1
|
Zhu J, Zhu X, Lv S, Guo D, Li H, Zhao Z. Incremental Value of Pericoronary Adipose Tissue Radiomics Models in Identifying Vulnerable Plaques. J Comput Assist Tomogr 2025; 49:422-430. [PMID: 39724572 DOI: 10.1097/rct.0000000000001704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Inflammatory characteristics in pericoronary adipose tissue (PCAT) may enhance the diagnostic capability of radiomics techniques for identifying vulnerable plaques. This study aimed to evaluate the incremental value of PCAT radiomics scores in identifying vulnerable plaques defined by intravascular ultrasound imaging (IVUS). METHODS In this retrospective study, a PCAT radiomics model was established and validated using IVUS as the reference standard. The dataset consisted of patients with coronary artery disease who underwent both coronary computed tomography angiography and IVUS examinations at a tertiary hospital between March 2023 and January 2024. The dataset was randomly assigned to the training and validation sets in a 7:3 ratio. The diagnostic performance of various models was evaluated on both sets using the area under the curve (AUC). RESULTS From 88 lesions in 79 patients, we selected 9 radiomics features (5 texture features, 1 shape feature, 1 gray matrix feature, and 2 first-order features) from the training cohort (n = 61) to build the PCAT model. The PCAT radiomics model demonstrated moderate to high AUCs (0.847 and 0.819) in both the training and test cohorts. Furthermore, the AUC of the PCAT radiomics model was significantly higher than that of the fat attenuation index model (0.847 vs 0.659, P < 0.05). The combined model had a higher AUC than the clinical model (0.925 vs 0.714, P < 0.01). CONCLUSIONS The PCAT radiomics signature of coronary CT angiography enabled the detection of vulnerable plaques defined by IVUS.
Collapse
Affiliation(s)
- Jinke Zhu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, Shaoxing, Zhejiang, China
| | - Xiucong Zhu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, Shaoxing, Zhejiang, China
| | - Sangying Lv
- Department of radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing, Zhejiang, China
| | - Danling Guo
- Department of radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing, Zhejiang, China
| | - Huaifeng Li
- Department of radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing, Zhejiang, China
| | - Zhenhua Zhao
- Department of radiology, Shaoxing People's Hospital (Zhejiang University Shaoxing Hospital), Shaoxing, Zhejiang, China
| |
Collapse
|
2
|
Huang S, Yu X, Yang B, Xu T, Gu H, Wang X. Predictive value of pericoronary fat attenuation index for graft occlusion after coronary artery bypass grafting. Jpn J Radiol 2025; 43:612-621. [PMID: 39585561 DOI: 10.1007/s11604-024-01709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Based on coronary computed tomography angiography (CCTA), this study aimed to evaluate the predictive value of pericoronary fat attenuation index (FAI) for graft occlusion in patients following coronary artery bypass grafting (CABG). MATERIALS AND METHODS The clinical and imaging data of 100 patients with coronary artery disease (CAD) who underwent CCTA and subsequently received successful CABG between December 2012 and March 2024 were retrospectively collected. According to the subsequent CCTA evaluation of grafts, they were categorized into occlusion group (n = 27) and patency group (n = 73). Based on CCTA images, FAI of the proximal segment of the three coronary arteries and epicardial adipose tissue (EAT) parameters were measured and compared between the two groups. The Cox regression model was employed to screen the independent predictors of graft occlusion. The predictive model was constructed, and the receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic performance of the model. RESULTS Among the 100 cases, 74 were males, with a mean age was 62.42 ± 7.57 years. During the 15.50 (5.00, 36.75) months follow-up period, grafting vessel occlusion occurred in 27 patients (27.0%). The right coronary artery (RCA) in occlusion group was -73.36 ± 7.24HU, which was notably higher compared to patency group (-79.93 ± 9.75HU) (P < 0.05). Multivariable Cox regression analysis indicated that RCA FAI (HR = 5.205, 95% CI 1.938-13.979; P = 0.001) was independently correlated with graft occlusion, with an optimal cutoff value of -79.39 HU.RCA FAI added incremental prognostic value beyond clinical characteristics for patients following CABG (AUC 0.784 vs. 0.677, P = 0.027). CONCLUSIONS The RCA FAI can serve as a crucial predictor for graft occlusion in patients following CABG, enabling early identification of high-risk individuals and facilitating timely and effective intervention measures to enhance patient prognosis.
Collapse
Affiliation(s)
- Shuyuan Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China
- Shandong First Medical University, Jinan, 250117, Shandong Province, China
| | - Xinxin Yu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China
| | - Baozhu Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China
- Shandong First Medical University, Jinan, 250117, Shandong Province, China
| | - Tianqi Xu
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong Province, China
| | - Hui Gu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China.
| |
Collapse
|
3
|
Rigattieri S, Redivo M, Casenghi M, Belmonte M, Giovannelli F, Tommasino A, Barbato E, Berni A. Management of Coronary Vulnerable Plaques: A Focus on Preventive Percutaneous Coronary Intervention. Rev Cardiovasc Med 2025; 26:26712. [PMID: 40351681 PMCID: PMC12059780 DOI: 10.31083/rcm26712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 05/14/2025] Open
Abstract
Vulnerable or high-risk coronary plaques are usually referred to as angiographically mild to moderate lesions characterized by a large plaque burden, positive vessel remodeling, thin fibrous cap, and large necrotic/lipid core. According to several pathology studies, these plaques represent the substrate of coronary thrombosis in about two-thirds of cases; therefore, there has been increasing interest in detecting and treating vulnerable plaques (VPs). Nowadays, VP detection is possible through noninvasive and invasive imaging techniques, such as coronary computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy. Since VPs were shown to be associated with cardiovascular events in observational studies, pharmacological and non-pharmacological strategies have been investigated to achieve a regression and/or a passivation of these plaques. In addition to pharmacological therapies, mainly focused on lipid-lowering agents, there has been a recent growing interest in interventional therapies, including coronary scaffolds, stents, and drug-coated balloons. This led to the concept of preventive percutaneous coronary intervention, which, unlike the treatment of culprit lesions in acute coronary syndromes or of ischemia-inducing stenoses, as recommended by guidelines, implies the treatment of angiographically and functionally non-significant lesions based on one or more high-risk plaque characteristics as identified by noninvasive or intracoronary imaging. This article provides an updated review of key concepts in defining and detecting VPs; their prognostic value and available pharmacological and interventional management evidence will also be discussed.
Collapse
Affiliation(s)
| | - Marco Redivo
- Cardiology Division, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Matteo Casenghi
- Cardiology Division, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marta Belmonte
- Cardiology Division, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy
| | | | | | - Emanuele Barbato
- Cardiology Division, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Berni
- Cardiology Division, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Zhao T, Zhang Y, Li X, Ge Z, Shi J, Wang T, Zhang J, Zhang X, Jiang H, Zhou L, Ye L. PM 2.5 Induces the Instability of Atherosclerotic Plaques by Activating the Notch Signaling Pathway In Vivo and In Vitro. ENVIRONMENTAL TOXICOLOGY 2025; 40:683-693. [PMID: 39671242 DOI: 10.1002/tox.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Fine particulate matter (PM2.5) can exacerbate the instability of atherosclerotic plaques although the exact chemical process driving atherosclerosis remains unknown. In order to create atherosclerotic models, a high-fat diet and vitamin D3 injections were given to 56 Wistar rats in this investigation. The atherosclerotic rats were split into four groups at random and given different doses of PM2.5 (0, 1.5, 7.5, and 37.5 mg/kg) for 4 weeks. To investigate the mechanism, foam cells were exposed to PM2.5 (0, 25, 50, and 100 μg/mL) for 24 h. The results showed that PM2.5 exposure caused collagen fibers thinner and muscle fibers were disorganized. PM2.5 exposure significantly affected the expression of MMP2, MMP9, TIMP2, and vimentin in aortas of atherosclerotic rats. Moreover, PM2.5 exposure increased the expression of the Notch signaling pathways which was correlated with the expression of atherosclerotic plaque stability-related genes. PM2.5 exposure also increased the apoptosis rate of foam cells. The expression of MMP2, MMP9, and vimentin was increased and TIMP2 was decreased with the increasing PM2.5 dose in foam cells. The inhibition of the Notch signaling pathway can alleviate the alteration of atherosclerotic plaque stability-related genes. The findings demonstrated that PM2.5 exposure can cause atherosclerotic plaques to become unstable, aggravating the progression of atherosclerosis, a process in which the Notch signaling pathway is crucial.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyou Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiaxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xinyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Huibin Jiang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
5
|
Gao T, Gao S, Qiao M, Lu C, Wang H, Zhang H, Li L, Wang S, Zhang R, Dong H. Advanced Detection and Therapeutic Monitoring of Atherosclerotic Plaque Using CD36-Targeted Lipid Core Probe. Pharmaceutics 2025; 17:444. [PMID: 40284439 PMCID: PMC12030024 DOI: 10.3390/pharmaceutics17040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Atherosclerotic diseases, including coronary heart disease and cerebrovascular disease, are leading causes of morbidity and mortality worldwide. Atherosclerosis is a chronic vascular condition marked by the accumulation of lipid plaque within arterial walls. These plaques can become unstable and rupture, leading to thrombosis and subsequent cardiovascular events. Therefore, early identification of vulnerable plaque is critical for preventing such events. Objectives: This study aims to develop a novel imaging platform for atherosclerotic plaque by designing a molecular imaging probe based on fluorescent molecules that target lipid necrotic cores. The goal is to specifically detect high-risk plaque, enabling early diagnosis and intervention. Methods: Bioinformatic analysis and immunofluorescence were used to detect CD36 expression in human carotid plaque. CD36pep-ICG was synthesized using the Fmoc solid-phase peptide method. A series of experiments was conducted to characterize the probe's properties. To assess imaging performance, probe concentration gradients were tested using FLI equipment. Ex vivo imaging was performed on atherosclerotic mice and treatment models to evaluate the probe's targeting ability and effectiveness in monitoring disease progression. Results: The CD36 expression was significantly elevated in the core of plaque compared to distal regions. The CD36pep-ICG probe, specifically designed to target lipids, was successfully synthesized and exhibited excellent fluorescence properties. In animal models, FLI imaging demonstrated that the CD36pep-ICG probe selectively accumulated in atherosclerotic plaque, enabling precise plaque detection. Moreover, the probe was used to monitor the therapeutic efficacy of anti-atherosclerotic drugs. Conclusions: The CD36pep-ICG probe developed in this study is an effective molecular imaging tool for the specific identification of vulnerable atherosclerotic plaque, offering a novel approach for early diagnosis and treatment. Additionally, the probe shows promise in tracking the therapeutic effects of the drug, potentially advancing the precision treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tingting Gao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Siqi Gao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Maolin Qiao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Chuanlong Lu
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Heng Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 201101, Australia
| | - Hongjiu Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Lizheng Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Shule Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Ruijing Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| | - Honglin Dong
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (S.G.); (M.Q.); (C.L.); (H.W.); (H.Z.); (L.L.); (S.W.)
| |
Collapse
|
6
|
Wang LR, Zhang CX, Tian LB, Huang J, Jia LJ, Tao H, Yu NW, Li BH. Identification and validation of mitochondrial endoplasmic reticulum membrane-related genes in atherosclerosis. Mamm Genome 2025:10.1007/s00335-025-10124-0. [PMID: 40148657 DOI: 10.1007/s00335-025-10124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
The mitochondria-associated endoplasmic reticulum membrane is implicated in atherosclerosis (AS). However, its precise molecular mechanisms remain undefined. This study identified KLRC1 and SOCS2 as key protective genes against AS through transcriptomic analysis integrated with Mendelian randomization. Both genes exhibited significantly reduced expression in the AS group. Immune infiltration analysis revealed a strong positive correlation between activated CD8+ T cells and these genes, while eosinophils displayed the most pronounced negative correlation with KLRC1, and regulatory T cells exhibited the strongest negative association with SOCS2. Notably, SOCS2 emerged as a pivotal protective factor, offering novel insights into AS pathogenesis and providing a robust theoretical foundation for early diagnosis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Li-Rong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chun-Xi Zhang
- Port Epidemic Disease Monitor Key Laboratory of Sichuan Province, Sichuan International Travel Health Care Center, Chengdu, 610041, Sichuan, China
| | - Lv-Bo Tian
- Port Epidemic Disease Monitor Key Laboratory of Sichuan Province, Sichuan International Travel Health Care Center, Chengdu, 610041, Sichuan, China
| | - Jie Huang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li-Jun Jia
- University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Hao Tao
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Neng-Wei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Bing-Hu Li
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
7
|
León-López M, Cabanillas-Balsera D, Martín-González J, Sánchez-Domínguez B, Saúco-Márquez JJ, Segura-Egea JJ. Atherosclerosis and Chronic Apical Periodontitis: Systematic Review and Meta-Analysis. J Clin Med 2025; 14:1504. [PMID: 40094984 PMCID: PMC11899818 DOI: 10.3390/jcm14051504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Atherosclerosis is a chronic and progressive condition of the arteries, characterized by the thickening and hardening of their walls due to the formation of atherosclerotic plaques. Low-grade inflammation is implicated in the pathogeny of atherosclerosis. Chronic apical periodontitis (CAP), the chronic inflammation around the root apex of infected teeth, is associated with a low-grade inflammatory state, and thus a connection between atherosclerosis and CAP has been suggested. The aim of this study was to conduct a systematic review with meta-analysis to answer the following PICO question: In adult patients, does the presence or absence of atherosclerosis affect the prevalence of CAP? Methods: The PRISMA guidelines were followed to carry out this systematic review, which was registered in PROSPERO (651359). A bibliographic search was performed in PubMed-MEDLINE, Embase, and Scielo. The inclusion criteria selected studies presenting data on the prevalence of CAP in patients diagnosed with atherosclerosis and control patients. The statistical analysis was carried out using RevMan software v.5.4. The study characteristics and risk ratios with 95% confidence intervals (CIs) were extracted. Random-effects meta-analyses were performed. Risk of bias was assessed using the Newcastle-Ottawa scale, which was adapted for cross-sectional studies. To estimate variance and heterogeneity between trials, the Higgins I2 test was used. The quality of the evidence was evaluated using GRADE. Results: The search strategy recovered 102 articles, and only five met the inclusion criteria. Meta-analysis showed an overall OR = 2.94 (95% CI = 1.83-4.74; p < 0.01) for the prevalence of CAP among patients with atherosclerosis. The overall risk of bias was moderate. The quality of the evidence showed a low level of certainty. Conclusions: Patients with atherosclerosis are almost three times more likely to have CAP. This finding supports the hypothesis that chronic inflammatory processes in the oral cavity could significantly impact cardiovascular health, emphasizing the importance of an integrated approach to oral and systemic health care. This result should be translated to daily clinical practice, and the healthcare community should be aware of this association and suspect atherosclerotic pathology in patients who show a high prevalence of CAP. Likewise, patients with atherosclerosis should be monitored in the dental clinic for CAP.
Collapse
Affiliation(s)
- María León-López
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, C/Avicena s/n, 41009 Sevilla, Spain; (M.L.-L.); (D.C.-B.); (J.M.-G.); (J.J.S.-M.)
| | - Daniel Cabanillas-Balsera
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, C/Avicena s/n, 41009 Sevilla, Spain; (M.L.-L.); (D.C.-B.); (J.M.-G.); (J.J.S.-M.)
| | - Jenifer Martín-González
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, C/Avicena s/n, 41009 Sevilla, Spain; (M.L.-L.); (D.C.-B.); (J.M.-G.); (J.J.S.-M.)
| | | | - Juan J. Saúco-Márquez
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, C/Avicena s/n, 41009 Sevilla, Spain; (M.L.-L.); (D.C.-B.); (J.M.-G.); (J.J.S.-M.)
| | - Juan J. Segura-Egea
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, C/Avicena s/n, 41009 Sevilla, Spain; (M.L.-L.); (D.C.-B.); (J.M.-G.); (J.J.S.-M.)
| |
Collapse
|
8
|
Wańczura P, Mytych W, Bartusik-Aebisher D, Leksa D, Truszkiewicz A, Aebisher D. Visualization of Atherosclerotic Plaques Paired with Joheksol 350 (Omnipaque). Biomedicines 2025; 13:399. [PMID: 40002812 PMCID: PMC11853480 DOI: 10.3390/biomedicines13020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cardiovascular disease is one of the leading causes of death around the globe. Atherosclerosis, a chronic inflammatory blood vessel disease that takes years to develop, is its primary cause. Instability and further plaque buildup are caused by chronic inflammation, which creates the conditions for possible rupture. The visualization of arterial lesions in situ can enhance understanding of atherosclerosis progression and potentially improve experimental therapies. Conventional histology methods for assessing atherosclerotic lesions are robust but are destructive and may prevent further tissue analysis. Objectives: The objective of the current study was to evaluate a novel, nondestructive method for the visualization and characterization of atherosclerotic lesions. Methods and Results: Thus, we tested the hypothesis that MRI paired with an iodine-based radiopaque stain would effectively characterize atherosclerotic plaques in a manner comparable to routine histology while maintaining sample integrity and providing whole-volume data.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of Sciences, The Rzeszów University, 35-310 Rzeszów, Poland
| | - Wiktoria Mytych
- English Division Science Club, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-310 Rzeszów, Poland;
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
9
|
Jezovnik MK, Poredos P, Poredos P. Benefits of prophylactic carotid revascularization in patients with asymptomatic carotid artery stenosis undergoing coronary artery bypass surgery: A narrative review. Vasc Med 2025; 30:93-102. [PMID: 39462235 DOI: 10.1177/1358863x241291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Patients undergoing coronary artery bypass grafting (CABG) are at increased risk of perioperative stroke. Carotid atherosclerosis has been identified as an independent risk factor for stroke during and in the early postoperative period of cardiac surgery. However, the pathogenesis of peri-CABG stroke is multifactorial and frequently involves other noncarotid causes, such as cardiac emboli and aortic atheroma. Therefore, routine population-wide screening of carotid stenosis is not recommended, but target screening of patients at high risk of carotid-related perioperative stroke can have benefits. Carotid duplex sonography is recommended as an initial screening tool. Elimination of carotid stenosis before cardiac surgery is indicated in patients in whom carotid atherosclerosis is suspected to be the primary contributor to perioperative stroke. In patients with advanced carotid atherosclerosis, an individualized revascularization approach, including simultaneous or staged procedures, is advocated. The prevailing consensus is that synchronous surgery is safer than staged procedures. Carotid artery stenting represents a less invasive alternative, but its role in high-risk patients requires further investigation. In conclusion, the risk of perioperative stroke in patients undergoing CABG involves different factors, and carotid artery stenosis is involved in its pathogenesis only in some patients. Therefore, individualized approaches and careful consideration of patient risk factors are essential in determining the need for carotid screening and revascularization before CABG.
Collapse
Affiliation(s)
- Mateja Kaja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pavel Poredos
- Department of Vascular Disease, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Poredos
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Li D, Wang Y, Zhu T. Quantitative Plaque Characteristics/Pericoronary Fat Attenuation Index and Acute Coronary Syndrome in Patients With Stable Angina Pectoris. J Comput Assist Tomogr 2025:00004728-990000000-00419. [PMID: 39876554 DOI: 10.1097/rct.0000000000001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025]
Abstract
OBJECTIVE Vascular inflammation affects acute coronary syndrome (ACS) occurrence in patients with stable angina. Coronary inflammation can be represented by the pericoronary fat attenuation index (FAI).This study investigated the quantitative prognostic value of plaque characteristics and FAI in patients with stable angina. METHODS Risk factors for ACS occurrence in patients with stable angina pectoris were retrospectively analyzed. The diagnostic value of FAI and plaque characteristics for ACS occurrence in these patients were determined; Kaplan-Meier curves were used to predict ACS event incidence. RESULTS After postpropensity score matching, data of 60 and 130 patients with and without ACS, respectively, were analyzed. Pericoronary FAI, lipid volume, and lipid percentage in the narrowest segment significantly improved ACS diagnosis in patients with stable angina. Luminal stenosis ≥50% and FAI >-88 Hounsfield units (HU) were independent risk factors for ACS occurrence in patients with stable angina. Perileft anterior descending artery (LAD) FAI >-88 HU better predicted ACS occurrence in patients with stable angina than did peri-LAD FAI ≤-88 HU. CONCLUSIONS In patients with stable angina, lipid volume and percentage and pericoronary FAI improved the diagnostic ability of luminal stenosis for ACS occurrence. Furthermore, peri-LAD FAI >-88 HU could predict ACS occurrence.
Collapse
Affiliation(s)
- Defu Li
- Department of Radiology, Fuyong People's Hospital of Shenzhen Baoan, Shenzhen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Mangarova DB, Kaufmann JO, Brangsch J, Kader A, Möckel J, Heyl JL, Verlemann C, Adams LC, Ludwig A, Reimann C, Poller WC, Niehaus P, Karst U, Taupitz M, Hamm B, Weller MG, Makowski MR. ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model. Invest Radiol 2025:00004424-990000000-00282. [PMID: 39804796 DOI: 10.1097/rli.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis. MATERIALS AND METHODS Male apolipoprotein E-deficient mice received a high-fat diet for 2 (n = 11) or 4 months (n = 11). Additionally, a group (n = 11) receiving pravastatin by drinking water for 4 months alongside the high-fat diet was examined. The control group (n = 10) consisted of C57BL/6J mice on standard chow. Molecular magnetic resonance imaging was performed prior to and after administration of the gadolinium (Gd)-based ADAMTS4-specific probe, followed by ex vivo analyses of the aortic arch, brachiocephalic arteries, and carotid arteries. A P value <0.05 was considered to indicate a statistically significant difference. RESULTS With advancing atherosclerosis, a significant increase in the contrast-to-noise ratio was measured after intravenous application of the probe (mean precontrast = 2.25; mean postcontrast = 11.47, P < 0.001 in the 4-month group). The pravastatin group presented decreased ADAMTS4 expression. A strong correlation between ADAMTS4 content measured via immunofluorescence staining and an increase in the contrast-to-noise ratio was detected ( R2 = 0.69). Microdissection analysis revealed that ADAMTS4 gene expression in the plaque area was significantly greater than that in the arterial wall of a control mouse ( P < 0.001). Laser ablation-inductively coupled plasma-mass spectrometry confirmed strong colocalization of areas positive for ADAMTS4 and Gd. CONCLUSIONS Magnetic resonance imaging using an ADAMTS4-specific agent is a promising method for characterizing atherosclerotic plaques and could improve plaque assessment in the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Dilyana B Mangarova
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lai Z, Li Z, Huang M, Wang Y, Li L, Liu F, Yang T, Liu Y, Xu Q, Gao S, Yu C. Associations Between GGT/ALT Ratio and Carotid Plaque in Inpatients With Coronary Artery Disease: A RCSCD-TCM Study. Angiology 2025; 76:40-50. [PMID: 37632145 DOI: 10.1177/00033197231197441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
This study investigated the relationship between gamma-glutamyltransferase/alanine aminotransferase (GGT/ALT) ratio and carotid plaques in patients with coronary artery disease (CAD). This multicenter retrospective study included 8,255 patients with CAD who were divided according to GGT/ALT quartiles: Q1 (GGT/ALT ≤ 1.00), Q2 (1.00 < GGT/ALT ≤ 1.41), Q3 (1.41 < GGT/ALT ≤ 2.05), and Q4 (GGT/ALT > 2.05). Logistic regression was used to analyze the relationship between GGT/ALT, carotid plaques, and carotid plaque echogenicity. GGT/ALT ratio (odds ratio [OR]: 1.16; 95% confidence interval [CI]: 1.11-1.21; P < .001) was significantly associated with carotid plaque risk. The degree of relevance was higher in men (OR: 1.71; 95% CI: 1.35-2.15; P < .001) than in women (OR: 1.56; 95% CI: 1.28-1.91; P < .001). The ORs value of carotid plaque risk was higher in middle-aged patients (OR: 2.23; 95% CI: 1.78-2.80; P < .001) than in older patients (OR: 1.77; 95% CI: 1.44-2.18; P < .001). The GGT/ALT ratio was significantly associated with different carotid plaque echogenicity, and the highest OR values were for isoechoic plaques (OR: 1.18; 95% CI: 1.12-1.24; P < .001). These findings suggest that the GGT/ALT ratio might be associated with a high risk of developing carotid plaques and different types of plaque echoes and was more significantly associated with isoechoic plaques.
Collapse
Affiliation(s)
- Ziqin Lai
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Zhu Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, China
| | - Mengnan Huang
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Yang Wang
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Fanfan Liu
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Tong Yang
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Qiang Xu
- Second Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tuanbo New Town, China
| |
Collapse
|
13
|
Dabravolski SA, Khotina VA, Popov MA, Glanz VY, Sukhorukov VN, Orekhov AN. Non-rodent Models of Atherosclerosis: Repurposing of Existing Drugs and Search for Novel Treatment Strategies. Curr Cardiol Rev 2025; 21:e1573403X316529. [PMID: 39364866 PMCID: PMC12060921 DOI: 10.2174/011573403x316529240919103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 10/05/2024] Open
Abstract
Atherosclerosis and associated cardiovascular diseases are the leading causes of illness and mortality worldwide. The development of atherosclerosis is a complex process involving oxidative stress, surplus lipid deposition and retention, endothelial dysfunction, and chronic inflammation. Developing novel anti-atherogenic and repurposing existing drugs requires the use of suitable animal models to characterise the fundamental mechanisms underlying atherosclerosis initiation and progression and to evaluate potential therapeutic effects. Commonly used rodent models, however, are not always appropriate, and other models may be required to translate these discoveries into valuable preventive and treatment agents for human applications. Recent advances in gene-editing tools for large animals have allowed the creation of animals that develop atherosclerosis faster and more similarly to humans in terms of lesion localisation and histopathology. In this review, we discuss the major advantages and drawbacks of the main non-rodent animal models of atherosclerosis, particularly rabbits, pigs, zebrafish, and non-human primates. Moreover, we review the application of recently invented novel therapeutic methods and agents, and repurposed existing drugs (such as antidiabetic and anticancer) for atherosclerosis treatment, the efficacy of which is verified on non-rodent animal models of atherosclerosis. In total, the proper selection of a suitable animal model of atherosclerosis facilitates reproducible and rigorous translational research in repurposing of existing drugs, discovering new therapeutic strategies, and validating novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Victoria A. Khotina
- Petrovsky National Research Center of Surgery, Abrikosovsky lane, 2, 119991 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Mikhail A. Popov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Victor Y. Glanz
- Petrovsky National Research Center of Surgery, Abrikosovsky lane, 2, 119991 Moscow, Russia
| | - Vasily N. Sukhorukov
- Petrovsky National Research Center of Surgery, Abrikosovsky lane, 2, 119991 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexander N. Orekhov
- Petrovsky National Research Center of Surgery, Abrikosovsky lane, 2, 119991 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|
14
|
Zanelli S, Agnoletti D, Alastruey J, Allen J, Bianchini E, Bikia V, Boutouyrie P, Bruno RM, Climie R, Djeldjli D, Gkaliagkousi E, Giudici A, Gopcevic K, Grillo A, Guala A, Hametner B, Joseph J, Karimpour P, Kodithuwakku V, Kyriacou PA, Lazaridis A, Lønnebakken MT, Martina MR, Mayer CC, Nabeel PM, Navickas P, Nemcsik J, Orter S, Park C, Pereira T, Pucci G, Rey ABA, Salvi P, Seabra ACG, Seeland U, van Sloten T, Spronck B, Stansby G, Steens I, Stieglitz T, Tan I, Veerasingham D, Wassertheurer S, Weber T, Westerhof BE, Charlton PH. Developing technologies to assess vascular ageing: a roadmap from VascAgeNet. Physiol Meas 2024; 45:121001. [PMID: 38838703 PMCID: PMC11697036 DOI: 10.1088/1361-6579/ad548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Vascular ageing (vascular ageing) is the deterioration of arterial structure and function which occurs naturally with age, and which can be accelerated with disease. Measurements of vascular ageing are emerging as markers of cardiovascular risk, with potential applications in disease diagnosis and prognosis, and for guiding treatments. However, vascular ageing is not yet routinely assessed in clinical practice. A key step towards this is the development of technologies to assess vascular ageing. In this Roadmap, experts discuss several aspects of this process, including: measurement technologies; the development pipeline; clinical applications; and future research directions. The Roadmap summarises the state of the art, outlines the major challenges to overcome, and identifies potential future research directions to address these challenges.
Collapse
Affiliation(s)
- Serena Zanelli
- Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord, Paris, France
- Axelife, Paris, France
| | - Davide Agnoletti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico Sant’Orsola, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EU, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elisabetta Bianchini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Vasiliki Bikia
- Stanford University, Stanford, California, United States
- Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Pierre Boutouyrie
- INSERM U970 Team 7, Paris Cardiovascular Research Centre
- PARCC, University Paris Descartes, AP-HP, Pharmacology Unit, Hôpital Européen Georges Pompidou, 56
Rue Leblanc, Paris 75015, France
| | - Rosa Maria Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre
- PARCC, University Paris Descartes, AP-HP, Pharmacology Unit, Hôpital Européen Georges Pompidou, 56
Rue Leblanc, Paris 75015, France
| | - Rachel Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | | | - Alessandro Giudici
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | | | - Andrea Grillo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernhard Hametner
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Jayaraj Joseph
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Parmis Karimpour
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| | | | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| | - Antonios Lazaridis
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mai Tone Lønnebakken
- Department of Heart Disease, Haukeland University Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Christopher Clemens Mayer
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - P M Nabeel
- Healthcare Technology Innovation Centre, IIT Madras, Chennai 600 113, India
| | - Petras Navickas
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Stefan Orter
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, 1–19 Torrington Place, London WC1E 7HB, UK
| | - Telmo Pereira
- Polytechnic University of Coimbra, Coimbra Health School, Rua 5 de Outubro—S. Martinho do Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Unit of Internal Medicine, ‘Santa Maria’ Terni Hospital, Terni, Italy
| | - Ana Belen Amado Rey
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Paolo Salvi
- Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Ana Carolina Gonçalves Seabra
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Ute Seeland
- Institute of Social Medicine, Epidemiology and Health Economics, Charitè—Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas van Sloten
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University,
Sydney, Australia
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Indra Steens
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Isabella Tan
- Macquarie University, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | | | - Siegfried Wassertheurer
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Berend E Westerhof
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Nijmegen, The Netherlands
| | - Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| |
Collapse
|
15
|
Ma Y, Gao H, Wu H. Comparison of adverse cardiovascular event endpoints between patients with diabetes and patients without diabetes based on coronary artery plaques: a systematic review and meta-analysis. J Cardiothorac Surg 2024; 19:672. [PMID: 39707525 DOI: 10.1186/s13019-024-03157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The classification of major adverse cardiovascular event (MACE) endpoints in patients with type 2 diabetes mellitus (T2DM) and either confirmed coronary artery disease (CAD) or high CAD risk, as well as the extent of the association between T2DM and coronary plaque characteristics, remains uncertain. PURPOSE This meta-analysis aims to compare MACE endpoints between patients with diabetes and patients without diabetes based on coronary artery plaques. METHODS We searched studies from Web of Science, PubMed, Embase, and the Cochrane Library up until September 1, 2023. Two independent researchers evaluated the quality and bias of the included studies. We used odds ratio (OR) and standardized mean difference (SMD) with 95% confidence interval (CI) to assess the effect of individual lesion parameters and coronary artery plaque characteristics on MACE endpoints. RESULTS Seven studies covered 1218 patients with diabetes and 3038 patients without diabetes. The follow-up time ranged from 2 to 5.4 years. The pooled results indicated that in all CAD lesions, DM was more strongly associated with MACE, myocardial infarction (MI), revascularization, and rehospitalization for unstable or progressive angina. The pooled OR was 1.82 (95% CI: 1.42 to 2.33, I2 = 0%, P < 0.00001) for MACE, 2.36 (95% CI: 1.47 to 3.79, I2 = 0%, P = 0.0004) for MI, 1.83 (95% CI: 1.33 to 2.53, I2 = 0%, P = 0.0002) for revascularization, and 1.65 (95% CI: 1.20 to 2.27, I2 = 0%, P = 0.002) for rehospitalization respectively. Subgroup analysis of culprit lesions (CLs) revealed significant differences between DM and non-DM for MACE, MI, revascularization, and stent thrombosis. While non-culprit lesions (NCLs) showed differences for MACE, MI, revascularization, and rehospitalization between the two groups. CONCLUSION The rates of MACE, MI, and revascularization are greater in DM than in non-DM patients in terms of all lesions, CLs, and NCLs. Except for CLs, the readmission rate is greater for unstable or progressive angina. Plaque characteristics are similar between patients with and without diabetes. Prospero registration number CRD42023474226.
Collapse
Affiliation(s)
- Yuchen Ma
- Department of Medical Informatics, Medical School of Nantong University, Nantong, 226001, China
| | - Huiying Gao
- Department of Medical Informatics, Medical School of Nantong University, Nantong, 226001, China
| | - Huiqun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
16
|
Ji J, Wei X, Xue B, Wan D, Wu L, Liu H. Predictive Value of Pan-Immune Inflammation Value and Systemic Immune-Inflammation Index for Identifying Coronary Vulnerable Plaques: New Insights from Optical Coherence Tomography in Acute Coronary Syndrome Patients. J Inflamm Res 2024; 17:10371-10382. [PMID: 39649422 PMCID: PMC11625432 DOI: 10.2147/jir.s498292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/23/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose The predictive value of PIV and SII in identifying vulnerable plaques among ACS patients remains poorly understood. This study represents the inaugural use of OCT to identify vulnerable plaques and establishes a predictive model incorporating PIV and SII, enhancing clinical treatment strategies. Methods A total of 523 eligible ACS patients underwent coronary angiography and OCT. Clinical data were collected and analyzed. Multifactorial logistic regression was employed to identify factors influencing TCFA. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic accuracy of the PIV and SII for TCFA, with a calculation of the area under the ROC curve (AUC). The optimal cutoff values for PVI and SII were calculated. Results Compared to the non-TCFA group, the TCFA group exhibited significantly higher levels of hypersensitive C-reactive protein (hs-CRP), PIV, and SII (all P <0.05). Multifactorial logistic regression analysis revealed that PIV (odds ratio [OR], 1.78; 95% confidence interval [CI], 1.35-2.06; P <0.001) and SII (OR, 1.52; 95% CI, 1.14-2.08; P <0.001) were independent risk factors for TCFA development. The optimal cutoff value for PIV was 490.7, achieving a diagnostic sensitivity and specificity of 75.44% and 89.32%, respectively. For SII, the optimal cutoff value was 802.9, with a diagnostic sensitivity and specificity of 67.54% and 79.61%, respectively. Conclusion This study suggests that PIV and SII can serve as noninvasive, practical, and cost-effective biomarkers for evaluating plaque vulnerability in patients with ACS.
Collapse
Affiliation(s)
- Jinrui Ji
- Clinical Medical Department, Faculty of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
- Department of Cardiology, People’s Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Xiaoyun Wei
- Clinical Medical Department, Faculty of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
- Department of Cardiology, People’s Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Bin Xue
- Clinical Medical Department, Faculty of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
- Department of Cardiology, People’s Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Dongyu Wan
- Clinical Medical Department, Faculty of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
- Department of Cardiology, People’s Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Lei Wu
- Clinical Medical Department, Faculty of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
- Department of Cardiology, People’s Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Hengliang Liu
- Clinical Medical Department, Faculty of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
- Department of Cardiology, People’s Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| |
Collapse
|
17
|
Wang X, Mu D, Liang J, Xin R, Zhang Y, Liu R, Yao M, Zhang B. Emerging nanoprobes for the features visualization of vulnerable atherosclerotic plaques. SMART MEDICINE 2024; 3:e20240033. [PMID: 39776593 PMCID: PMC11669784 DOI: 10.1002/smmd.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular disease. In particular, the unpredictable rupture of vulnerable atherosclerotic plaques (VASPs) can cause serious cardiovascular events such as myocardial infarction, stroke, and even sudden death. Therefore, early evaluation of the vulnerability of atherosclerotic plaques is of great importance. However, clinical imaging techniques are only marginally useful in the presence of severe anatomical structural changes, making it difficult to evaluate plaque vulnerability at an early stage. With the development of molecular imaging and nanotechnology, specific nanoprobes constructed for the pathological features of VASPs have attracted much attention for their ability to visualize VASPs early and noninvasively at the cellular and molecular levels. Here, we outline the pathological features of VASPs, analyze the superiority and limitations of current clinical imaging techniques, introduce the rational design principles of nanoprobes, and systematically summarize the application of nanoprobes to visualize the features of VASPs at the cellular and molecular levels. In addition, we discussed the prospects and urgent challenges in this field, and we believe it will provide new ideas for the early and accurate diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dan Mu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jing Liang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Ruijing Xin
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yukun Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Renyuan Liu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mei Yao
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Bing Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Medical Imaging CenterAffiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Department of RadiologyDrum Tower HospitalClinical College of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
- Institute of Brain ScienceNanjing UniversityNanjingChina
| |
Collapse
|
18
|
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B, Wu JH. Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics 2024; 14:7505-7533. [PMID: 39659570 PMCID: PMC11626940 DOI: 10.7150/thno.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Atherosclerosis remains a significant global health challenge, with its related conditions as the leading cause of death, underscoring the urgent need for enhanced diagnostic and therapeutic approaches. Recently, self-assembled nanoparticles (SANPs) have shown remarkable promise in treating atherosclerosis, attributed to their superior bioavailability, biodegradability, biocompatibility, and ease of functional modification. Numerous SANP variants, such as DNA origami, metal-organic frameworks (MOFs), nanozymes, peptide-based nanoparticles, and self-assembled prodrug nanoparticles, have been engineered, extending their utility in targeted drug delivery and imaging. Advances in fabrication technologies, including microfluidic techniques, allow for precise and scalable SANP production, while innovative nanoparticle designs-such as stimuli-responsive and carrier-free variants-enhance pharmacokinetic properties. The deployment of SANPs in atherosclerosis has introduced a range of diagnostic and therapeutic solutions, from non-invasive imaging and stimuli-responsive drug delivery to vaccination, theranostics, and biosensing. This review consolidates the recent progress in SANP applications for atherosclerosis, emphasizing their transformative potential in disease management.
Collapse
Affiliation(s)
- Tuersun Aili
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia-bin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-xiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-liang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie-hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Lin Y, Yang M, Liu Q, Cai Y, Zhang Z, Xu C, Luo M. Apolipoprotein E Gene ε4 Allele is Associated with Atherosclerosis in Multiple Vascular Beds. Int J Gen Med 2024; 17:5039-5048. [PMID: 39512258 PMCID: PMC11542474 DOI: 10.2147/ijgm.s475771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Background Atherosclerosis is a systemic disease that can involve multiple vascular beds. The risk factors for atherosclerosis in multiple vascular beds remain unclear. Apolipoprotein E (APOE) is involved in inflammation and lipid deposition in the process of atherosclerosis. The objective of this study was to investigate whether APOE polymorphisms are associated with atherosclerosis in multiple vascular beds. Methods A total of 416 patients with atherosclerosis in single vascular bed and 658 patients with atherosclerosis in multiple vascular beds were included. APOE genotypes were detected and the differences of APOE genotypes between the groups were compared. Logistic regression analysis was performed to analyze the relationship between APOE genotypes and atherosclerosis in multiple vascular beds. Results APOE E3/E4 genotype frequency was lower in the patients with atherosclerosis in multiple vascular beds than that of patients with atherosclerosis in single vascular bed (11.4% vs 17.8%, P=0.004). There was no significant difference in age and gender distribution, proportion of history of smoking, alcohol consumption, hypertension, and diabetes mellitus between the two groups (all P>0.05), and among patients with different APOE alleles (all P>0.05). Logistic regression analysis indicated that APOE E3/E4 genotype (E3/E4 vs E3/E3: odds ratio (OR) 0.598, 95% confidence interval (CI): 0.419-0.854, P=0.005), and APOE ε4 allele (ε4 vs ε3: OR 0.630, 95% CI: 0.444-0.895, P=0.010) associated with atherosclerosis in multiple vascular beds. Conclusion APOE ε4 allele is associated with atherosclerosis in multiple vascular beds.
Collapse
Affiliation(s)
- Youni Lin
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Min Yang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Qifeng Liu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yufu Cai
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhouhua Zhang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Chongfei Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Ming Luo
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
20
|
Wang C, Geng L, Hou L. Analysis of carotid ultrasound in a high-stroke-risk population. Medicine (Baltimore) 2024; 103:e40383. [PMID: 39496038 PMCID: PMC11537612 DOI: 10.1097/md.0000000000040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
This study aims to explore the risk factors for carotid plaque (CP) and carotid common artery intima-media thickening (CCAIMT) and clarify the relationship between the risk factors with the number of CPs and the side of CCAIMT in a high-stroke-risk population in Qujing, Yunnan, China. Carotid ultrasonography was performed in 430 participants with high stroke risk, who were divided into different groups according to their ultrasound results. The risk factors and blood biochemical indices were recorded for assessment. The prevalence rates of CP and CCAIMT were 88.1% and 70.5%, respectively. Multivariate logistic regression analysis identified age and lack of physical exercise as risk factors of CP. Compared to participants without CP, participants who performed little physical exercise were prone to have one CP, while participants with risk factors for smoking, older age, and physical inactivity were more likely to have several CPs. Risk factors for CCAIMT were older age, male, and the levels of low density lipoprotein cholesterol. Risk factors for left CCAIMT included a history of hyperlipidemia and low density lipoprotein cholesterol, while male sex was the sole risk factor for right CCAIMT. Finally, male sex and advanced age were identified as risk factors for dual CCAIMT. The research reveals the risk factors for CP and CCAIMT, also clarifies the relationship between the risk factors, CP numbers, and the side of CCAIMT.
Collapse
Affiliation(s)
- ChunFang Wang
- Department of Neurology, Second People’s Hospital of Qujing, Qujing, China
| | - Lirong Geng
- Department of Neurology, Second People’s Hospital of Qujing, Qujing, China
| | - Lijun Hou
- Department of Neurology, Second People’s Hospital of Qujing, Qujing, China
| |
Collapse
|
21
|
Gać P, Jakubowska-Martyniuk A, Żórawik A, Hajdusianek W, Żytkowski D, Matys T, Poręba R. Diagnostic Methods of Atherosclerotic Plaque and the Assessment of Its Prognostic Significance-A Narrative Review. J Cardiovasc Dev Dis 2024; 11:343. [PMID: 39590186 PMCID: PMC11594366 DOI: 10.3390/jcdd11110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of death. The most notable cause of CVD is an atherosclerotic plaque. The aim of this review is to provide an overview of different diagnostic methods for atherosclerotic plaque relevant to the assessment of cardiovascular risk. The methods can be divided into invasive and non-invasive. This review focuses on non-invasive with attention paid to ultrasonography, contrast-enhanced ultrasonography, intravascular ultrasonography, and assessment of intima-media complex, coronary computed tomography angiography, and magnetic resonance. In the review, we discuss a number of Artificial Intelligence technologies that support plaque imaging.
Collapse
Affiliation(s)
- Paweł Gać
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
- Centre of Diagnostic Imaging, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wrocław, Poland
| | - Anna Jakubowska-Martyniuk
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Aleksandra Żórawik
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Wojciech Hajdusianek
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Dawid Żytkowski
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Tomasz Matys
- Department of Angiology and Internal Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Rafał Poręba
- Centre of Diagnostic Imaging, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wrocław, Poland
| |
Collapse
|
22
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
23
|
Wang A, Yue K, Zhong W, Zhang G, Zhang X, Wang L. Targeted delivery of rapamycin and inhibition of platelet adhesion with multifunctional peptide nanoparticles for atherosclerosis treatment. J Control Release 2024; 376:S0168-3659(24)00724-7. [PMID: 39490419 DOI: 10.1016/j.jconrel.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
There is increasing evidence supporting the unique benefits of targeted therapy in treating atherosclerotic disease. Given the complex nature of atherosclerosis development, we proposed a novel strategy for the efficient delivery of rapamycin (RAPA) by targeting both the exposed subendothelial collagen and oxidized low-density lipoprotein (oxLDL) present in plaques. In response, we developed multifunctional peptide (MP) nanoparticles for targeted drug delivery. The ability of MP nanoparticles to load RAPA and target collagen/oxLDL was investigated through molecular dynamics simulations and in vitro experiments. The efficacy of MP nanoparticles in atherosclerosis treatment was assessed via in vivo experiments on ApoE-/- mice. Results indicate that MP nanoparticles have encapsulation and drug loading efficiencies for RAPA of 78.3 % and 43.9 %, respectively. By targeting collagen, MP nanoparticles create steric hindrance that inhibits 77.2 % of platelet adhesion. These nanoparticles can also target oxLDL, delivering RAPA into plaques and significantly reducing macrophage uptake of oxLDL. In vivo experiments showed that MP nanoparticles effectively targeted and accumulated in plaques. Treating mice with MP@RAPA nanoparticles for 10 weeks led to an 81.3 % reduction in the aortic vascular plaque area and decreased concentrations of MCP-1, hs-CRP, MMP-1, P-selectin, IL-1β, and IL-8 inflammatory factors, as well as the optical density of platelet-associated proteins (CD42, CD61, and PECAM-1). These results highlight the promising potential of MP nanoparticles for atherosclerotic disease treatment.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| |
Collapse
|
24
|
Gangavarapu RR, Mahmud SA, Manandhar A, Sabir G, Abdelhady HA, Oumar Abakar A, Nassar ST. Comparative Efficacy and Safety of Novel Antiplatelets and Standard Therapy in Patients With Coronary Artery Disease. Cureus 2024; 16:e71333. [PMID: 39534810 PMCID: PMC11554594 DOI: 10.7759/cureus.71333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease (CAD) is a significant health concern that has affected approximately 110 million people worldwide. CAD is defined as persistent narrowing of the coronary arteries as a result of atherosclerotic plaque build-up. Acute coronary syndrome (ACS), which encompasses ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina, often results from plaque ruptures. Platelets are crucial for atherogenesis, vascular inflammation, and oxidative stress. Antiplatelet therapy aimed at reducing thrombotic events is vital for ACS treatment. Clinical guidelines advise the use of dual antiplatelet therapy (DAPT) that combines aspirin and a P2Y12 receptor inhibitor (clopidogrel, prasugrel, or ticagrelor) in ACS patients undergoing percutaneous intervention (PCI). This study aimed to assess comprehensively the effectiveness and safety of ticagrelor and prasugrel in comparison to clopidogrel in patients with ACS. An extensive literature search was conducted using PubMed, PubMed Central (PMC), ScienceDirect, and EBSCO databases. The search revealed studies that compared ticagrelor and prasugrel to clopidogrel in ACS patients, and we selected these studies based on specific inclusion and exclusion criteria, which included observational studies, clinical trials, literature reviews, and meta-analyses involving adult ACS patients treated with ticagrelor, prasugrel, or clopidogrel. The efficacy outcomes were defined as major adverse cardiovascular events (MACE) and thrombotic events, whereas the safety outcomes were measured by major and minor bleeding and hemorrhagic stroke. After a rigorous quality assessment to minimize bias, 23 studies were selected for analysis. The findings indicated that novel antiplatelets reduced MACE but increased bleeding complications, with ticagrelor consistently associated with dyspnea. In conclusion, novel P2Y12 inhibitors provide cardiovascular benefits but require careful patient selection and monitoring due to gastrointestinal bleeding (GIB) risks. Future research should standardize bleeding definitions and assess long-term outcomes. Ticagrelor and prasugrel may be more effective and safer than clopidogrel in ACS patients. Given the high risk of GIB, especially among older individuals or those with a past stroke, it is advisable to suggest a lower prasugrel dose without raising the bleeding rates. Since fewer patients use the novel antiplatelet regimen compared to clopidogrel, future clinical trials should include a broader patient population and compare these regimens.
Collapse
Affiliation(s)
| | - Sayed A Mahmud
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Anura Manandhar
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ghadeer Sabir
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Hala A Abdelhady
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Adoum Oumar Abakar
- Internal Medicine and Clinical Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sondos T Nassar
- Medicine and Surgery, Jordan University of Science and Technology, Amman, JOR
| |
Collapse
|
25
|
Wang Z, Zhang P. Novel imaging modalities for the identification of vulnerable plaques. Front Cardiovasc Med 2024; 11:1450252. [PMID: 39328242 PMCID: PMC11424440 DOI: 10.3389/fcvm.2024.1450252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Atherosclerosis is a slow, progressive disease that is closely associated with major adverse cardiovascular events. Early diagnosis and risk assessment of atherosclerosis can effectively improve the prognosis and reduce the occurrence of adverse cardiovascular events in the later stage. A variety of invasive and non-invasive imaging modalities are important tools for diagnosing lesions, monitoring the efficacy of treatments, and predicting associated risk events. This review mainly introduces the four commonly used non-invasive imaging modalities in clinical practice and intravascular imaging such as optical coherence tomography, intravascular ultrasound imaging, and near-infrared spectroscopy, compares the advantages and disadvantages in the diagnosis of vulnerable plaques, and briefly summarizes the new progressions of each.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Zhuo J, Wang L, Li R, Li Z, Zhang J, Xu Y. Identification of symptomatic carotid artery plaque: a predictive model combining angiography with optical coherence tomography. Front Neurol 2024; 15:1445227. [PMID: 39281411 PMCID: PMC11392725 DOI: 10.3389/fneur.2024.1445227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Objective Symptomatic carotid artery disease is indicative of an elevated likelihood of experiencing a subsequent stroke, with the morphology of plaque and its specific features being closely linked to the risk of stroke occurrence. Our study based on the characteristics of carotid plaque assessed by optical coherence tomography (OCT), the plaque morphology evaluated by digital subtraction angiography (DSA) and clinical laboratory indicators were combined, develop a combined predictive model to identify symptomatic carotid plaque. Methods Patients diagnosed with carotid atherosclerotic stenosis who underwent whole-brain DSA and OCT examination at the Affiliated Hospital of Jining Medical University from January 2021 to November 2023 were evaluated. Clinical features, as well as DSA and OCT plaque characteristics, were analyzed for differences between symptomatic and asymptomatic cohorts. An analysis of logistic regression was carried out to identify factors associated with the presence of symptomatic carotid plaque. A multivariate binary logistic regression equation was established with the odds ratio (OR) serving as the risk assessment parameter. The receiver operating characteristic curve was utilized to assess the combined predictive model and independent influencing factors. Results A total of 52 patients were included in the study (symptomatic: 44.2%, asymptomatic: 55.8%). Symptomatic carotid stenosis was significantly linked to four main factors: low-density lipoprotein-cholesterol >3.36 mmol/L [OR, 6.400; 95% confidence interval (CI), 1.067-38.402; p = 0.042], irregular plaque (OR, 6.054; 95% CI, 1.016-36.083; p = 0.048), ruptured plaque (OR, 6.077; 95% CI, 1.046-35.298; p = 0.048), and thrombus (OR, 6.773; 95% CI, 1.194-38.433; p = 0.044). The combined predictive model generated using four indicators showed good discrimination (Area Under Curve, 0.924; 95% CI, 0.815-0. 979). The p value was <0.05 with 78.26% sensitivity and 93.10% specificity. Conclusion OCT is valuable in evaluating the plaque characteristics of carotid atherosclerotic stenosis. The combined predictive model comprising low-density lipoprotein-cholesterol >3.36 mmol/L, irregular plaque, ruptured plaque, and thrombus could help in the detection of symptomatic carotid plaque. Further research conducted on additional independent cohorts is necessary to confirm the clinical significance of the predictive model for symptomatic carotid plaque.
Collapse
Affiliation(s)
- Jun Zhuo
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Medical Science and Technology Innovation Center, Institute of Medical Engineering and Interdisciplinary Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Interventional Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lin Wang
- Department of Interventional Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruolin Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhiyuan Li
- Department of Interventional Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junhu Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yunjian Xu
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Medical Science and Technology Innovation Center, Institute of Medical Engineering and Interdisciplinary Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
27
|
Kou H, Yang H. Molecular imaging nanoprobes and their applications in atherosclerosis diagnosis. Theranostics 2024; 14:4747-4772. [PMID: 39239513 PMCID: PMC11373619 DOI: 10.7150/thno.96037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Molecular imaging has undergone significant development in recent years for its excellent ability to image and quantify biologic processes at cellular and molecular levels. Its application is of significance in cardiovascular diseases, particularly in diagnosing them at early stages. Atherosclerosis is a complex, chronic, and progressive disease that can lead to serious consequences such as heart strokes or infarctions. Attempts have been made to detect atherosclerosis with molecular imaging modalities. Not only do imaging modalities develop rapidly, but research of relevant nanomaterials as imaging probes has also been increasingly studied in recent years. This review focuses on the latest developments in the design and synthesis of probes that can be utilized in computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound imaging, photoacoustic imaging and combined modalities. The challenges and future developments of nanomaterials for molecular imaging modalities are also discussed.
Collapse
Affiliation(s)
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
28
|
Costa D, Scalise E, Ielapi N, Bracale UM, Faga T, Michael A, Andreucci M, Serra R. Omics Science and Social Aspects in Detecting Biomarkers for Diagnosis, Risk Prediction, and Outcomes of Carotid Stenosis. Biomolecules 2024; 14:972. [PMID: 39199360 PMCID: PMC11353051 DOI: 10.3390/biom14080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Carotid stenosis is characterized by the progressive narrowing of the carotid arteries due to the formation of atherosclerotic plaque, which can lead to stroke and death as major complications. Numerous biomarkers allow for its study and characterization, particularly those related to "omics" sciences. Through the most common research databases, we report representative studies about carotid stenosis biomarkers based on genomics, transcriptomics, proteomics, and metabolomics in a narrative review. To establish a priority among studies based on their internal validity, we used a quality assessment tool, the Scale for the Assessment of Narrative Review Articles (SANRA). Genes, transcriptomes, proteins, and metabolites can diagnose the disease, define plaque connotations, predict consequences after revascularization interventions, and associate carotid stenosis with other patient comorbidities. It also emerged that many aspects determining the patient's psychological and social sphere are implicated in carotid disease. In conclusion, when taking the multidisciplinary approach that combines human sciences with biological sciences, it is possible to comprehensively define a patient's health and thus improve their clinical management through precision medicine.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Roma, Italy;
| | | | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
29
|
He W, Tu S, Han J, Cui H, Lai L, Ye Y, Dai T, Yuan Y, Ji L, Luo J, Ren W, Wu A. Mild phototherapy mediated by IR780-Gd-OPN nanomicelles suppresses atherosclerotic plaque progression through the activation of the HSP27-regulated NF-κB pathway. Acta Biomater 2024; 182:199-212. [PMID: 38734283 DOI: 10.1016/j.actbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Reducing plaque lipid content and enhancing plaque stability without causing extensive apoptosis of foam cells are ideal requirements for developing a safe and effective treatment of atherosclerosis. In this study, we synthesized IR780-Gd-OPN nanomicelles by conjugating osteopontin (OPN) and loading a gadolinium-macrocyclic ligand (Gd-DOTA) onto near-infrared dye IR780-polyethylene glycol polymer. The nanomicelles were employed for mild phototherapy of atherosclerotic plaques and dual-mode imaging with near-infrared fluorescence and magnetic resonance. In vitro results reveal that the mild phototherapy mediated by IR780-Gd-OPN nanomicelles not only activates heat shock protein (HSP) 27 to protect foam cells against apoptosis but also inhibits the nuclear factor kappa-B (NF-κB) pathway to regulate lipid metabolism and macrophage polarization, thereby diminishing the inflammatory response. In vivo results further validate that mild phototherapy effectively reduces plaque lipid content and size while simultaneously enhancing plaque stability by regulating the ratio of M1 and M2-type macrophages. In summary, this study presents a promising approach for developing a safe and highly efficient method for the precise therapeutic visualization of atherosclerosis. STATEMENT OF SIGNIFICANCE: The rupture of unstable atherosclerotic plaques is a major cause of high mortality rates in cardiovascular diseases. Therefore, the ideal outcome of atherosclerosis treatment is to reduce plaque size while enhancing plaque stability. To address this challenge, we designed IR780-Gd-OPN nanomicelles for mild phototherapy of atherosclerosis. This treatment can effectively reduce plaque size while significantly improving plaque stability by increasing collagen fiber content and elevating the ratio of M2/M1 macrophages, which is mainly attributed to the inhibition of the NF-κB signaling pathway by mild phototherapy-activated HSP27. In summary, our proposed mild phototherapy strategy provides a promising approach for safe and effective treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Shuangshuang Tu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jinru Han
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haijing Cui
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Liangxue Lai
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yonglong Ye
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Ting Dai
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Yannan Yuan
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Lili Ji
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jiayong Luo
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
30
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
31
|
Liu X, Li Y, Li W, Zhang Y, Zhang S, Ma Y, Yang F, Zhu Y. Diagnostic value of multimodal cardiovascular imaging technology coupled with biomarker detection in elderly patients with coronary heart disease. Br J Hosp Med (Lond) 2024; 85:1-10. [PMID: 38941970 DOI: 10.12968/hmed.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Aims/Background Coronary heart disease is a common disease in the elderly and has a complex pathogenesis, which complicates the clinical diagnostic process. Thus, enhancing the diagnostic efficiency for coronary heart disease is imperative to improve the life expectancy of the elderly. This study aimed to explore the diagnostic value of multimodal cardiovascular imaging technology coupled with biomarker detection in elderly patients with coronary heart disease. Methods The medical records of 421 patients with suspected coronary heart disease obtained from the geriatric department of the First Affiliated Hospital of Hebei North University from February 2020 to February 2023 were retrospectively analysed. After excluding 10 patients who did not meet the inclusion criteria, the remaining 411 patients were included in this study. The included subjects had undergone coronary computed tomography angiography and were divided into coronary heart disease group (n=208) and non-coronary heart disease group (n=203) according to the diagnostic results. Multimodal cardiovascular imaging (coronary computed tomography angiography and echocardiography) and detection of serum biomarkers such as small dense low-density lipoprotein, lipoprotein a, and gamma-glutamyl transferase were performed in both groups. The clinical indicators of the two groups were compared, and the combined diagnostic efficacy of multimodal cardiovascular imaging and biomarker detection was evaluated. Results Compared to the non-coronary heart disease group, the coronary heart disease group had significantly higher levels of maximum area stenosis, total plaque volume, total plaque burden and fibrotic plaque volume (p < ..001), and lower left ventricular ejection fraction level (p < ..001). Additionally, the coronary heart disease group exhibited higher levels of left ventricular end-diastolic volume, left ventricular end-systolic volume and stroke volume than the non-coronary heart disease group (p < ..001), and had higher levels of small dense low-density lipoprotein, lipoprotein a and gamma-glutamyl transferase (p < ..001). Our results demonstrated that combined diagnosis had better diagnostic efficacy than individual approaches, marked by higher area under the curve and sensitivity of the former (p < ..001). Conclusion Multimodal cardiovascular imaging technology combined with biomarker detection can distinctly improve the accuracy of coronary heart disease diagnosis in elderly patients.
Collapse
Affiliation(s)
- Xiaocheng Liu
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yong Li
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Weitian Li
- Department of Ultrasound Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Youtao Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Shaolei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yongqing Ma
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Fei Yang
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yuexiang Zhu
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
32
|
Zhang WJ, Chen RQ, Tang X, Li PB, Wang J, Wu HK, Xu N, Zou MF, Luo SR, Ouyang ZQ, Chen ZK, Liao XX, Wu H. Naoxintong capsule for treating cardiovascular and cerebrovascular diseases: from bench to bedside. Front Pharmacol 2024; 15:1402763. [PMID: 38994201 PMCID: PMC11236728 DOI: 10.3389/fphar.2024.1402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Rui-qi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Tang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery, Foshan Sanshui District People’s Hospital, Foshan, Guangdong, China
| | - Hai-ke Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ning Xu
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ming-fei Zou
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Sen-rong Luo
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-qi Ouyang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-kai Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu-xing Liao
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Urbanowicz TK, Skotak K, Lesiak M, Olasińska-Wiśniewska A, Filipiak KJ, Bratkowski J, Szczepański K, Grodecki K, Tykarski A, Jemielity M. Coronary artery culprit lesions progression and ambient temperature exposure - personalised analysis. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2024; 20:139-147. [PMID: 39022713 PMCID: PMC11249875 DOI: 10.5114/aic.2024.139815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Global warming is claimed to be an important cardiovascular disease risk factor. The air pollution and ambient temperatures are believed to have a significant influence on increased morbidity and premature deaths. Aim To point out possible causative factors for coronary angiography progression in patients presenting with chronic coronary syndrome. Material and methods There were 66 patients (41 [62%] men and 25 [38%] women) with a median age of 71.5 (62-76) years, who underwent repeated coronary angiographies due to chronic coronary syndrome within a median time interval of 145 (96-296) days. In 18 (27%) patients coronary artery lesion progression was observed despite optimal pharmacotherapy. The demographical, clinical, and personalised epidemiological factors including air pollution particles and ambient temperature exposure were taken into account in the analysis. Results In the multivariate logistic regression model with backward stepwise elimination method, tropical nights (p = 0.047) and mean daily temperatures (p = 0.043) were revealed as predictors of coronary lesion progression > 30%. The analysis of seasonal temperature changes showed significant differences related to minimal winter temperatures between both groups (p = 0.018). Conclusions Coronary artery lesion progression can be related to either high values of daily temperatures or to low ambient temperature. The dichotomous characteristics of temperature exposure to atherosclerosis progression suggest a detrimental role of environmental extremities on human health.
Collapse
Affiliation(s)
- Tomasz Kamil Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Skotak
- Institute of Environmental Protection – National Research Institute, Warsaw, Poland
| | - Michał Lesiak
- 1 Cardiology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof J. Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Jakub Bratkowski
- Institute of Environmental Protection – National Research Institute, Warsaw, Poland
| | - Krystian Szczepański
- Institute of Environmental Protection – National Research Institute, Warsaw, Poland
| | - Kajetan Grodecki
- Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology, and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
34
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Wang Y, Zheng J, Li Q, Ma Y, Liu C, Deng J, Gao D. The relationship between complement C1q and coronary plaque vulnerability based on optical coherence tomography analysis. Sci Rep 2024; 14:9477. [PMID: 38658599 PMCID: PMC11043360 DOI: 10.1038/s41598-024-60128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
To determine the association between complement C1q and vulnerable plaque morphology among coronary artery disease (CAD) patients. We conducted a retrospective observational study of 221 CAD patients admitted to The Second Affiliated Hospital of Xi'an Jiaotong University. Intravascular optical coherence tomography was utilized to describe the culprit plaques' morphology. Using logistic regression analysis to explore the correlation between C1q and vulnerable plaques, and receiver operator characteristic (ROC) analysis assess the predictive accuracy. As reported, the complement C1q level was lower in ACS patients than CCS patients (18.25 ± 3.88 vs. 19.18 ± 4.25, P = 0.045). The low complement-C1q-level group was more prone to develop vulnerable plaques. In lipid-rich plaques, the complement C1q level was positively correlated with the thickness of fibrous cap (r = 0.480, P = 0.041). Univariate and multivariate logistic regression analyses suggested that complement C1q could be an independent contributor to plaques' vulnerability. For plaque rupture, erosion, thrombus, and cholesterol crystals, the areas under the ROC curve of complement C1q level were 0.873, 0.816, 0.785, and 0.837, respectively (P < 0.05 for all). In CAD patients, the complement C1q could be a valuable indicator of plaque vulnerability.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jiawei Zheng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Qing Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China.
| |
Collapse
|
36
|
Hegazy MA, Mansour KS, Alzyat AM, Hegazy AA, Mohammad MA. Evaluation of Nonculprit Coronary Artery Lesions in Patients with Acute ST-Segment Elevation Myocardial Infarction. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2024; 17:367-377. [DOI: 10.4103/mjdrdypu.mjdrdypu_728_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 06/17/2024] Open
Abstract
ABSTRACT
Background:
Multivessel coronary artery disease is a common finding during the primary percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction (STEMI). It might be a cause for recurrent attacks. This study aimed to evaluate nonculprit lesions (NCLs) encountered in the three major epicardial coronary arteries.
Methods:
Patients with STEMI who underwent PPCI and matched the study inclusion criteria were enrolled. They were evaluated clinically, biomedically, and coronary angiographically. The coronary angiography analysis was examined by four cardiologists using the Quantitative Coronary Artery Analysis software. The data was analyzed statistically.
Results:
Of the 154 patients included in the study, 130 (84.4%) were males and 24 (15.6%) were females, with a mean age of 52.92 ± 13.14 years. Five hundred seventy-four NCLs were found in 132 (85.7%) patients. Nonobstructive lesions with stenosis less than 70% of vessel diameter were more frequent than obstructive lesions. The left circumflex coronary artery (LCX) was the first one of the three major arteries to be affected by obstructive NCLs. The obstructive NCLs were 128 in number; found in 78 (50.4%) patients; 65 (50.8%) of them were in LCX; 32 (25%) were in left anterior descending (25%); and 31 (24.2%) were in right coronary artery.
Conclusions:
NCLs are common among STEMI patients. LCX obstructive NCLs are comparable to those in the other two major epicardial coronary arteries, with respect to frequency and severity of luminal stenosis.
Collapse
Affiliation(s)
- Mustafa A. Hegazy
- Cardiology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Kamal S. Mansour
- Cardiology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Ahmed M. Alzyat
- Cardiology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Abdelmonem A. Hegazy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
- Medical Lab Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa City, Jordan
| | - Mohammad A. Mohammad
- Cardiology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| |
Collapse
|
37
|
Proaño-Bernal L, Gilabert-García A, Sharma-Sharma S, Mora-Barrera CM, Singer-De-la-Garza J, Beristain-de-la-Rosa PY, Basile-Alvarez MR, Guerra EC, Bermudez-Gonzalez JL, Luna-Alcala S, Espinola-Zavaleta N, Alexanderson-Rosas E. Positron emission tomography and its role in the assessment of vulnerable plaques in comparison to other imaging modalities. Front Med (Lausanne) 2024; 10:1293848. [PMID: 38425695 PMCID: PMC10902136 DOI: 10.3389/fmed.2023.1293848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024] Open
Abstract
The diagnosis and management of vulnerable plaques are topics of high interest in the cardiovascular field. Although imaging techniques like computed tomography angiography (MCTA) and ultrasonography (USG) can structurally evaluate atherosclerotic plaques, they are limited in examining internal cellular processes. Positron emission tomography (PET) molecular imaging, on the other hand, can highlight these cellular processes, including inflammation, angiogenesis, and lipid oxidation. Magnetic resonance imaging (MRI) is also a valuable non-invasive imaging technique that can provide detailed anatomical and functional information on the cardiovascular system. In this review, we compare the advantages and drawbacks of MCTA, USG and MRI imaging techniques with PET molecular imaging in evaluating vulnerable plaques. PET imaging allows physicians to measure different pathophysiological events within the plaque using intravenous radiotracers, of which 18F-fluorodeoxyglucose (18F-FDG) is the most validated one. By using 18F-FDG, physicians can understand the formation of the plaque, assess the accumulation of macrophages, and predict major cardiovascular events. However, some limitations exist in using 18F-FDG, including myocardial uptake and low sensitivity in imaging coronary arteries. We also mention other radiotracers that can help in evaluating vulnerable plaques, including 18F-NaF. Although PET imaging is still challenging, it has shown promise in evaluating vulnerable plaques and could be used to intervene in high-risk patients before major cardiovascular events occur.
Collapse
Affiliation(s)
- Leonardo Proaño-Bernal
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Ana Gilabert-García
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | - Enrique C. Guerra
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jorge Luis Bermudez-Gonzalez
- Department of Internal Medicine, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Santiago Luna-Alcala
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Nilda Espinola-Zavaleta
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Erick Alexanderson-Rosas
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
38
|
Mytych W, Bartusik-Aebisher D, Łoś A, Dynarowicz K, Myśliwiec A, Aebisher D. Photodynamic Therapy for Atherosclerosis. Int J Mol Sci 2024; 25:1958. [PMID: 38396639 PMCID: PMC10888721 DOI: 10.3390/ijms25041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.
Collapse
Affiliation(s)
- Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Aleksandra Łoś
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
39
|
Zhao YC, Zhang J, Wang F, He YM, Xu MJ, Wang DH, Zhang M. Value of carotid intima thickness in assessing advanced carotid plaque vulnerability: a study based on carotid artery ultrasonography and carotid plaque histology. Quant Imaging Med Surg 2024; 14:1994-2007. [PMID: 38415155 PMCID: PMC10895139 DOI: 10.21037/qims-23-1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Background Research has shown that carotid intima-media thickness (CIMT) could help to predict carotid plaque (CP) progression in patients with mild carotid stenosis. However, the debate continues as to the value of carotid intima thickness (CIT) in monitoring the development of CP in patients with severe carotid stenosis. This study sought to evaluate the relationships between CIT and the ultrasonic characteristics of CP and to analyze the value of CIT and the ultrasonic parameters of CP in assessing plaque vulnerability in advanced human carotid atherosclerosis. Methods A total of 55 individuals who underwent carotid endarterectomy (CEA) were included in the study (mean age: 65±7 years; female: 9.1%). CIMT and CIT were examined at the common carotid artery (CCA). Plaque textural features, such as the gray-scale median (GSM), superb microvascular imaging (SMI) level, and total plaque area (TPA), were also identified. A Spearman correlation coefficient analysis was performed to examine the relationship between CIT and the ultrasonic parameters of CP. The CIT of various plaque types was compared. Receiver operating characteristic (ROC) curves were used to analyze the diagnostic values of the ultrasound characteristics to evaluate CP vulnerability. Results The mean CIT of all the participants was 0.382±0.095 mm, the mean CIT of the participants with stable plaques was 0.328±0.031 mm, and the mean CIT of participants with vulnerable plaques was 0.424±0.106 mm (P<0.001). CIT was associated with the SMI level (Spearman's correlation coefficient: r=0.392, P=0.005), TPA (Spearman's correlation coefficient: r=0.337, P=0.012). Patients with thicker CIT had larger lipid cores, higher levels of plaque vulnerability, and more intraplaque hemorrhages (IPHs). The areas under the ROCs (AUCs) with 95% confidence interval (CI) for CIMT, CIT, the SMI level, the GSM, the TPA, and the combined model for identifying vulnerable plaques were 0.673 (0.533-0.793), 0.849 (0.727-0.932), 0.771 (0.629-0.879), 0.669 (0.529-0.790), 0.858 (0.738-0.938), and 0.949 (0.854-0.990), respectively. Conclusions CIT was associated with both the histology and ultrasonic features of CP. CIT may be helpful in the detection of severe CP development.
Collapse
Affiliation(s)
- Ya-Chao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Wang
- Neurosurgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Ming He
- Neurosurgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Jun Xu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dong-Hai Wang
- Neurosurgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
40
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
41
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
42
|
Patel P, Rai V, Agrawal DK. Role of oncostatin-M in ECM remodeling and plaque vulnerability. Mol Cell Biochem 2023; 478:2451-2460. [PMID: 36856919 PMCID: PMC10579161 DOI: 10.1007/s11010-023-04673-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Atherosclerosis is a multifactorial inflammatory disease characterized by the development of plaque formation leading to occlusion of the vessel and hypoxia of the tissue supplied by the vessel. Chronic inflammation and altered collagen expression render stable plaque to unstable and increase plaque vulnerability. Thinned and weakened fibrous cap results in plaque rupture and formation of thrombosis and emboli formation leading to acute ischemic events such as stroke and myocardial infarction. Inflammatory mediators including TREM-1, TLRs, MMPs, and immune cells play a critical role in plaque vulnerability. Among the other inflammatory mediators, oncostatin-M (OSM), a pro-inflammatory cytokine, play an important role in the development and progression of atherosclerosis, however, the role of OSM in plaque vulnerability and extracellular matrix remodeling (ECM) is not well understood and studied. Since ECM remodeling plays an important role in atherosclerosis and plaque vulnerability, a detailed investigation on the role of OSM in ECM remodeling and plaque vulnerability is critical. This is important because the role of OSM has been discussed in the context of proliferation of vascular smooth muscle cells and regulation of cytokine expression but the role of OSM is scarcely discussed in relation to ECM remodeling and plaque vulnerability. This review focuses on critically discussing the role of OSM in ECM remodeling and plaque vulnerability.
Collapse
Affiliation(s)
- Parth Patel
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
43
|
Yuan W, Huo R, Hou C, Bai W, Yang J, Wang T. The Relation of the Iron Metabolism Index to the Vulnerability Index of Carotid Plaque with Different Degrees of Stenosis. Diagnostics (Basel) 2023; 13:3196. [PMID: 37892018 PMCID: PMC10606419 DOI: 10.3390/diagnostics13203196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE To investigate the differences in serum iron index and iron metabolizing protein expression in plaques in patients with different degrees of carotid artery stenosis and the relationship with plaque traits. METHODS A total of 100 patients eligible for carotid endarterectomy (CEA) from August 2021 to February 2022 were included. Patients completed a computed tomography (CTA) scan for patient grouping and a magnetic resonance imaging (MRI) for precise quantification of carotid plaque traits within 1 week prior to surgery. Clinical indicators associated with the progression of carotid stenosis to occlusion were analyzed using ordered logistic regression. Twenty carotid plaques were analyzed immunohistochemically to investigate the relationship between plaque traits and the iron metabolism indexes. RESULTS No significant correlation between high serum ferritin (SF), unsaturated iron binding capacity (UIBC) and progression of carotid stenosis (OR 1.100, 95% CI 0.004-0.165, p = 0.039; OR 1.050, 95% CI 0.005-0.094, p = 0.031). SF and serum transferrin receptor (sTfR) were correlated with normalized wall index (NWI) (R = 0.470, p = 0.036; R = 0.449, p = 0.046), and the results of multiple linear regression suggested that SF and sTfR remained associated with NWI (R = 0.630, R2 = 0.397, Adjusted R2 = 0.326, p = 0.014). In plaques, H-type ferritin (H-FT) was correlated with NWI and lipid-rich necrotic core (LRNC) volume (R = 0.502, p = 0.028; R = 0.468, p = 0.043). Transferrin receptor 1 (TfR1) was correlated with LRNC volume and intraplaque hemorrhage (IPH) volume (R = 0.538, p = 0.017; R = 0.707, p = 0.001). CONCLUSIONS There were statistical differences in the expression of iron metabolism proteins in carotid plaques with different degrees of stenosis. Serum iron metabolism index (SF and sTfR) and expression of iron metabolizing proteins (H-FT and TfR1) in plaques were positively correlated with carotid plaque vulnerability index (NWI, LRNC volume).
Collapse
Affiliation(s)
- Wanzhong Yuan
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China; (W.Y.); (C.H.); (W.B.); (J.Y.)
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China;
| | - Chaofan Hou
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China; (W.Y.); (C.H.); (W.B.); (J.Y.)
| | - Wenbin Bai
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China; (W.Y.); (C.H.); (W.B.); (J.Y.)
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China; (W.Y.); (C.H.); (W.B.); (J.Y.)
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China; (W.Y.); (C.H.); (W.B.); (J.Y.)
| |
Collapse
|
44
|
He Z, Luo J, Lv M, Li Q, Ke W, Niu X, Zhang Z. Characteristics and evaluation of atherosclerotic plaques: an overview of state-of-the-art techniques. Front Neurol 2023; 14:1159288. [PMID: 37900593 PMCID: PMC10603250 DOI: 10.3389/fneur.2023.1159288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Atherosclerosis is an important cause of cerebrovascular and cardiovascular disease (CVD). Lipid infiltration, inflammation, and altered vascular stress are the critical mechanisms that cause atherosclerotic plaque formation. The hallmarks of the progression of atherosclerosis include plaque ulceration, rupture, neovascularization, and intraplaque hemorrhage, all of which are closely associated with the occurrence of CVD. Assessing the severity of atherosclerosis and plaque vulnerability is crucial for the prevention and treatment of CVD. Integrating imaging techniques for evaluating the characteristics of atherosclerotic plaques with computer simulations yields insights into plaque inflammation levels, spatial morphology, and intravascular stress distribution, resulting in a more realistic and accurate estimation of plaque state. Here, we review the characteristics and advancing techniques used to analyze intracranial and extracranial atherosclerotic plaques to provide a comprehensive understanding of atheroma.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Kopyto E, Czeczelewski M, Mikos E, Stępniak K, Kopyto M, Matuszek M, Nieoczym K, Czarnecki A, Kuczyńska M, Cheda M, Drelich-Zbroja A, Jargiełło T. Contrast-Enhanced Ultrasound Feasibility in Assessing Carotid Plaque Vulnerability-Narrative Review. J Clin Med 2023; 12:6416. [PMID: 37835061 PMCID: PMC10573420 DOI: 10.3390/jcm12196416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The risk assessment for carotid atherosclerotic lesions involves not only determining the degree of stenosis but also plaque morphology and its composition. Recently, carotid contrast-enhanced ultrasound (CEUS) has gained importance for evaluating vulnerable plaques. This review explores CEUS's utility in detecting carotid plaque surface irregularities and ulcerations as well as intraplaque neovascularization and its alignment with histology. Initial indications suggest that CEUS might have the potential to anticipate cerebrovascular incidents. Nevertheless, there is a need for extensive, multicenter prospective studies that explore the relationships between CEUS observations and patient clinical outcomes in cases of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Ewa Kopyto
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Marcin Czeczelewski
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Eryk Mikos
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Karol Stępniak
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Maja Kopyto
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Małgorzata Matuszek
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Karolina Nieoczym
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Adam Czarnecki
- Students’ Scientific Society, Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (E.K.); (E.M.); (K.S.); (M.K.); (M.M.); (K.N.); (A.C.)
| | - Maryla Kuczyńska
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| | - Mateusz Cheda
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| | - Anna Drelich-Zbroja
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| | - Tomasz Jargiełło
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-594 Lublin, Poland; (M.K.); (M.C.); (A.D.-Z.); (T.J.)
| |
Collapse
|
46
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
47
|
Fernández-Alvarez V, Linares-Sánchez M, Suárez C, López F, Guntinas-Lichius O, Mäkitie AA, Bradley PJ, Ferlito A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023; 13:1236. [PMID: 37627301 PMCID: PMC10452902 DOI: 10.3390/biom13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Carotid artery disease has traditionally been assessed based on the degree of luminal narrowing. However, this approach, which solely relies on carotid stenosis, is currently being questioned with regard to modern risk stratification approaches. Recent guidelines have introduced the concept of the "vulnerable plaque," emphasizing specific features such as thin fibrous caps, large lipid cores, intraplaque hemorrhage, plaque rupture, macrophage infiltration, and neovascularization. In this context, imaging-based biomarkers have emerged as valuable tools for identifying higher-risk patients. Non-invasive imaging modalities and intravascular techniques, including ultrasound, computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy, have played pivotal roles in characterizing and detecting unstable carotid plaques. The aim of this review is to provide an overview of the evolving understanding of carotid artery disease and highlight the significance of imaging techniques in assessing plaque vulnerability and informing clinical decision-making.
Collapse
Affiliation(s)
- Verónica Fernández-Alvarez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Miriam Linares-Sánchez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Carlos Suárez
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
| | - Fernando López
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
- Department of Otorhinolaryngology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncologia del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Patrick J. Bradley
- Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospitals, Derby Road, Nottingham NG7 2UH, UK;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
48
|
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques-an updated review of the literature. Front Cardiovasc Med 2023; 10:1069745. [PMID: 37293284 PMCID: PMC10244552 DOI: 10.3389/fcvm.2023.1069745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis is an inflammatory disease partly mediated by lipoproteins. The rupture of vulnerable atherosclerotic plaques and thrombosis are major contributors to the development of acute cardiovascular events. Despite various advances in the treatment of atherosclerosis, there has been no satisfaction in the prevention and assessment of atherosclerotic vascular disease. The identification and classification of vulnerable plaques at an early stage as well as research of new treatments remain a challenge and the ultimate goal in the management of atherosclerosis and cardiovascular disease. The specific morphological features of vulnerable plaques, including intraplaque hemorrhage, large lipid necrotic cores, thin fibrous caps, inflammation, and neovascularisation, make it possible to identify and characterize plaques with a variety of invasive and non-invasive imaging techniques. Notably, the development of novel ultrasound techniques has introduced the traditional assessment of plaque echogenicity and luminal stenosis to a deeper assessment of plaque composition and the molecular field. This review will discuss the advantages and limitations of five currently available ultrasound imaging modalities for assessing plaque vulnerability, based on the biological characteristics of the vulnerable plaque, and their value in terms of clinical diagnosis, prognosis, and treatment efficacy assessment.
Collapse
|
49
|
Qiao HY, Wu Y, Li HC, Zhang HY, Wu QH, You QJ, Ma X, Hu SD. Role of Quantitative Plaque Analysis and Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography to Assess Plaque Progression. J Thorac Imaging 2023; 38:186-193. [PMID: 36728026 PMCID: PMC10128899 DOI: 10.1097/rti.0000000000000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To explore the role of quantitative plaque analysis and fractional flow reserve (CT-FFR) derived from coronary computed angiography (CCTA) in evaluating plaque progression (PP). METHODS A total of 248 consecutive patients who underwent serial CCTA examinations were enrolled. All patients' images were analyzed quantitatively by plaque analysis software. The quantitative analysis indexes included diameter stenosis (%DS), plaque length, plaque volume (PV), calcified PV, noncalcified PV, minimum lumen area (MLA), and remodeling index (RI). PP is defined as PAV (percentage atheroma volume) change rate >1%. CT-FFR analysis was performed using the cFFR software. RESULTS A total of 76 patients (30.6%) and 172 patients (69.4%) were included in the PP group and non-PP group, respectively. Compared with the non-PP group, the PP group showed greater %DS, smaller MLA, larger PV and non-calcified PV, larger RI, and lower CT-FFR on baseline CCTA (all P <0.05). Logistic regression analysis showed that RI≥1.10 (odds ratio [OR]: 2.709, 95% CI: 1.447-5.072), and CT-FFR≤0.85 (OR: 5.079, 95% CI: 2.626-9.283) were independent predictors of PP. The model based on %DS, quantitative plaque features, and CT-FFR (area under the receiver-operating characteristics curve [AUC]=0.80, P <0.001) was significantly better than that based rarely on %DS (AUC=0.61, P =0.007) and that based on %DS and quantitative plaque characteristics (AUC=0.72, P <0.001). CONCLUSIONS Quantitative plaque analysis and CT-FFR are helpful to identify PP. RI and CT-FFR are important predictors of PP. Compared with the prediction model only depending on %DS, plaque quantitative markers and CT-FFR can further improve the predictive performance of PP.
Collapse
Affiliation(s)
| | - Yong Wu
- Departments of Medical Imaging
| | - Hai Cheng Li
- Department of Medical Imaging, Minhe County People’s Hospital, Haidong, Qing hai, China
| | - Hai Yan Zhang
- Department of Medical Imaging, Minhe County People’s Hospital, Haidong, Qing hai, China
| | | | - Qing Jun You
- Thoracic Surgery, Affiliated Hospital of Jiangnan University
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, Jiangsu
| | | |
Collapse
|
50
|
Li L, Mou J, Han Y, Wang M, Lu S, Ma Q, Wang J, Ye J, Sun G. Calenduloside e modulates macrophage polarization via KLF2-regulated glycolysis, contributing to attenuates atherosclerosis. Int Immunopharmacol 2023; 117:109730. [PMID: 36878047 DOI: 10.1016/j.intimp.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 03/06/2023]
Abstract
Glycolysis-mediated macrophage polarization plays a crucial role in atherosclerosis. Although it is known that calenduloside E (CE) exerts anti-inflammatory and lipid-lowering effects in atherosclerosis, the underlying mechanism of action is not clearly understood. We hypothesized that CE functions by inhibiting M1 macrophage polarization via regulation of glycolysis. To verify this hypothesis, we determined the effects of CE in apolipoprotein E deficient (ApoE-/-) mice and on macrophage polarization in oxidized low-density lipoprotein (ox-LDL)-induced RAW 264.7 macrophages and peritoneal macrophages. We also determined whether these effects are linked to regulation of glycolysis both in vivo and in vitro. The plaque size was reduced, and serum cytokine levels were decreased in the ApoE-/- +CE group compared with that in the model group. CE decreased lipid droplet formation, inflammatory factor levels, and mRNA levels of M1 macrophage markers in ox-ldl-induced macrophages. CE suppressed ox-ldl-induced glycolysis, lactate levels, and glucose uptake. The relationship between glycolysis and M1 macrophage polarization was demonstrated using the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one. CE substantially upregulated ox-ldl-induced Kruppel-like transcription factor (KLF2) expression, and the effects of CE on ox-ldl-induced glycolysis and inflammatory factor levels disappeared after KLF2 knockdown. Together, our findings suggest that CE alleviates atherosclerosis by inhibiting glycolysis-mediated M1 macrophage polarization through upregulation of KLF2 expression, providing a new strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junyu Mou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yanwei Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialu Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|