1
|
Caravia LG, Mitranovici MI, Oala IE, Tiron AT, Simionescu AA, Borcan AM, Craina M. The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review. Cells 2025; 14:594. [PMID: 40277919 DOI: 10.3390/cells14080594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Endometrial cancer is one of the most common malignancies seen in women in developed countries. While patients in the early stages of this cancer show better responses to surgery, adjuvant hormonal therapy, and chemotherapy, patients with recurrence show treatment resistance. Researchers have recently focused on cancer stem cells (CSCs) in the treatment of gynecologic cancer in general but also specifically in endometrial cancer. CSCs have been investigated because of their resistance to conventional therapies, such as chemo- and radiotherapy, and their ability to induce the progression and recurrence of malignancy. The activation of alternative pathways, such as WNT, PI3K, NF-kB, or NOTCH, could be the basis of the acquisition of these abilities of CSCs. Their specific markers and signaling pathways could be treatment targets for CSCs. In this article, we discuss the importance of obtaining a better understanding of the molecular basis and pathways of CSCs in endometrial cancer and the role of CSCs, aiming to discover more specific therapeutic approaches.
Collapse
Affiliation(s)
- Laura Georgiana Caravia
- Division of Cellular and Molecular Biology and Histology, Department of Morphological Sciences, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Melinda Ildiko Mitranovici
- Public Health Department, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Ioan Emilian Oala
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street, 331057 Hunedoara, Romania
| | - Andreea Taisia Tiron
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Angela Simionescu
- Department of Obstretics and Gynecology, Filantropia, Faculty of Medicine Carol Davila, 011171 Bucharest, Romania
| | - Alina Maria Borcan
- Department of Microbiology, National Institute for Infectious Diseases "Prof. Dr. Matei Balș", Faculty of Medicine Carol Davila, 021105 Bucharest, Romania
| | - Marius Craina
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Tong W, Qin N, Lu T, Liu L, Liu R, Chen J, Luo N. Integrating bulk and single-cell RNA sequencing reveals SH3D21 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway. PLoS One 2025; 20:e0302766. [PMID: 40179068 PMCID: PMC11967960 DOI: 10.1371/journal.pone.0302766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/16/2025] [Indexed: 04/05/2025] Open
Abstract
As a novel genetic biomarker, the potential role of SH3D21 in hepatocellular carcinoma remains unclear. Here, we decipher the expression and function of SH3D21 in human hepatocellular carcinoma. The expression level and clinical significance of SH3D21 in hepatocellular carcinoma patients, the relationship between SH3D21 and the features of tumor microenvironment (TME) and role of SH3D21 in promoting hepatocellular carcinoma progression were analyzed based on the bulk samples obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Single-cell sequencing samples from Gene Expression Omnibus (GEO) database were employed to verify the prediction mechanism. Additionally, different biological effects of SH3D21 on hepatocellular carcinoma cells were investigated by qRT-PCR, CCK-8 assay, colony forming assay and Western blot analysis. Bioinformatics analysis and in vitro experiments revealed that the expression level of SH3D21 was up-regulated in hepatocellular carcinoma and correlated with the poor prognosis in hepatocellular carcinoma patients. SH3D21 effectively promoted the proliferation, invasion, and migration as well as the formation of immunosuppressive microenvironment of hepatocellular carcinoma. In addition, SH3D21 can activate the PI3K/AKT/mTOR signaling pathway. SH3D21 stimulates the progression of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling pathway, and SH3D21 can serve as a prognostic biomarker and therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Qin
- The Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Lu
- Department of hepatobiliary surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Li Liu
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rong Liu
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Centre for Translational Medical Research in Integrative Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
3
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Wang J, Yan S. Integration of histone modification-based risk signature with drug sensitivity analysis reveals novel therapeutic strategies for lower-grade glioma. Front Pharmacol 2025; 15:1523779. [PMID: 39872055 PMCID: PMC11770009 DOI: 10.3389/fphar.2024.1523779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Background Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies. Methods We performed single-cell RNA sequencing analysis on LGG samples (n = 4) to characterize histone modification patterns. Through integrative analysis of TCGA-LGG (n = 513) and CGGA datasets (n = 693 and n = 325), we constructed a histone modification-related risk signature (HMRS) using machine learning approaches. The model's performance was validated in multiple independent cohorts. We further conducted comprehensive analyses of molecular mechanisms, immune microenvironment, and drug sensitivity associated with the risk stratification. Results We identified distinct histone modification patterns across five major cell populations in LGG and developed a robust 20-gene HMRS from 129 candidate genes that effectively stratified patients into high- and low-risk groups with significantly different survival outcomes (training set: AUC = 0.77, 0.73, and 0.71 for 1-, 3-, and 5-year survival; P < 0.001). Integration of HMRS with clinical features further improved prognostic accuracy (C-index >0.70). High-risk tumors showed activation of TGF-β and IL6-JAK-STAT3 signaling pathways, and distinct mutation profiles including TP53 (63% vs 28%), IDH1 (68% vs 85%), and ATRX (46% vs 20%) mutations. The high-risk group demonstrated significantly elevated immune and stromal scores (P < 0.001), with distinct patterns of immune cell infiltration, particularly in memory CD4+ T cells (P < 0.001) and CD8+ T cells (P = 0.001). Drug sensitivity analysis revealed significant differential responses to six therapeutic agents including Temozolomide and targeted drugs (P < 0.05). Conclusion Our study establishes a novel histone modification-based prognostic model that not only accurately predicts LGG patient outcomes but also reveals potential therapeutic targets. The identified associations between risk stratification and drug sensitivity provide valuable insights for personalized treatment strategies. This integrated approach offers a promising framework for improving LGG patient care through molecular-based risk assessment and treatment selection.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Neurological Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuai Yan
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
5
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2025; 27:42-69. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Ren S, Lu Y, Zhang G, Xie K, Chen D, Cai X, Ye M. Integration of Graph Neural Networks and multi-omics analysis identify the predictive factor and key gene for immunotherapy response and prognosis of bladder cancer. J Transl Med 2024; 22:1141. [PMID: 39716185 DOI: 10.1186/s12967-024-05976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
OBJECTIVE The evaluation of the efficacy of immunotherapy is of great value for the clinical treatment of bladder cancer. Graph Neural Networks (GNNs), pathway analysis and multi-omics analysis have shown great potential in the field of cancer diagnosis and treatment. METHODS A GNNs model was constructed to predict the immunotherapy response and identify key pathways. Based on the genes of key pathways, bioinformatic methods were used to generate a simple linear scoring model, namely responseScore. The intrinsic mechanism of responseScore was explored from the perspectives of multi-omics analysis. The relationship between each gene involved in responseScore and prognosis was also explored. Transfection experiments with human bladder cancer cells were used to investigate the biological effects of PSMB9 gene. RESULTS The final GNNs model had an AUC of 0.785 on the training set and an AUC of 0.839 on the validation set. R-HSA-69620 and others were identified as key pathways. ResponseScore had a good performance in predicted the immunotherapy response and prognosis. Analysis results from genetic variation, pathways and tumor microenvironment, showed that responseScore was significantly associated with immune cell infiltration and anti-tumor immunity. The results of single-cell analysis showed that responseScore was closely related to the functional state of natural killer cells. Compared with the PCDH-NC group, cell migration and proliferation were significantly inhibited while cell apoptosis increased in the PCDH-PSMB9 group. CONCLUSION The GNNs predictive model and responseScore constructed in this study can reflect the immunotherapy response and prognosis of bladder cancer patients. ResponseScore can also reflect features such as tumor microenvironment, antitumor immunity, and natural killer cell function status in bladder cancer. PSMB9 was identified as a significant gene for prognosis. High expression of PSMB9 can inhibit bladder cancer cell migration and proliferation while increasing cell apoptosis.
Collapse
Affiliation(s)
- Shuai Ren
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yongjian Lu
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Guangping Zhang
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Ke Xie
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Danni Chen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Xiangna Cai
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Maodong Ye
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
7
|
Zhang X, Yang F, Dong C, Li B, Zhang S, Jiao X, Chen D. Identification and analysis of a cell communication prognostic signature for oral squamous cell carcinoma at bulk and single-cell levels. J Cell Mol Med 2024; 28:e70166. [PMID: 39580787 PMCID: PMC11586053 DOI: 10.1111/jcmm.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024] Open
Abstract
Head and neck squamous cancer (HNSC) is a heterogenous malignant tumour disease with poor prognosis and has become the current major public health concern worldwide. Oral squamous cell carcinoma (OSCC) is the majority of HNSC. It is still in lack of comprehensive tumour immune microenvironment analysis and prognostic model development for OSCC's clinic practice. Single-cell sequencing data analysis was conducted to identify immune cell subtypes and illustrate cell-cell interaction status in OSCC via R package 'Seurat', 'Harmony', 'elldex' and 'CellChat'. Base on the bulk sequencing data, WGCNA analysis was employed to identify the CD8+ T cell related gene module. XGBoost was used to construct the gene prognostic model for OSCC. Validation sets and immunotherapy data sets were analysed to further evaluate the model's effectiveness and immunotherapy responsiveness predicting potential. siRNA was used to down regulate FCRL4 expression. Real-time PCR and Western blot were used to validate target gene expression. The effects of FCRL4 on OSCC cells were detected by wound healing, Trans well and clone formation assays. Communication between epithelial cells and tissue stem cells may be the potential key regulators for OSCC progression. By integrating single-cell sequencing data analysis and bulk sequencing data analysis, we constructed a novel immune-related gene prognostic model. The model can effectively predict the prognosis and immunotherapy responsiveness of OSCC patients. In addition, the effects of FCRL4 on OSCC cells were validated. We comprehensively interpreted the immune microenvironment pattern of OSCC based on the single-cell sequencing data and bulk sequencing data analysis. A robust immune feature-based prognostic model was developed for the precise treatment and prognosis evaluation of OSCC.
Collapse
Affiliation(s)
- Xingwei Zhang
- Department of Oral and Maxillofacial SurgeryThe First Affiliate Hospital of Harbin Medical UniversityHarbinChina
| | - Fan Yang
- Department of StomatologyThe First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Chen Dong
- Department of Beauty and Plastic SurgeryHeilongjiang Provincial HospitalHarbinChina
| | - Baojun Li
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Shuo Zhang
- Department of Oral and Maxillofacial SurgeryThe First Affiliate Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaohui Jiao
- Department of Oral and Maxillofacial SurgeryThe First Affiliate Hospital of Harbin Medical UniversityHarbinChina
| | - Dong Chen
- Department of Oral and Maxillofacial SurgeryThe First Affiliate Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
8
|
Del Baldo G, Carai A, Mastronuzzi A. Chimeric antigen receptor adoptive immunotherapy in central nervous system tumors: state of the art on clinical trials, challenges, and emerging strategies to addressing them. Curr Opin Oncol 2024; 36:545-553. [PMID: 38989708 PMCID: PMC11460750 DOI: 10.1097/cco.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
- Department of Experimental Medicine, Sapienza University of Rome
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
| |
Collapse
|
9
|
Avogaro A. Diabetes and obesity: the role of stress in the development of cancer. Endocrine 2024; 86:48-57. [PMID: 38831236 PMCID: PMC11445296 DOI: 10.1007/s12020-024-03886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Diabesity is a condition where an individual has both diabetes and obesity, which can lead to severe complications including cardiovascular disease, a leading cause of mortality. Recently, cancer has become a leading cause of excess hospitalizations, and both diabetes and obesity are associated with a higher risk of developing several types of cancer. In this review, we propose that chronic stress significantly increases this association. Managing diabetes and obesity is challenging as they both cause significant distress. The relationship between stress and cancer is interconnected, with anxiety and depression being common in cancer patients. Cancer diagnosis and treatment can cause lasting changes in the body's neuroendocrine system, with stress causing an excessive release of catecholamines and prostaglandins in patients undergoing cancer surgery, which promotes the spread of cancer to other parts of the body. Furthermore, stress could significantly increase the risk of cancer in patients with diabetes, obesity, or both.
Collapse
Affiliation(s)
- Angelo Avogaro
- Department of Medicine.(DIMED), Unit of Metabolic Disease, University of Padova University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
10
|
Chen H, Liu L, Zhang M, Wu S, Wu J. Correlation of LOXL2 expression in non-small cell lung cancer with immunotherapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:268-286. [PMID: 39399656 PMCID: PMC11470429 DOI: 10.62347/zieg9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Lung cancer is the most prevalent and lethal disease globally, with approximately 80% of cases being non-small cell lung cancer (NSCLC). NSCLC is primarily composed of lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). Despite chemotherapy currently being the primary treatment for NSCLC, chemotherapy resistance remains a significant challenge for patients. Recent studies have proposed immunotherapy as a promising new avenue for treating NSCLC. The association between the lysyl oxidase-like 2 (LOXL2) gene and NSCLC was explored using multiple online tools and bioinformatics analysis software based on the available datasets from TCGA. The immune microenvironment of the tumor was explored by calculating ImmuneScore, StromalScore, and TumorPurity of LUAD and LUSC and analyzing the infiltration of 22 immune cells in lung cancer tissues. LOXL2-related loads were obtained from the Xena database for LUSC and LUAD patients, and relevant prognostic genes were identified by analyzing survival curves. Functional and pathway enrichment analyses of prognostic, predictive genes were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of LOXL2 in NSCLC was detected by RT-qPCR. LOXL2 may be involved in the progression of LUAD and LUSC and is closely related to the T-lymphocyte subpopulation, T-reg cells. SEMA7A and VEGFC are identified as the genes that interact with LOXL2 and could be used as prognostic signature genes in NSCLC patients. LOXL2 may become a prognostic marker and a new target for immunotherapy.
Collapse
Affiliation(s)
- Haoyan Chen
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lele Liu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Mingjiong Zhang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jianqing Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
11
|
Ning T, Li D, Deng T, Bai Y, Chen Y, Wang Z, Hu B, Ba Y, Lu W. Anti-PD-L1 antibody TQB2450 combined with tyrosine kinase receptor inhibitor AL2846 for immunotherapy-refractory advanced hepatocellular carcinoma and esophageal squamous cell carcinoma: A prospective phase 1b cohort study. Cancer 2024; 130:3137-3146. [PMID: 38781433 DOI: 10.1002/cncr.35377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Effective systemic therapy remains limited for advanced esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma (HCC), particularly after prior failed treatment with immune checkpoint inhibitors (ICIs). Theoretically, a combination of tyrosine kinase inhibitors (TKIs) with ICIs may restore immunotherapy sensitivity. METHODS In this phase 1b study, patients received AL2846, an antiangiogenic TKI with multiple targets (c-MET, VEGFR1, c-KIT, Axl, RET, KDR, and VEGFR3), in combination with an anti-PD-L1 antibody (TQB2450) until disease progression, intolerable toxicity, death, or discontinuation for any cause. The primary end points included overall response rate (ORR) and safety, with secondary end points encompassing progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and duration of response. RESULTS Between November 2021 and September 2022, 18 patients with ESCC and 15 patients with HCC, whose ORR was 11.1% (95% confidence interval [CI], 3.1%-32.8%) and 0%, respectively, were enrolled. Adverse events (AEs) of any grade and treatment-related AEs were documented in 32 patients (97.0%) and 31 patients (93.9%), respectively. Grade 3 or higher AEs were observed in 10 patients (30.3%), with vomiting (6.1%) and infectious pneumonia (9.1%) being the most prevalent. Median PFS and OS values were 3.22 months (95% CI, 1.35-5.68 months) and 5.98 months (95% CI, 3.71-8.87 months), respectively, in patients with ESCC, and 5.55 months (95% CI, 2.66 months to not evaluable [NE]) and 16.72 months (95% CI, 4.86 months to NE), respectively, in patients with HCC. The DCRs were 66.7% (95% CI, 43.75%-83.72%) in patients with ESCC and 73.3% (95% CI, 48.05%-89.10%) in patients with HCC. CONCLUSIONS Combined TQB2450 and AL2846 therapy exhibited a favorable safety profile in immunotherapy-refractory patients with advanced ESCC and HCC.
Collapse
Affiliation(s)
- Tao Ning
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Danyang Li
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ting Deng
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuxian Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ye Chen
- Department of Oncology Surgery, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, Affiliated Hospital of Hebei University, Shijiazhuang, China
| | - Bin Hu
- Department of biostatistics and SAS programming, Chai Tai Tianqing Pharmaceutical Group Co, Ltd, Nanjing, China
| | - Yi Ba
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
12
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
13
|
Liu D, Li C, Deng Z, Luo N, Li W, Hu W, Li X, Qiu Z, Chen J, Peng J. Multi-omics analysis reveals the landscape of tumor microenvironments in left-sided and right-sided colon cancer. Front Med (Lausanne) 2024; 11:1403171. [PMID: 39267963 PMCID: PMC11391487 DOI: 10.3389/fmed.2024.1403171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background Distinct clinical features and molecular characteristics of left-sided colon cancer (LCC) and right-sided colon cancer (RCC) suggest significant variations in their tumor microenvironments (TME). These differences can impact the efficacy of immunotherapy, making it essential to investigate and understand these disparities. Methods We conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Result Deconvolution algorithms revealed significant differences in infiltrated immune cells between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells, neutrophils, natural killer (NK) cells, CD4 and CD8 T cells, and M1 macrophages (P < 0.05). Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P < 0.01). Single-cell analysis identified predominant tumor cell subclusters in RCC characterized by heightened proliferative potential and increased expression of major histocompatibility complex class I molecules. However, the main CD8 + T cell subpopulations in RCC exhibited a highly differentiated state, marked by T cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs). Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular communication analysis demonstrated a greater quantity and intensity of interactions between tumor-specific CTLs and tumor cells in RCC. Conclusion RCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and increased immunogenicity of tumor cells in the TME may be better candidates for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenxia Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenzhe Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zichao Qiu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianfei Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Han G, Gu J, Chen Z, Wu J. Role of tumor-associated macrophages in hepatocellular carcinoma: impact, mechanism, and therapy. Front Immunol 2024; 15:1429812. [PMID: 39170620 PMCID: PMC11335564 DOI: 10.3389/fimmu.2024.1429812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly frequent malignancy worldwide. The occurrence and progression of HCC is a complex process closely related to the polarization of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). The polarization of TAMs is affected by a variety of signaling pathways and surrounding cells. Evidence has shown that TAMs play a crucial role in HCC, through its interaction with other immune cells in the TME. This review summarizes the origin and phenotypic polarization of TAMs, their potential impacts on HCC, and their mechanisms and potential targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Yinqi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Wang Z, Zhang J, Zuo C, Chen H, Wang L, Xie Y, Ma H, Min S, Wang X, Lian C. Identification and validation of tryptophan-related gene signatures to predict prognosis and immunotherapy response in lung adenocarcinoma reveals a critical role for PTTG1. Front Immunol 2024; 15:1386427. [PMID: 39144144 PMCID: PMC11321965 DOI: 10.3389/fimmu.2024.1386427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Tryptophan metabolism is strongly associated with immunosuppression and may influence lung adenocarcinoma prognosis as well as tumor microenvironment alterations. Methods Sequencing datasets were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Two different clusters were identified by consensus clustering, and prognostic models were established based on differentially expressed genes (DEGs) in the two clusters. We investigated differences in mutational landscapes, enrichment pathways, immune cell infiltration, and immunotherapy between high- and low-risk scoring groups. Single-cell sequencing data from Bischoff et al. were used to identify and quantify tryptophan metabolism, and model genes were comprehensively analyzed. Finally, PTTG1 was analyzed at the pan-cancer level by the pan-TCGA cohort. Results Risk score was defined as an independent prognostic factor for lung adenocarcinoma and was effective in predicting immunotherapy response in patients with lung adenocarcinoma. PTTG1 is one of the key genes, and knockdown of PTTG1 in vitro decreases lung adenocarcinoma cell proliferation and migration and promotes apoptosis and down-regulation of tryptophan metabolism regulators in lung adenocarcinoma cells. Discussion Our study revealed the pattern and molecular features of tryptophan metabolism in lung adenocarcinoma patients, established a model of tryptophan metabolism-associated lung adenocarcinoma prognosis, and explored the roles of PTTG1 in lung adenocarcinoma progression, EMT process, and tryptophan metabolism.
Collapse
Affiliation(s)
- Ziqiang Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yiluo Xie
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Shengping Min
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| |
Collapse
|
16
|
Zhu Z, Wang H, Qian X, Xue M, Sun A, Yin Y, Tang J, Zhang J. Inhibitory Impact Of Cinobufagin In Triple-Negative Breast Cancer Metastasis: Involvements Of Macrophage Reprogramming Through Upregulated MME and Inactivated FAK/STAT3 Signaling. Clin Breast Cancer 2024; 24:e244-e257.e1. [PMID: 38378361 DOI: 10.1016/j.clbc.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Cinobufagin (CBG), a key bioactive component in cinobufacini, exhibits antitumor properties. This study explores CBG's impact on triple-negative breast cancer (TNBC) metastasis and elucidates the underpinning mechanism. METHODS Murine xenograft and orthotopic metastatic TNBC models were generated and treated with CBG. The burden of metastatic tumor in the mouse lung, the epithelial to mesenchymal transition (EMT) markers, and macrophage polarization markers within the tumors were examined. The phenotype of tumor-associated macrophages (TAMs) and mobility of TNBCs in vitro in a macrophage-TNBC cell coculture system were analyzed. Physiological targets of CBG were identified by bioinformatics analyses. RESULTS CBG treatment significantly alleviated lung tumor burden and EMT activity. It triggered an M2-to-M1 shift in TAMs, resulting in decreased TNBC cell migration, invasion, and EMT in vitro. CBG upregulated membrane metalloendopeptidase (MME) expression, suppressing FAK and STAT3 phosphorylation. Silencing of MME, either in mice or TAMs, counteracted CBG effects, reinstating M2 TAM predominance and enhancing TNBC cell metastasis. Cotreatment with Defactinib, a FAK antagonist, reversed M2 TAM polarization and TNBC cell metastasis. Notably, MME silencing in TNBC cells had no impact on CBG-suppressed malignant properties, indicating MME's indirect involvement in TNBC cell behavior through TAM mediation. CONCLUSION This study unveils CBG's ability to enhance MME expression, deactivate FAK/STAT3 signaling, and inhibit TNBC metastasis by suppressing M2-skewed macrophages.
Collapse
Affiliation(s)
- Zhaohui Zhu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Hanlu Wang
- Department of Thyroid and Breast Surgery, The Fifth People's Hospital of Huai'an, Huai'an 223300, Jiangsu, PR China
| | - Xu Qian
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Meiling Xue
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Aijun Sun
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Jinhai Tang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
17
|
Li X, Deng Y, Li Z, Zhao H. A novel angiogenesis-associated risk score predicts prognosis and characterizes the tumor microenvironment in colon cancer. Transl Cancer Res 2024; 13:2094-2107. [PMID: 38881939 PMCID: PMC11170505 DOI: 10.21037/tcr-23-2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/24/2024] [Indexed: 06/18/2024]
Abstract
Background Angiogenesis of the tumor microenvironment (TME) can promote the proliferation and metastases of colon cancer (CC). However, there is a lack of bioinformatics analysis to comprehensively clarify the molecular characteristics, immune interaction characteristics and predictive values of angiogenesis characteristics in CC patients. This study aimed to perform a comprehensive elucidation of the correlation between angiogenesis and CC for the purpose of improving the clinical management of CC. Methods Angiogenesis-associated genes (AAGs) were evaluated in the population of CC patients from the Cancer Genome Atlas database and Gene Expression Omnibus dataset. The expression, prognostic role, and immune cell infiltration of AAGs were assessed first. And then we established the AAGs score to further explore the prognosis and treatment response of angiogenesis characteristics in individual patient. Results Totally, we identified two different molecular subtypes of angiogenesis, and there was a significant difference in the background of genome, expression profiles, prognosis, and characteristics of TME between two subtypes. And the AAGs score was independently associated with over survival in CC patients, the prognostic value was significant and confirmed in the entire cohort. And we also constructed a nomogram based on the risk score and clinical parameters to maximize the predictive ability of the risk score. Additionally, the AAGs score was significantly correlated with the tumor mutation burden score, cancer stem cell score and drug sensitivity. Conclusions Our study elucidated the role of angiogenesis characteristics in CC and the AAGs score could help clinicians plan for individual management with chemotherapy agents and promote the development of immunotherapy in CC. Prospective studies need to be conducted to further confirm our findings.
Collapse
Affiliation(s)
- Xin Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Yang J, Yang W, Zhang J, Huang A, Yin S, Zhang H, Luo Z, Li X, Chen Y, Ma L, Wang C. Non-small cell lung cancer and metabolism research from 2013 to 2023: a visual analysis and bibliometric study. Front Oncol 2024; 14:1322090. [PMID: 38863621 PMCID: PMC11165026 DOI: 10.3389/fonc.2024.1322090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background As one of the most prevalent primary lung tumors, non-small cell lung cancer (NSCLC) has garnered considerable research interest due to its high metastasis rates and poor prognosis outcomes. Across different cancer types, metabolic processes are required for tumors progression and growth, thus interfering with such processes in NSCLC may therapeutically viable for limiting/halting disease progression. Therefore, comprehending how metabolic processes contribute to growth and survival mechanisms in cancers, including NSCLC, may elucidate key functions underpinning tumor cell metabolism. However, no bibliometric analyses have been published in this field, therefore we address this knowledge gap here. Methods Between 2013 and 2023 (December 28th), articles related to the NSCLC and metabolism (NSCLC-Met) field were retrieved from the Web of Science Core Collection (WoSCC). To fully dissect NSCLC-Met research directions and articles, we used the Bibliometrix package in R, VOSviewer and CiteSpace software to visually represent global trends and hotspots. Results Between 2013 and 2023, 2,246 NSCLC-Met articles were retrieved, with a continuous upward trend and rapid development observed year on year. Cancers published the most articles, with Cancer Research recording the highest average citation numbers. Zhang Li from China was the most prolific author, but the highest number of authors came from the USA. China, USA, and Italy were the top three countries with the highest number of published articles, with close cooperation identified between countries. Recent hotspots and research directions were reflected by "lung adenocarcinoma", "immunotherapy", "nivolumab", "checkpoint inhibitors", "blockade", and "pembrolizumab", while "gut microbiome", "egfr" and "dose painting" were important topics for researchers. Conclusion From our analyses, scientists can now explore new hotspots and research directions in the NSCLC-Met field. Further in-depth research in this field will undoubtedly provide more new insights on disease diagnostics, treatment, and prognostics.
Collapse
Affiliation(s)
- Jin Yang
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Wei Yang
- Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jie Zhang
- Department of Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Huang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Shiyuan Yin
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Hua Zhang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Zongrui Luo
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaojuan Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Human Resource, Yibin Sixth People’s Hospital, Yibin, China
| | - Yihua Chen
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Lijie Ma
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Chao Wang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
19
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
20
|
Ren S, Feng L, Liu H, Mao Y, Yu Z. Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer 2024; 15:1149-1163. [PMID: 38572783 DOI: 10.1111/1759-7714.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immunotherapy has revolutionized cancer treatment. Recent studies have suggested that the efficacy of immunotherapy can be further enhanced by the influence of gut microbiota. In this study, we aimed to investigate the impact of bacteria on the effectiveness of cancer immunotherapy by combining analysis of clinical samples with validation in animal models. METHODS In order to characterize the diversity and composition of microbiota and its relationship with response to immune checkpoint inhibitors (ICIs), 16S ribosomal RNA (rRNA) and GC-MS sequencing was performed on 71 stool samples from patients with advanced non-small cell lung cancer (NSCLC) prior to treatment with immune checkpoint blockade (ICB). Furthermore, fecal microbiota transplantation (FMT) was performed from different patients into mice and a subcutaneous tumor model established using the Lewis lung cancer cell line to evaluate the therapeutic effect of PD-1 on mice with varying gut microbiota. RESULTS The results demonstrated a significant association between elevated gut microbiota diversity and response to treatment with ICIs, p < 0.05. Faecalibacterium was markedly increased in the gut microbiota of responders (R), accompanied by increased short-chain fatty acid (SCFA) levels, especially butanoic acid, acetic acid and hexanoic acid, p < 0.05. Additionally, FMT from R and nonresponders (NR) could promote an anticancer effect and reduce the expression of Ki-67 cells in tumors in mice, p < 0.05. Moreover, R and NR FMT did not alter PD-L1 expression in the tumor tissues of mice, p > 0.05. The diversity of gut microbiota consistently correlated with an optimistic prognosis in NSCLC patients with immunotherapy, which could be functionally mediated by SCFAs. CONCLUSION The findings of the present study indicated that the diversity of gut microbiota and SCFAs is related to the efficacy of immunotherapy. FMT can effectively delay tumor progression, and enhance the effect of immunotherapy, thus providing evidence for improving the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Shengnan Ren
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingxin Feng
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoran Liu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuke Mao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuang Yu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
22
|
Zhang Y, Nie Y, Liu X, Wan X, Shi Y, Zhang K, Wu P, He J. Tumor metabolic crosstalk and immunotherapy. Clin Transl Oncol 2024; 26:797-807. [PMID: 37740892 DOI: 10.1007/s12094-023-03304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
Tumor cells must resist the host's immune system while maintaining growth under harsh conditions of acidity and hypoxia, which indicates that tumors are more robust than normal tissue. Immunotherapeutic agents have little effect on solid tumors, mostly because of the tumor density and the difficulty of penetrating deeply into the tissue to achieve the theoretical therapeutic effect. Various therapeutic strategies targeting the tumor microenvironment (TME) have been developed. Immunometabolic disorders play a dominant role in treatment resistance at both the TME and host levels. Understanding immunometabolic factors and their treatment potential may be a way forward for tumor immunotherapy. Here, we summarize the metabolism of substances that affect tumor progression, the crosstalk between the TME and immunosuppression, and some potential tumor-site targets. We also summarize the progress and challenges of tumor immunotherapy.
Collapse
Affiliation(s)
- Yiwen Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yueli Nie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xitian Wan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
23
|
Shan L, Zhao N, Wang F, Zhai D, Liu J, Lv X. Caffeine in Hepatocellular Carcinoma: Cellular Assays, Animal Experiments, and Epidemiological Investigation. J Inflamm Res 2024; 17:1589-1605. [PMID: 38495344 PMCID: PMC10941793 DOI: 10.2147/jir.s424384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The use of caffeine in treating various liver diseases has made substantial progress in the past decade owing to advances in science, technology, and medicine. However, whether caffeine has a preventive effect on hepatocellular carcinoma (HCC) and its mechanism are still worth further investigation. In this review, we summarize and analyze the efficacy and safety of caffeine in the prevention of HCC. We conducted a review of articles published in PubMed and Web of Science in the past 2 decades until December 6, 2023, which were searched for using the terms "Caffeine" and "Hepatocellular Carcinoma." Studies have found that coffee intake is negatively correlated with HCC risk, especially caffeinated coffee. Recent studies have found that caffeine has beneficial effects on liver health, decreasing levels of enzymes responsible for liver damaging and slowing the progression of hepatic fibrosis and cirrhosis. Caffeine also acts against liver fibrosis through adenosine receptors (ARs), which promote tissue remodeling by inducing fibrin and collagen production. Additionally, new studies have found that moderate consumption of caffeinated beverages can decrease various the levels of various collagens in patients with chronic hepatitis C. Furthermore, polyphenolic compounds in coffee can improve fat homeostasis, reduce oxidative stress, and prevent liver steatosis and fibrosis. Moreover, many in vitro studies have shown that caffeine can protect liver cells and inhibit the activation and proliferation of hepatic stellate cells. Taken together, we describe the benefits of caffeine for liver health and highlight its potential values as a drug to prevent various hepatic diseases. As a protective agent of liver inflammation, non-selective AR inhibitor caffeine can inhibit the growth of HCC cells by inhibiting adenosine and AR binding to initiate immune response, providing a basis for the future development of caffeine as an adjuvant drug against HCC.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Ning Zhao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Fengling Wang
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Dandan Zhai
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Jianjun Liu
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| |
Collapse
|
24
|
Ma Q, Yang Y, Chen S, Cheng H, Gong P, Hao J. Ribosomal protein S6 kinase 2 (RPS6KB2) is a potential immunotherapeutic target for cancer that upregulates proinflammatory cytokines. Mol Biol Rep 2024; 51:229. [PMID: 38281249 DOI: 10.1007/s11033-023-09134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Cancer is still a leading cause of mortality. Over the years, cancer therapy has undergone significant advances driven by advancements in science and technology. A promising area of drug discovery in this field involves the development of therapeutic targets for cancer treatment. The urgent need to identify new pharmacological targets arises from the impact of tumor resistance on the effectiveness of current medications. Specifically, the RPS6KB2 gene on chromosome 11 has been implicated in cell cycle regulation and exhibits higher expression levels in tumor tissue. Given this association, there is a potential for this gene to serve as a target for cancer treatment. METHODS We conducted an analysis using the GTEx, TCGA, and CCLE databases to explore the relationship between RPS6KB2 and immune infiltration, the tumor microenvironment (TME), microsatellite instability (MSI), and more. Cell proliferation was assessed using EDU detection, while cell invasion and migration were evaluated via wound healing and Transwell assays. Additionally, western blot analysis was employed to measure expression of Bax, Bcl-2, MMP2, MMP9, PCNA, and proinflammatory factors. RESULTS Through data analysis and molecular biology methods, our study carefully examined the potential role of RPS6KB2 in cancer therapy. The data revealed that RPS6KB2 is aberrantly expressed in most cancers and is associated with poor prognosis. Further analysis indicated its involvement in cancer cell apoptosis and migration, as well as its role in cancer immune processes. We validated the significance of RPS6KB2 in hepatocellular carcinoma (HCC), highlighting its capacity to upregulate proinflammatory cytokines. CONCLUSION Our research indicates that RPS6KB2 is a prognostic biomarker associated with immune infiltration in cancer that can affect antitumor immunity by increasing secretion of proinflammatory factors, providing a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yipin Yang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Shuwen Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Hao Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Gong
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
25
|
Zhou R, Pei B, Li X, Zhang X. Involvement of S100A6/S100A11 in T-Cell Immune Regulatory in HCC Revealed by Single Cell RNA-seq. Technol Cancer Res Treat 2024; 23:15330338241252610. [PMID: 38766816 PMCID: PMC11104034 DOI: 10.1177/15330338241252610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Background: Immunotherapy plays a significant role in the treatment of hepatocellular carcinoma (HCC). Members of the S100 protein family (S100s) have been widely implicated in the pathogenesis and progression of tumors. However, the exact mechanism by which S100s contribute to tumor immunity remains unclear. Methods: To explore the role of S100s in HCC immune cells, we collected and comparatively analyzed single-cell RNA sequencing (scRNA-seq) data of HCC and hepatitis B virus-associated HCC. By mapping cell classification and searching for S100s binding targets and downstream targets. Results: S100A6/S100A11 was differentially expressed in tumor T cells and involved in the nuclear factor (NF) κB pathway. Further investigation of the TCGA dataset revealed that patients with low S100A6/S100A11 expression had a better prognosis. Temporal cell trajectory analysis showed that the activation of the NF-κB pathway is at a critical stage and has an important impact on the tumor microenvironment. Conclusion: Our study revealed that S100A6/S100A11 could be involved in regulating the differentiation and cellular activity of T-cell subpopulations in HCC, and its low expression was positively correlated with prognosis. It may provide a new direction for immunotherapy of HCC and a theoretical basis for future clinical applications.
Collapse
Affiliation(s)
- Rui Zhou
- Cancer Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Bo Pei
- Cancer Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Xinzhi Li
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Xianlin Zhang
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| |
Collapse
|
26
|
Li J, Zeng H, Li L, Yang Q, He L, Dong M. Advanced Generation Therapeutics: Biomimetic Nanodelivery System for Tumor Immunotherapy. ACS NANO 2023; 17:24593-24618. [PMID: 38055350 DOI: 10.1021/acsnano.3c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Tumor immunotherapy is a safe and effective strategy for precision medicine. However, immunotherapy for most cancer cases still ends in failure, with the root causes of the immunosuppressive and extraordinary heterogeneity of the solid tumors microenvironment. The emerging biomimetic nanodelivery system provides a promising tactic to improve the immunotherapy effect while reducing the adverse reactions on nontarget cells. Herein, we summarize the relationship between tumor occurrence and tumor immune microenvironment, mechanism of tumor immune escape, immunotherapy classification (including adoptive cellular therapy, cytokines, cancer vaccines, and immune checkpoint inhibitors) and recommend target cells for immunotherapy first, and then emphatically introduce the recent advances and applications of the latest biomimetic nanodelivery systems (e.g., immune cells, erythrocytes, tumor cells, platelets, bacteria) in tumor immunotherapy. Meanwhile, we separately summarize the application of tumor vaccines. Finally, the predictable challenges and perspectives in a forward exploration of biomimetic nanodelivery systems for tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Huamin Zeng
- Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical Colloge, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Luwei Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| | - Lang He
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| |
Collapse
|
27
|
Chen H, Zhang Y, Chen X, Xu R, Zhu Y, He D, Cheng Y, Wang Z, Qing X, Cao K. Hypoxia is correlated with the tumor immune microenvironment: Potential application of immunotherapy in bladder cancer. Cancer Med 2023; 12:22333-22353. [PMID: 38063246 PMCID: PMC10757107 DOI: 10.1002/cam4.6617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2023] Open
Abstract
OBJECTIVE Hypoxia, which can considerably affect the tumor microenvironment, hinders the use of immunotherapy in bladder cancer (BLCA). Therefore, we aimed to identify reliable hypoxia-related biomarkers to guide clinical immunotherapy in BLCA. METHODS Using data downloaded from TCGA-BLCA cohort, we determined BLCA subtypes which divide 408 samples into different subtypes. Tumor immune infiltration levels of two clusters were quantified using ssGSEA, MCPcounter, EPIC, ESTIMATE, and TIMER algorithms. Next, we constructed a hypoxia score based on the expression of hypoxia-related genes. The IMvigor210 cohort and SubMap analysis were used to predict immunotherapeutic responses in patients with different hypoxia scores. Hub genes were screened using cytoscape, immunohistochemistry (IHC), and multispectral immunofluorescence were used to detect the spatial distribution of immune markers. RESULTS Patients with BLCA were categorized into cluster1 (n = 227) and Cluster2 (n = 181). Immune infiltration and expression of immune markers were higher in Cluster1. Immune infiltration was also more obvious in the high-hypoxia score group which related to a better predicted response to immunotherapy. IHC, and multispectral immunofluorescence confirmed the importance of TLR8 in immune infiltration and immune phenotype. CONCLUSIONS BLCA subtype can evaluate the infiltration of immune cells in the tumor microenvironment of different patients. Hypoxia score in this study could effectively predict immunotherapeutic responses in patients with BLCA. TLR8 may be a potential target for clinical immunotherapy.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Runshi Xu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Department of Respiration, The Second People's Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, China
| | - YaXin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Qing
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
McManus HD, Zhang D, Schwartz FR, Wu Y, Infield J, Ho E, Armstrong AJ, George DJ, Kruse D, Gupta RT, Harrison MR. Relationship Between Pretreatment Body Composition and Clinical Outcomes in Patients With Metastatic Renal Cell Carcinoma Receiving First-Line Ipilimumab Plus Nivolumab. Clin Genitourin Cancer 2023; 21:e429-e437.e2. [PMID: 37271698 DOI: 10.1016/j.clgc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Biomarkers are needed to identify patients with metastatic renal cell carcinoma (mRCC) most likely to benefit from immune checkpoint inhibitors. We examined associations between radiographically assessed body composition (BC) variables and body mass index (BMI) with clinical outcomes for patients with mRCC receiving first-line ipilimumab + nivolumab (ipi/nivo). PATIENTS AND METHODS We retrospectively reviewed all patients with mRCC treated with first-line ipi/nivo at one institution before June 1, 2021 with an analyzable baseline computed tomography (CT) scan. BC variables (skeletal muscle index [SMI], subcutaneous adipose tissue index [SATI], and visceral adipose tissue index [VATI]) were measured using baseline CT scans. Relationships between BC variables and clinical outcomes were examined using Cox proportional hazard regression models. RESULTS Ninety-nine patients were analyzed (74% male, 64% overweight/obese, 75% low SMI). Controlling for age, IMDC risk, and sex (for BMI analyses), high vs. low SMI (HR=2.433, CI: 1.397-4.238, P=.0017), high vs. low SATI (HR=1.641, CI: 1.023-2.632, P=.0398), and obese BMI (≥ 30 kg/m2) vs. normal/overweight BMI (<30 kg/m2) (HR=1.859, CI: 1.156-2.989, P=.0105) were significantly associated with progression-free survival (PFS). Median overall survival (OS) for low SMI patients was higher (42.74 months, CI: 26.84, NR) than median OS for high SMI patients (27.01 months, CI: 15.28, NR) (adjusted HR=1.728, CI: 0.909-3.285, P=.0952). No BC variables were significantly associated with OS or objective response rate. CONCLUSIONS Low SMI and low SATI were associated with significantly better PFS for patients with mRCC receiving first-line ipi/nivo. Radiographic BC variables may be useful prognostic biomarkers in this setting.
Collapse
Affiliation(s)
- Hannah D McManus
- Department of Medicine, Duke University Medical Center, Durham, NC.
| | - Dylan Zhang
- Department of Radiology, Duke University Medical Center, Durham, NC
| | - Fides R Schwartz
- Department of Radiology, Duke University Medical Center, Durham, NC
| | - Yuan Wu
- Department of Biostatics and Bioinformatics, Duke University, Durham, NC
| | - Jordan Infield
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Ethan Ho
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Andrew J Armstrong
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC; Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | - Daniel J George
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC; Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | - Danielle Kruse
- Department of Radiology, Duke University Medical Center, Durham, NC
| | - Rajan T Gupta
- Department of Radiology, Duke University Medical Center, Durham, NC; Department of Surgery, Division of Urology, Duke Cancer Institute, Durham, NC; Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC
| | - Michael R Harrison
- Department of Medicine, Duke University Medical Center, Durham, NC; Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC; Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| |
Collapse
|
29
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
30
|
Yang D, Kuang T, Zhou Y, Su Y, Shen J, Yu B, Zhao K, Ding Y. Tumor-associated endothelial cell prognostic risk model and tumor immune environment modulation in liver cancer based on single-cell and bulk RNA sequencing: Experimental verification. Int Immunopharmacol 2023; 124:110870. [PMID: 37690233 DOI: 10.1016/j.intimp.2023.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND To build a prognostic and immunotherapeutic response prediction model for liver cancer based on marker genes of tumor-associated endothelial cell (TEC). METHOD Single cell sequencing data from Gene Expression Omnibus (GEO) liver cancer patients were utilized to identify TEC subpopulations. Models were built from transcriptomic and clinical data of TCGA liver cancer patients. The GSE76427 and ICGC databases were used as independent validation sets. Time-dependent receiver operating characteristic (ROC) curves and Kaplan-Meier curves were used to verify the ability of the model to predict survival. XCELL, TIMER, QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and ssGSEA were applied to evaluate tumor immune cell infiltration. The TIDE score was used to predict the effect of immunotherapy. Immune blockade checkpoint gene, tumor mutational load and GSVA enrichment analyses were further explored. The expression levels of candidate genes were measured and validated by real-time PCR between liver cancer tissues and adjacent nontumor liver tissues. RESULTS Eighty-seven genes were identified as marker genes for TECs. IGFBP3, RHOC, S100A16, FSCN1, and CLEC3B were included in the constructed prognostic model. Time-dependent ROC curve values were higher than 0.700 in both the model and validation groups. The low risk group exhibited high immune cell infiltration and function than the higher risk group. The TIDE score indicated that the low-risk group benefited more from immunotherapy than the high-risk group. The risk score and multiple immune blockade checkpoint genes and immune-related pathways were strongly correlated. CONCLUSION Novel signatures of TEC marker genes showed a powerful ability to predict prognosis and immunotherapy response in patients with liver cancer.
Collapse
Affiliation(s)
- Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Tianrui Kuang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yu Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yang Su
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan 430060, Hubei, China.
| | - Jie Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Bin Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Kailiang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
31
|
Sun L, Zhou H, Wu C, Peng Y. Molecular markers that predict response to combined radiotherapy and immunotherapy in patients with lung adenocarcinoma: a bioinformatics analysis. Transl Cancer Res 2023; 12:2646-2659. [PMID: 37969379 PMCID: PMC10643968 DOI: 10.21037/tcr-23-968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Background Immunotherapy has had a high success rate in treating lung adenocarcinoma (LUAD) for several decades. However, many patients do not benefit from immunotherapy alone. Recent studies revealed that a combination of immunotherapy and radiotherapy (RT) stimulates a good systemic immune response to LUAD. However, clinical and experimental evidence suggest that RT may give rise to primary immunodeficiency, facilitating tumor immunity escape. Little is known about the molecular mechanisms whereby RT and stereotactic body radiotherapy (SBRT) influence tumor immunogenicity and the effectiveness of immunotherapy in patients with LUAD. Methods We investigated molecular markers that predict response to combination of immunotherapy and SBRT in the treatment of LUAD using bioinformatics. Results SBRT significantly upregulated the expression of PTPRC, LILRB2, TLR8, CCR5, and PLEK and significantly downregulated the expression of CXCL13, CD19, and LTA. Among these genes, the expression of PTPRC, TLR8, and CCR5 was associated with responsiveness to immunotherapy after SBRT. However, only TLR8 and CCR5 expression were associated with an improved prognosis. Further analysis revealed that TLR8 and CCR5 expression increased responsiveness to immunotherapy by promoting M0 macrophage and memory B cell infiltration of LUAD tissues. Conclusions In patients with LUAD, TLR8 and CCR5 expression are potential markers of a favorable response to combined immunotherapy and RT.
Collapse
Affiliation(s)
- Lu Sun
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yi Peng
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Remley VA, Linden J, Bauer TW, Dimastromatteo J. Unlocking antitumor immunity with adenosine receptor blockers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:748-767. [PMID: 38263981 PMCID: PMC10804392 DOI: 10.20517/cdr.2023.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Tumors survive by creating a tumor microenvironment (TME) that suppresses antitumor immunity. The TME suppresses the immune system by limiting antigen presentation, inhibiting lymphocyte and natural killer (NK) cell activation, and facilitating T cell exhaustion. Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies, and their blockade extends the survival of some but not all cancer patients. Extracellular adenosine triphosphate (ATP) is abundant in inflamed tumors, and its metabolite, adenosine (ADO), is a driver of immunosuppression mediated by adenosine A2A receptors (A2AR) and adenosine A2B receptors (A2BR) found on tumor-associated lymphoid and myeloid cells. This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.
Collapse
Affiliation(s)
- Victoria A. Remley
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | | - Todd W. Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
33
|
Xu Y, Liu Y, Ge Y, Li H, Zhang Y, Wang L. Drug resistance mechanism and reversal strategy in lung cancer immunotherapy. Front Pharmacol 2023; 14:1230824. [PMID: 37795038 PMCID: PMC10546211 DOI: 10.3389/fphar.2023.1230824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Among all malignant tumors, lung cancer has the highest mortality and morbidity rates. The non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the most common histological subtypes. Although there are a number of internationally recognized lung cancer therapy regimens, their therapeutic effects remain inadequate. The outlook for individuals with lung carcinoma has ameliorated partly thanks to the intensive study of the tumor microenvironment and immune checkpoint inhibitors. Numerous cancers have been effectively treated with immunotherapy, which has had positive therapeutic results. Global clinical trials have validated that PD-1/PD-L1 inhibitors are effective and safe for treating lung cancer either independently or in combination, and they are gradually being recommended as systemic treatment medications by numerous guidelines. However, the immunotherapy resistance restricts the immunotherapy efficacy due to the formation of tumor immunosuppressive microenvironment and tumor mutations, and immunotherapy is only effective for a small percentage of lung cancer patients. To summarize, while tumor immunotherapy is benefiting an increasing number of lung cancer patients, most of them still develop natural or acquired resistance during immunotherapy. Consequently, a crucial and urgent topic is understanding and tackling drug resistance triggered by immunotherapy in lung cancer treatment. This review will outline the presently recognized mechanisms of immunotherapy resistance and reversal strategies in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yi Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Muscolino P, Granata B, Omero F, De Pasquale C, Campana S, Calabrò A, D’Anna F, Drommi F, Pezzino G, Cavaliere R, Ferlazzo G, Silvestris N, Speranza D. Potential predictive role of gut microbiota to immunotherapy in HCC patients: a brief review. Front Oncol 2023; 13:1247614. [PMID: 37692859 PMCID: PMC10486017 DOI: 10.3389/fonc.2023.1247614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
The recent evolution of immunotherapy has revolutionised the treatment of hepatocellular carcinoma (HCC) and has led to new therapeutic standards. The advances in immunotherapy have been accompanied by the recognition of the role of the gut-liver axis in the progression of HCC but also of the clinical relevance of the gut microbiota, which influences host homeostasis but also cancer development and the response to treatment. Dysbiosis, by altering the tumour microenvironment, favours the activation of intracellular signalling pathways and promotes carcinogenesis. The gut microbiota, through their composition and immunomodulatory role, are thus strong predictors of the response to immune checkpoint inhibitor (ICI) treatment as well as an available target to improve ICI efficacy and reduce drug toxicities. In this review we examine the novel role of the gut microbiota as biomarkers in both the diagnosis of HCC and the clinical response to immunotherapy as well as its potential impact on clinical practice in the future.
Collapse
Affiliation(s)
- Paola Muscolino
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Barbara Granata
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Federica D’Anna
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
- Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
35
|
Hu X, Li D, Zhu H, Yu T, Xiong X, Xu X. ATP6V1F is a novel prognostic biomarker and potential immunotherapy target for hepatocellular carcinoma. BMC Med Genomics 2023; 16:188. [PMID: 37587505 PMCID: PMC10428557 DOI: 10.1186/s12920-023-01624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignancies worldwide, with late detection, ineffective treatment and poor overall survival. Immunotherapy, including immune checkpoint inhibitor (ICI) therapy, holds great potential for treatment of HCC. Although some patients respond well to ICIs, many fail to obtain a significant benefit. It is therefore of great interest to find appropriate markers to stratify patient responses to immunotherapy and to explore suitable targets for modulating the TME and immune cell infiltration. ATP6V1F encodes a constituent of vacuolar ATPase (V-ATPase). V-ATPase-mediated acidification of organelles is required for intracellular processes such as zymogen activation, receptor-mediated endocytosis, protein sorting and synaptic vesicle proton gradient generation. In this study, we confirmed for the first time that ATP6V1F is overexpressed in HCC and related to poor prognosis in these patients. We identified that overexpression of ATP6V1F is associated with infiltration of some immune cells and expression of several immune checkpoints. Furthermore, we explored the possible mechanisms of action of ATP6V1F. Finally, we conducted in vitro experiments, including wound healing, Transwell invasion, and apoptosis assays, to verify that ATP6V1F promotes development of HCC by promoting migration and invasion and inhibiting apoptosis of HCC cells. Our findings will contribute to providing precise immunotherapy to patients with HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tao Yu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Long G, Wang D, Tang J, Tang W. Development of tryptophan metabolism patterns to predict prognosis and immunotherapeutic responses in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:7593-7615. [PMID: 37540213 PMCID: PMC10457071 DOI: 10.18632/aging.204928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Tryptophan metabolism is associated with tumorigenesis and tumor immune response in various cancers. Liver is the main place where tryptophan catabolism is performed. However, the role of tryptophan metabolism in hepatocellular carcinoma (HCC) has not been well clarified. In the present study, we described the mutations of 42 tryptophan metabolism-related genes (TRPGs) in HCC cohorts. Then, HCC patients were well distributed into two subtypes based on the expression profiles of the 42 TRPGs. The clinicopathological characteristics and tumor microenvironmental landscape of the two subtypes were profiled. We also established a TRPGs scoring system and identified four hallmark TRPGs, including ACSL3, ADH1B, ALDH2, and HADHA. Univariate and multivariate Cox regression analysis revealed that the TRPG signature was an independent prognostic indicator for HCC patients. Besides, the predictive accuracy of the TRPG signature was assessed by the receiver operating characteristic curve (ROC) analysis. These results showed that the TRPG risk model had an excellent capability in predicting survival in both TCGA and GEO HCC cohorts. Moreover, we discovered that the TRPG signature was significantly related to the different immune infiltration and therapeutic drug sensitivity. The functional experiments and immunohistochemistry staining analysis also validated the results above. Our comprehensive analysis enhanced our understanding of TRPGs in HCC. A novel predictive model based on TRPGs was built, which may be considered as a beneficial tool for predicting the clinical outcomes of HCC patients.
Collapse
Affiliation(s)
- Guo Long
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Wang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jianing Tang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Weifeng Tang
- Department of Gastroenterology, The Second Hospital of Zhuzhou, Zhuzhou 412005, Hunan, China
| |
Collapse
|
37
|
Fan L, Xu G, Zeng X. M2 macrophage-derived extracellular vesicles augment immune evasion and development of colorectal cancer via a circRNA_CCDC66/microRNA-342-3p/metadherin axis. Cytotechnology 2023; 75:293-308. [PMID: 37389129 PMCID: PMC10299985 DOI: 10.1007/s10616-023-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/25/2023] [Indexed: 07/01/2023] Open
Abstract
The M2 macrophages are major components in the tumor microenvironment and are closely linked to immune suppression and tumor metastasis. This work focuses on how M2 macrophage-derived extracellular vesicles (EVs) affect colorectal cancer (CRC) progression. THP-1 monocytes were induced to differentiate to M0 or M2 macrophages, and the macrophage-derived EVs (M0-EVs and M2-EVs, respectively) were collected and identified. The M2-EVs stimulation augmented proliferation, mobility, and the in vivo tumorigenic activity of CRC cells. Circular RNA_CCDC66 (circ_CCDC66) was highly enriched in M2-EVs and could be delivered into CRC cells. The RNA pull-down and luciferase assays showed that circ_CCDC66 could competitively bind to microRNA (miR)-342-3p, therefore restoring the expression of metadherin (MTDH) mRNA, a target transcript of miR-342-3p. Suppression of circ_CCDC66 in the M2-EVs or specific knockdown of MTDH in CRC significantly blocked the growth and mobility of CRC cells. However, miR-342-3p inhibition restored the malignant phenotype of cancer cells. Moreover, the MTDH knockdown was found to increase the cytotoxicity of CD8+ T and reduce the protein level of the immune checkpoint PDL1 in CRC cells. In summary, this study reveals that the M2-EVs augment immune evasion and development of CRC by delivering circ_CCDC66 and restoring the MTDH level.
Collapse
Affiliation(s)
- Linfeng Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Economic Development Zone, Ganzhou, 341000 Jiangxi People’s Republic of China
| | - Guofeng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000 Jiangxi People’s Republic of China
| | - Xiangfu Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Economic Development Zone, Ganzhou, 341000 Jiangxi People’s Republic of China
| |
Collapse
|
38
|
Li ZX, Zhang QF, Huang JM, Huang SJ, Liang HB, Chen H, Lai ZH, Li QY, Qian JP, Wang K, Zhou J. Safety and efficacy of postoperative adjuvant therapy with atezolizumab and bevacizumab after radical resection of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102165. [PMID: 37330005 DOI: 10.1016/j.clinre.2023.102165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The effects of postoperative adjuvant therapy for high-risk recurrent hepatocellular carcinoma (HCC) in immunotherapy are still under investigation. This study evaluated the preventive effects and safety of postoperative adjuvant therapy, including atezolizumab, and bevacizumab, against the early recurrence of HCC with high-risk factors. METHODS The complete data of HCC patients who underwent radical hepatectomy with or without postoperative adjuvant therapy after two-year follow-up were analyzed retrospectively. The patients were divided into high-risk or low-risk groups based on HCC pathological characteristics. High-risk recurrence patients were divided into postoperative adjuvant treatment and control groups. Due to the difference in approaches in postoperative adjuvant therapies, they were divided into transarterial chemoembolization (TACE), atezolizumab, and bevacizumab (T + A), and combination (TACE+T + A) groups. The two-year recurrence-free survival rate (RFS), overall survival rate (OS), and associated factors were analyzed. RESULTS The RFS in the high-risk group was significantly lower than that in the low-risk group (P = 0.0029), and the two-year RFS in the postoperative adjuvant treatment group was significantly higher than that in the control group (P = 0.040). No severe complications were observed in those who received atezolizumab and bevacizumab or other therapy. CONCLUSION Postoperative adjuvant therapy was related to two-year RFS. TACE, T + A, and the combination of these two approaches were comparable in reducing the early recurrence of HCC without severe complications.
Collapse
Affiliation(s)
- Zhi-Xi Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Qi-Fan Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Jia-Ming Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Shao-Jian Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Han-Biao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Hao Chen
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Zhan-Hong Lai
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Qing-Yan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Davern M, Donlon NE, O'Connell F, Gaughan C, O'Donovan C, McGrath J, Sheppard AD, Hayes C, King R, Temperley H, MacLean M, Bulter C, Bhardwaj A, Moore J, Donohoe C, Ravi N, Conroy MJ, Reynolds JV, Lysaght J. Nutrient deprivation and hypoxia alter T cell immune checkpoint expression: potential impact for immunotherapy. J Cancer Res Clin Oncol 2023; 149:5377-5395. [PMID: 36445478 PMCID: PMC10349772 DOI: 10.1007/s00432-022-04440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022]
Abstract
AIM Use of immune checkpoint blockade to enhance T cell-mediated immunity within the hostile tumour microenvironment (TME) is an attractive approach in oesophageal adenocarcinoma (OAC). This study explored the effects of the hostile TME, including nutrient deprivation and hypoxia, on immune checkpoint (IC) expression and T cell phenotypes, and the potential use of nivolumab to enhance T cell function under such conditions. METHODS AND RESULTS ICs were upregulated on stromal immune cells within the tumour including PD-L2, CTLA-4 and TIGIT. OAC patient-derived PBMCs co-cultured with OE33 OAC cells upregulated LAG-3 and downregulated the co-stimulatory marker CD27 on T cells, highlighting the direct immunosuppressive effects of tumour cells on T cells. Hypoxia and nutrient deprivation altered the secretome of OAC patient-derived PBMCs, which induced upregulation of PD-L1 and PD-L2 on OE33 OAC cells thus enhancing an immune-resistant phenotype. Importantly, culturing OAC patient-derived PBMCs under dual hypoxia and glucose deprivation, reflective of the conditions within the hostile TME, upregulated an array of ICs on the surface of T cells including PD-1, CTLA-4, A2aR, PD-L1 and PD-L2 and decreased expression of IFN-γ by T cells. Addition of nivolumab under these hostile conditions decreased the production of pro-tumorigenic cytokine IL-10. CONCLUSION Collectively, these findings highlight the immunosuppressive crosstalk between tumour cells and T cells within the OAC TME. The ability of nivolumab to suppress pro-tumorigenic T cell phenotypes within the hostile TME supports a rationale for the use of immune checkpoint blockade to promote anti-tumour immunity in OAC. Study schematic: (A) IC expression profiles were assessed on CD45+ cells in peripheral whole blood and infiltrating tumour tissue from OAC patients in the treatment-naïve setting. (B) PBMCs were isolated from OAC patients and expanded ex vivo for 5 days using anti-CD3/28 + IL-2 T cell activation protocol and then co-cultured for 48 h with OE33 cells. T cell phenotypes were then assessed by flow cytometry. (C) PBMCs were isolated from OAC patients and expanded ex vivo for 5 days using anti-CD3/28 + IL-2 T cell activation protocol and then further cultured under conditions of nutrient deprivation or hypoxia for 48 h and T cell phenotypes were then assessed by flow cytometry. KEY FINDINGS (A) TIGIT, CTLA-4 and PD-L2 were upregulated on CD45+ immune cells and CTLA-4 expression on CD45+ cells correlated with a subsequent decreased response to neoadjuvant regimen. (B) Following a 48 h co-culture with OE33 cells, T cells upregulated LAG-3 and decreased CD27 co-stimulatory marker. (C) Nutrient deprivation and hypoxia upregulated a range of ICs on T cells and decreased IFN-γ production by T cells. Nivolumab decreased IL-10 production by T cells under nutrient deprivation-hypoxic conditions.
Collapse
Affiliation(s)
- Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Caoimhe Gaughan
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland
| | - Cillian O'Donovan
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland
| | - Jason McGrath
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland
| | - Conall Hayes
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Hugo Temperley
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Michael MacLean
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Christine Bulter
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Jenny Moore
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Claire Donohoe
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Trinity College, St. James's Hospital Campus, Dublin 8, Ireland.
| |
Collapse
|
40
|
Yang Y, Chen D, Zhao B, Ren L, Huang R, Feng B, Chen H. The predictive value of PD-L1 expression in patients with advanced hepatocellular carcinoma treated with PD-1/PD-L1 inhibitors: A systematic review and meta-analysis. Cancer Med 2023; 12:9282-9292. [PMID: 36965092 PMCID: PMC10166972 DOI: 10.1002/cam4.5676] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND AND AIM Programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors have transformed the treatment landscape of advanced hepatocellular carcinoma (HCC), but consistent responses are not observed in all patients, and prognostic biomarkers to guide treatment decisions are lacking. We aimed to evaluate the predictive value of PD-L1 expression in advanced HCC patients treated with PD-1/PD-L1 inhibitors. METHODS A comprehensive search of PubMed, Embase, Web of Science, and the Cochrane Library was conducted. Studies comparing the objective response rate (ORR) and/or disease control rate (DCR) based on the tumor PD-L1 status of HCC were included. RESULTS Eleven studies with 1,330 HCC patients treated with PD-1/PD-L1 inhibitors were included. Pooled odds ratio (OR) analysis demonstrated a significantly improved ORR in PD-L1-positive patients compared with PD-L1-negative patients (OR, 1.86, 95% CI, 1.35-2.55). Similar results were observed in the anti-PD-1 treatment (p < 0.001) and anti-PD-1/PD-L1 monotherapy (p < 0.001) subgroups. The pooled ORRs in the PD-L1-positive and PD-L1-negative groups were 26% (95% CI, 20%-32%) and 18% (95% CI, 13%-22%), respectively. For DCR, the pooled OR analysis showed no significant difference between PD-L1-positive patients and PD-L1-negative patients (66% [95% CI, 55%-76%] vs. 69% [95% CI, 62%-76%]; OR, 0.92, 95% CI, 0.59-1.44). The results were consistent across the drug target and combination treatment subgroups. CONCLUSION Positive PD-L1 expression is associated with a better ORR in advanced HCC patients treated with anti-PD-1/PD-L1-based therapies. This feature can help to identify HCC patients who will benefit most from PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Yao Yang
- Peking University People's Hospital, Peking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseaseBeijingChina
| | - Dongbo Chen
- Peking University People's Hospital, Peking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseaseBeijingChina
| | - Bigeng Zhao
- Laboratory of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
| | - Rui Huang
- Peking University People's Hospital, Peking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseaseBeijingChina
| | - Bo Feng
- Peking University People's Hospital, Peking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseaseBeijingChina
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseaseBeijingChina
| |
Collapse
|
41
|
Liu P, Kong L, Liu Y, Li G, Xie J, Lu X. A key driver to promote HCC: Cellular crosstalk in tumor microenvironment. Front Oncol 2023; 13:1135122. [PMID: 37007125 PMCID: PMC10050394 DOI: 10.3389/fonc.2023.1135122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.
Collapse
Affiliation(s)
- Pengyue Liu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Lingyu Kong
- Department of Traditional Chinese Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- Department of Clinical Skills Training Center, Tangshan Gongren Hospital, Tangshan, China
| | - Gang Li
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jianjia Xie
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Xin Lu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
42
|
Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett 2023; 555:216038. [PMID: 36529238 DOI: 10.1016/j.canlet.2022.216038] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The application of immune checkpoint inhibitors (ICIs) has markedly enhanced the treatment of hepatocellular carcinoma (HCC), and HCC patients who respond to ICIs have shown prolonged survival. However, only a subset of HCC patients benefit from ICIs, and those who initially respond to ICIs may develop resistance. ICI resistance is likely related to various factors, including the immunosuppressive tumor microenvironment (TME), the absence of antigen expression and impaired antigen presentation, tumor heterogeneity, and gut microbiota. Therefore, exploring the possible mechanisms of ICI resistance is crucial to improve the clinical benefit of ICIs further. Various combination therapies for HCC immunotherapy have prevented and reversed ICI resistance to a certain extent. In addition, many new combination therapies that can overcome resistance are being explored. This review seeks to characterize the complex TME in HCC, explore the possible mechanisms of immune resistance to ICIs in different resistance categories, and review the combination therapies currently being applied and those under investigation for immunotherapy.
Collapse
|
43
|
Pajai S, John JE, Tripathi SC. Targeting immune-onco-metabolism for precision cancer therapy. Front Oncol 2023; 13:1124715. [PMID: 36816957 PMCID: PMC9932929 DOI: 10.3389/fonc.2023.1124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Immune cells play a key role in host defence against infection and cancer. Unlike infection, cancer is a multidimensional disease where cancer cells require continuous activation of certain pathways to sustain their growth and survival. The tumour milieu plays an important role in defining the metabolic reprogramming to support this growth and evasion from the immune system. Cancer and stromal cells modulate each other's metabolism during cancer progression or regression. The mechanism related to change in the metabolism and its role in the crosstalk between tumour and immune cells is still an area of immense importance. Current treatment modalities can be immensely complemented and benefited by targeting the immuno-oncology metabolism, that can improve patient prognosis. This emerging aspect of immune-oncology metabolism is reviewed here, discussing therapeutic possibilities within various metabolic pathways and their effect on immune and cancer cell metabolism.
Collapse
|
44
|
Gu T, Jiang A, Zhou C, Lin A, Cheng Q, Liu Z, Zhang J, Luo P. Adverse reactions associated with immune checkpoint inhibitors and bevacizumab: A pharmacovigilance analysis. Int J Cancer 2023; 152:480-495. [PMID: 36274626 DOI: 10.1002/ijc.34332] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023]
Abstract
Immune checkpoint inhibitors (ICIs) combined with the anti-angiogenesis drug bevacizumab is one of the future directions of immunotherapy. However, the potential adverse drug reactions (ADRs) caused by combination therapy remain unclear. Current research on ADRs of combination therapy in cancer patients is extremely limited. Our study aims to help determine the safety of combination therapy. We downloaded the ADR reports on combination therapy, from the first quarter of 2012 to the fourth quarter of 2021, from the FDA adverse event reporting system (FAERS) database and conducted a large-scale retrospective study. The ADR signals were monitored by reporting odds ratio (ROR) and analyzing the risk of different ADRs in patients with Pan-cancer. A total of 2094 cases were selected, after excluding duplicate data and the use of chemotherapy drugs. We evaluated the risk of ADR in Pan-cancer patients. Combination therapy was an independent risk factor for adverse drug reactions associated with interstitial lung disease (OR: 8.62; 95% CI: 6.14-12.10, P < .0001), hypertension (OR: 1.35; 95% CI: 1.11-1.65, P < .01) and gastrointestinal bleeding (OR: 3.16; 95% CI: 2.21-4.51, P < .0001). A subgroup analysis revealed that the risk of endocrine system-related ADRs was elevated in patients receiving different combination therapies or with certain tumor types. We retrospectively studied the ADR of combination therapy in Pan-cancer patients and analyzed the distribution characteristics of ADR from the perspectives of treatment strategy and cancer types to provide recommendations for the individualized management of patients receiving combination therapy.
Collapse
Affiliation(s)
- Tianqi Gu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Zhang K, Li YJ, Peng LJ, Gao HF, Liu LM, Chen H. M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62. Biol Direct 2023; 18:1. [PMID: 36631876 PMCID: PMC9832623 DOI: 10.1186/s13062-023-00356-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal malignancy that requires effective novel therapies. M2 macrophages are abundant in the PC microenvironment and promote cancer progression. Exosomes are emerging mediators of the crosstalk between cancer cells and the microenvironment. This study was conducted to explore the role of M2 macrophage-derived exosomes in PC. METHODS Exosomes derived from M2 macrophages were extracted. miR-193b-3p and TRIM62 were overexpressed or silenced to examine their function in PC. Luminescence assays were used to investigate the interaction between miR-193b-3p and TRIM62. Cell proliferation was examined by EdU staining. Would healing and transwell assays were applied to evaluate cell migration and invasion. Co-immunoprecipitation was used to assess the interaction between TRIM62 and c-Myc. Gene and protein expressions were analyzed by quantitative RT-PCR and immunoblotting, respectively. RESULTS M2 macrophage-derived exosomal miR-193b-3p promoted the proliferation, migration, invasion, and glutamine uptake of SW1990 cells. Mechanism study revealed that TRIM62 is a target of miR-193b-3p. TRIM62 inhibited the proliferation, migration, invasion, and glutamine uptake of SW1990 cells by promoting c-Myc ubiquitination. Our data also suggested that TRIM62 expression negatively correlated with miR-193b-3p and c-Myc expression. High-expression of miR-193b-3p and c-Myc predicts poor prognosis, whereas low-expression of TRIM62 predicts poor prognosis in patients with PC. CONCLUSION M2 macrophage-derived exosomal miR-193b-3p enhances the proliferation, migration, invasion, and glutamine uptake of PC cells by targeting TRIM62, resulting in the decrease of c-Myc ubiquitination. This study not only reveals the mechanism underlying the crosstalk between M2 macrophages and PC cells but also suggests a promising therapeutic target for PC.
Collapse
Affiliation(s)
- Ke Zhang
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yu-Jie Li
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lin-Jia Peng
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hui-Feng Gao
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lu-Ming Liu
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No.270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Zhou S, Yang H. Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Front Immunol 2023; 14:1129465. [PMID: 37090727 PMCID: PMC10115980 DOI: 10.3389/fimmu.2023.1129465] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The high primary resistance incidence and unavoidable secondary resistance are the major clinical obstacle to lasting long-term benefits in Non-small-cell lung cancer (NSCLC) patients treated with immunotherapy. The mechanisms of immunotherapy resistance in NSCLC are complex, mainly involving tumor cells and tumor microenvironment (TME) infiltrating immune cells, including TAMs, B cells, NK cells, and T cells. The selection of clinical strategies for NSCLC progression after immunotherapy resistance should depend on the progressive mode. The progression pattern of NSCLC patients after immunotherapy resistance can be divided into oligo-progression and systemic/multiple progression, which should be considered for further treatment selection. In the future, it needs to explore how to optimize the combined therapy and explore strategies to reprogram infiltrating immune cells under various genetic backgrounds of tumor cells and timely reshape TME during antitumor treatments.
Collapse
Affiliation(s)
- Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Radiation Oncology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- *Correspondence: Haihua Yang,
| |
Collapse
|
47
|
Samami E, Aleebrahim-Dehkordi E, Mohebalizadeh M, Yaribash S, Saghazadeh A, Rezaei N. Inosine, gut microbiota, and cancer immunometabolism. Am J Physiol Endocrinol Metab 2023; 324:E1-E8. [PMID: 36416582 DOI: 10.1152/ajpendo.00207.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article briefly reviews cancer immunity and the role of gut microbiota in carcinogenesis, followed by an understanding of mechanisms by which inosine is involved in cancer immunometabolism. The immune system plays a paradoxical role in cancer treatment. Antitumor immunity depends on the T-cell priming against tumor antigens, whereas inflammatory mediators trigger the protumor signaling in the tumor microenvironment. Studies link the microbiome with metabolism and immunity-two main factors implicated in carcinogenesis. Gut microbiota has been shown to affect both antitumor immunity and protumor immune signaling. There is mounting evidence that the human microbiome can play a role in the immunotherapeutic effects, both response and resistance. Inosine-5'-monophosphate dehydrogenase (IMPDH) is a highly conservative enzyme widely expressed in mammals. Cell signaling pathways use molecular inosine, a crucial secondary metabolite in purine metabolism and a molecular messenger. Recent research has identified inosine as a critical regulator of immune checkpoint inhibition (ICI) therapeutic response in various tumor types. Some bacterial species were found to produce inosine or its metabolite hypoxanthine and induce T-helper 1 differentiation and effector functions via the inosine-A2AR-cAMP-PKA pathway upon ICI therapy. Also, inosine acts as a substitute carbon source for T-cell metabolism in glucose-restricted environments, i.e., the tumor microenvironment, assisting T-cell proliferation and differentiation while enhancing sensitivity to ICI, reinforcing the notion that inosine metabolism might contribute to antitumor immunity. Also, inosine is a potent agonist of the adenosine receptor, A2AR, and A2AR signaling can affect T-cell responses and antitumor immunity, making the inosine-A2AR pathway blockage a candidate for cancer treatment. Further research is required to investigate inosine as a cancer immunometabolism therapy.
Collapse
Affiliation(s)
- Elham Samami
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Aleebrahim-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Shahrekord, Iran
| | - Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Shakila Yaribash
- International Campus, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Long J, Cong F, Wei Y, Liu J, Tang W. Increased Kremen2 predicts worse prognosis in colon cancer. Pathol Oncol Res 2023; 29:1611082. [PMID: 37123533 PMCID: PMC10130194 DOI: 10.3389/pore.2023.1611082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
Background: Colon cancer (CC) is the fifth most prevalent cancer around the globe and poses a major risk to human health. Even though Kremen2 serves as a prognostic indicator in individuals with malignant tumours, its role in evaluating the prognosis of individuals with colon cancer has not been confirmed. Methods: Here, we examined the protein expression of Kremen2 in CC tissues and paired adjacent normal tissues by immunohistochemistry (IHC), then analyzed the clinical and RNA-seq data presented in The Cancer Genome Atlas (TCGA) database to confirm the relationship between Kremen2 levels and CC. In addition, the associations between Kremen2 mRNA expression and infiltrating immune cells were examined. Results: The study showed that the mRNA expression and protein level of Kremen2 were increased in CC tissues compared with adjacent normal tissues. According to Kaplan-Meier analysis, high Kremen2 expression in CC was linked to poor overall survival and progression-free survival. Clinical correlation analysis highlighted that a high level of Kremen2 expression was strongly linked with tumour progression, particularly lymph node metastasis. Cox regression analysis highlighted that Kremen2 was an independent prognostic indicator for CC. Bioinformatic studies highlighted that Kremen2 might be associated with the immune status in CC. Conclusion: Increased Kremen2 could serve as a potential prognostic CC biomarker.
Collapse
Affiliation(s)
- Junxian Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Breast and Thyroid Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyun Cong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Gastroenteroanal Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yousheng Wei
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi, China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi, China
- *Correspondence: Weizhong Tang,
| |
Collapse
|
49
|
Vanmeerbeek I, Govaerts J, Laureano RS, Sprooten J, Naulaerts S, Borras DM, Laoui D, Mazzone M, Van Ginderachter JA, Garg AD. The Interface of Tumour-Associated Macrophages with Dying Cancer Cells in Immuno-Oncology. Cells 2022; 11:3890. [PMID: 36497148 PMCID: PMC9741298 DOI: 10.3390/cells11233890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tumour-associated macrophages (TAMs) are essential players in the tumour microenvironment (TME) and modulate various pro-tumorigenic functions such as immunosuppression, angiogenesis, cancer cell proliferation, invasion and metastasis, along with resistance to anti-cancer therapies. TAMs also mediate important anti-tumour functions and can clear dying cancer cells via efferocytosis. Thus, not surprisingly, TAMs exhibit heterogeneous activities and functional plasticity depending on the type and context of cancer cell death that they are faced with. This ultimately governs both the pro-tumorigenic and anti-tumorigenic activity of TAMs, making the interface between TAMs and dying cancer cells very important for modulating cancer growth and the efficacy of chemo-radiotherapy or immunotherapy. In this review, we discuss the interface of TAMs with cancer cell death from the perspectives of cell death pathways, TME-driven variations, TAM heterogeneity and cell-death-inducing anti-cancer therapies. We believe that a better understanding of how dying cancer cells influence TAMs can lead to improved combinatorial anti-cancer therapies, especially in combination with TAM-targeting immunotherapies.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Damya Laoui
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, 3000 Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|