assessed individuals, primarily in a ringlike distribution. Nonsustained ventricular arrhythmias were detected in 6 (18%), and 5 (15%) individuals received an implantable cardioverter-defibrillator. A shared haplotype spanning 2.1 Mb was found in all haplotyped individuals. The variant originated between 275 and 650 years ago. CONCLUSION The pathogenic FLNC variant c.6864_6867dup, p.(Val2290Argfs∗23) is a founder variant originating from the south of the Netherlands. Carriers are susceptible to developing heart failure and ventricular arrhythmias. The cardiac phenotype is characterized by ringlike late gadolinium enhancement, even in individuals without significantly reduced left ventricular function.
Collapse
Affiliation(s)
- Stephan A C Schoonvelde
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Claudine W B Ruijmbeek
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sophie L V M Stroeks
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands; Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands; Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Du T, Ma C, Wang Z, Hao Y, Zhang W. Distribution and Degradation of Pork Filamin during Postmortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15287-15295. [PMID: 37788342 DOI: 10.1021/acs.jafc.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The filamin C (FLNC) was hypothesized to be colocalized with its certain binding partners in pork tissues and calpain as well as caspase was assumed responsible for the postmortem degradation of FLNC. Therefore, the specific distribution of pork FLNC and its degradation pattern during postmortem aging were investigated in this study. The longissimus thoracis muscles from 12 pigs were removed from the carcasses and then aged at 4 °C for 1, 6, 12, 24, 72, and 168 h, respectively. The FLNC signals appeared to localize in subsarcolemmal areas by cross-sectional images, while the localization was found surrounding the myofibrils at the level of the Z-discs in longitudinal sections. FLNC displayed a highly overlapped spatial colocalization with actin or integrin. Western blot results showed that the intact 290 kDa FLNC was rapidly degraded to produce an approximately 280 kDa band. An almost overlapped distribution pattern was observed between FLNC and μ-calpain or caspase-3 in porcine skeletal muscle cells. Moreover, both the μ-calpain inhibitor and the caspase-3 inhibitor could inhibit the degradation of FLNC in porcine LT muscles during postmortem aging.
Collapse
Affiliation(s)
- Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuejing Hao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Perez-Garcia J, Pino-Yanes M, Plender EG, Everman JL, Eng C, Jackson ND, Moore CM, Beckman KB, Medina V, Sharma S, Winnica DE, Holguin F, Rodríguez-Santana J, Villar J, Ziv E, Seibold MA, Burchard EG. Epigenomic response to albuterol treatment in asthma-relevant airway epithelial cells. Clin Epigenetics 2023; 15:156. [PMID: 37784136 PMCID: PMC10546710 DOI: 10.1186/s13148-023-01571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables. RESULTS We followed a discovery and validation study design to characterize albuterol-induced DNAm changes in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome-wide association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs genome-wide associated with repeated-use albuterol treatment (p < 9 × 10-8). Albuterol predominantly induced a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 76%, p value = 3.3 × 10-5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate [FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross-tissue validated in bronchial epithelial cells at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 × 10-14 ≤ p ≤ 6.60 × 10-5). Additionally, hypomethylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG cg23032799 (CREB3L1) (p = 0.004). Gene-set enrichment analyses revealed that epigenomic modifications of albuterol could participate in asthma-relevant processes (e.g., IL-2, TNF-α, and NF-κB signaling pathways). Finally, nine differentially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p value < 0.05). CONCLUSIONS This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary airway epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affecting biological pathways relevant to asthma.
Collapse
Grants
- R01 ES015794 NIEHS NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01ES015794, R21ES24844 NIEHS NIH HHS
- UM1 HG008901 NHGRI NIH HHS
- R01MD010443, R56MD013312 NIMHD NIH HHS
- R01 HL135156 NHLBI NIH HHS
- R01 HL128439 NHLBI NIH HHS
- R01 HL117004 NHLBI NIH HHS
- R21 ES024844 NIEHS NIH HHS
- R01 HL117626 NHLBI NIH HHS
- R56 MD013312 NIMHD NIH HHS
- R01 MD010443 NIMHD NIH HHS
- R01 HL155024 NHLBI NIH HHS
- R01HL155024-01, HHSN268201600032I, 3R01HL-117626-02S1, HHSN268201800002I, 3R01HL117004-02S3, 3R01HL-120393-02S1, R01HL117004, R01HL128439, R01HL135156, X01HL134589 NHLBI NIH HHS
- HHSN268201600032C NHLBI NIH HHS
- U24 HG008956 NHGRI NIH HHS
- Ministerio de Universidades
- Ministerio de Ciencia e Innovación
- Instituto de Salud Carlos III
- National Heart, Lung, and Blood Institute
- National Human Genome Research Institute
- National Institute of Environmental Health Sciences
- National Institute on Minority Health and Health Disparities
- The Centers for Common Disease Genomics of the Genome Sequencing Program
- Tobacco-Related Disease Research Program
- Sandler Family Foundation
- American Asthma Foundation
- Amos Medical Faculty Development Program from the Robert Wood Johnson Foundation
- Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain.
| | - Elizabeth G Plender
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center (UMNGC), Minneapolis, MN, USA
| | | | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Efrain Winnica
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, ON, Canada
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
29
|
Zhou X, Fang X, Ithychanda SS, Wu T, Gu Y, Chen C, Wang L, Bogomolovas J, Qin J, Chen J. Interaction of Filamin C With Actin Is Essential for Cardiac Development and Function. Circ Res 2023; 133:400-411. [PMID: 37492967 PMCID: PMC10529502 DOI: 10.1161/circresaha.123.322750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (β1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Xi Fang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Sujay Subbayya Ithychanda
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Tongbin Wu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Yusu Gu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Chao Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Li Wang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Julius Bogomolovas
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Ju Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| |
Collapse
|
30
|
Deng Y, Yan J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J Am Chem Soc 2023; 145:14670-14678. [PMID: 37369984 PMCID: PMC10348313 DOI: 10.1021/jacs.3c02303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/29/2023]
Abstract
Filamin C (FLNC), a large dimeric actin-binding protein in muscle cells, plays a critical role in transmitting force in the cytoskeleton and that between membrane receptors and the cytoskeleton. It performs crucial mechanosensing and downstream mechanotransduction functions via force-dependent interactions with signaling proteins. Mutations in FLNC have been linked to muscle and heart diseases. The mechanical responses of the force-bearing elements in FLNC have not been determined. This study investigated the mechanical responses of FLNC domains and their dimerization interface using magnetic tweezers. Results showed high stability of the N-terminal domains in the rod-1 segment but significant changes in the rod-2 domains in response to forces of a few piconewtons (pN). The dimerization interface, formed by the R24 domain, has a lifetime of seconds to tens of seconds at pN forces, and it dissociates within 1 s at forces greater than 14 pN. The findings suggest the FLNC dimerization interface provides sufficient mechanical stability that enables force-dependent structural changes in rod-2 domains for signaling protein binding and maintains structural integrity of the rod-1 domains.
Collapse
Affiliation(s)
- Yunxin Deng
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
31
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
32
|
Bersiner K, Park SY, Schaaf K, Yang WH, Theis C, Jacko D, Gehlert S. Resistance exercise: a mighty tool that adapts, destroys, rebuilds and modulates the molecular and structural environment of skeletal muscle. Phys Act Nutr 2023; 27:78-95. [PMID: 37583075 PMCID: PMC10440184 DOI: 10.20463/pan.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Skeletal muscle regulates health and performance by maintaining or increasing strength and muscle mass. Although the molecular mechanisms in response to resistance exercise (RE) significantly target the activation of protein synthesis, a plethora of other mechanisms and structures must be involved in orchestrating the communication, repair, and restoration of homeostasis after RE stimulation. In practice, RE can be modulated by variations in intensity, continuity and volume, which affect molecular responses and skeletal muscle adaptation. Knowledge of these aspects is important with respect to planning of training programs and assessing the impact of RE training on skeletal muscle. METHODS In this narrative review, we introduce general aspects of skeletal muscle substructures that adapt in response to RE. We further highlighted the molecular mechanisms that control human skeletal muscle anabolism, degradation, repair and memory in response to acute and repeated RE and linked these aspects to major training variables. RESULTS Although RE is a key stimulus for the activation of skeletal muscle anabolism, it also induces myofibrillar damage. Nevertheless, to increase muscle mass accompanied by a corresponding adaptation of the essential substructures of the sarcomeric environment, RE must be continuously repeated. This requires the permanent engagement of molecular mechanisms that re-establish skeletal muscle integrity after each RE-induced muscle damage. CONCLUSION Various molecular regulators coordinately control the adaptation of skeletal muscle after acute and repeated RE and expand their actions far beyond muscle growth. Variations of key resistance training variables likely affect these mechanisms without affecting muscle growth.
Collapse
Affiliation(s)
- Käthe Bersiner
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - So-Young Park
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
- Department of Medicine, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Christian Theis
- Center for Anaesthesiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
33
|
Kumar P, Paramasivam G, Prabhu MA, Devasia T, Rajasekhar M. A novel FLNC variation associated with restrictive cardiomyopathy with an unusually long clinical course — A case report. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
34
|
Bermúdez-Jiménez FJ, Carriel V, Santos-Mateo JJ, Fernández A, García-Hernández S, Ramos KA, Piqueras-Flores J, Cabrera-Romero E, Barriales-Villa R, de la Higuera Romero L, Alcalá López JE, Gimeno Blanes JR, Sánchez-Porras D, Campos F, Alaminos M, Oyonarte-Ramírez JM, Álvarez M, Tercedor L, Brodehl A, Jiménez-Jáimez J. ROD2 domain filamin C missense mutations exhibit a distinctive cardiac phenotype with restrictive/hypertrophic cardiomyopathy and saw-tooth myocardium. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:301-311. [PMID: 35952944 DOI: 10.1016/j.rec.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/28/2022] [Indexed: 04/29/2023]
Abstract
INTRODUCTION AND OBJECTIVES Missense mutations in the filamin C (FLNC) gene have been reported as cause of inherited cardiomyopathy. Knowledge of the pathogenicity and genotype-phenotype correlation remains scarce. Our aim was to describe a distinctive cardiac phenotype related to rare missense FLNC variants in the ROD2 domain. METHODS We recruited 21 unrelated families genetically evaluated because of hypertrophic cardiomyopathy (HCM)/restrictive cardiomyopathy (RCM) phenotype carrying rare missense variants in the ROD2 domain of FLNC (FLNC-mRod2). Carriers underwent advanced cardiac imaging and genetic cascade screening. Myocardial tissue from 3 explanted hearts of a missense FLNC carrier was histologically analyzed and compared with an FLNC-truncating variant heart sample and a healthy control. Plasmids independently containing 3 FLNC missense variants were transfected and analyzed using confocal microscopy. RESULTS Eleven families (52%) with 20 assessed individuals (37 [23.7-52.7]) years showed 15 cases with a cardiac phenotype consisting of an overlap of HCM-RCM and left ventricular hypertrabeculation (saw-tooth appearance). During a median follow-up of 6.49 years, they presented with advanced heart failure: 16 (80%) diastolic dysfunction, 3 heart transplants, 3 heart failure deaths) and absence of cardiac conduction disturbances or skeletal myopathy. A total of 6 families had moderate genotype-phenotype segregation, and the remaining were de novo variants. Differential extracellular matrix remodeling and FLNC distribution among cardiomyocytes were confirmed on histology. HT1080 and H9c2 cells did not reveal cytoplasmic aggregation of mutant FLNC. CONCLUSIONS FLNC-mRod2 variants show a high prevalence of an overlapped phenotype comprising RCM, HCM and deep hypertrabeculation with saw-tooth appearance and distinctive cardiac histopathological remodeling.
Collapse
Affiliation(s)
- Francisco José Bermúdez-Jiménez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Víctor Carriel
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Juan José Santos-Mateo
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia (IMIB), Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, Netherlands
| | - Adrián Fernández
- Servicio de Cardiología, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Soledad García-Hernández
- Health in Code SL, Cardiología y Departamento Científico, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Karina Analía Ramos
- Servicio de Cardiología, Hospital Centenario, Facultad de Ciencias Médicas, Universidad de Rosario, Argentina
| | - Jesús Piqueras-Flores
- Servicio de Cardiología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Eva Cabrera-Romero
- Servicio de Cardiología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Roberto Barriales-Villa
- Complexo Hospitalario Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Luis de la Higuera Romero
- Health in Code SL, Cardiología y Departamento Científico, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Juan Emilio Alcalá López
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Juan Ramón Gimeno Blanes
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia (IMIB), Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, Netherlands
| | - David Sánchez-Porras
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Fernando Campos
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Miguel Alaminos
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - José Manuel Oyonarte-Ramírez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Miguel Álvarez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Luis Tercedor
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Juan Jiménez-Jáimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain.
| |
Collapse
|
35
|
Aki T, Kukita M, Takata M, Funakoshi T, Unuma K, Uemura K. Induction of filamin-C and its involvement in the regulation of cellular senescence and apoptosis in Huh-7 hepatoma cells during arsenic trioxide exposure. Biochem Biophys Res Commun 2023; 651:92-97. [PMID: 36801614 DOI: 10.1016/j.bbrc.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Arsenic trioxide (ATO) is one of the most toxic inorganic arsenic compounds. In this study, we examined the effects of long-term (7 days) exposure to low dose (5 μM) ATO on a human hepatocellular carcinoma cell line, Huh-7. Along with apoptosis accompanied by secondary necrosis though GSDME cleavage, we observed enlarged and flattened cells adhering to the culture dish and surviving even after exposure to ATO. An increase in cyclin-dependent kinase inhibitor p21 levels as well as positive staining for senescence-associated β-galactosidase activity were observed in ATO-treated cells, indicating cellular senescence. Screening for both ATO-inducible proteins by MALDI-TOF-MS analysis and ATO-inducible genes by DNA microarray analysis showed a marked increase in filamin-C (FLNC), an actin cross-linking protein. Interestingly, the increase in FLNC was observed in both dead and surviving cells, suggesting that the upregulation of FLNC by ATO occurs in both apoptotic and senescent cells. Small interference RNA-mediated knock down of FLNC resulted in not only a reduction of senescence-associated enlarged morphology of the cells, but also an exacerbation of cell death. Taken together, these results suggest a regulatory role of FLNC in the execution of senescence as well as apoptosis during ATO exposure.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Mitsuki Kukita
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mao Takata
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
36
|
Schnabel F, Schuler E, Al-Maawali A, Chaurasia A, Syrbe S, Al-Kindi A, Bhavani GS, Shukla A, Altmüller J, Nürnberg P, Banka S, Girisha KM, Li Y, Wollnik B, Yigit G. Homozygous loss-of-function variants in FILIP1 cause autosomal recessive arthrogryposis multiplex congenita with microcephaly. Hum Genet 2023; 142:543-552. [PMID: 36943452 PMCID: PMC10060356 DOI: 10.1007/s00439-023-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 03/23/2023]
Abstract
Arthrogryposis multiplex congenita forms a broad group of clinically and etiologically heterogeneous disorders characterized by congenital joint contractures that involve at least two different parts of the body. Neurological and muscular disorders are commonly underlying arthrogryposis. Here, we report five affected individuals from three independent families sharing an overlapping phenotype with congenital contractures affecting shoulder, elbow, hand, hip, knee and foot as well as scoliosis, reduced palmar and plantar skin folds, microcephaly and facial dysmorphism. Using exome sequencing, we identified homozygous truncating variants in FILIP1 in all patients. FILIP1 is a regulator of filamin homeostasis required for the initiation of cortical cell migration in the developing neocortex and essential for the differentiation process of cross-striated muscle cells during myogenesis. In summary, our data indicate that bi-allelic truncating variants in FILIP1 are causative of a novel autosomal recessive disorder and expand the spectrum of genetic factors causative of arthrogryposis multiplex congenita.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103, Leipzig, Germany
| | - Elisabeth Schuler
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ankur Chaurasia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Adila Al-Kindi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
37
|
Wang BZ, Nash TR, Zhang X, Rao J, Abriola L, Kim Y, Zakharov S, Kim M, Luo LJ, Morsink M, Liu B, Lock RI, Fleischer S, Tamargo MA, Bohnen M, Welch CL, Chung WK, Marx SO, Surovtseva YV, Vunjak-Novakovic G, Fine BM. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med 2023; 4:100976. [PMID: 36921598 PMCID: PMC10040415 DOI: 10.1016/j.xcrm.2023.100976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.
Collapse
Affiliation(s)
- Bryan Z Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sergey Zakharov
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori J Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bohao Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Michael Bohnen
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Steven O Marx
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Barry M Fine
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Gaudreault N, Ruel LJ, Henry C, Schleit J, Lagüe P, Champagne J, Sénéchal M, Sarrazin JF, Philippon F, Bossé Y, Steinberg C. Novel filamin C (FLNC) variant causes a severe form of familial mixed hypertrophic-restrictive cardiomyopathy. Am J Med Genet A 2023; 191:1508-1517. [PMID: 36864778 DOI: 10.1002/ajmg.a.63169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/12/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Variants of filamin C (FLNC) have been identified as rare genetic substrate for hypertrophic cardiomyopathy (HCM). Data on the clinical course of FLNC-related HCM are conflicting with some studies suggesting mild phenotypes whereas other studies have reported more severe outcomes. In this study, we present a novel FLNC variant (Ile1937Asn) that was identified in a large family of French-Canadian descent with excellent segregation data. FLNC-Ile1937Asn is a novel missense variant characterized by full penetrance and poor clinical outcomes. End stage heart failure requiring transplantation occurred in 43% and sudden cardiac death in 29% of affected family members. Other particular features of FLNC-Ile1937Asn include an early disease onset (mean age of 19 years) and the development of a marked atrial myopathy (severe biatrial dilatation with remodeling and multiple complex atrial arrhythmias) that was present in all gene carriers. The FLNC-Ile1937Asn variant is a novel, pathogenic mutation resulting in a severe form of HCM with full disease penetrance. The variant is associated with a high proportion of end-stage heart failure, heart transplantation, and disease-related mortality. Close follow-up and appropriate risk stratification of affected individuals at specialized heart centers is recommended.
Collapse
Affiliation(s)
- Nathalie Gaudreault
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Louis-Jacques Ruel
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Cyndi Henry
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | | | - Patrick Lagüe
- PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Quebec, Canada.,The Institute of integrative biology and systems (IBIS), Laval University, Quebec, Canada
| | - Jean Champagne
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada.,Multidisciplinary Department of Cardiology and Cardiac Surgery, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Mario Sénéchal
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada.,Multidisciplinary Department of Cardiology and Cardiac Surgery, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Jean-François Sarrazin
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada.,Multidisciplinary Department of Cardiology and Cardiac Surgery, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - François Philippon
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada.,Multidisciplinary Department of Cardiology and Cardiac Surgery, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada.,Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christian Steinberg
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada.,Multidisciplinary Department of Cardiology and Cardiac Surgery, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| |
Collapse
|
39
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Krause K, Eggers B, Uszkoreit J, Eulitz S, Rehmann R, Güttsches AK, Schreiner A, van der Ven PFM, Fürst DO, Marcus K, Vorgerd M, Kley RA. Target formation in muscle fibres indicates reinnervation - A proteomic study in muscle samples from peripheral neuropathies. Neuropathol Appl Neurobiol 2023; 49:e12853. [PMID: 36180966 DOI: 10.1111/nan.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
AIMS Target skeletal muscle fibres - defined by different concentric areas in oxidative enzyme staining - can occur in patients with neurogenic muscular atrophy. Here, we used our established hypothesis-free proteomic approach with the aim of deciphering the protein composition of targets. We also searched for potential novel interactions between target proteins. METHODS Targets and control areas were laser microdissected from skeletal muscle sections of 20 patients with neurogenic muscular atrophy. Samples were analysed by a highly sensitive mass spectrometry approach, enabling relative protein quantification. The results were validated by immunofluorescence studies. Protein interactions were investigated by yeast two-hybrid assays, coimmunoprecipitation experiments and bimolecular fluorescence complementation. RESULTS More than 1000 proteins were identified. Among these, 55 proteins were significantly over-represented and 40 proteins were significantly under-represented in targets compared to intraindividual control samples. The majority of over-represented proteins were associated with the myofibrillar Z-disc and actin dynamics, followed by myosin and myosin-associated proteins, proteins involved in protein biosynthesis and chaperones. Under-represented proteins were mainly mitochondrial proteins. Functional studies revealed that the LIM domain of the over-represented protein LIMCH1 interacts with isoform A of Xin actin-binding repeat-containing protein 1 (XinA). CONCLUSIONS In particular, proteins involved in myofibrillogenesis are over-represented in target structures, which indicate an ongoing process of sarcomere assembly and/or remodelling within this specific area of the muscle fibres. We speculate that target structures are the result of reinnervation processes in which filamin C-associated myofibrillogenesis is tightly regulated by the BAG3-associated protein quality system.
Collapse
Affiliation(s)
- Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Stefan Eulitz
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anne K Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | | | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, Borken, Germany
| |
Collapse
|
41
|
Johnson LG, Zhai C, Reever LM, Prusa KJ, Nair MN, Huff-Lonergan E, Lonergan SM. Characterizing the sarcoplasmic proteome of aged pork chops classified by purge loss. J Anim Sci 2023; 101:7031059. [PMID: 36751720 PMCID: PMC9994594 DOI: 10.1093/jas/skad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Unpredictable variation in quality, including fresh pork water-holding capacity, remains challenging to pork processors and customers. Defining the diverse factors that influence fresh pork water-holding capacity is necessary to make progress in refining pork quality prediction methods. The objective was to utilize liquid chromatography and mass spectrometry coupled with tandem mass tag (TMT) multiplexing to evaluate the sarcoplasmic proteome of aged pork loins classified by purge loss. Fresh commercial pork loins were collected, aged 12 or 14 d postmortem, and pork quality and sensory attributes were evaluated. Chops were classified into Low (N = 27, average purge = 0.33%), Intermediate (N = 27, average purge = 0.72%), or High (N = 27, average purge = 1.19%) chop purge groups. Proteins soluble in a low-ionic strength buffer were extracted, digested with trypsin, labeled with 11-plex isobaric TMT reagents, and detected using a Q-Exactive Mass Spectrometer. Between the Low and High purge groups, 40 proteins were differentially (P < 0.05) abundant. The Low purge group had a greater abundance of proteins classified as structural and contractile, sarcoplasmic reticulum and calcium regulating, chaperone, and citric acid cycle enzymes than the High purge group. The presence of myofibrillar proteins in the aged sarcoplasmic proteome is likely due to postmortem degradation. These observations support our hypothesis that pork chops with low purge have a greater abundance of structural proteins in the soluble protein fraction. Together, these and other proteins in the aged sarcoplasmic proteome may be biomarkers of pork water-holding capacity. Additional research should establish the utility of these proteins as biomarkers early postmortem and over subsequent aging periods.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4040, USA
| | - Leah M Reever
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
42
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
43
|
Evolutionary Relationships and Divergence of Filamin Gene Family Involved in Development and Stress in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2022; 13:genes13122313. [PMID: 36553581 PMCID: PMC9777546 DOI: 10.3390/genes13122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.
Collapse
|
44
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew Trafford
- Division of Cardiovascular Sciences, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
45
|
Gao S, Taylor MRG, Mestroni L. Hidden Risk: Arrhythmogenic Genes in the General Population. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003869. [PMID: 35980659 PMCID: PMC10874281 DOI: 10.1161/circgen.122.003869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The past 2 decades have seen the development of large-scale DNA biobanks associated with phenotypic information of the general population. Examples of these efforts are the UK Biobank, BioVU at Vanderbilt and MyCode. These repositories were designed to generate information to enable a precision medicine approach to diagnose, prevent, and treat human disease.
Collapse
Affiliation(s)
- Shanshan Gao
- Division of Cardiology, Cardiovascular Institute (S.G., M.R.G.T., L.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew R G Taylor
- Division of Cardiology, Cardiovascular Institute (S.G., M.R.G.T., L.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
- Adult Medical Genetics Program (M.R.G.T.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luisa Mestroni
- Division of Cardiology, Cardiovascular Institute (S.G., M.R.G.T., L.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
46
|
Muravyev A, Vershinina T, Tesner P, Sjoberg G, Fomicheva Y, Čajbiková NN, Kozyreva A, Zhuk S, Mamaeva E, Tarnovskaya S, Jornholt J, Sokolnikova P, Pervunina T, Vasichkina E, Sejersen T, Kostareva A. Rare clinical phenotype of filaminopathy presenting as restrictive cardiomyopathy and myopathy in childhood. Orphanet J Rare Dis 2022; 17:358. [PMID: 36104822 PMCID: PMC9476594 DOI: 10.1186/s13023-022-02477-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background FLNC is one of the few genes associated with all types of cardiomyopathies, but it also underlies neuromuscular phenotype. The combination of concomitant neuromuscular and cardiac involvement is not often observed in filaminopathies and the impact of this on the disease prognosis has hitherto not been analyzed. Results Here we provide a detailed clinical, genetic, and structural prediction analysis of distinct FLNC-associated phenotypes based on twelve pediatric cases. They include early-onset restrictive cardiomyopathy (RCM) in association with congenital myopathy. In all patients the initial diagnosis was established during the first year of life and in five out of twelve (41.7%) patients the first symptoms were observed at birth. RCM was present in all patients, often in combination with septal defects. No ventricular arrhythmias were noted in any of the patients presented here. Myopathy was confirmed by neurological examination, electromyography, and morphological studies. Arthrogryposes was diagnosed in six patients and remained clinically meaningful with increasing age in three of them. One patient underwent successful heart transplantation at the age of 18 years and two patients are currently included in the waiting list for heart transplantation. Two died due to congestive heart failure. One patient had ICD instally as primary prevention of SCD. In ten out of twelve patients the disease was associated with missense variants and only in two cases loss of function variants were detected. In half of the described cases, an amino acid substitution A1186V, altering the structure of IgFLNc10, was found. Conclusions The present description of twelve cases of early-onset restrictive cardiomyopathy with congenital myopathy and FLNC mutation, underlines a distinct unique phenotype that can be suggested as a separate clinical form of filaminopathies. Amino acid substitution A1186V, which was observed in half of the cases, defines a mutational hotspot for the reported combination of myopathy and cardiomyopathy. Several independent molecular mechanisms of FLNC mutations linked to filamin structure and function can explain the broad spectrum of FLNC-associated phenotypes. Early disease presentation and unfavorable prognosis of heart failure demanding heart transplantation make awareness of this clinical form of filaminopathy of great clinical importance. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02477-5.
Collapse
|
47
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
48
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
49
|
Han S, Cui C, Zhao X, Zhang Y, Zhang Y, Zhao J, Shen X, He H, Wang J, Ma M, Li D, Zhu Q, Yin H. Filamin C regulates skeletal muscle atrophy by stabilizing dishevelled-2 to inhibit autophagy and mitophagy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:147-164. [PMID: 34976434 PMCID: PMC8683659 DOI: 10.1016/j.omtn.2021.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
FilaminC (Flnc) is a member of the actin binding protein family, which is preferentially expressed in the cardiac and skeletal muscle tissues. Although it is known to interact with proteins associated with myofibrillar myopathy, its unique role in skeletal muscle remains largely unknown. In this study, we identify the biological functions of Flnc in vitro and in vivo using chicken primary myoblast cells and animal models, respectively. From the results, we observe that the growth rate and mass of the skeletal muscle of fast-growing chickens (broilers) were significantly higher than those in slow-growing chickens (layers). Furthermore, we find that the expression of Flnc in the skeletal muscle of broilers was higher than that in the layers. Our results indicated that Flnc was highly expressed in the skeletal muscle, especially in the skeletal muscle of broilers than in layers. This suggests that Flnc plays a positive regulatory role in myoblast development. Flnc knockdown resulted in muscle atrophy, whereas the overexpression of Flnc promotes muscle hypertrophy in vivo in an animal model. We also found that Flnc interacted with dishevelled-2 (Dvl2), activated the wnt/β-catenin signaling pathway, and controlled skeletal muscle development. Flnc also antagonized the LC3-mediated autophagy system by decreasing Dvl2 ubiquitination. Moreover, Flnc knockdown activated and significantly increased mitophagy. In summary, these results indicate that the absence of Flnc induces autophagy or mitophagy and regulates muscle atrophy.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiyu Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yun Zhang
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Corresponding author Qing Zhu, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Corresponding author Huadong Yin, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
50
|
Chen SN, Lam CK, Wan YW, Gao S, Malak OA, Zhao SR, Lombardi R, Ambardekar AV, Bristow MR, Cleveland J, Gigli M, Sinagra G, Graw S, Taylor MR, Wu JC, Mestroni L. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. SCIENCE ADVANCES 2022; 8:eabk0052. [PMID: 35196083 PMCID: PMC8865769 DOI: 10.1126/sciadv.abk0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
FLNC truncating mutations (FLNCtv) are prevalent causes of inherited dilated cardiomyopathy (DCM), with a high risk of developing arrhythmogenic cardiomyopathy. We investigated the molecular mechanisms of mutant FLNC in the pathogenesis of arrhythmogenic DCM (a-DCM) using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We demonstrated that iPSC-CMs from two patients with different FLNCtv mutations displayed arrhythmias and impaired contraction. FLNC ablation induced a similar phenotype, suggesting that FLNCtv are loss-of-function mutations. Coimmunoprecipitation and proteomic analysis identified β-catenin (CTNNB1) as a downstream target. FLNC deficiency induced nuclear translocation of CTNNB1 and subsequently activated the platelet-derived growth factor receptor alpha (PDGFRA) pathway, which were also observed in human hearts with a-DCM and FLNCtv. Treatment with the PDGFRA inhibitor, crenolanib, improved contractile function of patient iPSC-CMs. Collectively, our findings suggest that PDGFRA signaling is implicated in the pathogenesis, and inhibition of this pathway is a potential therapeutic strategy in FLNC-related cardiomyopathies.
Collapse
Affiliation(s)
- Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Olfat A. Malak
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
- Department of Advanced Biomedical Sciences University of Naples “Federico II”, Naples, Italy
| | - Amrut V. Ambardekar
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Michael R. Bristow
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph Cleveland
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Sharon Graw
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Matthew R.G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| |
Collapse
|