1
|
van Marwick B, Sevastyanova TN, Wühler F, Schneider-Wald B, Loy C, Gravius S, Rädle M, Schilder A. A novel MIR imaging approach for precise detection of S. epidermidis biofilms in seconds. Biofilm 2025; 9:100270. [PMID: 40130066 PMCID: PMC11931313 DOI: 10.1016/j.bioflm.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The impact of microbial biofilm growth poses a threat to both human health and the performance of industrial systems, manifesting as a global crisis with noteworthy economic implications for modern society. Exploring new methods and alternative approaches for the detection of biofilm signatures are imperative for developing optimized and cost-effective strategies that can help to identify early-stage biofilm formation. Clinical diagnostic technologies are constantly looking for more affordable, practical and faster methods of prevention and detection of chronic infections in periprosthetic joint infections (PJIs), which are often characterized by biofilm formation on implant surfaces. Staphylococcus epidermidis (SE) is especially known for its strong biofilm production and is considered a leading cause of biomaterial-associated infections, including PJIs. Implant-associated infections are severe and difficult to treat, therefore it is crucial to continue identifying bacterial biomarkers that contribute to its structural stability and attachment to implant surfaces. This study presents a pioneering approach for fast spectral detection of biofilm formation with a novel mid-infrared (MIR) scanning system. To highlight the advantages of our MIR system, we performed a comparative analysis with measurements from a commercially available Fourier-transform infrared (FTIR) scanner. We have assessed SE biofilms grown for 3 days comparing the processing times between a commercially available infrared (IR) scanning system (∼8 h/cm2), and our innovative scanning approach with rapid self-built MIR detection, achieving a reduction in scanning time to seconds. K-means clustering analysis identified pronounced differences in distribution of clusters, representing a significant variation between biofilm producing (RP62A) and non-biofilm producing (ATCC 12228) bacterial strains. The distribution serves as a critical tool for identifying biofilm phenotypes, particularly where poly-N-acetylglucosamine (PNAG), a key constituent of extracellular polymeric substances (EPS) in S. epidermidis, represents the dominant mass fraction in the samples analyzed by our infrared (IR) scanning systems. In addition to faster processing times, our novel MIR system demonstrated significantly higher sensitivity compared to FTIR, enabling clear differentiation between the chemical signatures of biofilm and planktonic strains. The corresponding novel approach integrates advanced data analytics with a newly designed rapid MIR prototype, enabling optimized and swift detection of biofilm signatures. These signatures, now recognized as critical targets in diagnosing complex infections, provide an alternative to traditional microbial detection methods in clinical diagnostics.
Collapse
Affiliation(s)
- Björn van Marwick
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Tatyana N. Sevastyanova
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Felix Wühler
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Barbara Schneider-Wald
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cornelia Loy
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sascha Gravius
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Rädle
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Andreas Schilder
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
2
|
Akter S, Rahman MA, Ashrafudoulla M, Ha SD. Biofilm formation and analysis of EPS architecture comprising polysaccharides and lipids by Pseudomonas aeruginosa and Escherichia coli on food processing surfaces. Food Res Int 2025; 209:116274. [PMID: 40253144 DOI: 10.1016/j.foodres.2025.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Biofilms are silent but formidable threats in seafood processing, where Pseudomonas aeruginosa and Escherichia coli can quickly transform contact surfaces into reservoirs of contamination. This study explores the dynamic biofilm formation on aluminum, silicone rubber, stainless steel, and polyethylene terephthalate over 24 and 72 h. Quantitative assays including Colony Forming Unit (CFU), Crystal Violet (CV), 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) revealed a significant increase in biofilm density, particularly on aluminum and silicone rubber. Fourier-Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (NMR) analyses showed that biofilm EPS exhibits an evolving amphiphilic nature, with stable polysaccharides and increasing lipid content enhancing resilience. Confocal Laser Scanning Microscopy (CLSM), and Field Emission Scanning Electron Microscopy (FE-SEM) captured the shift from early attachment to mature, dense biofilms. These findings underscore the crucial impact of surface material on biofilm growth and the pressing need for tailored cleaning protocols to curb contamination risks in food processing environments.
Collapse
Affiliation(s)
- Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; Department of Fisheries and Marine Bioscience, Gopalganj Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea..
| |
Collapse
|
3
|
Kochan K, Jiang JH, Kostoulias X, Lai E, Richardson Z, Pebotuwa S, Heraud P, Wood BR, Peleg AY. Fast and Accurate Prediction of Antibiotic Susceptibility in Clinical Methicillin-Resistant S. aureus Isolates Using ATR-FTIR Spectroscopy: A Model Validation Study. Anal Chem 2025; 97:6041-6048. [PMID: 40063694 DOI: 10.1021/acs.analchem.4c06086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Diagnosing antimicrobial resistance (AMR) remains critical for improving patient survival rates and treatment outcomes. Current antibiotic susceptibility tests (AST) suffer prolonged turnaround times, necessitating a minimum of 24 h for results. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy emerges as a promising phenotypic testing method in bacteriology due to its rapid chemical characterization capability. Here, we present an innovative approach utilizing ATR-FTIR spectroscopy for rapid AMR assessment, distinguishing between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). Our approach focuses on detecting early markers of effective antibiotic action and using these to predict resistance profiles. To identify the earliest time for detection, five MSSA and five MRSA strains were subjected to oxacillin exposure for up to 2 h. We observed discernible molecular changes arising in MSSA as early as 1 h after exposure to oxacillin, which were absent in MRSA strains. Bands at 1624 and 1515 cm-1 were identified as markers of positive drug response in MSSA using principal component analysis (PCA) and were associated with peptidoglycan precursor accumulation upon transpeptidation inhibition. To develop predictive models for determining resistance profiles, we implemented ML-based modeling of the spectral data, reflective of the oxacillin-induced chemical composition changes in MSSA and MRSA. Partial least squares discriminant analysis (PLS-DA) and support vector machines classification (SVM-C) algorithms produced the best results, achieving 100% consistency with minimum inhibitory concentration (MIC) classification. Our models were independently validated by blind testing with 35 clinical strains and demonstrated 100% agreement with resistance profiling determined by MIC. Our study underscores the potential of ATR-FTIR spectroscopy for rapid and accurate AMR assessment, with the capacity to revolutionize diagnostics in combating antibiotic resistance.
Collapse
Affiliation(s)
- Kamila Kochan
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Jhih-Hang Jiang
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Xenia Kostoulias
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Elizabeth Lai
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Zack Richardson
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Savithri Pebotuwa
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Philip Heraud
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Anton Y Peleg
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Allende-Prieto C, Fernández L, Rodríguez-Gonzálvez P, García P, Rodríguez A, Recondo C, Martínez B. Advances in the Detection and Identification of Bacterial Biofilms Through NIR Spectroscopy. Foods 2025; 14:913. [PMID: 40231942 PMCID: PMC11941196 DOI: 10.3390/foods14060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial biofilms play an important role in the pathogenesis of infectious diseases but are also very relevant in other fields such as the food industry. This fact has led to an increased focus on the early identification of these structures as prophylaxes to prevent biofilm-related contaminations or infections. One of the objectives of the present study was to assess the effectiveness of NIR (Near Infrared) spectroscopy in the detection and differentiation of biofilms from different bacterial species, namely Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecium, Salmonella Typhymurium, Escherichia coli, Listeria monocytogenes, and Lactiplantibacillus plantarum. Additionally, we aimed to examine the capability of this technology to specifically identify S. aureus biofilms on glass surfaces commonly used as storage containers and processing equipment. We developed a detailed methodology for data acquisition and processing that takes into consideration the biochemical composition of these biofilms. To improve the quality of the spectral data, SNV (Standard Normal Variate) and Savitzky-Golay filters were applied, which correct systematic variations and eliminate random noise, followed by an exploratory analysis that revealed significant spectral differences in the NIR range. Then, we performed principal component analysis (PCA) to reduce data dimensionality and, subsequently, a Random Forest discriminant statistical analysis was used to classify biofilms accurately and reliably. The samples were organized into two groups, a control set and a test set, for the purpose of performing a comparative analysis. Model validation yielded an accuracy of 80.00% in the first analysis (detection and differentiation of biofilm) and 93.75% in the second (identification of biofilm on glass surfaces), thus demonstrating the efficacy of the proposed method. These results demonstrate that this technique is effective and reliable, indicating great potential for its application in the field of biofilm detection.
Collapse
Affiliation(s)
- Cristina Allende-Prieto
- Civil, Environmental and Geomatics Engineering Research Group (CEGE), Area of Cartographic, Geodesic and Photogrammetric Engineering, Department of Mining Exploitation and Prospecting, Polytechnic School of Mieres, University of Oviedo, 33003 Oviedo, Spain
| | - Lucía Fernández
- Dairy Products Institute of Asturias, C/Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (L.F.); (A.R.); (B.M.)
| | - Pablo Rodríguez-Gonzálvez
- Department of Mining Technology, Topography and Structures, Universidad de León, Avda. Astorga s/n, 24401 Ponferrada, Spain;
- DRACONES Research Group, Universidad de León, Avda. Astorga s/n, 24401 Ponferrada, Spain
| | - Pilar García
- Dairy Products Institute of Asturias, C/Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (L.F.); (A.R.); (B.M.)
| | - Ana Rodríguez
- Dairy Products Institute of Asturias, C/Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (L.F.); (A.R.); (B.M.)
| | - Carmen Recondo
- Remote Sensing Applications (RSApps) Research Group, Area of Cartographic, Geodesic and Photogrammetric Engineering, Department of Mining Exploitation and Prospecting, Polytechnic School of Mieres, University of Oviedo, 33003 Oviedo, Spain;
| | - Beatriz Martínez
- Dairy Products Institute of Asturias, C/Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (L.F.); (A.R.); (B.M.)
| |
Collapse
|
5
|
Özdemir C, Erdoğan İ, Özdemir K, Akçelik N, Akçelik M. Comparative analysis of biofilm structures in Salmonella Typhimurium DMC4 strain and its dam and seqA gene mutants using Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy methods. Braz J Microbiol 2025; 56:465-474. [PMID: 39511037 PMCID: PMC11885747 DOI: 10.1007/s42770-024-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
It is well-established that the dam and seqA genes act in the biofilm production in Salmonella. However, the molecular basis underlying this activity remains unexplored. This study aims to address this gap in the literature. In this study, comparative Fourier Transform Infrared (FT-IR) Spectroscopy and Raman spectral analyses were conducted to investigate the molecular basis of decreases in swimming, swarming motility, and biofilm characteristics observed in the dam and seqA gene mutants of S. Typhimurium DMC4 wild-type strain. The comparative analysis revealed a pronounced reduction in proteins, lipids, carbohydrates, and nucleic acids within the biofilm structures of mutant strains. These findings confirm that these macromolecules are crucial for the integrity and functionality of biofilm structures. FT-IR analysis showed that while amide-I bands decreased in the biofilm structures of mutant strains, amide-II bands increased compared to the wild-type strain. Similarly, Raman analyses indicated an increase in amide-IV bonds and a decrease in amide-V bonds. The parallelism between FT-IR and Raman spectral analysis results, particularly regarding amide I, amide V, amide II, and amide IV bands, is noteworthy. Additionally, these findings may lead to the development of markers for rapidly diagnosing transitions from planktonic to biofilm form in Salmonella. The substantial decrease in β-glucans and lipids, including cellulose, within the biofilm matrix of mutant strains highlights the critical role these polymers play in swimming and swarming motility. Given the clinical and industrial importance of Salmonella biofilms, it is crucial to develop strategies to prevent biofilm formation and identify target molecules that can inhibit biofilm formation. The results of our study suggest that β-glucans and amides are essential targets in the effort to combat Salmonella biofilms.
Collapse
Affiliation(s)
- Caner Özdemir
- Department of Biology, Ankara University, Ankara, Turkey
| | - İbrahim Erdoğan
- Department of Agricultural Biotechnology, Ahi Evran University, Kırşehir, Turkey
| | - Kağan Özdemir
- Department of Statistics, Ankara University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | |
Collapse
|
6
|
Komaniecka I, Żebracki K, Mazur A, Suśniak K, Sroka-Bartnicka A, Swatek A, Choma A. The Absence of a Very Long Chain Fatty Acid (VLCFA) in Lipid A Impairs Agrobacterium fabrum Plant Infection and Biofilm Formation and Increases Susceptibility to Environmental Stressors. Molecules 2025; 30:1080. [PMID: 40076305 PMCID: PMC11901934 DOI: 10.3390/molecules30051080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The Agrobacterium fabrum C58 is a phytopathogen able to infect numerous species of cultivated and ornamental plants. During infection, bacteria genetically transform plant cells and induce the formation of tumours at the site of invasion. Bacterial cell wall components play a crucial role in the infection process. Lipopolysaccharide is the main component of Gram-negative bacteria's outer leaflet of outer membrane. Its lipophilic part, called lipid A, is built of di-glucosamine backbone substituted with a specific set of 3-hydroxyl fatty acids. A. fabrum incorporates a very long chain hydroxylated fatty acid (VLCFA), namely 27-hydroxyoctacosanoic acid (28:0-(27OH)), into its lipid A. A. fabrum C58 mutants deprived of this component due to mutation in the VLCFA's genomic region, have been characterised. High-resolution mass spectrometry was used to establish acylation patterns in the mutant's lipid A preparations. The physiological properties of mutants, as well as their motility, ability to biofilm formation and plant infectivity, were tested. The results obtained showed that the investigated mutants were more sensitive to environmental stress conditions, formed a weakened biofilm, exhibited impaired swimming motility and were less effective in infecting tomato seedlings compared to the wild strain.
Collapse
Affiliation(s)
- Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (K.Ż.); (A.M.); (A.S.)
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (K.Ż.); (A.M.); (A.S.)
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (K.Ż.); (A.M.); (A.S.)
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anita Swatek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (K.Ż.); (A.M.); (A.S.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (K.Ż.); (A.M.); (A.S.)
| |
Collapse
|
7
|
Albahri J, Allison H, Whitehead KA, Muhamadali H. The role of salivary metabolomics in chronic periodontitis: bridging oral and systemic diseases. Metabolomics 2025; 21:24. [PMID: 39920480 PMCID: PMC11805826 DOI: 10.1007/s11306-024-02220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Chronic periodontitis is a condition impacting approximately 50% of the world's population. As chronic periodontitis progresses, the bacteria in the oral cavity change resulting in new microbial interactions which in turn influence metabolite production. Chronic periodontitis manifests with inflammation of the periodontal tissues, which is progressively developed due to bacterial infection and prolonged bacterial interaction with the host immune response. The bi-directional relationship between periodontitis and systemic diseases has been reported in many previous studies. Traditional diagnostic methods for chronic periodontitis and systemic diseases such as chronic kidney diseases (CKD) have limitations due to their invasiveness, requiring practised individuals for sample collection, frequent blood collection, and long waiting times for the results. More rapid methods are required to detect such systemic diseases, however, the metabolic profiles of the oral cavity first need to be determined. AIM OF REVIEW In this review, we explored metabolomics studies that have investigated salivary metabolic profiles associated with chronic periodontitis and systemic illnesses including CKD, oral cancer, Alzheimer's disease, Parkinsons's disease, and diabetes to highlight the most recent methodologies that have been applied in this field. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Of the rapid, high throughput techniques for metabolite profiling, Nuclear magnetic resonance (NMR) spectroscopy was the most applied technique, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Furthermore, Raman spectroscopy was the most used vibrational spectroscopic technique for comparison of the saliva from periodontitis patients to healthy individuals, whilst Fourier Transform Infra-Red Spectroscopy (FT-IR) was not utilised as much in this field. A recommendation for cultivating periodontal bacteria in a synthetic medium designed to replicate the conditions and composition of saliva in the oral environment is suggested to facilitate the identification of their metabolites. This approach is instrumental in assessing the potential of these metabolites as biomarkers for systemic illnesses.
Collapse
Affiliation(s)
- Jawaher Albahri
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Heather Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester, M1 5GD, UK.
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
8
|
Yousaf A, Ullah MH, Nawaz H, Majeed MI, Rashid N, Alshammari A, Albekairi NA, Ali A, Hussain M, Salfi AB, Aslam MA, Idrees K, Ditta A. SERS-assisted characterization of cell biomass from biofilm-forming Acinetobacter baumannii strains using chemometric tools. RSC Adv 2025; 15:4581-4592. [PMID: 39931412 PMCID: PMC11809493 DOI: 10.1039/d4ra06267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Acinetobacter baumannii (A. baumannii) is an emerging Gram-negative nosocomial pathogen responsible for infection on a global scale. It has the ability to develop biofilms on different surfaces, especially abiotic surfaces, which is considered a major contributor of its pathogenicity. Surface-enhanced Raman spectroscopy (SERS) holds great potential as an effective method for identifying and characterizing the biochemical composition of biofilm-forming species. In this study, cell mass samples from different strains of A. baumannii, categorized based on their biofilm-forming ability (strong, medium and non-biofilm forming) using a 96-well microtiter plate assay (MTP), were analyzed by SERS. The identified spectral features of the SERS spectra were used to characterize bacterial strains capable of producing biofilms. Silver nanoparticles (Ag-NPs) served as the SERS substrate to differentiate biofilm-forming strains of A. baumannii. Chemometric tools, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were employed for the classification and differentiation of SERS spectra from bacterial strains with varying biofilm-producing capacities, achieving 100% sensitivity, 94.3% specificity, and an area under the curve (AUC) value of 0.81 through Monte Carlo cross-validation. Furthermore, K-fold (Leave-K-out cross-validation (LKOCV)) was applied to verify the robustness of the PLS-DA model, and the AUC value was found to be 0.90, with a sensitivity of 100% and specificity of 98%. These results demonstrate that the PLS-DA model is highly effective for the differentiation and classification of bacterial strains with varying capacities for biofilm production.
Collapse
Affiliation(s)
- Arslan Yousaf
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Hafeez Ullah
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus Faisalabad (38000) Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Arslan Ali
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Munawar Hussain
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Abu Bakar Salfi
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Kinza Idrees
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Allah Ditta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
9
|
Xu Z, Zhang F, Cheng D, Ma Q, Wang W, Wang J, Sun J. Physical stability of oil-in-water multi-layered coenzyme Q10 nano-emulsions. Food Chem 2025; 464:141860. [PMID: 39504897 DOI: 10.1016/j.foodchem.2024.141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
As a lipophilic antioxidant, coenzyme Q10 (CoQ10) has limited application owing to its low water solubility and instability. In the present study, potato protein (PP) and soybean soluble polysaccharide (SSPS) were used as carriers to prepare a multilayer SSPS-PP-CoQ10 nano-emulsion using the reversed-phase emulsification method; further, the water solubility, stability, and formation mechanism of the nano-emulsion were analyzed. The results showed that the particle size of SSPS-PP-CoQ10 nano-emulsions was 253-422 nm with good polydispersity. The encapsulation efficiency (EE) could reach up to 88.87 %. When the concentration of SSPS was 0.1 wt%, the decrease in interfacial tension and increase in viscoelasticity indicated that nano-emulsion improved CoQ10 physical stability. SSPS incorporation altered the microscopic environment of the hydrophobic residues, rendering them more hydrophilic and enhancing their water solubility. According to molecular docking results, hydrogen bonds promote binding among SSPS, PP, and CoQ10, and increase emulsion stability.
Collapse
Affiliation(s)
- Zhili Xu
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Dewei Cheng
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China.
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Zhangjiakou 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China.
| |
Collapse
|
10
|
Benahmed A, Seghir A, Dergal F, Chiali A, Boucherit-Otmani Z, Ziani-Chérif C. Study of interaction in dual-species biofilm of Candida glabrata and Klebsiella pneumoniae co-isolated from peripheral venous catheter using Raman characterization mapping and machine learning algorithms. Microb Pathog 2025; 199:107280. [PMID: 39761771 DOI: 10.1016/j.micpath.2025.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C. glabrata can form mixed biofilms with K. pneumoniae in vitro on peripheral venous catheters and the bottom of microplate wells, as confirmed by scanning electron microscopy. Additionally, using Raman mapping, we showed the distribution of both species in mono- and dual-species biofilms and suggested the type of microbial interaction in this polymicrobial biofilm. Finally, with the assistance of appropriate machine learning (ML) algorithms, based on identified peaks of bacteria, yeast, catheter, and Microplate mapping spectra, we develop a dedicated Raman database to detect the presence of these elements in an unknown spectrum in the future.
Collapse
Affiliation(s)
- Abdeselem Benahmed
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria.
| | - Abdelfettah Seghir
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria
| | - Fayçal Dergal
- Center for Scientific and Technical Research in Physico-chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004, Tipaza, Algeria; Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria
| | - Anisse Chiali
- Higher School of Applied Sciences of Tlemcen, ESSA, Tlemcen, 13000, Algeria; Renewable Materials and Energies Unit (URMER), University of Tlemcen, Algeria
| | - Zahia Boucherit-Otmani
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria
| | - Chewki Ziani-Chérif
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria
| |
Collapse
|
11
|
Ganić T, Pećinar I, Nikolić B, Kekić D, Tomić N, Cvetković S, Vuletić S, Mitić-Ćulafić D. Evaluation of Cinnamon Essential Oil and Its Emulsion on Biofilm-Associated Components of Acinetobacter baumannii Clinical Strains. Antibiotics (Basel) 2025; 14:106. [PMID: 39858391 PMCID: PMC11761628 DOI: 10.3390/antibiotics14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Acinetobacter baumannii, one of the most dangerous pathogens, is able to form biofilm structures and aggravate its treatment. For that reason, new antibiofilm agents are in need, and new sources of antibiofilm compounds are being sought from plants and their products. Cinnamon essential oil is associated with a wide spectrum of biological activities, but with a further improvement of its physicochemical properties it could provide even better bioavailability. The aim of this work was the evaluation of the antibiofilm properties of cinnamon essential oil and its emulsion. METHODS In order to evaluate the antibiofilm activity, crystal violet assay was performed to determine biofilm biomass. The main components of the biofilm matrix were measured as well as the motile capacity of the tested strains. Gene expression was monitored with RT-qPCR, while treated biofilms were observed with Raman spectroscopy. RESULTS A particularly strong potential against pre-formed biofilm with a decreased biomass of up to 66% was found. The effect was monitored not only with regard to the whole biofilm biomass, but also on the individual components of the biofilm matrix such as exopolysaccharides, proteins, and eDNA molecules. Protein share drops in treated biofilms demonstrated the most consistency among strains and rose to 75%. The changes in strain motility and gene expressions were investigated after the treatments were carried out. Raman spectroscopy revealed the influence of the studied compounds on chemical bond types and the components present in the biofilm matrix of the tested strains. CONCLUSIONS The results obtained from this research are promising regarding cinnamon essential oil and its emulsion as potential antibiofilm agents, so further investigation of their activity is encouraged for their potential use in biomedical applications.
Collapse
Affiliation(s)
- Tea Ganić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (B.N.); (S.C.); (S.V.); (D.M.-Ć.)
| | - Ilinka Pećinar
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (B.N.); (S.C.); (S.V.); (D.M.-Ć.)
| | - Dušan Kekić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Science of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Stefana Cvetković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (B.N.); (S.C.); (S.V.); (D.M.-Ć.)
| | - Stefana Vuletić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (B.N.); (S.C.); (S.V.); (D.M.-Ć.)
| | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (B.N.); (S.C.); (S.V.); (D.M.-Ć.)
| |
Collapse
|
12
|
Wandee R, Sutthanut K, Songsri J, Weerapreeyakul N, Rittirod T, Tippayawat P, Yangkruea O, Jakcharoenpornchai S. Prebiotic property of tamarind seed kernel on Bifidobacterium animalis growth and biofilm formation. Food Chem X 2025; 25:102180. [PMID: 39897976 PMCID: PMC11787668 DOI: 10.1016/j.fochx.2025.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
This research explored the prebiotic potential of tamarind seed kernel powder (RTS), focusing on yield, nutritional composition, physicochemical properties using ATR-FTIR spectroscopy and colorimetric methods, effects on Bifidobacterium animalis in promoting the growth and biofilm formation compared to inulin using bacterial enumeration and crystal violet staining techniques, and the biofilm biomolecular composition characterization. The multi-nutrient composition RTS yielded 65.65 % (w/w), which significantly exhibited prebiotic activity in a dose-dependent manner with effective concentrations at 2.5 and 5 % RTS, stimulated B. animalis growth (rate 22 % • h-1) and enhanced biofilm formation (BFI = 256.71) exceeding the inulin. Moreover, ATR-FTIR spectroscopy and PCA analysis revealed the RTS-induced alteration of the biofilm's biomolecular composition, with a notable increase in amide A and a decrease in carboxylic hydroxyl groups. The study highlights RTS as a promising prebiotic agent with the potential for improving gut health, with further validation in the in vivo models being advisable.
Collapse
Affiliation(s)
- Roongrawee Wandee
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jenjira Songsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theera Rittirod
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Orawan Yangkruea
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirapop Jakcharoenpornchai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Morais S, Vidal E, Cario A, Marre S, Ranchou-Peyruse A. Microfluidics for studying the deep underground biosphere: from applications to fundamentals. FEMS Microbiol Ecol 2024; 100:fiae151. [PMID: 39544108 DOI: 10.1093/femsec/fiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation. Transparent microreactors allow real-time, noninvasive analysis of microbial activities (microscopy, Raman spectroscopy, FTIR microspectroscopy, etc.), providing detailed insights into biogeochemical processes and facilitating pore-scale analysis. Finally, the current challenges and opportunities to expand the use of microfluidic methodologies for studying and monitoring the deep biosphere in real time under deep underground conditions are discussed.
Collapse
Affiliation(s)
- Sandy Morais
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Emeline Vidal
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Anaïs Cario
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Samuel Marre
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | | |
Collapse
|
14
|
Hojnik N, Shvalya V, Zavašnik J, Šribar J, Križaj I, Walsh JL. Combatting the antigenicity of common ragweed pollen and its primary allergen Amb a 1 with cold atmospheric pressure air plasma. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135640. [PMID: 39208626 DOI: 10.1016/j.jhazmat.2024.135640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Airborne allergens, especially those originating from various types of pollen, significantly compromise the health and well-being of individuals on a global scale. Here, cold atmospheric pressure plasma (CAP) created in ambient air was used to treat highly allergenic and invasive Ambrosia artemisiifolia pollen. Immunoassays were used to evaluate the impact of CAP on the principal A. artemisiifolia allergen Amb a 1, demonstrating that > 90 % reduction in antigenicity could be achieved. Chemical analyses using Fourier Transform infrared revealed that CAP induced significant alterations to proteins on the surface of pollen grains, resulting in a 43 % increase in the amide I peak area and a 57 % increase in the amide II peak area. These findings were corroborated by Raman and X-ray photoelectron spectroscopy, which indicated that the protein modifications induced by CAP were due to carbonylation and nitration/nitrosylation processes. Beyond protein transformations, CAP also induced notable oxidation and modification of lipid-like compounds, polysaccharides and sporopollenin. Evident transformations at the chemical level translated into morphological changes at the grain surface, manifesting as increased roughness via significant outer-layer etching. These findings underscore the potential of CAP technology as a viable approach for mitigating against the allergenicity of pollen, providing a deeper understanding into the underlying chemical mechanisms.
Collapse
Affiliation(s)
- Nataša Hojnik
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, United Kingdom; Department for Gaseous Electronics (F6), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Vasyl Shvalya
- Department for Gaseous Electronics (F6), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Janez Zavašnik
- Department for Gaseous Electronics (F6), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences (B2), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences (B2), Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - James L Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, United Kingdom; York Plasma Institute, School of Physics, Engineering & Technology, University of York, Heslington, York YO10 5DQ, United Kingdom.
| |
Collapse
|
15
|
Gopinath V, Mitra K, Chadha A, Doble M. Disrupting Mycobacterium smegmatis biofilm using enzyme-immobilized rifampicin loaded silk fibroin nanoparticles for dual anti-bacterial and anti-biofilm action. Microb Pathog 2024; 196:106999. [PMID: 39395744 DOI: 10.1016/j.micpath.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Biofilm formation is a major challenge in the treatment of tuberculosis, leading to poor treatment outcomes and latent infections. The complex and dense extracellular polymeric substances (EPS) of the biofilm provides safe harbour for bacterium enabling persistence against anti-TB antibiotics. In this study, we demonstrated that rifampicin-encapsulated silk fibroin nanoparticles immobilized with antibiofilm enzymes can disrupt the Mycobacterium smegmatis biofilm and facilitate the anti-bacterial action of Rifampicin (RIF). The EPS of M.smegmatis biofilm predominantly comprised of lipids (48.8 ± 1.32 %) and carbohydrates (34.8 ± 4.70 %), similar to tuberculosis biofilms. Pre-formed biofilm eradication screening revealed that hydrolytic enzymes such as β-Glucosidase, Glucose oxidase, ɑ-Amylase, Acylase, and Phytase can exhibit biofilm eradication of M.smegmatis biofilms. The enzyme-mediated biofilm disruption was associated with a decrease in hydrophobicity of biofilm surfaces. Treatment with β-glucosidase and Phytase demonstrated a putative biofilm eradication by reducing the total carbohydrates and lipid composition without causing any significant bactericidal activity. Further, Phytase (250 μg/ml) and β-Glucosidase (112.5 ± 17.6 μg/ml) conjugated rifampicin-loaded silk fibroin nanoparticles (R-SFNs) exhibited an enhanced anti-bacterial activity against pre-formed M.smegmatis biofilms, compared to free rifampicin (32.5±7 μg/ml). Notably, treatment with β-glucosidase, Phytase and ɑ-amylase immobilized SFNs decreased the biofilm thickness by ∼98.84 % at 6h, compared to control. Thus, the study highlights that coupling anti-mycobacterial drugs with biofilm-eradicating enzymes such as amylase, phytase or β-glucosidase can be a potential strategy to improve the TB therapeutic outcomes.
Collapse
Affiliation(s)
- Varshiny Gopinath
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, India
| | - Kartik Mitra
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, India
| | - Mukesh Doble
- Theevanam Additives Nutraceuts Pvt Ltd, IITM Bioincubator, Department of Biotechnology, IIT Madras, Chennai, 600036, India; Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India.
| |
Collapse
|
16
|
Pezzotti G, Adachi T, Imamura H, Ikegami S, Kitahara R, Yamamoto T, Kanamura N, Zhu W, Ishibashi KI, Okuma K, Mazda O, Komori A, Komatsuzawa H, Makimura K. Raman Spectroscopic Algorithms for Assessing Virulence in Oral Candidiasis: The Fight-or-Flight Response. Int J Mol Sci 2024; 25:11410. [PMID: 39518963 PMCID: PMC11545699 DOI: 10.3390/ijms252111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to test the effectiveness of Raman spectroscopy in the characterization of the degrees of physiological stress and virulence in clinical swab samples collected from patients affected by oral candidiasis. Raman experiments were conducted on a series of eight isolates, both in an as-collected state and after biofilm purification followed by 3 days of culture. The outputs were matched to optical microscopy observations and the results of conventional chromogenic medium assays. A statistically significant series of ten Raman spectra were collected for each clinical sample, and their averages were examined and interpreted as multiomic snapshots for albicans and non-albicans species. Spectroscopic analyses based on selected Raman parameters previously developed for standard Candida samples revealed an extreme structural complexity for all of the clinical samples, which arose from the concurrent presence of a variety of biofilms and commensal bacteria in the samples, as well as a number of other biochemical circumstances affecting the cells in their physiological stress state. However, three Raman algorithms survived such complexity, which enabled insightful classifications of Candida cells from clinical samples, in terms of their physiological stress and morphogenic state, membrane permeability, and virulence. These three characteristics, in turn, converged into a seemingly "fight or flight" response of the Candida cells. Although yet preliminary, the present study points out criticalities and proposes solutions regarding the potential utility of Raman spectroscopy in fast bedside analyses of surveillance samples.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
- Department of Dentistry, Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Joyo, Kyoto 610-0113, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Ryo Kitahara
- Structural Biology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Kusatsu 525-8577, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Ken-ichi Ishibashi
- Laboratory of Host Defense and Responses, Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Saitama, Sakado, Saitama 350-0288, Japan;
| | - Kazu Okuma
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Aya Komori
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (A.K.); (K.M.)
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (A.K.); (K.M.)
- Teikyo University Institute of Medical Mycology (TIMM), 359 Otsuka, Hachijoji, Tokyo 192-0395, Japan
| |
Collapse
|
17
|
Papale M, Fazi S, Severini M, Scarinci R, Dell'Acqua O, Azzaro M, Venuti V, Fazio B, Fazio E, Crupi V, Irrera A, Rizzo C, Giudice AL, Caruso G. Structural properties and microbial diversity of the biofilm colonizing plastic substrates in Terra Nova Bay (Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173773. [PMID: 38844237 DOI: 10.1016/j.scitotenv.2024.173773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Maila Severini
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Roberta Scarinci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Ombretta Dell'Acqua
- DISTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes, National Research Council (CNR-IPCF), Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vincenza Crupi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessia Irrera
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
18
|
de Sousa DV, Maia PVS, Eltink E, de Moura Guimarães L. Biomolecules in Pleistocene fossils from tropical cave indicate fossil biofilm. Sci Rep 2024; 14:21071. [PMID: 39256439 PMCID: PMC11387772 DOI: 10.1038/s41598-024-71313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Finding biomolecules in fossils is a challenging task due to their degradation over time from physical, chemical, and biological factors. The primary hypothesis for explaining the presence of biomolecules in fossilized bones tissues suggests their survival in the fossilization process. In contrast, some of these biomolecules could either derive from bacteria biofilm, thus without a direct relationship with the fossil record or could be an artifact from measurement procedures. Raman spectroscopy studies across various fossil ages and environments have detected multiple bands ranging from 1200 to 1800 cm-1 associative of organic compounds. However, the significance of these bands remains elusive. Our research aims to address this issue through a deep Raman spectroscopy investigation on Pleistocene teeth from Tayassu and Smilodon populator. These fossils were obtained from a well-preserved stratigraphic succession in Toca de Cima do Pilão cave, near the National Park of Serra da Capivara in semiarid Brazil. We propose two hypotheses to explain the presence of organic compounds related to 1200 to 1800 cm-1 Raman spectral range in fossil tissues: (i) these bands are biological signatures of preserved fossil biomolecules, or (ii) they are exogenous biological signatures associated with the bacterial biofilm formation during post-depositional processes. Our results align with the latter hypothesis, followed by biofilm degradation. However, the specific mechanisms involved in the natural biofilm degradation in fossil records remain unexplored in this study. In our case, the formation of biofilm on fossil bones is attributed to the oligotrophic conditions of the cave sediment matrix. We present a comprehensive model to elucidate the existence of biofilm on fossilized tissues, emphasizing the pivotal role of post-depositional processes, especially water action, in the cave environment. As the fossils were discovered in a cave setting, post-depositional processes significantly contribute to the formation of the biofilm matrix. Although our study provides insights into biofilm formation, further research is needed to delve into the specific mechanisms driving natural biofilm degradation in fossils.
Collapse
Affiliation(s)
- Daniel Vieira de Sousa
- Colegiado de Geografia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Petrolina, 48970-000, Brazil.
| | | | - Estevan Eltink
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Petrolina, 48970-000, Brazil
| | | |
Collapse
|
19
|
Pirușcă IA, Balaure PC, Grumezescu V, Irimiciuc SA, Oprea OC, Bîrcă AC, Vasile B, Holban AM, Voinea IC, Stan MS, Trușcă R, Grumezescu AM, Croitoru GA. New Fe 3O 4-Based Coatings with Enhanced Anti-Biofilm Activity for Medical Devices. Antibiotics (Basel) 2024; 13:631. [PMID: 39061313 PMCID: PMC11273941 DOI: 10.3390/antibiotics13070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of new coatings based on Fe3O4 nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles. The resulting Fe3O4 functionalized NPs, namely Fe3O4@SLS, Fe3O4@SLS/UA, and Fe3O4@SLS/CEF, respectively, were prepared by co-precipitation method and fully characterized by XRD, TEM, SAED, SEM, FTIR, and TGA. They were further used to produce nanostructured coatings by matrix-assisted pulsed laser evaporation (MAPLE) technique. The biocompatibility of the coatings was assessed by measuring the cell viability, lactate dehydrogenase release, and nitric oxide level in the culture medium and by evaluating the actin cytoskeleton morphology of murine pre-osteoblasts. All prepared nanostructured coatings exhibited good biocompatibility. Biofilm growth inhibition ability was tested at 24 h and 48 h against Staphylococcus aureus and Pseudomonas aeruginosa as representative models for Gram-positive and Gram-negative bacteria. The coatings demonstrated good biocompatibility, promoting osteoblast adhesion, migration, and growth without significant impact on cell viability or morphology, highlighting their potential for developing safe and effective antibacterial surfaces.
Collapse
Affiliation(s)
- Ioana Adelina Pirușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.)
| | - Stefan-Andrei Irimiciuc
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.)
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Bogdan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - Ionela C. Voinea
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
20
|
Liu J, Ding Y, Yu X, Ye S, Guo P, Yang B. Fabric Fiber as a Biofilm Carrier for Halomonas sp. H09 Mixed with Lactobacillus rhamnosus GG. Appl Biochem Biotechnol 2024; 196:3974-3991. [PMID: 37801273 DOI: 10.1007/s12010-023-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Biofilm bacteria have stronger resistance to the adverse external environment compared to planktonic bacteria, and biofilms of non-pathogenic bacteria have strong potential for applications in food. In this experiment, Halomonas sp. H09 and Lactobacillus rhamnosus GG, which have film-forming ability in monoculture and better film-forming ability in mixed culture than the two strains alone, were selected as the target strains for mixed culture. According to SEM observation and bacterial dry weight measurement, the target strain formed a dense biofilm on a 0.1 g/L chitosan-modified cellulose III carrier. Furthermore, the presence of extracellular polymeric substances in biofilms was verified by EDS and FTIR. The results showed that 0.1 g/L chitosan-modified cellulose III was an ideal carrier material for immobilization of Halomonas sp. H09 with Lactobacillus rhamnosus GG biofilm. This research provided a basis for the selection of non-pathogenic mixed-bacteria biofilm carriers.
Collapse
Affiliation(s)
- Jing Liu
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Yan Ding
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Xinqi Yu
- College of Life Science, Beijing Normal University, Beijing, 100000, People's Republic of China
| | - Shuhong Ye
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China.
| | - Pengfei Guo
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Biying Yang
- Department of Food Science and Engineering, School of Food Science, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| |
Collapse
|
21
|
Sarkar S, Banerjee A, Bandopadhyay R. Bacterial Polysaccharide-Stabilized Silver Nanoparticles Photocatalytically Decolorize Azo Dyes. Appl Biochem Biotechnol 2024; 196:2466-2486. [PMID: 37477844 DOI: 10.1007/s12010-023-04648-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Bacterial polysaccharide is advantageous over plant, algal, and fungal polysaccharides in terms of stability, non-toxicity, and biodegradable nature. In addition, bacterial cell wall polysaccharide (CPs) is very little explored compared to exopolysaccharide. In this study, CPs have been isolated from thermotolerant Chryseobacterium geocarposphaerae DD3 (CPs3) from textile industry dye effluent. Structural characterization of the CPs was done by different techniques, viz., scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA). CPs3 demonstrated compact non-porous amorphous surface composed of evenly distributed macromolecular lumps. TGA revealed a high thermostability (~ 350 °C) of the polysaccharide. FTIR and NMR confirm the polysaccharidic nature of the polymer, consisting of glucose units linked by both β-(1 → 3) and β-(1 → 4) glycosidic bonds. The functional properties of CPs3 were evaluated for industrial use as additive, especially antibacterial, emulsification, and flocculation capacities. A single-step green synthesis of silver nanoparticle (AgNP) was performed using CPs3. AgNP was characterized using ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), AFM, and particle size analyses. The CPs3-stabilized AgNP exhibited potential photocatalytic activity against a broad range of azo dyes, congo red (88.33 ± 0.48%), methyl red (76.81 ± 1.03%), and malachite green (47.34 ± 0.90%) after only 3 h of reaction. According to our knowledge, this is the first report on CPs from C. geocarposphaerae. The results demonstrated multifunctionality of CPs3 in both prospective, CPs3 as additive in biotechnology industry as well as Cps3-stabilized AgNP for bioremediation of azo dye.
Collapse
Affiliation(s)
- Shrabana Sarkar
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación Y Postgrado, Universidad Católica del Maule, 3466706, Talca, Chile
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, 3467987, Talca, Chile
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
22
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
23
|
Levy IK, Salustro D, Battaglini F, Lizarraga L, Murgida DH, Agusti R, D’Accorso N, Raventos Segura D, González Palmén L, Negri RM. Quantification of Enzymatic Biofilm Removal Using the Sauerbrey Equation: Application to the Case of Pseudomonas protegens. ACS OMEGA 2024; 9:10445-10458. [PMID: 38463305 PMCID: PMC10918834 DOI: 10.1021/acsomega.3c08475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
A methodology for the quantitative analysis of enzymatic removal of biofilms (BF) was developed, based on a quartz crystal microbalance (QCM) under stationary conditions. This was applied to the case of Pseudomonas protegens (PP) BFs, through a series of five enzymes, whose removal activity was screened using the presented methodology. The procedure is based on the following: when BFs can be modeled as rigid materials, QCM can be used as a balance under stationary conditions for determining the BFs mass reduction by enzymatic removal. For considering a BF as a rigid model, energy dissipation effects, associated with viscoelastic properties of the BF, must be negligible. Hence, a QCM system with detection of dissipation (referred to as QCM with dissipation) was used for evaluating the energy losses, which, in fact, resulted in negligible energy losses in the case of dehydrated PP BFs, validating the application of the Sauerbrey equation for the change of mass calculations. The stationary methodology reduces operating times and simplifies data analysis in comparison to dynamic approaches based on flow setups, which requires the incorporation of dissipation effects due to the liquid media. By carrying out QCM, glycosidase-type enzymes showed BF removal higher than 80% at enzyme concentration 50 ppm, reaching removal over 90% in the cases of amylase and cellulase/xylanase enzymes. The highest removal percentage produced a reduction from about 15 to 1 μg in the BF mass. Amylase enzyme was tested from below 50 to 1 ppm, reaching around 60% of removal at 1 ppm. The obtained results were supported by other instrumental techniques such as Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, high performance anion exchange chromatography, thermogravimetric analysis, and differential scanning calorimetry. The removal quantifications obtained with QCM were compared with those obtained by well-established screening techniques (UV-vis spectrophotometry using crystal violet and agar diffusion test). The proposed methodology expands the possibility of using a quartz microbalance to perform enzymatic activity screening.
Collapse
Affiliation(s)
- Ivana K. Levy
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Débora Salustro
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Leonardo Lizarraga
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
- Centro
de Investigación en Bionanociencias (CIBION), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
| | - Daniel H. Murgida
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosalía Agusti
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Norma D’Accorso
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | | | | | - R. Martín Negri
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
24
|
Chakraborty S, Paidi MK, Dhinakarasamy I, Sivakumar M, Clements C, Thirumurugan NK, Sivakumar L. Adaptive mechanism of the marine bacterium Pseudomonas sihuiensis-BFB-6S towards pCO 2 variation: Insights into synthesis of extracellular polymeric substances and physiochemical modulation. Int J Biol Macromol 2024; 261:129860. [PMID: 38309406 DOI: 10.1016/j.ijbiomac.2024.129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Marine bacteria can adapt to various extreme environments by the production of extracellular polymeric substances (EPS). Throughout this investigation, impact of variable pCO2 levels on the metabolic activity and physiochemical modulation in EPS matrix of marine bacterium Pseudomonas sihuiensis - BFB-6S was evaluated using a fluorescence microscope, excitation-emission matrix (EEM), 2D-Fourier transform infrared correlation spectroscopy (2D-ATR-FTIR-COS), FT-NMR and TGA-DSC. From the results at higher pCO2 levels, there was a substantial reduction in EPS production by 58-62.8 % (DW). In addition to the biochemical composition of EPS, reduction in carbohydrates (8.7-47.6 %), protein (7.1-91.5 %), and lipids (16.9-68.6 %) content were observed at higher pCO2 levels. Functional discrepancies of fluorophores (tyrosine and tryptophan-like) in EPS, speckled differently in response to variable pCO2. The 2D-ATR-FTIR-COS analysis revealed functional amides (CN, CC, CO bending, -NH bending in amines) of EPS were preferentially altered, which led to the domination of polysaccharides relevant functional groups at higher pCO2. 1H NMR analysis of EPS confirmed the absence of chemical signals from H-C-COOH of proteins, α, β anomeric protons, and acetyl group relevant region at higher pCO2 levels. These findings can contribute new insights into the influence of pCO2 on the adaptation of marine microbes in future ocean acidification scenarios.
Collapse
Affiliation(s)
- Subham Chakraborty
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Murali Krishna Paidi
- CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Inbakandan Dhinakarasamy
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Manikandan Sivakumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Clarita Clements
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Naren Kumar Thirumurugan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Lakshminarayanan Sivakumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
25
|
Kumaran P, Ramadoss R, Sundar S, Panneer Selvam S, P B, Ramani P. Analysis of Spatial and Biochemical Characteristics of In Vitro Cariogenic Biofilms. Cureus 2024; 16:e53871. [PMID: 38465103 PMCID: PMC10924687 DOI: 10.7759/cureus.53871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Background Dental caries is the most common bacterial disease of calcified tissues of teeth. Cariogenic biofilms formed on the tooth surface secrete organic acids and thus result in demineralization. Delving into the depth of biofilms is crucial to understand the pathogenic mechanisms and design improved therapeutic approaches. The aim of the study is to analyze the spatial and biochemical characteristics of cariogenic biofilms. Materials and methods Pulp tissue samples sourced from freshly extracted third molars were incubated with oral cariogenic bacteria namely Streptococcus mutans, Staphylococcus aureus, Escherichia coli, Entamoeba faecalis, and Candida albicans to form the biofilm. Spatial assessment of biofilms was done under FESEM (field emission scanning electron microscope, JSM-IT800, JEOL, Tokyo, Japan). FTIR (Fourier transform infrared spectroscopy, Alpha II, Bruker, Germany) spectra were assessed for chemical molecular interactions in 24- and 48-hour time periods. Results Morphological assessment with FESEM revealed rapid growth and aggregation within a short time period. FTIR spectra to analyze chemical constituents of biofilm presented with varied peaks of water, amide A, amide I, water, lipids, and phospholipids. Conclusion Further validation with more advanced imaging for an extended time period is vital to derive better conclusive evidence.
Collapse
Affiliation(s)
| | - Ramya Ramadoss
- Oral Pathology and Oral Biology, Saveetha Dental College and Hospitals, Chennai, IND
| | - Sandhya Sundar
- Oral Pathology and Oral Biology, Saveetha Dental College and Hospitals, Chennai, IND
| | | | - Bargavi P
- Nanotechnology, Saveetha Dental College and Hospitals, Chennai, IND
| | - Pratibha Ramani
- Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Chennai, IND
| |
Collapse
|
26
|
Lin Y, Liang X, Li Z, Gong T, Ren B, Li Y, Peng X. Omics for deciphering oral microecology. Int J Oral Sci 2024; 16:2. [PMID: 38195684 PMCID: PMC10776764 DOI: 10.1038/s41368-023-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Bajrami D, Sarquis A, Ladero VM, Fernández M, Mizaikoff B. Rapid discrimination of Lentilactobacillus parabuchneri biofilms via in situ infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123391. [PMID: 37714102 DOI: 10.1016/j.saa.2023.123391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Microbial contamination in food industry is a source of foodborne illnesses and biofilm-related diseases. In particular, biogenic amines (BAs) accumulated in fermented foods via lactic acid bacterial activity exert toxic effects on human health. Among these, biofilms of histamine-producer Lentilactobacillus parabuchneri strains adherent at food processing equipment surfaces can cause food spoilage and poisoning. Understanding the chain of contamination is closely related to elucidating molecular mechanisms of biofilm formation. In the present study, an innovative approach using integrated chemical sensing technologies is demonstrated to fundamentally understand the temporal behavior of biofilms at the molecular level by combining mid-infrared (MIR) spectroscopy and fluorescence sensing strategies. Using these concepts, the biofilm forming capacity of six cheese-isolated L. parabuchneri strains (IPLA 11151, 11150, 11129, 11125, 11122 and 11117) was examined. The cut-off values for the biofilm production ability of each strain were quantified using crystal violet (CV) assays. Real-time infrared attenuated total reflection spectroscopy (IR-ATR) combined with fluorescence quenching oxygen sensing provides insight into distinct molecular mechanisms for each strain. IR spectra showed significant changes in characteristic bands of amides, lactate, nucleic acids, and extracellular polymeric substances (i.e., lipopolysaccharides, phospholipids, phosphodiester, peptidoglycan, etc.), which are major contributors to biofilm maturation involved in the initial adhesion processes. Chemometric methods including principal component analysis and partial least square-discriminant analysis facilitated the rapid determination and classification of cheese isolated L. parabuchneri strains unambiguously differentiating the IR signatures based on their ability to produce biofilm. All biofilms were morphologically characterized by confocal laser scanning microscopy on relevant industrial equipment surfaces. In summary, this innovative approach combining MIR spectroscopy with luminescence sensing enables real-time insight into the molecular composition and formation of L. parabuchneri biofilms.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Agustina Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Hahn-Schickard, Sedanstrasse 14, 89077 Ulm, Germany.
| |
Collapse
|
28
|
Seredin PV, Ippolitov YA, Peshkov YA, Goloshchapov DL, Ippolitov IY, Avraamova OG. [Distinctions in molecular composition of the dental biofilm in a dependence of method of exo/endogeneous caries prevention and cariogenic condition of a patient]. STOMATOLOGIIA 2024; 103:5-12. [PMID: 39436243 DOI: 10.17116/stomat20241030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Comparative study of changes in the secondary structure of dental biofilm proteins in people with cariesogenic and cariesoprotective status using synchrotron IR microspectroscopy. MATERIALS AND METHODS Dental biofilm samples from 50 patients without caries (group 1) and with carious lesions of tooth enamel (group 2) were studied. The molecular composition of biofilms was studied using IR microspectroscopy. Changes in the secondary structure of dental biofilm proteins were evaluated based on deconvolution of Amide I or Amide II amide bands. using the analysis of variance. Patients of both groups took tablets containing a mineral complex with calcium glycerophosphate. RESULTS Based on the deconvolution of the IR spectral profile of the Amide I and Amide II bands, the changes occurring in the secondary structure of dental biofilm proteins have been studied. Using a large set of spectra, it was shown that the prediction of the secondary structure of the biofilm protein network is influenced by both the cariesogenic situation in the oral cavity (with initial carious lesions of the enamel) and the fact that patients use a modulator - calcium glycerophosphate (a tableted mineral complex with calcium glycerophosphate). Significant intra-group and intergroup differences in the secondary structure of dental biofilm proteins were established for patients in normal and carisogenic situations in the mouth, including after the use of a tableted mineral complex with calcium glycerophosphate. This allowed us to give a mathematical assessment of shifts in the secondary structure of proteins depending on the activity of caries and external modulation. CONCLUSION The results obtained can form the basis of a technique for spectroscopic diagnosis of changes (shifts) in the oral microbiome leading to the development of the carious process, as well as become the basis for choosing the optimal therapeutic ways to treat enamel caries, including through preventive measures aimed at restoring the microflora of the patient's oral cavity.
Collapse
Affiliation(s)
| | - Yu A Ippolitov
- Voronezh State Medical University named after N.N. Burdenko, Voronezh, Ruussia
| | | | | | - I Yu Ippolitov
- Voronezh State Medical University named after N.N. Burdenko, Voronezh, Ruussia
| | - O G Avraamova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
29
|
Magadla A, Mpeta LS, Britton J, Nyokong T. Photodynamic antimicrobial chemotherapy activities of phthalocyanine-antibiotic conjugates against bacterial biofilms and interactions with extracellular polymeric substances. Photodiagnosis Photodyn Ther 2023; 44:103878. [PMID: 37918559 DOI: 10.1016/j.pdpdt.2023.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
This study sheds light on how to rationally design efficient photodynamic antimicrobial chemotherapy (PACT) agents by covalently linking phthalocyanines (Pcs) as photosensitizers with an antibiotic: Ciprofloxacin (CIP). Pcs used are zinc (II) 3-(4-((3,17,23-tris(4-(Benzo(d)thiazol-2-yl] thiol) phthalocyanine-9-yl) oxy) phenyl) propanoic acid (1) and zinc (II) 3-(4-(3,17,23-tris(3-(4-(triphenylphosphine) butyl) benzo[d]thiazol-3-ium bromide phthalocyanine-9-yl) oxy) phenyl) propanoic acid (2). High singlet oxygen quantum yields are observed in the presence of CIP. Square wave voltammetry was used to analyse the Pc-CIP uptake by bacteria biofilms of Streptococcus pneumoniae (S. pneumonia) and Escherichia coli (E. coli). Electrochemical impedance spectroscopy and scanning electron spectroscopy were used to study the stability of the biofilms in the presence Pc-CIP complexes and when exposed to light. Raman and time of flight-secondary ion mass spectrometry (TOF-SIMS) are used to identify the breakdown of cellular components of the biofilm and penetration of the Pc-CIP into the biofilms, respectively.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Lekhetho S Mpeta
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Jonathan Britton
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
30
|
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol 2023; 14:1304081. [PMID: 38075889 PMCID: PMC10703385 DOI: 10.3389/fmicb.2023.1304081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024] Open
Abstract
Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.
Collapse
Affiliation(s)
- Amin Kassem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Lana Abbas
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Oliver Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Somie Opara
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Hawraa Najaf
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Diana Kasperek
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Sonia Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| |
Collapse
|
31
|
Sklute EC, Leopo DA, Neat KA, Livi KJT, Dyar MD, Holden JF. Fe(III) (oxyhydr)oxide reduction by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens. Front Microbiol 2023; 14:1272245. [PMID: 37928658 PMCID: PMC10622975 DOI: 10.3389/fmicb.2023.1272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Some thermophilic bacteria from deep-sea hydrothermal vents grow by dissimilatory iron reduction, but our understanding of their biogenic mineral transformations is nascent. Mineral transformations catalyzed by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens during growth at 55°C were examined using synthetic nanophase ferrihydrite, akaganeite, and lepidocrocite separately as terminal electron acceptors. Spectral analyses using visible-near infrared (VNIR), Fourier-transform infrared attenuated total reflectance (FTIR-ATR), and Mössbauer spectroscopies were complemented with x-ray diffraction (XRD) and transmission electron microscopy (TEM) using selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analyses. The most extensive biogenic mineral transformation occurred with ferrihydrite, which produced a magnetic, visibly dark mineral with spectral features matching cation-deficient magnetite. Desulfovulcanus ferrireducens also grew on akaganeite and lepidocrocite and produced non-magnetic, visibly dark minerals that were poorly soluble in the oxalate solution. Bioreduced mineral products from akaganeite and lepidocrocite reduction were almost entirely absorbed in the VNIR spectroscopy in contrast to both parent minerals and the abiotic controls. However, FTIR-ATR and Mössbauer spectra and XRD analyses of both biogenic minerals were almost identical to the parent and control minerals. The TEM of these biogenic minerals showed the presence of poorly crystalline iron nanospheres (50-200 nm in diameter) of unknown mineralogy that were likely coating the larger parent minerals and were absent from the controls. The study demonstrated that thermophilic bacteria transform different types of Fe(III) (oxyhydr)oxide minerals for growth with varying mineral products. These mineral products are likely formed through dissolution-reprecipitation reactions but are not easily predictable through chemical equilibrium reactions alone.
Collapse
Affiliation(s)
- Elizabeth C Sklute
- Planetary Science Institute, Tucson, AZ, United States
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Deborah A Leopo
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - Kaylee A Neat
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, United States
| | - Kenneth J T Livi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - M Darby Dyar
- Planetary Science Institute, Tucson, AZ, United States
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, United States
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
32
|
Seredin P, Goloshchapov D, Kashkarov V, Lukin A, Peshkov Y, Ippolitov I, Ippolitov Y, Litvinova T, Vongsvivut J, Chae B, Freitas RO. Changes in Dental Biofilm Proteins' Secondary Structure in Groups of People with Different Cariogenic Situations in the Oral Cavity and Using Medications by Means of Synchrotron FTIR-Microspectroscopy. Int J Mol Sci 2023; 24:15324. [PMID: 37895003 PMCID: PMC10607285 DOI: 10.3390/ijms242015324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This work unveils the idea that the cariogenic status of the oral cavity (the presence of active caries lesions) can be predicted via a lineshape analysis of the infrared spectral signatures of the secondary structure of proteins in dental biofilms. These spectral signatures that work as natural markers also show strong sensitivity to the application in patients of a so-called modulator-a medicinal agent (a pelleted mineral complex with calcium glycerophosphate). For the first time, according to our knowledge, in terms of deconvolution of the complete spectral profile of the amide I and amide II bands, significant intra- and intergroup differences were determined in the secondary structure of proteins in the dental biofilm of patients with a healthy oral cavity and with a carious pathology. This allowed to conduct a mathematical assessment of the spectral shifts in proteins' secondary structure in connection with the cariogenic situation in the oral cavity and with an external modulation. It was shown that only for the component parallel β-strands in the amide profile of the biofilm, a statistically significant (p < 0.05) change in its percentage weight (composition) was registered in a cariogenic situation (presence of active caries lesions). Note that no significant differences were detected in a normal situation (control) and in the presence of a carious pathology before and after the application of the modulator. The change in the frequency and percentage weight of parallel β-strands in the spectra of dental biofilms proved to be the result of the presence of cariogenic mutans streptococci in the film as well as of the products of their metabolism-glucan polymers. We foresee that the results presented here can inherently provide the basis for the infrared spectral diagnosis of changes (shifts) in the oral microbiome driven by the development of the carious process in the oral cavity as well as for the choice of optimal therapeutic treatments of caries based on microbiome-directed prevention measures.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Anatoly Lukin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Yaroslav Peshkov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Tatiana Litvinova
- Computational Semasiology Laboratory, Voronezh State Pedagogical University, 394043 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), Clayton, VIC 3168, Australia;
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| | - Raul O. Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| |
Collapse
|
33
|
Wang Y, Liu H, Geng F, Yang P, Lü J, Li X. Label-free analysis of biofilm phenotypes by infrared micro- and correlation spectroscopy. Anal Bioanal Chem 2023:10.1007/s00216-023-04741-4. [PMID: 37193875 DOI: 10.1007/s00216-023-04741-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The methodology development for deeply describing the complex biofilm phenotypes is an urgent demand for understanding their basic biology and the central clinic relevance. Here, we developed an infrared microspectroscopy-based method for the quantitative evaluation and description of biofilm phenotypic characteristics by calculating the spectral similarity of the infrared data. Using this approach, we revealed the phenotypic variation during the biofilm formation process and biofilm heterogeneity between two E. coli strains. Two-dimensional correlation spectroscopy was further combined to deeply investigate the biochemical component evolution sequences during E. coli biofilm formation and revealed the first-order of the polysaccharide molecules change, expanding new opportunities for infrared microspectroscopy in revealing molecule evolution in the biofilm formation. This novel development offers a label-free optical toolkit for the bioanalytical analysis of biofilm phenotypes but also paves the way for screening the drugs to modulate the structure and ecology of biofilm microbiome.
Collapse
Affiliation(s)
- Yadi Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Huiping Liu
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Feng Geng
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Pan Yang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Junhong Lü
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xueling Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
34
|
Castillo J, Alom J, Gomez-Arias A, Cebekhulu S, Matu A, Cason E, Valverde A. Bacterial communities shift and influence in an acid mine drainage treatment using barium carbonate disperse alkaline substrate system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163526. [PMID: 37116802 DOI: 10.1016/j.scitotenv.2023.163526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Chemical passive treatment systems used to remediate acid mine drainage has been evaluated based mainly on the reactivity of the chemical alkaline reagents, overlooking the activity of the microorganisms that proliferate in these artificial ecosystems. In this study, the bacterial communities of a unique passive treatment system known as BDAS (Barium carbonate Dispersed Alkaline Substrate) were investigated using 16S rRNA gene metagenomic sequencing combined with hydrochemical characterization of the AMD and phenotypic characterization of biogenic precipitates. According to the hydrochemical characterization, the water quality improved as the water progressed through the system, with a drastic increase in the pH (up to alkaline conditions) and total organic carbon, as well as the removal of main contaminants such as Ca2+, SO42-, Fe3+, Al3+, and Mn2+. These environmental changes resulted in an increase in bacterial diversity (richness) after the inlet and in the shift of the bacterial communities from chemoautotrophs (e.g., Ferrovum and Acidiphilum) to chemoheterotrophs (e.g., Brevundimonas and Geobacter). Some of these taxa harbour potential to immobilize metals, aiding in the treatment of the water. One of the mechanisms involved in the immobilization of metals is microbially induced calcium carbonate precipitation, which seems to occur spontaneously in BDAS. The production of biofilm was also observed in most parts of the system, except in the inlet, helping with the removal of metals. However, in the long run, the build-up of biofilm and precipitation of metals could clog (i.e., biofouling) the pores of the matrix, reducing the treatment efficiency. Potential human pathogens (e.g. Legionella) were also detected in BDAS indicating the need for a treatment step at the end of the system to remove pathogenic microorganisms. These findings present a new perspective of the bacterial communities and their effects (both positively and negatively) in a chemical passive treatment system.
Collapse
Affiliation(s)
- J Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| | - J Alom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - A Gomez-Arias
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - S Cebekhulu
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - A Matu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - E Cason
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | - A Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
35
|
Vashistha A, Sharma N, Nanaji Y, Kumar D, Singh G, Barnwal RP, Yadav AK. Quorum sensing inhibitors as Therapeutics: Bacterial biofilm inhibition. Bioorg Chem 2023; 136:106551. [PMID: 37094480 DOI: 10.1016/j.bioorg.2023.106551] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The overuse and inappropriate use of antibiotics to treat bacterial infections has led to the development of multiple drug resistant strains. Biofilm is a complex microorganism aggregation defined by the presence of a dynamic, sticky, and protective extracellular matrix made of polysaccharides, proteins, and nucleic acids. The infectious diseases are caused by bacteria that flourish within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. The QS system is quenched predominantly by these molecules. The phenomenon is also termed as quorum sensing (QS). Both synthetic and natural substances have been discovered to be useful in QS. This review describes natural and synthetic quorum sensing inhibitors (QSIs) with the potential to treat bacterial infections. It includes the discussion on quorum sensing, mechanism of quorum sensing, effect of substituents on the activity. These discoveries could result in effective therapies using far lower dosages of medications, particularly antibiotics, are currently needed.
Collapse
Affiliation(s)
- Aditi Vashistha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Nikhil Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Yerramsetti Nanaji
- Texas Tech University Health Sciences Center, Ophthalmology Dept Lbk Genl, Lubbock, Texas, USA, 3601 4th Street, Lubbock TX 79430, United States
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
36
|
Avershina E, Khezri A, Ahmad R. Clinical Diagnostics of Bacterial Infections and Their Resistance to Antibiotics-Current State and Whole Genome Sequencing Implementation Perspectives. Antibiotics (Basel) 2023; 12:781. [PMID: 37107143 PMCID: PMC10135054 DOI: 10.3390/antibiotics12040781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR), defined as the ability of microorganisms to withstand antimicrobial treatment, is responsible for millions of deaths annually. The rapid spread of AMR across continents warrants systematic changes in healthcare routines and protocols. One of the fundamental issues with AMR spread is the lack of rapid diagnostic tools for pathogen identification and AMR detection. Resistance profile identification often depends on pathogen culturing and thus may last up to several days. This contributes to the misuse of antibiotics for viral infection, the use of inappropriate antibiotics, the overuse of broad-spectrum antibiotics, or delayed infection treatment. Current DNA sequencing technologies offer the potential to develop rapid infection and AMR diagnostic tools that can provide information in a few hours rather than days. However, these techniques commonly require advanced bioinformatics knowledge and, at present, are not suited for routine lab use. In this review, we give an overview of the AMR burden on healthcare, describe current pathogen identification and AMR screening methods, and provide perspectives on how DNA sequencing may be used for rapid diagnostics. Additionally, we discuss the common steps used for DNA data analysis, currently available pipelines, and tools for analysis. Direct, culture-independent sequencing has the potential to complement current culture-based methods in routine clinical settings. However, there is a need for a minimum set of standards in terms of evaluating the results generated. Additionally, we discuss the use of machine learning algorithms regarding pathogen phenotype detection (resistance/susceptibility to an antibiotic).
Collapse
Affiliation(s)
- Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata, 222317 Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata, 222317 Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata, 222317 Hamar, Norway
- Institute of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Hansine Hansens veg, 189019 Tromsø, Norway
| |
Collapse
|
37
|
Agustín MDR, Stengel P, Kellermeier M, Tücking KS, Müller M. Monitoring Growth and Removal of Pseudomonas Biofilms on Cellulose-Based Fabrics. Microorganisms 2023; 11:microorganisms11040892. [PMID: 37110314 PMCID: PMC10143030 DOI: 10.3390/microorganisms11040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biofilms are often tolerant towards routine cleaning and disinfection processes. As they can grow on fabrics in household or healthcare settings, resulting in odors and serious health problems, it is necessary to contain biofilms through eradication strategies. The current study proposes a novel test model for the growth and removal of biofilms on textiles with Pseudomonas fluorescens and the opportunistic nosocomial pathogen Pseudomonas aeruginosa as model organisms. To assess the biofilm removal on fabrics, (1) a detergent-based, (2) enzyme-based, and (3) combined formulation of both detergent and enzymes (F1/2) were applied. Biofilms were analyzed microscopically (FE-SEM, SEM, 3D laser scanning- and epifluorescence microscopy), via a quartz crystal microbalance with mass dissipation monitoring (QCM-D) as well as plate counting of colonies. This study indicated that Pseudomonas spp. form robust biofilms on woven cellulose that can be efficiently removed via F1/2, proven by a significant reduction (p < 0.001) of viable bacteria in biofilms. Moreover, microscopic analysis indicated a disruption and almost complete removal of the biofilms after F1/2 treatment. QCM-D measurements further confirmed a maximal mass dissipation change after applying F1/2. The combination strategy applying both enzymes and detergent is a promising antibiofilm approach to remove bacteria from fabrics.
Collapse
|
38
|
Seredin PV, Ippolitov YA, Goloshchapov DL, Kashkarov VM, Ippolitov IY, Solaiman MA. [Distinctions in molecular composition of the dental biofilm depending on the method of exo-/endogeneous caries prevention and cariogenic condition of a patient]. STOMATOLOGIIA 2023; 102:86-93. [PMID: 36800793 DOI: 10.17116/stomat202310201186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PURPOSE OF THE STUDY For the first time distinctions of molecular composition of the dental biofilm at the stages of exo- and endogeneous caries prevention were studied for persons with different cariogenic conditions involving synchrotron molecular spectroscopy techniques. MATERIAL AND METHODS The samples of the dental biofilm collected from participants of the research were studied at the different stages of experiment. The studies of molecular composition of the biofilms were employed involving the equipment set in the Infrared Microspectroscopy (IRM) laboratory of Australian synchrotron. RESULTS Basing on the data obtained by synchrotron infrared spectroscopy with Fourier transform as well as using the calculations of the ratios between organic and mineral components and also statistical analysis of the data we could estimate the changes proceeding in the molecular composition of dental biofilm in a dependence of homeostasis conditions in the oral cavity at the stages of exo- and endogeneous caries prevention. CONCLUSION Observed changes in the values of phosphate/protein/lipid, phosphate/mineral and phospholipid/lipid ratios as well as the presence of statistically significant intra- and intergroup in these coefficients mean that mechanisms of adsorption for the ions, compounds and molecular complexes incoming from the oral fluid into the dental biofilm at the stage of exo-/endogeneous caries prevention are different for the patients in normal condition and for those ones with the developing caries.
Collapse
Affiliation(s)
| | - Yu A Ippolitov
- Voronezh State Medical University after N.N. Burdenko, Voronezh, Russia
| | | | | | - I Yu Ippolitov
- Voronezh State Medical University after N.N. Burdenko, Voronezh, Russia
| | - M A Solaiman
- Voronezh State Medical University after N.N. Burdenko, Voronezh, Russia
| |
Collapse
|
39
|
Zhang J, Wang C, Shi X, Feng Q, Shen T, Wang S. Modulation of the Structure of the Conjugated Polymer TMP and the Effect of Its Structure on the Catalytic Performance of TMP-TiO 2 under Visible Light: Catalyst Preparation, Performance and Mechanism. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1563. [PMID: 36837193 PMCID: PMC9965725 DOI: 10.3390/ma16041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The photocatalytic activity of titanium dioxide (TiO2) is largely hindered by its low photoresponse and quantum efficiency. TiO2 modified by conjugated polymers (CPs) is considered a promising approach to enhance the visible light responsiveness of TiO2. In this work, in order to investigate the effect of CP structural changes on the photocatalytic performance of TiO2 under visible light, trimesoyl chloride-melamine polymers (TMPs) with different structural characteristics were created by varying the parameters of the polymerisation process of tricarbonyl chloride (TMC) and melamine (M). The TMPs were subsequently composited with TiO2 to form complex materials (TMP-TiO2) using an in situ hydrothermal technique. The photocatalytic activity of TMP-TiO2 was evaluated by the degradation of rhodamine B (RhB). The results showed that the trend of the structure of the TMP with the reaction conditions was consistent with the visible light responsiveness of TMP-TiO2, and TMP (1:1)-TiO2 had the best photocatalytic activity and could degrade 96.1% of the RhB. In conclusion, our study provided new insights into the influence of the structural changes of TMPs on the photocatalytic activity of TMP-TiO2 under visible light, and it improves our understanding of how conjugated polymers affect the photocatalytic activity of TiO2 under visible light.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chen Wang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaoguo Shi
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qing Feng
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tingting Shen
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Siyuan Wang
- Division of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
40
|
Lu W, Li H, Qiu H, Wang L, Feng J, Fu YV. Identification of pathogens and detection of antibiotic susceptibility at single-cell resolution by Raman spectroscopy combined with machine learning. Front Microbiol 2023; 13:1076965. [PMID: 36687641 PMCID: PMC9846160 DOI: 10.3389/fmicb.2022.1076965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Rapid, accurate, and label-free detection of pathogenic bacteria and antibiotic resistance at single-cell resolution is a technological challenge for clinical diagnosis. Overcoming the cumbersome culture process of pathogenic bacteria and time-consuming antibiotic susceptibility assays will significantly benefit early diagnosis and optimize the use of antibiotics in clinics. Raman spectroscopy can collect molecular fingerprints of pathogenic bacteria in a label-free and culture-independent manner, which is suitable for pathogen diagnosis at single-cell resolution. Here, we report a method based on Raman spectroscopy combined with machine learning to rapidly and accurately identify pathogenic bacteria and detect antibiotic resistance at single-cell resolution. Our results show that the average accuracy of identification of 12 species of common pathogenic bacteria by the machine learning method is 90.73 ± 9.72%. Antibiotic-sensitive and antibiotic-resistant strains of Acinetobacter baumannii isolated from hospital patients were distinguished with 99.92 ± 0.06% accuracy using the machine learning model. Meanwhile, we found that sensitive strains had a higher nucleic acid/protein ratio and antibiotic-resistant strains possessed abundant amide II structures in proteins. This study suggests that Raman spectroscopy is a promising method for rapidly identifying pathogens and detecting their antibiotic susceptibility.
Collapse
Affiliation(s)
- Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haoning Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Yu Vincent Fu,
| |
Collapse
|
41
|
Antimicrobial Efficiency of Chitosan and Its Methylated Derivative against Lentilactobacillus parabuchneri Biofilms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248647. [PMID: 36557784 PMCID: PMC9786053 DOI: 10.3390/molecules27248647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial materials are considered potential alternatives to prevent the development of biofilm-associated contaminations. Concerns regarding synthetic preservatives necessitate the development of innovative and safe natural antimicrobials. In the present study, we discuss the in situ infrared attenuated total reflection spectroscopy (IR-ATR) investigations of the selective antimicrobial efficiency of chitosan in controlling the growth of Lentilactobacillus parabuchneri biofilms. The protonated charges of chitosan were additionally amplified by structural modification via methylation, yielding quaternized derivative TMC (i.e., N, N, N-trimethyl chitosan). To evaluate antimicrobial effectiveness against L. parab. biofilms, IR-ATR spectroscopy provided information on molecular mechanisms and insights into chemical changes during real-time biofilm inhibition studies. The integrated fiberoptic oxygen microsensors enabled monitoring oxygen (O2) concentration gradients within biofilms, thereby confirming the metabolic oxygen depletion dropping from 4.5 to 0.7 mg L-1. IR studies revealed strong electrostatic interactions between chitosan/its water-soluble derivative and bacteria, indicating that a few hours were sufficient to affect biofilm disruption. The significant decrease in the IR bands is related to the characteristic spectral information of amide I, II, III, nucleic acid, and extracellular polymeric matrix (EPS) produced by L. parabuchneri biofilms. Cell clusters of biofilms, microcolonies, and destabilization of the EPS matrix after the addition of biopolymers were visualized using optical microscopy. In addition, scanning electron microscopy (SEM) of biofilms grown on polystyrene and stainless-steel surfaces was used to examine morphological changes, indicating the disintegration of the biofilm matrix into individual cells. Quantification of the total biofilm formation correlated with the CV assay results, indicating cell death and lysis. The electrostatic interactions between chitosan and the bacterial cell wall typically occur between protonated amino groups and negatively charged phospholipids, which promote permeabilization. Biofilm growth inhibition was assessed by a viability assay for a period of 72 h and in the range of low MIC values (varying 0.01-2%). These results support the potential of chitosan and TMC for bacterial growth prevention of the foodborne contaminant L. parabuchneri in the dairy industry and for further implementation in food packaging.
Collapse
|
42
|
Etim IIN, Njoku DI, Uzoma PC, Kolawole SK, Olanrele OS, Ekarenem OO, Okonkwo BO, Ikeuba AI, Udoh II, Njoku CN, Etim IP, Emori W. Microbiologically Influenced Corrosion: A Concern for Oil and Gas Sector in Africa. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
43
|
Xiong R, Yan J, Mei J, Ye J, Xie J. The enhanced expression of genes encoding diguanylate cyclases under cold stress contributes to the adhesion and biofilm formation of Shewanella putrefaciens WS13. Front Nutr 2022; 9:1076932. [DOI: 10.3389/fnut.2022.1076932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Shewanella putrefaciens is a special spoilage bacterium of seafood during cold storage, which is easy to form biofilm and bring serious hazard to the seafood quality. Life cycle of biofilm starts after bacterial adhesion, which is essential for the formation and development of biofilm. As a ubiquitous second messenger in bacteria, c-di-GMP regulates the conversion between bacterial planktonic state and biofilm state. In this study, the adhesion and biofilm formation of S. putrefaciens WS13 under 4°C were compared to those under 30°C. Atom force microscope and scanning electron microscope were used to study the bacterial adhesion. Biofilm was analyzed by Fourier transform infrared spectroscopy, Bradford assay and phenol-sulfuric acid method. High-performance liquid chromatographic-tandem mass spectrometric and quantitative real-time PCR were applied to study c-di-GMP level and genes encoding diguanylate cyclases in cells, respectively. Results showed that the swarming mobility of S. putrefaciens WS13 was weaker under 4°C, however, the adhesive force under 4°C was 4–5 times higher than that under 30°C. Biofilm biomass, extracellular polysaccharides and extracellular proteins were 2.5 times, 3 times, and 1.6 times more than those under 30°C, respectively, but biofilm composition formed under both temperatures were similar. c-di-GMP level in S. putrefaciens WS13 under 30°C was no more than half of that in the corresponding growth stage under 4°C. Quantitative real-time PCR analysis also showed that the expression of genes encoding diguanylate cyclases were significantly enhanced under 4°C than that under 30°C. S. putrefaciens WS13 adapted to the cold stress by enhancing the expression of genes encoding diguanylate cyclases to promote bacterial adhesion and biofilm formation. This study provides a theoretical foundation for the research on the cold adaptation mechanism of specific spoilage bacteria of seafood based on c-di-GMP, and also provides a new idea to control seafood quality from the perspective of microbial molecular biology.
Collapse
|
44
|
Bajrami D, Fischer S, Barth H, Sarquis MA, Ladero VM, Fernández M, Sportelli MC, Cioffi N, Kranz C, Mizaikoff B. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy. NPJ Biofilms Microbiomes 2022; 8:92. [PMID: 36402858 PMCID: PMC9675856 DOI: 10.1038/s41522-022-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - María A Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria C Sportelli
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
45
|
Linalool reduces the virulence of Pseudomonas syringae pv. tomato DC 3000 by modulating the PsyI/PsyR quorum-sensing system. Microb Pathog 2022; 173:105884. [DOI: 10.1016/j.micpath.2022.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
|
46
|
Younas H, Nazir A, Bareen FE. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57669-57687. [PMID: 35355176 DOI: 10.1007/s11356-022-19913-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0-10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.
Collapse
Affiliation(s)
- Hajira Younas
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Firdaus-E Bareen
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
47
|
Hu MX, He F, Zhao ZS, Guo YX, Ma XK, Tu CK, Teng H, Chen ZX, Yan H, Shao X. Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31601-31612. [PMID: 35793165 DOI: 10.1021/acsami.2c04540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm enrichment in an artificial way is difficult. Here, fibrous membranes as probiotic biofilm-enriching materials are studied. Electrospun cellulose acetate nanofibrous membranes with nano-sized fibers show outstanding superiority over fibrous membranes with micron-sized fibers in Lactobacillus paracasei biofilm enrichment. The special 3D structure of electrospun nanofibrous membranes makes other facilitating biofilm formation factors insignificant. With a suitable scaffold/culture medium ratio, nearly 100% of L. paracasei cells exist as biofilm phenotype on the membrane from the very beginning, not planktonic state. L. paracasei biofilms possess a potential for long-term survival and high tolerances toward strong acidic and alkali conditions and antibiotics. RNA sequencing results explain why L. paracasei biofilms possess high tolerances toward harsh environments as compared to planktonic L. paracasei. Electrospun nanofibrous membranes can serve as powerful biofilm-enriching scaffolds for probiotics and other valuable microbes.
Collapse
Affiliation(s)
- Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fei He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zi-Shu Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ya-Xin Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xue-Ke Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Cheng-Kai Tu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hui Teng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhe-Xin Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hong Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xin Shao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
48
|
Seredin P, Goloshchapov D, Kashkarov V, Nesterov D, Ippolitov Y, Ippolitov I, Vongsvivut J. Effect of Exo/Endogenous Prophylaxis Dentifrice/Drug and Cariogenic Conditions of Patient on Molecular Property of Dental Biofilm: Synchrotron FTIR Spectroscopic Study. Pharmaceutics 2022; 14:pharmaceutics14071355. [PMID: 35890251 PMCID: PMC9320832 DOI: 10.3390/pharmaceutics14071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Objectives: This study is the first one to investigate the molecular composition of the dental biofilm during the exogenous and endogenous prophylaxis stages (use of dentifrice/drug) of individuals with different cariogenic conditions using molecular spectroscopy methods. (2) Materials and Methods: The study involved 100 participants (50 males and 50 females), aged 18–25 years with different caries conditions. Biofilm samples were collected from the teeth surface of all participants. The molecular composition of biofilms was investigated using synchrotron infrared microspectroscopy. Changes in the molecular composition were studied through calculation and analysis of ratios between organic and mineral components of biofilm samples. (3) Results: Based on the data obtained by synchrotron FTIR, calculations of organic and mineral component ratios, and statistical analysis of the data, we were able to assess changes occurring in the molecular composition of the dental biofilm. Variations in the phosphate/protein/lipid, phosphate/mineral, and phospholipid/lipid ratios and the presence of statistically significant intra- and inter-group differences in these ratios indicate that the mechanisms of ion adsorption, compounds and complexes arriving from oral fluid into dental biofilm during exo/endogenous prophylaxis, differ for patients in norm and caries development. (4) Conclusions: The conformational environment and charge interaction in the microbiota and the electrostatic state of the biofilm protein network in patients with different cariogenic conditions play an important role. (5) Clinical Significance: Understanding the changes that occur in the molecular composition of the dental biofilm in different oral homeostasis conditions will enable successful transition to a personalised approach in dentistry and high-tech healthcare.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
- Scientific and Educational Center “Nanomaterials and Nanotechnologies”, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence:
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Dmitry Nesterov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | | |
Collapse
|
49
|
Seredin P, Goloshchapov D, Kashkarov V, Emelyanova A, Buylov N, Ippolitov Y, Prutskij T. Development of a Visualisation Approach for Analysing Incipient and Clinically Unrecorded Enamel Fissure Caries Using Laser-Induced Contrast Imaging, MicroRaman Spectroscopy and Biomimetic Composites: A Pilot Study. J Imaging 2022; 8:jimaging8050137. [PMID: 35621901 PMCID: PMC9142888 DOI: 10.3390/jimaging8050137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
This pilot study presents a practical approach to detecting and visualising the initial forms of caries that are not clinically registered. The use of a laser-induced contrast visualisation (LICV) technique was shown to provide detection of the originating caries based on the separation of emissions from sound tissue, areas with destroyed tissue and regions of bacterial invasion. Adding microRaman spectroscopy to the measuring system enables reliable detection of the transformation of the organic–mineral component in the dental tissue and the spread of bacterial microflora in the affected region. Further laboratory and clinical studies of the comprehensive use of LICV and microRaman spectroscopy enable data extension on the application of this approach for accurate determination of the boundaries in the changed dental tissue as a result of initial caries. The obtained data has the potential to develop an effective preventive medical diagnostic approach and as a result, further personalised medical treatment can be specified.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
- Scientific and Educational Center, Nanomaterials and Nanotechnologies, Ural Federal University, Mir Av., 620002 Yekaterinburg, Russia
- Correspondence:
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Anna Emelyanova
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya St. 11, 394006 Voronezh, Russia;
| | - Tatiana Prutskij
- Sciences Institute, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| |
Collapse
|
50
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|