1
|
Hartung F, Krutmann J, Haarmann-Stemmann T. Evidence that the aryl hydrocarbon receptor orchestrates oxinflammatory responses and contributes to airborne particulate matter-induced skin aging. Free Radic Biol Med 2025; 233:264-278. [PMID: 40157462 DOI: 10.1016/j.freeradbiomed.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Exposure to airborne particulate matter (PM) is a substantial threat to public health, contributing to respiratory, cardiovascular, and skin-related diseases. Population-based studies strongly indicate that chronic exposure to airborne PM, especially combustion-derived PM2.5, accelerates skin aging and thus reduces the quality of life of those affected. There is increasing evidence that especially PM-bound polycyclic aromatic hydrocarbons (PAHs) critically contribute to the clinical manifestation of skin aging, i.e. the development of lentigines/pigment spots and coarse wrinkles. PAHs harm human skin primarily by activating the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor amongst others involved in orchestrating xenobiotic metabolism and immune responses. In this review, we summarize the available population-based data linking particulate air pollution exposure to skin aging. We explain in detail how PAH-rich PM induces the formation of oxidative stress, the release of pro-inflammatory mediators, the expression extracellular matrix degrading metalloproteases, and melanin synthesis, in an AHR-dependent manner, and how these events may culminate in the development of pigment spots and wrinkles, respectively. We also review the current data on the interaction of airborne PM with another factor of the skin aging exposome that exerts its deleterious effects in part through AHR-dependent signaling pathways, namely solar ultraviolet radiation.
Collapse
Affiliation(s)
- Frederick Hartung
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Galsuren J, Dambadarjaa D, Tighe RM, Gray GC, Zhang J. Particulate Matter Exposure and Viral Infections: Relevance to Highly Polluted Settings such as Ulaanbaatar, Mongolia. Curr Environ Health Rep 2025; 12:22. [PMID: 40268823 DOI: 10.1007/s40572-025-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
PURPOSE OF REVIEW Particulate matter (PM), a ubiquitous significant component of the ambient air pollution mixture, significantly contributes to increased global risk for chronic cardiopulmonary diseases, acute hospitalizations, and deaths. One of the causes of this increased risk is because PM exposure increases the incidence and severity of respiratory infections. The respiratory system is particularly vulnerable to air pollution and its impact on infection as it is a key site for exposure both to inhaled pollutants and infectious microbes or viruses. This review examines the current understanding of how PM affects antiviral host defense responses and possible underlying mechanisms. RECENT FINDINGS While numerous studies have associated adverse health outcomes with combined or sequential exposure to inhaled pollutants and viruses, defining causal relationships and mechanisms remains limited. Particularly limited, are contemporary data focuses on low- and middle-income countries, including heavily polluted regions such as Ulaanbaatar, Mongolia. This manuscript focuses on how (1) PM, serving as a carrier for viruses, enhances the transmission of viruses; (2) PM impairs immune defense to viruses; and (3) PM impacts epithelial cell functions to exacerbate viral infections. Given the significant public health hazards on PM, particularly in heavily polluted regions such as Southeast Asia, Middle East and Africa, it is critical to define specific mechanisms of PM on respiratory infection and how their impact may differ in these highly polluted regions. Ultimately, this could devise future public health measures and interventions to limit this substantial public health risk.
Collapse
Affiliation(s)
- Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Davaalkham Dambadarjaa
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Robert M Tighe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC, 27710, USA
| | - Gregory C Gray
- Department of Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Junfeng Zhang
- Duke Nicholas School of the Environment, Durham, NC, 27705, USA.
| |
Collapse
|
3
|
Han HS, Seok J, Park KY. Air Pollution and Skin Diseases. Ann Dermatol 2025; 37:53-67. [PMID: 40165563 PMCID: PMC11965873 DOI: 10.5021/ad.24.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Air pollution is a widespread environmental issue, with substantial global implications for human health. Recent epidemiological studies have shown that exposure to air pollution exacerbates various inflammatory skin conditions, including atopic dermatitis, psoriasis, or acne. Furthermore, air pollutants are associated with accelerated skin aging, hair loss, and skin cancer. The aim of this review is to elucidate the current understanding of the impact of air pollution on skin health, emphasizing the underlying mechanisms involved and existing therapeutic and cosmetic interventions available to prevent or mitigate these effects. A pivotal factor in the harmful effects of air pollution is the formation of reactive oxygen species and the resulting oxidative stress. The aryl hydrocarbon receptor signaling pathway also substantially contributes to mediating the effects of air pollutants on various skin conditions. Moreover, air pollutants can disrupt the skin barrier function and trigger inflammation. Consequently, antioxidant and anti-inflammatory therapies, along with treatments designed to restore the skin barrier function, have the potential to mitigate the adverse effects of air pollutants on skin health.
Collapse
Affiliation(s)
- Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
- Institute of Clinical Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Siquier-Dameto G, Iguaran-Pérez A, Gimeno-Beltrán J, Bellia G, Giori AM, Boadas-Vaello P, Verdú E. Subcutaneous Injection and Brush Application of Ovalbumin-Aluminum Salt Solution Induces Dermatitis-like Changes in Mice. J Clin Med 2025; 14:1701. [PMID: 40095628 PMCID: PMC11900249 DOI: 10.3390/jcm14051701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Intraperitoneal sensitization combined with topical and/or epicutaneous treatment using an ovalbumin (OVA)-aluminum salt solution (OVA-AL) represents a model for inducing atopic dermatitis (AD). However, the combination of sensitization with subcutaneous treatment and cutaneous application of OVA-AL via a brush has not been explored as a method for inducing AD. Methods: Adult mice were subcutaneously injected with OVA-AL following sensitization on days 0, 7, and 14 and were treated with OVA-AL via brush application to the dorsal skin fortnightly until days 35 and 49. Concomitant alloknesis and skin changes were assessed. Mice of the Balb/c and ICR-CD1 strains were treated with OVA-AL until day 35, with only the ICR-CD1 strain continuing treatment until day 49. Control animals received saline. At 35 and 49 days, dorsal skin was harvested and processed for histological analysis. Results: Mice treated with OVA-AL developed dry skin, with no scratching or alloknesis. Histological examination of dorsal skin revealed an increase in mast cells and collagen deposition. Conclusions: Dermatitis-like symptoms were observed in mice treated with OVA-AL using this administration method.
Collapse
Affiliation(s)
- Gabriel Siquier-Dameto
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
- Dameto Clinics International, 07310 Campanet, Spain
| | - Ainhoa Iguaran-Pérez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
| | | | | | | | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
| |
Collapse
|
5
|
Zhao D, Wang Y, Wang C, Xue Y, Lv H, Xu W, Han D, Sun Y, Li Q. Aberrant expression of messenger and small noncoding RNAomes in aged skin of rats. Mech Ageing Dev 2025; 223:112022. [PMID: 39710345 DOI: 10.1016/j.mad.2024.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The exact mechanisms and key functional molecules involved in skin ageing remain largely unknown. Studies linking the expression of messenger RNAs (mRNAs) and small noncoding RNAs (sncRNAs) to skin ageing are limited. In this study, we performed RNA sequencing to assess the effects of ageing on the expression of mRNAs and sncRNAs in rat skin. Our results revealed that 241 mRNAs, 109 microRNAs (miRNAs), 20 piwi-interacting RNAs (piRNAs), 45 small nucleolar RNAs (snoRNAs), and 7 small nuclear RNAs (snRNAs) were significantly differentially expressed in the skin of aged rats compared to their younger counterparts. Histological validation using RT-qPCR further verified the significant differential expression of 13 mRNAs, 7 miRNAs, 2 piRNAs, 15 snoRNAs, and 1 snRNA. Additionally, several sncRNAs showed differential expression across various tissues, suggesting that they may have broad correlations with ageing. After establishing cellular senescence in skin fibroblasts, we identified 4 mRNAs, 4 miRNAs, and 10 snoRNAs that may mediate skin ageing by modulating fibroblast senescence. Notably, overexpression or knockdown of some differentially expressed RNAs in fibroblasts influenced cellular senescence, indicating that these RNAs could play an important role in the skin ageing process. These findings highlight their potential significance for future treatments of age-related skin disorders.
Collapse
Affiliation(s)
- Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chuandong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Yaxin Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Hao Lv
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China; Department of Pharmacology, Institute of ageing Medicine, Binzhou Medical University, Shandong, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai, China.
| |
Collapse
|
6
|
Zeldin J, Ratley G, Shobnam N, Myles IA. The clinical, mechanistic, and social impacts of air pollution on atopic dermatitis. J Allergy Clin Immunol 2024; 154:861-873. [PMID: 39151477 PMCID: PMC11456380 DOI: 10.1016/j.jaci.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Atopic dermatitis (AD) is a complex disease characterized by dry, pruritic skin and significant atopic and psychological sequelae. Although AD has always been viewed as multifactorial, early research was dominated by overlapping genetic determinist views of either innate barrier defects leading to inflammation or innate inflammation eroding skin barrier function. Since 1970, however, the incidence of AD in the United States has increased at a pace that far exceeds genetic drift, thus suggesting a modern, environmental etiology. Another implicated factor is Staphylococcus aureus; however, a highly contagious microorganism is unlikely to be the primary etiology of a noncommunicable disease. Recently, the roles of the skin and gut microbiomes have received greater attention as potentially targetable drivers of AD. Here too, however, dysbiosis on a population scale would require induction by an environmental factor. In this review, we describe the evidence supporting the environmental hypothesis of AD etiology and detail the molecular mechanisms of each of the AD-relevant toxins. We also outline how a pollution-focused paradigm demands earnest engagement with environmental injustice if the field is to meaningfully address racial and geographic disparities. Identifying specific toxins and their mechanisms can also inform in-home and national mitigation strategies.
Collapse
Affiliation(s)
- Jordan Zeldin
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Grace Ratley
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Nadia Shobnam
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
7
|
Lee JS, Lee Y, Jang S, Oh JH, Lee DH, Cho S. Pregnane X receptor reduces particulate matter-induced type 17 inflammation in atopic dermatitis. Front Immunol 2024; 15:1415350. [PMID: 39399487 PMCID: PMC11467722 DOI: 10.3389/fimmu.2024.1415350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024] Open
Abstract
Background Epidemiological evidence suggests that particulate matter (PM) exposure can trigger or worsen atopic dermatitis (AD); however, the underlying mechanisms remain unclear. Recently, pregnane X receptor (PXR), a xenobiotic receptor, was reported to be related to skin inflammation in AD. Objectives This study aimed to explore the effects of PM on AD and investigate the role of PXR in PM-exposed AD. Methods In vivo and in vitro AD-like models were employed, using BALB/c mice, immortalized human keratinocytes (HaCaT), and mouse CD4 + T cells. Results Topical application of PM significantly increased dermatitis score and skin thickness in AD-like mice. PM treatment increased the mRNA and protein levels of type 17 inflammatory mediators, including interleukin (IL)-17A, IL-23A, IL-1β, and IL-6, in AD-like mice and human keratinocytes. PM also activated PXR signaling, and PXR knockdown exacerbated PM-induced type 17 inflammation in human keratinocytes and mouse CD4 + T cells. In contrast, PXR activation by rifampicin (a human PXR agonist) reduced PM-induced type 17 inflammation. Mechanistically, PXR activation led to a pronounced inhibition of the nuclear factor kappa B (NF-κB) pathway. Conclusion In summary, PM exposure induces type 17 inflammation and PXR activation in AD. PXR activation reduces PM-induced type 17 inflammation by suppressing the NF-κB signaling pathway. Thus, PXR represents a promising therapeutic target for controlling the PM-induced AD aggravation.
Collapse
Affiliation(s)
- Ji Su Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Sunhyae Jang
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Soyun Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul Metropolitan Government – Seoul National University (SMG-SNU) Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Paik K, Na JI, Huh CH, Shin JW. Particulate Matter and Its Molecular Effects on Skin: Implications for Various Skin Diseases. Int J Mol Sci 2024; 25:9888. [PMID: 39337376 PMCID: PMC11432173 DOI: 10.3390/ijms25189888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Particulate matter (PM) is a harmful air pollutant composed of chemicals and metals which affects human health by penetrating both the respiratory system and skin, causing oxidative stress and inflammation. This review investigates the association between PM and skin disease, focusing on the underlying molecular mechanisms and specific disease pathways involved. Studies have shown that PM exposure is positively associated with skin diseases such as atopic dermatitis, psoriasis, acne, and skin aging. PM-induced oxidative stress damages lipids, proteins, and DNA, impairing cellular functions and triggering inflammatory responses through pathways like aryl hydrocarbon receptor (AhR), NF-κB, and MAPK. This leads to increased production of inflammatory cytokines and exacerbates skin conditions. PM exposure exacerbates AD by triggering inflammation and barrier disruption. It disrupts keratinocyte differentiation and increases pro-inflammatory cytokines in psoriasis. In acne, it increases sebum production and inflammatory biomarkers. It accelerates skin aging by degrading ECM proteins and increasing MMP-1 and COX2. In conclusion, PM compromises skin health by penetrating skin barriers, inducing oxidative stress and inflammation through mechanisms like ROS generation and activation of key pathways, leading to cellular damage, apoptosis, and autophagy. This highlights the need for protective measures and targeted treatments to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Kyungho Paik
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Lu C, Jiang Y, Lan M, Wang L, Zhang W, Wang F. Children's food allergy: Effects of environmental influences and antibiotic use across critical developmental windows. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134506. [PMID: 38714059 DOI: 10.1016/j.jhazmat.2024.134506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Increasing studies linked outdoor air pollution (OAP), indoor environmental factors (IEFs), and antibiotics use (AU) with the first wave of allergies (i.e., asthma, allergic rhinitis, and eczema), yet the role of their exposures on children's second wave of allergy (i.e., food allergy) are unknown. OBJECTIVES To investigate the association between exposure to OAP and IEFs and childhood doctor-diagnosed food allergy (DFA) during the pre-pregnancy, prenatal, early postnatal, and current periods, and to further explore the effect of OAP and IEFs on DFA in children co-exposed to antibiotics. METHODS A retrospective cohort study involving 8689 preschoolers was carried out in Changsha, China. Data on the health outcomes, antibiotic use, and home environment of each child were collected through a questionnaire. Temperature and air pollutants data were obtained from 8 and 10 monitoring stations in Changsha, respectively. Exposure levels to temperature and air pollutants at individual home addresses were calculated by the inverse distance weighted (IDW) method. Multiple logistic regression models were employed to assess the associations of childhood DFA with exposure to OAP, IEF, and AU. RESULTS Childhood ever doctor-diagnosed food allergy (DFA) was linked to postnatal PM10 exposure with OR (95% CI) of 1.18 (1.03-1.36), especially for CO and O3 exposure during the first year with ORs (95% CI) = 1.08 (1.00-1.16) and 1.07 (1.00-1.14), as well as SO2 exposure during the previous year with OR (95% CI) of 1.13 (1.02-1.25). The role of postnatal air pollution is more important for the risk of egg, milk and other food allergies. Renovation-related IAP (new furniture) and dampness-related indoor allergens exposures throughout all time windows significantly increased the risk of childhood DFA, with ORs ranging from 1.23 (1.03-1.46) to 1.54 (1.29-1.83). Furthermore, smoke-related IAP (environmental tobacco smoke [ETS], parental and grandparental smoking) exposure during pregnancy, first year, and previous year was related to DFA. Additionally, exposure to pet-related indoor allergens (cats) during first year and total plant-related allergens (particularly nonflowering plants) during previous year were associated with DFA. Moreover, exposure to plant-related allergy during first and previous year was specifically associated with milk allergy, while keeping cats during first year increased the risk of fruits/vegetables allergy. Life-time and early-life AU was associated with the increased risk of childhood DFA with ORs (95% CI) = 1.57 (1.32-1.87) and 1.46 (1.27-1.67), including different types food allergies except fruit/vegetable allergy. CONCLUSIONS Postnatal OAP, life-time and early-life IEFs and AU exposure played a vital role in the development of DFA, supporting the "fetal origin of childhood FA" hypothesis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha, China.
| | - Ying Jiang
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Mengju Lan
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Lin Wang
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Wanzhen Zhang
- Department of GICU, Henan Provincial Chest Hospital, Weiwu Road No. 1, Zhengzhou, China
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
11
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [DOI: pmid: 38718731 doi: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
|
12
|
Chong AC, Navarro-Triviño FJ, Su M, Park CO. Fungal Head and Neck Dermatitis: Current Understanding and Management. Clin Rev Allergy Immunol 2024; 66:363-375. [PMID: 39031274 PMCID: PMC11422441 DOI: 10.1007/s12016-024-09000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Head and neck dermatitis (HND) is a form of atopic dermatitis (AD) that affects the seborrheic areas of the body and causes greater quality of life detriments than other types of AD. HND can be challenging to treat since first-line topical therapies may be ineffective or intolerable for long-term use on areas affected by HND while dupilumab may cause dupilumab-associated HND (DAHND). Current evidence implicates fungi, particularly Malassezia spp., in the pathogenesis of HND. Penetration of fungal antigens through the defective AD skin barrier activates the innate and adaptive immune systems to cause cutaneous inflammation via the T helper (Th)17 and/or Th2 axes. Malassezia sensitization may distinguish HND from other forms of AD. Multiple double-blind, placebo-controlled trials have shown antifungals to benefit HND, yet the persistence of symptom relief with sustained use remains unclear. Oral antifungals appear more effective than topical antifungals but may be harmful with long-term use. DAHND may also be fungal-mediated given improvement with antifungals and evidence of an overactive immune response against Malassezia in these patients. Janus kinase inhibitors are effective for HND, including DAHND, but may cause significant side effects when administered systemically. OX40/OX40L inhibitors and tralokinumab may be promising options for HND on the horizon. Demographic and environmental factors influence the host mycobiome and should be considered in future precision-medicine approaches as microbiome composition and diversity are linked to severity of HND.
Collapse
Affiliation(s)
- Albert C Chong
- Department of Internal Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd., Scottsdale, AZ, 85259, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Francisco José Navarro-Triviño
- Department of Contact Eczema and Immunoallergic Diseases, Dermatology Service, Hospital Universitario San Cecilio, Granada, Spain
| | - Malcolm Su
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chang Ook Park
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
14
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
15
|
Roh YJ, Choi YH, Shin SH, Lee MK, Won YJ, Lee JH, Cho BS, Park KY, Seo SJ. Adipose tissue-derived exosomes alleviate particulate matter-induced inflammatory response and skin barrier damage in atopic dermatitis-like triple-cell model. PLoS One 2024; 19:e0292050. [PMID: 38241278 PMCID: PMC10798485 DOI: 10.1371/journal.pone.0292050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 01/21/2024] Open
Abstract
Recently, particulate matter (PM) has been shown to exacerbate atopic dermatitis (AD) by inducing an inflammatory response. Meanwhile, several studies revealed that exosomes derived from adipose tissue-derived mesenchymal stem cells promote wound healing and alleviate inflammation via their regenerative and immunomodulatory capacities. Our study aimed to investigate the effects of human adipose tissue-derived mesenchymal stem cell-derived (ASC)-exosomes in PM-induced AD. An AD-like triple-cell model was established by treating human keratinocytes, dermal fibroblasts, and mast cells with polyinosinic:polycytidylic acid (Poly I:C) and interleukin 1 alpha (IL-1α). The effects of PM and ASC-exosomes on the expression of pro-inflammatory cytokines and skin barrier proteins were examined using quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. PM increased pro-inflammatory cytokines (IL-6, IL-1β, and IL-1α) and decreased the anti-inflammatory cytokine IL-10, while the mRNA expression of skin barrier proteins (loricrin and filaggrin) decreased. However, when the cells were treated with ASC-exosomes, the PM-induced effects on pro-inflammatory cytokines and skin barrier proteins were reversed. Our results confirmed that PM-induced inflammation and skin barrier damage were alleviated by ASC-exosomes in our AD-like triple-cell model. These data suggest that ASC-exosomes can serve as a therapeutic agent for PM-exacerbated AD.
Collapse
Affiliation(s)
- Yoon Jin Roh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yong Hee Choi
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yu Jin Won
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Korea
| | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Korea
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
17
|
Çelebi Sözener Z, Treffeisen ER, Özdel Öztürk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol 2023; 152:1033-1046. [PMID: 37689250 PMCID: PMC10864040 DOI: 10.1016/j.jaci.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Global warming has direct and indirect effects, as well as short- and long-term impacts on the respiratory and skin barriers. Extreme temperature directly affects the airway epithelial barrier by disrupting the structural proteins and by triggering airway inflammation and hyperreactivity. It enhances tidal volume and respiratory rate by affecting the thermoregulatory system, causing specific airway resistance and reflex bronchoconstriction via activation of bronchopulmonary vagal C fibers and upregulation of transient receptor potential vanilloid (TRPV) 1 and TRPV4. Heat shock proteins are activated under heat stress and contribute to both epithelial barrier dysfunction and airway inflammation. Accordingly, the frequency and severity of allergic rhinitis and asthma have been increasing. Heat activates TRPV3 in keratinocytes, causing the secretion of inflammatory mediators and eventually pruritus. Exposure to air pollutants alters the expression of genes that control skin barrier integrity and triggers an immune response, increasing the incidence and prevalence of atopic dermatitis. There is evidence that extreme temperature, heavy rains and floods, air pollution, and wildfires increase atopic dermatitis flares. In this narrative review, focused on the last 3 years of literature, we explore the effects of global warming on respiratory and skin barrier and their clinical consequences.
Collapse
Affiliation(s)
- Zeynep Çelebi Sözener
- Division of Immunology and Allergic Diseases, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Elsa R Treffeisen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Betül Özdel Öztürk
- Division of Immunology and Allergic Diseases, Bolu Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Lynda C Schneider
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
18
|
Reynolds WJ, Eje N, Christensen P, Li W, Daly SM, Parsa R, Chavan B, Birch‐Machin MA. Biological effects of air pollution on the function of human skin equivalents. FASEB Bioadv 2023; 5:470-483. [PMID: 37936922 PMCID: PMC10626160 DOI: 10.1096/fba.2023-00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023] Open
Abstract
The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, COL1A1, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in COL1A1 and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.
Collapse
Affiliation(s)
- Wil J. Reynolds
- Dermatological Sciences, Institute of Translational and Clinical ResearchNewcastle UniversityNewcastle upon TyneUK
| | - Ndubuisi Eje
- Bedson Building, Newcastle UniversityNewcastle upon TyneUK
| | | | - Wen‐Hwa Li
- Johnson and Johnson Consumer Inc.SkillmanNew JerseyUSA
| | - Susan M. Daly
- Johnson and Johnson Consumer Inc.SkillmanNew JerseyUSA
| | - Ramine Parsa
- Johnson and Johnson Consumer Inc.SkillmanNew JerseyUSA
| | | | - Mark A. Birch‐Machin
- Dermatological Sciences, Institute of Translational and Clinical ResearchNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
19
|
Mazur M, Dyga W, Czarnobilska E. The Prevalence of Atopic Dermatitis and Food Allergy in Children Living in an Urban Agglomeration-Is There a Current Relationship? J Clin Med 2023; 12:5982. [PMID: 37762923 PMCID: PMC10531722 DOI: 10.3390/jcm12185982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) prevalence in Poland is more frequent in individuals who live in a city. There are more studies demonstrating that long-term exposure to air pollutants is an independent risk factor for developing AD. The aim of the study was to assess the epidemiology of AD and food allergy (FA) in school children and adolescents living in Krakow, and to find a potential relationship between the incidence of atopic dermatitis with exposure to polluted air. In this paper, we presented the incidence of AD and FA between 2014 and 2018. We analyzed data collected from nearly 30,000 children aged 7-8 and adolescents aged 16-17 from the population of children and youth in Krakow. We correlated it with annual mean concentrations of PM10 and PM2.5, which indicated a gradual improvement in the air quality in Krakow. As our research results show that the prevalence of atopic dermatitis decreased with food allergy prevalence depending on the age group. We can suspect that this is the result of children growing out of a food allergy. It may be also influenced by more consequential eating habits in a group of adolescents and the elimination of allergenic foods from the diet. The decreasing incidence of atopic dermatitis appears to be also related to improvement in air quality.
Collapse
Affiliation(s)
| | | | - Ewa Czarnobilska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Botaniczna St. 3, 31-501 Krakow, Poland
| |
Collapse
|
20
|
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with a lifetime prevalence of up to 20% which can occur at any age but is most common among children. There is a significant burden of pediatric AD in the primary care setting; thus, the ability to recognize and manage AD is of utmost importance to pediatricians. Treatment of AD requires a multifaceted approach based on a patient's severity including behavioral modifications, topical and systemic pharmacologic therapies, and phototherapy.
Collapse
Affiliation(s)
- Caitlyn Kellogg
- Department of Internal Medicine, Harbor-UCLA, 1000 West Carson Street, Box 458, Torrance, CA 90509, USA
| | - Jan Smogorzewski
- Department of Internal Medicine, Division of Dermatology, Harbor-UCLA, 1000 West Carson Street, Box 458, Torrance, CA 90502, USA.
| |
Collapse
|
21
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Kayode OA, Mokoatle CM, Rathebe PC, Mbonane TP. Factors Associated with Atopic Dermatitis among Children Aged 6 to 14 Years in Alimosho Local Government, Lagos, Nigeria. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050893. [PMID: 37238441 DOI: 10.3390/children10050893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
There has been a rise in the prevalence of atopic dermatitis (AD) globally, especially in low-and middle-income countries such as Nigeria. The condition has been linked to genetic predisposes, living conditions, and environmental factors. Environmental factors are considered a significant contributor to AD in low- and middle-income countries. This study determined the prevalence of AD in south-western Nigeria and identified risk factors in home and school environments that children aged 6 to 14 years are exposed to. A cross-sectional study was adopted, and the total sample size was 349. Four randomly selected health facilities were used for the study. A questionnaire was used to determine the risk factors in the population. Data analysis was performed using the latest version of Statistical Package for Social Science (SPSS). The prevalence of atopic dermatitis in this study is 25%. Atopic dermatitis was found to be common in females (27%). According to the univariate analysis, children who lived where trucks pass on the street almost daily had the highest cases of atopic dermatitis (28%). Children with rugs in their houses (26%) and those whose houses are surrounded by bushes (26%) had higher cases of atopic dermatitis. Children who played on school grass (26%), attended creche with rubber toys (28%), and attended school where wooden chairs (28%) and chalkboards (27%) are used had a higher number of AD. Bivariate analysis showed an association between AD with a mother's monthly income (p = 0.012) and eating potatoes (p = 0.005), fruits (p = 0.040), and cereal (p = 0.057). In the multivariate analysis, the consumption of fruits (p = 0.02), potatoes (p < 0.001), and cereal (p = 0.04) were identified as risk factors associated with AD. It is envisaged that the study will serve as a basis for possible research on evidence-based and primary prevention options. Hence, we recommend health education activities to empower communities to protect themselves against environmental risk factors that are preventable.
Collapse
Affiliation(s)
- Olubunmi A Kayode
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2000, South Africa
| | - Charlotte M Mokoatle
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2000, South Africa
| | - Phoka C Rathebe
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2000, South Africa
| | - Thokozani P Mbonane
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2000, South Africa
| |
Collapse
|
23
|
Fadadu RP, Abuabara K, Balmes JR, Hanifin JM, Wei ML. Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2526. [PMID: 36767891 PMCID: PMC9916398 DOI: 10.3390/ijerph20032526] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atopic dermatitis (AD) has increased in prevalence to become the most common inflammatory skin condition globally, and geographic variation and migration studies suggest an important role for environmental triggers. Air pollution, especially due to industrialization and wildfires, may contribute to the development and exacerbation of AD. We provide a comprehensive, multidisciplinary review of existing molecular and epidemiologic studies on the associations of air pollutants and AD symptoms, prevalence, incidence, severity, and clinic visits. Cell and animal studies demonstrated that air pollutants contribute to AD symptoms and disease by activating the aryl hydrocarbon receptor pathway, promoting oxidative stress, initiating a proinflammatory response, and disrupting the skin barrier function. Epidemiologic studies overall report that air pollution is associated with AD among both children and adults, though the results are not consistent among cross-sectional studies. Studies on healthcare use for AD found positive correlations between medical visits for AD and air pollutants. As the air quality worsens in many areas globally, it is important to recognize how this can increase the risk for AD, to be aware of the increased demand for AD-related medical care, and to understand how to counsel patients regarding their skin health. Further research is needed to develop treatments that prevent or mitigate air pollution-related AD symptoms.
Collapse
Affiliation(s)
- Raj P. Fadadu
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - John R. Balmes
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA 94143, USA
| | - Jon M. Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maria L. Wei
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| |
Collapse
|
24
|
Chong AC, Visitsunthorn K, Ong PY. Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis. J Asthma Allergy 2022; 15:1681-1700. [PMID: 36447957 PMCID: PMC9701514 DOI: 10.2147/jaa.s293900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors to AD. The right climate and/or commensals may improve AD for some patients.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Topalušić I, Stipić Marković A, Artuković M, Dodig S, Bucić L, Lugović Mihić L. Divergent Trends in the Prevalence of Children's Asthma, Rhinitis and Atopic Dermatitis and Environmental Influences in the Urban Setting of Zagreb, Croatia. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121788. [PMID: 36553232 PMCID: PMC9777289 DOI: 10.3390/children9121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies have reported that the allergy epidemic in developed countries has reached its plateau, while a rise is expected in developing ones. Our aim was to compare the prevalence of allergic diseases among schoolchildren from the city of Zagreb, Croatia after sixteen years. METHODS Symptoms of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) and risk factors were assessed using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. An allergic profile was determined by a skin prick test. RESULTS The prevalence of current, ever-in-a-lifetime and diagnosed AR of 35.7%, 42.5% and 14.9% and AD of 18.1%, 37.1% and 31.1% demonstrated a significant increase. The asthma prevalence has remained unchanged. The allergen sensitivity rate has remained similar, but pollens have become dominant. Mould and dog exposure are risks for asthma (OR 14.505, OR 2.033). Exposure to cat allergens is protective in AR (OR 0.277). Parental history of allergies is a risk factor in all conditions. CONCLUSION Over sixteen years, the prevalence of AR and AD, but not of asthma, have increased. The proportion of atopy has remained high. The AR/AD symptom rise is probably a consequence of increased pollen sensitisation united with high particulate matter concentrations. The stable asthma trend could be a result of decreasing exposures to indoor allergens.
Collapse
Affiliation(s)
- Iva Topalušić
- Division of Pulmology, Immunology, Allergology and Rheumatology, Department of Paediatrics, University Children’s Hospital Zagreb, 10 000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-98-1857-599
| | - Asja Stipić Marković
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10 000 Zagreb, Croatia
| | - Marinko Artuković
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10 000 Zagreb, Croatia
| | - Slavica Dodig
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Lovro Bucić
- Division for Environmental Health, Croatian Institute for Public Health, 10 000 Zagreb, Croatia
| | - Liborija Lugović Mihić
- Department of Dematology, School of Dental Medicine, Clinical Hospital Center Sisters of Mercy, 10 000 Zagreb, Croatia
| |
Collapse
|
26
|
Izzotti A, Spatera P, Khalid Z, Pulliero A. Importance of Punctual Monitoring to Evaluate the Health Effects of Airborne Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10587. [PMID: 36078301 PMCID: PMC9518414 DOI: 10.3390/ijerph191710587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) pollution is one of the major public health problems worldwide, given the high mortality attributable to exposure to PM pollution and the high pathogenicity that is found above all in the respiratory, cardiovascular, and neurological systems. The main sources of PM pollution are the daily use of fuels (wood, coal, organic residues) in appliances without emissions abatement systems, industrial emissions, and vehicular traffic. This review aims to investigate the causes of PM pollution and classify the different types of dust based on their size. The health effects of exposure to PM will also be discussed. Particular attention is paid to the measurement method, which is unsuitable in the risk assessment process, as the evaluation of the average PM compared to the evaluation of PM with punctual monitoring significantly underestimates the health risk induced by the achievement of high PM values, even for limited periods of time.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paola Spatera
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
27
|
Liao M, Xiao Y, Li S, Su J, Li J, Zou B, Chen X, Shen M. Synergistic Effects between Ambient Air Pollution and Second-Hand Smoke on Inflammatory Skin Diseases in Chinese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10011. [PMID: 36011645 PMCID: PMC9408277 DOI: 10.3390/ijerph191610011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Atopic dermatitis (AD), chronic hand eczema (CHE), and urticaria are common inflammatory skin diseases among adolescents and associated with air quality. However, the synergistic effects of ambient air pollution and second-hand smoke (SHS) have been unclear. We conducted a cross-sectional study including 20,138 Chinese college students where dermatological examinations and a questionnaire survey were carried out. A generalized linear mixed model was applied for the association between individualized exposure of O3, CO, NO2, SO2, PM2.5, and PM10 and the prevalence of inflammatory skin diseases. Interactions between air pollutants and SHS were analyzed. As a result, CO, NO2, SO2, PM2.5, and PM10 were positively correlated with the prevalence of AD, CHE, and urticaria. Higher frequency of SHS exposure contributed to increased probabilities of AD (p = 0.042), CHE (p < 0.001), and urticaria (p = 0.002). Of note, CO (OR: 2.57 (1.16−5.69) in third quartile) and NO2 (OR: 2.38 (1.07−5.27) in third quartile) had positive interactions with SHS for AD, and PM2.5 synergized with SHS for CHE (OR: 2.25 (1.22−4.15) for second quartile). Subgroup analyses agreed with the synergistic results. In conclusion, SHS and ambient air pollution are both associated with inflammatory skin diseases, and they have a synergistic effect on the prevalence of AD and CHE.
Collapse
Affiliation(s)
- Mengting Liao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Xiao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-Physics, Central South University, Changsha 410008, China
| | - Juan Su
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ji Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Zou
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-Physics, Central South University, Changsha 410008, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minxue Shen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410008, China
| |
Collapse
|
28
|
Fitoussi R, Faure MO, Beauchef G, Achard S. Human skin responses to environmental pollutants: A review of current scientific models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119316. [PMID: 35469928 DOI: 10.1016/j.envpol.2022.119316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was "Which experimental models illustrate the impact of pollution on the skin in humans?" The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Collapse
Affiliation(s)
| | - Marie-Odile Faure
- Scientific Consulting For You, 266 avenue Daumesnil, 75012, PARIS, France
| | | | - Sophie Achard
- HERA Team (Health Environmental Risk Assessment), INSERM UMR1153, CRESS-INRAE, Université Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75270 CEDEX 06, PARIS, France.
| |
Collapse
|
29
|
Kwack MH, Bang JS, Lee WJ. Preventative Effects of Antioxidants against PM 10 on Serum IgE Concentration, Mast Cell Counts, Inflammatory Cytokines, and Keratinocyte Differentiation Markers in DNCB-Induced Atopic Dermatitis Mouse Model. Antioxidants (Basel) 2022; 11:1334. [PMID: 35883825 PMCID: PMC9311925 DOI: 10.3390/antiox11071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/02/2022] Open
Abstract
Particulate matter (PM) can cause oxidative stress, inflammation, and skin aging. We investigated the effects of antioxidants such as dieckol, punicalagin, epigallocatechin gallate (EGCG), resveratrol, and Siegesbeckiae Herba extract (SHE) against PM < 10 μm (PM10) on serum IgE concentration, mast cell counts, inflammatory cytokines, and keratinocyte differentiation markers in a 2,4-Dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model. Seven-week-old BALB/c mice were sensitized with 2% DNCB. Atopic dermatitis-like lesions were induced on the mice with 0.2% DNCB. Antioxidants and PM10 were applied to the mice for 4 weeks. PM10 increased the serum IgE concentration and spleen weight in mice, and all antioxidants downregulated these parameters. Histological examination showed an increase in epidermal thickness and mast cell counts in response to PM10, and all antioxidants showed a decrease. PM10 upregulates the expression of inflammatory cytokines, including interleukin (IL)-1β, IL-4, IL-6, IL-17α, IL-25, IL-31 and thymic stromal lymphopoietin (TSLP) in mice, and all antioxidants inhibited the upregulation of inflammatory cytokines. ELISA showed the same results as real-time PCR. PM10 downregulates the expression of keratinocyte differentiation markers, including loricrin and filaggrin, in mouse keratinocytes and antioxidants prevented the downregulation of the keratinocyte differentiation markers. Conclusively, PM10 aggravated the DNCB-induced mouse model in serum IgE concentration, mast cell counts, inflammatory cytokine, and keratinocyte differentiation markers. In addition, antioxidants modulated changes in the DNCB-induced mouse model caused by PM10.
Collapse
Affiliation(s)
- Mi Hee Kwack
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jin Seon Bang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| |
Collapse
|
30
|
Urrutia-Pereira M, Guidos-Fogelbach G, Solé D. Climate changes, air pollution and allergic diseases in childhood and adolescence. J Pediatr (Rio J) 2022; 98 Suppl 1:S47-S54. [PMID: 34896064 PMCID: PMC9510908 DOI: 10.1016/j.jped.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To analyze the impacts of climate change on the development of immature respiratory and immune systems in children. SOURCE OF DATA The authors of the present study performed a non-systematic review of English, Spanish, and Portuguese articles published in the last five years in databases such as PubMed, EMBASE, and SciELO. The terms used were air pollution OR climate changes OR smoke, AND children OR health. SYNTHESIS OF DATA The increase in the prevalence of some diseases, such as allergic ones, is attributed to the interactions between genetic potential and the environment. However, disordered growth combined with inadequate waste management has caused problems for the planet, such as heatwaves, droughts, forest fires, increased storms and floods, interference in food crops and their nutritional values, changes in the infectious disease pattern, and air pollution resulting from the continuous use of fossil fuels. Children, beings still in the development stage with immature respiratory and immune systems, are the primary victims of the climate crisis. CONCLUSIONS The authors documented that prenatal and postnatal exposure to ambient air pollutants will accelerate or worsen the morbidity and mortality of many health conditions, including allergic diseases. Ambient air pollutants change the microbiota, interfere with the immune response, and take direct action on the skin and respiratory epithelium, which facilitates the penetration of allergens. Understanding how the children and adolescent health and well-being are affected by climate change is an urgent matter.
Collapse
Affiliation(s)
| | - Guillermo Guidos-Fogelbach
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Postgraduate Department, Mexico City, Mexico
| | - Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Divisão de Alergia, Imunologia Clínica e Reumatologia, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Roh YJ, Noh HH, Koo NY, Shin SH, Lee MK, Park KY, Seo SJ. Development of In Vitro Co-Culture Model to Mimic the Cell to Cell Communication in Response to Urban PM 2.5. Ann Dermatol 2022; 34:110-117. [PMID: 35450307 PMCID: PMC8989910 DOI: 10.5021/ad.2022.34.2.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Airborne particulate matter (PM), a widespread air contaminant, is a complex mixture of solids and aerosols composed of particles suspended in the air. PM is associated with inflammatory responses and may worsen inflammatory skin diseases. However, the mechanisms through which PM affects atopic dermatitis (AD) remain unclear. Objective To establish an in vitro model that more accurately mimics AD using human keratinocyte (HaCaT), dermal fibroblast (HDF), and mast cell (HMC-1) and using this model to investigate the mechanism through which PMs affect AD. Methods An AD-like in vitro model was established by seeding HaCaT, HDF, and HMC-1 cells with recombinant human interleukin (IL)-1α and polyinosinic:polycytidylic acid. We confirmed the effect of PM on the inflammatory cytokine expression of a triple-cell culture model. SRM 1649b Urban Dust, which is mainly composed of polycyclic aromatic hydrocarbons, was used as the reference PM. The effects of PM on the expression levels of proinflammatory cytokines and skin barrier markers were assessed using quantitative real-time polymerase chain reaction and western blotting. Inflammatory cytokine levels were measured using an enzyme-linked immunosorbent assay. Results Interactions between various skin cell types were evaluated using a co-culture system. PM treatment increased mRNA and protein levels of the inflammatory cytokines IL-6, IL-1α, tumor necrosis factor-α, IL-4, and IL-1β and decreased the expression of the skin barrier markers filaggrin and loricrin. Conclusion Our results suggest that an in vitro triple-cell culture model using HaCaT, HDF, and HMC-1 cells may be reliable for obtaining more physiological, functional, and reproducible data on AD and skin barriers.
Collapse
Affiliation(s)
- Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Hyun Ha Noh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Na Yeon Koo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
32
|
Zhang R, Zhao H. Small-Angle Particle Counting Coupled Photometry for Real-Time Detection of Respirable Particle Size Segmentation Mass Concentration. SENSORS 2021; 21:s21175977. [PMID: 34502868 PMCID: PMC8434685 DOI: 10.3390/s21175977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022]
Abstract
Respirable particulate matter air pollution is positively associated with SARS-CoV-2 mortality. Real-time and accurate monitoring of particle concentration changes is the first step to prevent and control air pollution from inhalable particles. In this research, a new light scattering instrument has been developed to detect the mass concentration of inhalable particles. This instrument couples the forward small-angle single particle counting method with the lateral group particle photometry method in a single device. The mass concentration of four sizes of inhalable particles in the environment can be detected simultaneously in a large area in real-time without using a particle impactor. Different from the traditional light scattering instrument, this new optical instrument can detect darker particles with strong light absorption, and the measurement results mainly depend on the particle size and ignore the properties of the particles. Comparative experiments have shown that the instrument can detect particles with different properties by simply calibrating the environmental density parameters, and the measurement results have good stability and accuracy.
Collapse
Affiliation(s)
| | - Heng Zhao
- Correspondence: ; Tel.: +86-029-8231-2654
| |
Collapse
|