1
|
RG C, Tallon A, Latch EK. Chronic Wasting Disease Research in North America: A systematic review highlighting species-wise and interdisciplinary research trends. Prion 2025; 19:1-16. [PMID: 39960789 PMCID: PMC11834482 DOI: 10.1080/19336896.2025.2464753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Chronic Wasting Disease (CWD) research has experienced significant growth, spanning diverse disciplines such as genetics, immunology, modelling, and behaviour. To gain a broad understanding of the changes in CWD research focusing cervids, we analysed temporal trends in study location, species, genus investigated, infection types, and population type since the discovery of CWD in 1980s. Our findings indicate that Colorado, USA, published the highest number of articles, followed by Wisconsin, and publication numbers correlated with reported CWD cases in states/provinces. Odocoileus emerged as the most studied genus. Wild populations are studied more commonly than captive populations. Keyword analysis of transmission types shows the discovery of novel transmission modes in the recent past. We also used a novel approach to categorize studies into five themes: field-based, lab-based, math/analytics/modelling-based, management-based, and human dimensions. Overall, most studies captured had a lab-based component. The interdisciplinary or transdisciplinary nature of major disciplines and evolving trends in keywords, particularly the increased reliance on genetics/genomics, accentuate the beginning of using genomics to under and tackle CWD at a fundamental scale. Encapsulated in our analysis, these dynamic changes offer valuable insights for navigating CWD through scientifically informed proactive management decisions in conjunction with existing surveillance efforts not only for the commonly studied species but also for potentially susceptible species.
Collapse
Affiliation(s)
- Chandika RG
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Anaïs Tallon
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
- Marine Conservation Group, Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Emily K. Latch
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Walter WD, Herbst A, Lue CH, Bartz JC, Hopkins MC. Overview of North American Isolates of Chronic Wasting Disease Used for Strain Research. Pathogens 2025; 14:250. [PMID: 40137736 PMCID: PMC11944812 DOI: 10.3390/pathogens14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic Wasting Disease (CWD) is a prion disease that affects Cervidae species, and is the only known prion disease transmitted among wildlife species. The key pathological feature is the conversion of the normal prion protein (PrPC) misfolding into abnormal forms (PrPSc), triggering the onset of CWD infections. The misfolding can generate distinct PrPSc conformations (strains) giving rise to diverse disease phenotypes encompassing pathology, incubation period, and clinical signs. These phenotypes operationally define distinct prion strains, a pivotal element in monitoring CWD spread and zoonotic potential-a complex endeavor compounded by defining and tracking CWD strains. This review pursues a tripartite objective: 1. to address the intricate challenges inherent in ongoing CWD strain classification; 2. to provide an overview of the known CWD-infected isolates, the strains they represent and their passage history; and 3. to describe the spatial diversity of CWD strains in North America, enriching our understanding of CWD strain dynamics. By delving into these dimensions, this review sheds light on the intricate interplay among polymorphisms, biochemical properties, and clinical expressions of CWD. This endeavor aims to elevate the trajectory of CWD research, advancing our insight into prion disease.
Collapse
Affiliation(s)
- W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA 16802, USA
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Chia-Hua Lue
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | | |
Collapse
|
3
|
DeFranco JP, Telling GC. The Evolution of Experimental Rodent Models for Prion Diseases. J Neurochem 2025; 169:e70039. [PMID: 40108932 PMCID: PMC11968085 DOI: 10.1111/jnc.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Prion diseases are a group of fatal, neurodegenerative diseases that affect animals and humans. These diseases are characterized by the conformational conversion of normal, host-encoded PrPC into a disease-causing prion isoform, PrPSc. Significant advancements in biological, genetic, and prion research have led to the capability of studying this pathogenetic process using recombinant proteins, ex vivo systems, in vitro models, and mammalian hosts, the latter being the gold standard for assaying prion infectivity, transmission, and strain evolution. While devoid of nucleic acid, prions encipher strain information by the conformation of their constituent infectious proteins, with diversity altering pathogenesis, host-range dynamics, and the efficacy of therapeutics. To properly study the strain properties of natural prions and develop appropriate therapeutic strategies, it is essential to utilize models that authentically recapitulate these infectious agents in experimental mammalian hosts. In this review, we examine the evolution of research on prion diseases using non-transgenic and transgenic animals, primarily focusing on rodent models. We discuss the successes and limitations of each experimental system and provide insights based on recent findings in novel gene-targeted mice.
Collapse
Affiliation(s)
- Joseph P. DeFranco
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Park KJ, Park HC, Lee YR, Mitchell G, Choi YP, Sohn HJ. Detection of chronic wasting disease prions in the farm soil of the Republic of Korea. mSphere 2025; 10:e0086624. [PMID: 39882869 PMCID: PMC11852723 DOI: 10.1128/msphere.00866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease occurring in free-ranging and farmed cervids. CWD continues to spread uncontrolled across North America, and cases continue to be detected almost every year in the Republic of Korea. CWD-infected animals contaminate the soil by releasing infectious prions through their excreta, and shed prions accumulate and remain infectious in the soil for years. Given that the upper soil levels can become contaminated with prions and serve as infectivity reservoirs facilitating horizontal transmission of CWD, the ability to detect prions in the soil is needed for monitoring and managing CWD spread. Using the protein misfolding cyclic amplification (PMCA) technique, we investigated whether prions could be amplified and detected in farm soil experimentally exposed to CWD-infected brain homogenate as well as in the soil of CWD-affected farms. From each soil sample, we performed 10 serial extractions and used these 10 extracts as PMCA templates. Here, we show that prion seeding activity was detected in extracts from farm soil following 4 years of incubation with CWD-infected brain homogenate. More importantly, 13 of 38 soil samples collected from six CWD-affected farms displayed prion seeding activity, with at least one soil sample in each farm being PMCA positive. Mouse bioassays confirmed the presence of prion infectivity in the soil extracts in which PMCA seeding activity was detected. This is the first report describing the successful detection of prions in soil collected from CWD-affected farms, suggesting that PMCA conducted on serial soil extracts is a sensitive means for prion detection in CWD-contaminated soil.IMPORTANCEChronic wasting disease (CWD) is a highly contagious prion disease affecting free-ranging and farmed cervids. CWD continues to spread uncontrollably across North America, and multiple cases are detected annually in the Republic of Korea. Prions shed from CWD-infected animals remain infectious in the soil for years, serving as infectivity reservoirs that facilitate horizontal transmission of the disease. Therefore, the ability to detect CWD prions in soil is crucial for monitoring and managing the spread of the disease. In this study, we have demonstrated for the first time that prions in the soil of CWD-affected farms can be reliably detected using a combination of serial soil extraction and a prion amplification technique. Our data, in which at least one soil sample tested positive for CWD in each of the six CWD-affected farms analyzed, suggest that the approach employed in this study is a sensitive method for prion detection in CWD-contaminated soil.
Collapse
Affiliation(s)
- Kyung-Je Park
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hoo-Chang Park
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Yu-Ran Lee
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Gordon Mitchell
- National and WOAH Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Young Pyo Choi
- Division of Research Strategy, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Joo Sohn
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| |
Collapse
|
5
|
Sandoval AM, Nalls AV, McNulty EE, Denkers ND, Trujillo DJ, Olmstead Z, Barton E, Ballard JR, Grove DM, Dennison JS, Stilwell N, Cleveland CA, Crum JM, Ruder MG, Mathiason CK. Vertical transmission of chronic wasting disease in free-ranging white-tailed deer populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634834. [PMID: 39974995 PMCID: PMC11838184 DOI: 10.1101/2025.01.24.634834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease affecting cervids across North America, Northern Europe, and Asia. Disease transmission among cervids has historically been attributed to direct animal-to-animal contact with 'secreta' (saliva, blood, urine, and feces) containing the infectious agent, and indirect contact with the agent shed to the environment in these bodily components. Mounting evidence provides another mechanism of CWD transmission, that from mother-to-offspring, including during pregnancy (vertical transmission). Here we describe the detection of the infectious CWD agent and prion seeding in fetal and reproductive tissues collected from healthy-appearing free-ranging white-tailed deer (Odocoileus virginianus) from multiple U.S. states by mouse bioassay and in vitro prion amplification assays. This is the first report of the infectious agent in several in utero derived fetal and maternal-fetal reproductive tissues, providing evidence that CWD infections are propagated within gestational fetal tissues of white-tailed deer populations. This work confirms previous experimental and field findings in several cervid species supporting vertical transmission as a mechanism of CWD transmission and helps to further explain the facile dissemination of this disease among captive and free-ranging cervid populations.
Collapse
Affiliation(s)
- Audrey M Sandoval
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D Denkers
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Devon J Trujillo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zoe Olmstead
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ethan Barton
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Wildlife Resources, West Virginia Division of Natural Resources, Romney, WV, USA
| | | | | | | | - Natalie Stilwell
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - James M Crum
- Wildlife Resources, West Virginia Division of Natural Resources, Elkins, WV, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Allen SE, O'Toole D, Wood ME, Van Wick P, Parrie LE, Malmberg JL, Edwards WH. "Luck Be a Lady": Retrospective Study of Disease-Associated Prion (PrPSc) Distribution and Lesions in Captive, Environmentally Exposed Female Rocky Mountain Elk (Cervus canadensis nelsoni) with 132LL Genotype. J Wildl Dis 2025; 61:199-205. [PMID: 39287595 DOI: 10.7589/jwd-d-24-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease of cervids caused by an infectious misfolded protein (prion). Several members of the Cervidae, including Rocky Mountain elk (Cervus canadensis nelsoni), are susceptible to CWD. There is no evidence of complete genetic resistance to CWD; the M132L polymorphism in the elk prion protein gene influences the incubation period: longest in 132LL, intermediate in 132ML, and shortest in 132MM elk. We retrospectively analyzed six female 132LL elk housed in an environment heavily contaminated with prions to 1) document clinical outcomes and incubation periods, 2) describe PrPSc distribution and extent in tissues, and 3) characterize their histologic lesions. In five of six elk, PrPSc was detected postmortem, with a distribution pattern distinct from that of 132MM and 132ML elk; time to clinical CWD onset CWD ranged from 73 to 117 mo (6.1-9.8 yr). Although the remaining animal was observed for 220 mo (18.3 yr), PrPSc was not detected in its tissues postmortem. This study suggests that 132LL elk infected via natural exposure may live even longer with CWD than previously thought, but ultimately remain susceptible. We also report a distinct distribution of PrPSc in 132LL genotypes and highlight unusual histologic findings. Understanding the relationship between cervid genetics and CWD is of increasing importance, especially given the growing interest in leveraging genetics that delay disease onset despite not preventing infection.
Collapse
Affiliation(s)
- Samantha E Allen
- Veterinary Services, Wyoming Game and Fish Department, 1212 S. Adams St., Laramie, Wyoming 82070, USA
- Wyoming State Veterinary Laboratory, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| | - Donal O'Toole
- Wyoming State Veterinary Laboratory, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| | - Mary E Wood
- Wildlife Health Program, Colorado Parks and Wildlife, 4330 Laporte Ave., Fort Collins, Colorado 80521, USA
| | - Peach Van Wick
- Veterinary Services, Thorne/Williams Wildlife Research Facility, Wyoming Game and Fish Department, 2362 WY-34, Wheatland, Wyoming 82201, USA
| | - Lindsay E Parrie
- Wildlife Services, National Wildlife Research Center, Animal and Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - Jennifer L Malmberg
- Wildlife Services, National Wildlife Research Center, Animal and Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Ave., Fort Collins, Colorado 80521, USA
| | - William H Edwards
- Veterinary Services, Wildlife Health Laboratory, Wyoming Game and Fish Department, 1174 Snowy Range Rd., Laramie, Wyoming 82070, USA
| |
Collapse
|
7
|
Won SY, Kim YC. The first meta-analysis of the G96S single nucleotide polymorphism (SNP) of the prion protein gene ( PRNP) with chronic wasting disease in white-tailed deer. Front Vet Sci 2024; 11:1437189. [PMID: 39679175 PMCID: PMC11638237 DOI: 10.3389/fvets.2024.1437189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Background Prion diseases are irreversible infectious neurodegenerative diseases caused by a contagious form of prion protein (PrPSc). Since chronic wasting disease (CWD)-infected white-tailed deer are strong carriers of the prion seed through corpses via scavenger animals, preemptive control based on genetic information for a culling system is necessary. However, the risk of CWD-related genetic variants has not been fully evaluated. In the present study, we carried out a quantitative estimation of the risk of a G96S single nucleotide polymorphism (SNP) of the PRNP gene to CWD infection in white-tailed deer. Methods We carried out a literature search for genetic data of the G96S (c.286G>A) SNP of the PRNP gene from CWD-infected white-tailed deer and matched controls. We performed a meta-analysis using incorporated eligible studies to evaluate the association of the G96S SNP of the PRNP gene with susceptibility to CWD in white-tailed deer. Results We identified a strong association between the G96S (c.286G>A) SNP of the PRNP gene and susceptibility to CWD infection in white-tailed deer using meta-analysis. We observed the most significant association in the recessive model (odds ratio = 3.0050, 95% confidence interval: 2.0593; 4.3851, p < 0.0001), followed by the additive model (odds ratio = 2.7222, 95% confidence interval: 1.9028; 3.8945, p < 0.0001) and the heterozygote (AA vs. AG) comparison (odds ratio = 2.7405, 95% confidence interval: 1.9215; 3.9085, p < 0.0001). Conclusion To the best of our knowledge, this was the first meta-analysis of the association between the G96S (c.286G>A) SNP of the PRNP gene and susceptibility to CWD infection.
Collapse
Affiliation(s)
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| |
Collapse
|
8
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
9
|
Silva CJ, Erickson-Beltran ML, Cassmann ED, Greenlee JJ. Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry. Pathogens 2024; 13:1008. [PMID: 39599561 PMCID: PMC11597226 DOI: 10.3390/pathogens13111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease afflicting wild and farmed elk. CWD prions (PrPSc) are infectious protein conformations that replicate by inducing a natively expressed prion protein (PrPC) to refold into the prion conformation. Mass spectrometry was used to study the prions resulting from a previously described experimental inoculation of MM132, ML132, and LL132 elk with a common CWD inoculum. Chymotryptic digestion times and instrument parameters were optimized to yield a set of six peptides, TNMK, MLGSAMSRPL, LLGSAMSRPL, ENMYR, MMER, and VVEQMCITQYQR. These peptides were used to quantify the amount, the M132 and L132 polymorphic composition, and the extent of methionine oxidation of elk PrPSc. The amount (ng/g brain tissue) of PrPSc present in each sample was determined to be: MM132 (5.4 × 102 ± 7 × 101), ML132 (3.3 × 102 ± 6 × 101 and 3.6 × 102 ± 3 × 101) and LL132 (0.7 × 102 ± 1 × 101, 0.2 × 102 ± 0.2 × 101, and 0.2 × 102 ± 0.5 × 101). The proportion of L132 polymorphism in ML132 (heterozygous) PrPSc from CWD-infected elk was determined to be 43% ± 2% or 36% ± 3%. Methionine oxidation was detected and quantified for the M132 and L132 polymorphisms in the samples. In this way, mass spectrometry can be used to characterize prion strains at a molecular level.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Melissa L. Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Eric D. Cassmann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Patterson Hall, 1800 Christensen Drive, Ames, IA 50011, USA;
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| |
Collapse
|
10
|
Alam P, Hoyt F, Artikis E, Soukup J, Hughson AG, Schwartz CL, Barbian K, Miller MW, Race B, Caughey B. Cryo-EM structure of a natural prion: chronic wasting disease fibrils from deer. Acta Neuropathol 2024; 148:56. [PMID: 39448454 PMCID: PMC11502585 DOI: 10.1007/s00401-024-02813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Chronic wasting disease (CWD) is a widely distributed prion disease of cervids with implications for wildlife conservation and also for human and livestock health. The structures of infectious prions that cause CWD and other natural prion diseases of mammalian hosts have been poorly understood. Here we report a 2.8 Å resolution cryogenic electron microscopy-based structure of CWD prion fibrils from the brain of a naturally infected white-tailed deer expressing the most common wild-type PrP sequence. Like recently solved rodent-adapted scrapie prion fibrils, our atomic model of CWD fibrils contains single stacks of PrP molecules forming parallel in-register intermolecular β-sheets and intervening loops comprising major N- and C-terminal lobes within the fibril cross-section. However, CWD fibrils from a natural cervid host differ markedly from the rodent structures in many other features, including a ~ 180° twist in the relative orientation of the lobes. This CWD structure suggests mechanisms underlying the apparent CWD transmission barrier to humans and should facilitate more rational approaches to the development of CWD vaccines and therapeutics.
Collapse
Affiliation(s)
- Parvez Alam
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Efrosini Artikis
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Jakub Soukup
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Andrew G Hughson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | | | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
11
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
12
|
Denkers ND, McNulty EE, Kraft CN, Nalls AV, Westrich JA, Hoover EA, Mathiason CK. Temporal Characterization of Prion Shedding in Secreta of White-Tailed Deer in Longitudinal Study of Chronic Wasting Disease, United States. Emerg Infect Dis 2024; 30:2118-2127. [PMID: 39320164 PMCID: PMC11431932 DOI: 10.3201/eid3010.240159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Chronic wasting disease (CWD) affects cervids in North America, Asia, and Scandinavia. CWD is unique in its efficient spread, partially because of contact with infectious prions shed in secreta. To assess temporal profiles of CWD prion shedding, we collected saliva, urine, and feces from white-tailed deer for 66 months after exposure to low oral doses of CWD-positive brain tissue or saliva. We analyzed prion seeding activity by using modified amyloid amplification assays incorporating iron oxide bead extraction, which improved CWD detection and reduced false positives. CWD prions were detected in feces, urine, and saliva as early as 6 months postinfection. More frequent and consistent shedding was observed in deer homozygous for glycine at prion protein gene codon 96 than in deer expressing alternate genotypes. Our findings demonstrate that improved amplification methods can be used to identify early antemortem CWD prion shedding, which might aid in disease surveillance of cervids.
Collapse
|
13
|
Frese AJ, Greenlee MHW, Bian J, Greenlee JJ. Transmission of classical scrapie using lymph node inoculum. Res Vet Sci 2024; 176:105348. [PMID: 38970868 DOI: 10.1016/j.rvsc.2024.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Scrapie is a fatal, transmissible neurodegenerative disease that affects sheep and goats. Replication of PrPSc in the lymphoid tissue allows for the scrapie agent to be shed into the environment. Brain and retropharyngeal lymph node (RPLN) from a sheep inoculated with the classical scrapie agent was used to compare infectivity of these tissues. Nine Cheviot sheep were used in this study, randomly assigned into two groups based on inocula. Group one (n = 4) received 1 mL of 10% brain homogenate and consisted of all VRQ/VRQ PRNP genotypes. Group two (n = 5) had three sheep receive 1 mL of a 10% RPLN homogenate (13-7), and two sheep receive 0.5 mL of a 10% RPLN homogenate (13-7) because of availability. Sheep in group two were also VRQ/VRQ genotyped. Brain and lymph tissues were tested by histopathology, immunohistochemistry, western blot, enzyme immunoassay, and conformational stability for PrPSc accumulation. Both groups displayed clinical signs of ataxia, moribund, head tremors, circling, and lethargy prior to euthanizing at an average of 16.2 mpi (months post inoculation) (group one) or 19.56 mpi (group two). Additionally, brainstem tissue from both groups displayed the same apparent molecular mass by western blot examination. Spongiform lesion profiling and PrPSc accumulation in brain and lymph tissues were similar in both groups. Conformational stability results displayed no significant difference in obex or RPLN tissue. Overall, these data suggest lymph nodes containing the classical scrapie agent are infectious to sheep, aiding in the understanding of sheep scrapie transmission.
Collapse
Affiliation(s)
- Alexis J Frese
- Department of Biomedical Sciences, Iowa State University, College of Veterinary Medicine, Ames, IA, USA; Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA.
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University, College of Veterinary Medicine, Ames, IA, USA.
| | - Jifeng Bian
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA.
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, IA, USA.
| |
Collapse
|
14
|
Mierkiewicz M, Dzikowski A, Anusz K. CWD as a New Health Threat in Europe and the Adequacy and Effectiveness of Instruments of Legal Response from a Comparative Legal Perspective. Animals (Basel) 2024; 14:2027. [PMID: 39061487 PMCID: PMC11273877 DOI: 10.3390/ani14142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD) affects wild and farmed cervids. The increasing number of cases in Europe, the resistance of prions to external conditions, and the persistence period threaten not only wild cervid populations but also the economy. The possible zoonotic potential of CWD is of growing concern. CWD is a relevant issue as far as the idea of "one health" is concerned, which is a fundamental principle of European veterinary law. Methods of legal text analysis and interpretation are used for this comparative legal study. Research reveals that countries struggling to tackle CWD employ different normative approaches to the problem and use different control and eradication schemes. The results of this study indicate that it is reasonable to issue uniform regulations in the European Union at the common, rather than national, level. The European legislation should creatively draw on the experience of North American countries that have been struggling with the discussed disease for a long time.
Collapse
Affiliation(s)
| | - Andrzej Dzikowski
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-787 Warsaw, Poland; (M.M.); (K.A.)
| | | |
Collapse
|
15
|
Pereira JC, Gonçalves-Anjo N, Orge L, Pires MA, Rocha S, Figueira L, Matos AC, Silva J, Mendonça P, Carvalho P, Tavares P, Lima C, Alves A, Esteves A, Pinto ML, Pires I, Gama A, Sargo R, Silva F, Seixas F, Vieira-Pinto M, Bastos E. Estimating sequence diversity of prion protein gene ( PRNP) in Portuguese populations of two cervid species: red deer and fallow deer. Prion 2023; 17:75-81. [PMID: 36945178 PMCID: PMC10038017 DOI: 10.1080/19336896.2023.2191540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Among the transmissible spongiform encephalopathies (TSEs), chronic wasting disease (CWD) in cervids is now a rising concern in wildlife within Europe, after the detection of the first case in Norway in 2016, in a wild reindeer and until June 2022 a total of 34 cases were described in Norway, Sweden and Finland. The definite diagnosis is post-mortem, performed in target areas of the brain and lymph nodes. Samples are first screened using a rapid test and, if positive, confirmed by immunohistochemistry and Western immunoblotting. The study of the genetics of the prion protein gene, PRNP, has been proved to be a valuable tool for determining the relative susceptibility to TSEs. In the present study, the exon 3 of PRNP gene of 143 samples from red deer (Cervus elaphus) and fallow deer (Dama dama) of Portugal was analysed. Three single nucleotide polymorphisms (SNPs) were found in red deer - codon A136A, codon T98A, codon Q226E - and no sequence variation was detected in fallow deer. The low genetic diversity found in our samples is compatible with previous studies in Europe. The comparison with results from North America suggests that the free-ranging deer from our study may present susceptibility to CWD, although lack of experimental data and the necessity of continuous survey are necessary to evaluate these populations.
Collapse
Affiliation(s)
- Jorge C Pereira
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Nuno Gonçalves-Anjo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Leonor Orge
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Maria A Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Sara Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Figueira
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - Ana C Matos
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - João Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Mendonça
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paulo Carvalho
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Carla Lima
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Anabela Alves
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Maria L Pinto
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Roberto Sargo
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Estela Bastos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
16
|
Chang SC, Hannaoui S, Arifin MI, Huang YH, Tang X, Wille H, Gilch S. Propagation of PrP Sc in mice reveals impact of aggregate composition on prion disease pathogenesis. Commun Biol 2023; 6:1162. [PMID: 37964018 PMCID: PMC10645910 DOI: 10.1038/s42003-023-05541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Infectious prions consist of PrPSc, a misfolded, aggregation-prone isoform of the host's prion protein. PrPSc assemblies encode distinct biochemical and biological properties. They harbor a specific profile of PrPSc species, from small oligomers to fibrils in different ratios, where the highest infectivity aligns with oligomeric particles. To investigate the impact of PrPSc aggregate complexity on prion propagation, biochemical properties, and disease pathogenesis, we fractionated elk prions by sedimentation velocity centrifugation, followed by sub-passages of individual fractions in cervidized mice. Upon first passage, different fractions generated PrPSc with distinct biochemical, biophysical, and neuropathological profiles. Notably, low or high molecular weight PrPSc aggregates caused different clinical signs of hyperexcitability or lethargy, respectively, which were retained over passage, whereas other properties converged. Our findings suggest that PrPSc quaternary structure determines an initial selection of a specific replication environment, resulting in transmissible features that are independent of PrPSc biochemical and biophysical properties.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan-Hung Huang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xinli Tang
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Thackray AM, McNulty EE, Nalls AV, Cardova A, Tran L, Telling G, Benestad SL, Gilch S, Mathiason CK, Bujdoso R. Genetic modulation of CWD prion propagation in cervid PrP Drosophila. Biochem J 2023; 480:1485-1501. [PMID: 37747806 PMCID: PMC10586768 DOI: 10.1042/bcj20230247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Erin E. McNulty
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Amy V. Nalls
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Alzbeta Cardova
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Linh Tran
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Glenn Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Sylvie L. Benestad
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Candace K. Mathiason
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| |
Collapse
|
18
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
19
|
Zorkóczy OK, Turi O, Wagenhoffer Z, Ózsvári L, Lehotzky P, Pádár Z, Zenke P. A Selection of 14 Tetrameric Microsatellite Markers for Genetic Investigations in Fallow Deer ( Dama dama). Animals (Basel) 2023; 13:2083. [PMID: 37443886 DOI: 10.3390/ani13132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The fallow deer (Dama dama) represents significant game management value globally, and human activities are significantly impacting the species. Besides the positive effects, these activities can threaten its existence, health, and value. The aim of the authors was to develop a tetranucleotide microsatellite panel that could be clearly interpreted and used for genetic testing of fallow deer. Such a panel did not exist until now and could be particularly useful in the field of conservation genetics and forensics. A total of 99 tetrameric microsatellites, originally designed for related deer species, were tested on 20 fallow deer individuals from five Hungarian sampling areas. Original and newly designed primers were used to amplify the microsatellite regions using previously published or optimized PCR protocols. The lengths and sequences of specific amplicons were detected using capillary electrophoresis, and the rate of polymorphism was determined. Altogether, 80 markers provided PCR products of adequate quality and quantity. Among them, 15 markers proved to be polymorphic (2-5 alleles/locus), and 14 tetrameric markers were selected for further analysis. Statistical calculations showed that the selected polymorphic microsatellites can potentially enable key individualization in many areas of wildlife and population genetics, thus protecting the species.
Collapse
Affiliation(s)
- Orsolya Krisztina Zorkóczy
- Nutrition and Laboratory Animal Science, Department of Animal Breeding, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Orsolya Turi
- Nutrition and Laboratory Animal Science, Department of Animal Breeding, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Zsombor Wagenhoffer
- Nutrition and Laboratory Animal Science, Department of Animal Breeding, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - László Ózsvári
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Pál Lehotzky
- Hungarian Hunters' National Chamber, H-1027 Budapest, Hungary
| | - Zsolt Pádár
- Department of Criminal Sciences, Ferenc Deák Faculty of Law and Political Sciences, University of Győr, H-9026 Győr, Hungary
| | - Petra Zenke
- Nutrition and Laboratory Animal Science, Department of Animal Breeding, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| |
Collapse
|
20
|
Lee YR, Kim YC, Won SY, Jeong MJ, Park KJ, Park HC, Roh IS, Kang HE, Sohn HJ, Jeong BH. Identification of a novel risk factor for chronic wasting disease (CWD) in elk: S100G single nucleotide polymorphism (SNP) of the prion protein gene (PRNP). Vet Res 2023; 54:48. [PMID: 37328789 DOI: 10.1186/s13567-023-01177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/06/2023] [Indexed: 06/18/2023] Open
Abstract
Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.
Collapse
Affiliation(s)
- Yu-Ran Lee
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, 36729, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - In-Soon Roh
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
21
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
22
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
23
|
Raudabaugh DB, Ishida Y, Haley NJ, Brown WM, Novakofski J, Roca AL, Mateus-Pinilla NE. County-wide assessments of Illinois white-tailed deer (Odocoileus virginianus) prion protein gene variation using improved primers and potential implications for management. PLoS One 2022; 17:e0274640. [PMID: 36449540 PMCID: PMC9710747 DOI: 10.1371/journal.pone.0274640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal, highly infectious prion disease that affects captive and wild cervids. Chronic wasting disease is the only known transmissible spongiform encephalopathy affecting free-ranging wildlife. In CWD-positive deer, some haplotypes of the prion protein gene PRNP are detected at lower frequencies as compared to CWD-negative deer, as are some variants of the prion protein PrP. Here, we examined wild, hunter-harvested CWD-negative white-tailed deer (Odocoileus virginianus) to determine whether there were geographical or temporal differences in the PRNP haplotypes, PRNP diplotypes, PrP proteoforms, and in the proportion of deer with at least one protective haplotype. We sampled 96-100 hunter-harvested deer per county at two time points in the Illinois counties of Jo Daviess, LaSalle, and Winnebago, chosen based on their geographic locations and known occurrence of CWD. The entire coding region of PRNP was sequenced, with haplotypes, diplotypes, and PrP proteoforms inferred. Across time, in Winnebago there was a significant increase in PrP proteoform F (p = 0.034), which is associated with a lower vulnerability to CWD. In every county, there was an increase over time in the frequency of deer carrying at least one protective haplotype to CWD, with a significant increase (p = 0.02) in the Jo Daviess County CWD infected region. We also found that primer combination was important as there was an 18.7% difference in the number of the deer identified as homozygous depending on primer usage. Current Illinois state management practices continue to remove CWD infected deer from locally infected areas helping to keep CWD prevalence low. Nonetheless, continued research on spatial and temporal changes in PRNP haplotypes, PrP proteoforms, and levels of deer vulnerability among Illinois deer will be important for the management of CWD within the state of Illinois and beyond.
Collapse
Affiliation(s)
- Daniel B. Raudabaugh
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
- * E-mail: (NEMP); (DBR)
| | - Yasuko Ishida
- Department of Animal Science, University of Illinois, Urbana, Illinois, United States of America
| | - Nicholas J. Haley
- Department of Microbiology and Immunology, Midwestern University, Glendale, AZ, United States of America
| | - William M. Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Jan Novakofski
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
- Department of Animal Science, University of Illinois, Urbana, Illinois, United States of America
| | - Alfred L. Roca
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
- Department of Animal Science, University of Illinois, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nohra E. Mateus-Pinilla
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
- Department of Animal Science, University of Illinois, Urbana, Illinois, United States of America
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (NEMP); (DBR)
| |
Collapse
|
24
|
Kim YC, Won SY, Jeong BH. No association of prion protein gene ( PRNP) polymorphisms with susceptibility to the pandemic 2009 swine flu. Mol Cell Toxicol 2022; 19:1-5. [PMID: 36408482 PMCID: PMC9660098 DOI: 10.1007/s13273-022-00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Background The pandemic 2009 swine flu is a highly infectious respiratory disorder caused by H1N1 influenza A viruses. A recent study reported that knockout of the prion protein gene (PRNP) induced susceptibility and lethality in influenza A virus-infected mice. Objective Thus, we examined the association between genetic variations of the PRNP gene and susceptibility to pandemic 2009 swine flu. Results We did not find an association between PRNP polymorphisms and susceptibility to pandemic 2009 swine flu. Conclusions To the best of our knowledge, this was the first evaluation of the association between PRNP polymorphisms and vulnerability to pandemic 2009 swine flu.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
25
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
26
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
27
|
Gilch S. Chronic wasting disease - A prion disease through a One Health lens. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2022; 63:431-433. [PMID: 35368398 PMCID: PMC8922376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Sabine Gilch
- Dr. Gilch is an Associate Professor and Canada Research Chair in Prion Disease Research in the Department of Comparative Biology and Experimental Medicine in the Faculty of Veterinary Medicine, University of Calgary
| |
Collapse
|
28
|
Roh IS, Kim YC, Won SY, Jeong MJ, Park KJ, Park HC, Lee YR, Kang HE, Sohn HJ, Jeong BH. The first report of a strong association between genetic polymorphisms of the prion protein gene (PRNP) and susceptibility to chronic wasting disease (CWD) in sika deer (Cervus nippon). Transbound Emerg Dis 2022; 69:e2073-e2083. [PMID: 35349210 DOI: 10.1111/tbed.14543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Prion diseases are incurable neurodegenerative disorders caused by proteinase K-resistant prion protein (PrPSc ) derived from normal prion protein (PrPC ) encoded by the prion protein gene (PRNP). Although the cervid PRNP gene plays a pivotal role in the pathological mechanism of chronic wasting disease (CWD), there is no existing association analysis between susceptibility to CWD and genetic polymorphisms of the PRNP gene in sika deer. We investigated genetic polymorphisms of the PRNP gene using amplicon sequencing in sika deer. In addition, to identify a genetic susceptibility factor, we compared genotype, allele and haplotype frequencies of the PRNP gene between CWD-positive and CWD-negative sika deer. Furthermore, to assess the effect of the genetic polymorphisms on sika deer prion protein (PrP), we performed in silico analysis using PolyPhen-2, PROVEAN and AMYCO. Finally, we analyzed the tertiary structure and electrostatic potential of sika deer PrP based on single nucleotide polymorphisms (SNPs) using the SWISS-MODEL and Swiss-PdbViewer programs. We found a total of 24 SNPs of the PRNP gene including 22 novel SNPs (10 synonymous SNPs and 12 non-synonymous SNPs) in sika deer. Among the non-synonymous SNPs, we found a strong association of the susceptibility to CWD with c.56G>A (Ser19Asn). In addition, we found that c.56G>A (Ser19Asn), c.296A>T (His99Leu) and c.560T>A (Val187Asp) were predicted to have damaging effects on sika deer PrP. Furthermore, we observed significant alterations in the electrostatic potential of sika deer PrP by genetic polymorphisms of the 187Asp allele. To the best of our knowledge, this was the first association study between genetic polymorphisms of the PRNP gene and susceptibility to CWD in sika deer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- In-Soon Roh
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yu-Ran Lee
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
29
|
Roh IS, Kim YC, Won SY, Park KJ, Park HC, Hwang JY, Kang HE, Sohn HJ, Jeong BH. Association Study of the M132L Single Nucleotide Polymorphism With Susceptibility to Chronic Wasting Disease in Korean Elk: A Meta-Analysis. Front Vet Sci 2022; 8:804325. [PMID: 35097050 PMCID: PMC8795614 DOI: 10.3389/fvets.2021.804325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a deleterious brain proteinopathy caused by a pathogenic form of prion protein (PrPSc), which is converted from a benign form of prion protein (PrPC) encoded by the prion protein gene (PRNP). In elk, the M132L single nucleotide polymorphism (SNP) of the PRNP gene likely plays a pivotal role in susceptibility to CWD. However, the association of the M132L SNP with susceptibility to CWD has not been evaluated in Korean elk to date. To estimate the association of the M132L SNP with susceptibility to CWD in Korean elk, we investigated the genotype and allele frequencies of the M132L SNP by amplicon sequencing and performed association analysis between CWD-positive and CWD-negative elk. In addition, we performed a meta-analysis to evaluate the association between the M132L SNP and susceptibility to CWD in quantitatively synthesized elk populations. Furthermore, we estimated the effect of the M132L SNP on elk PrP using in silico programs, including PolyPhen-2, PROVEAN, AMYCO and Swiss-PdbViewer. We did not identify a significant association between the M132L SNP of PRNP and susceptibility to CWD in Korean elk. The meta-analysis also did not identify a strong association between the M132L SNP of PRNP and susceptibility to CWD in quantitatively synthesized elk populations. Furthermore, we did not observe significant changes in structure, amyloid propensity or electrostatic potential based on the M132L SNP in elk PrP. To the best of our knowledge, this was the first report of an association analysis and meta-analysis in Korean elk and quantitatively synthesized elk populations, respectively.
Collapse
Affiliation(s)
- In-Soon Roh
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Kyung-Je Park
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hoo-Chang Park
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Ji-Yong Hwang
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hae-Eun Kang
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
- Hyun-Joo Sohn
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Byung-Hoon Jeong
| |
Collapse
|
30
|
Fisher MC, Prioreschi RA, Wolfe LL, Runge JP, Griffin KA, Swanson HM, Miller MW. Apparent stability masks underlying change in a mule deer herd with unmanaged chronic wasting disease. Commun Biol 2022; 5:15. [PMID: 35017638 PMCID: PMC8752592 DOI: 10.1038/s42003-021-02951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
The contagious prion disease "chronic wasting disease" (CWD) infects mule deer (Odocoileus hemionus) and related species. Unchecked epidemics raise ecological, socioeconomic, and public health concerns. Prion infection shortens a deer's lifespan, and when prevalence (proportion of adults infected) becomes sufficiently high CWD can affect herd dynamics. Understanding population responses over time is key to forecasting long-term impacts. Here we describe unexpected stability in prevalence and abundance in a mule deer herd where CWD has been left unmanaged. High apparent prevalence (~30%) since at least 2005 likely drove observed changes in the proportion and age distribution of wild-type native prion protein (PRNP) gene homozygotes among deer sampled. Predation by mountain lions (Puma concolor) may be helping keep CWD in check. Despite stable appearances, prion disease nonetheless impairs adult survival and likely resilience in this deer herd, limiting its potential for growth despite refuge from hunter harvest and favorable habitat and winter conditions.
Collapse
Affiliation(s)
- Mark C Fisher
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Ryan A Prioreschi
- City of Boulder Open Space and Mountain Parks, 66 South Cherryvale Road, Boulder, Colorado, 80302, USA
| | - Lisa L Wolfe
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Jonathan P Runge
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Karen A Griffin
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA
| | - Heather M Swanson
- City of Boulder Open Space and Mountain Parks, 66 South Cherryvale Road, Boulder, Colorado, 80302, USA
| | - Michael W Miller
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado, 80521-2153, USA.
| |
Collapse
|
31
|
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathol 2022; 144:767-784. [PMID: 35996016 PMCID: PMC9468132 DOI: 10.1007/s00401-022-02482-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Collapse
|
32
|
Perrin-Stowe TIN, Ishida Y, Terrill EE, Beetem D, Ryder OA, Novakofski JE, Mateus-Pinilla NE, Roca AL. Variation in the PRNP gene of Pere David’s deer (Elaphurus davidianus) may impact genetic vulnerability to chronic wasting disease. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Suzuki A, Sawada K, Erdenebat T, Yamasaki T, Tobiume M, Suga K, Horiuchi M. Monitoring of chronic wasting disease using real-time quaking-induced conversion assay in Japan. J Vet Med Sci 2021; 83:1735-1739. [PMID: 34556606 PMCID: PMC8636886 DOI: 10.1292/jvms.21-0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There has been no report on Chronic wasting disease (CWD) cases in Japan to date; however, there is concern about the geographic spread of CWD. To clarify the CWD status in Japan, we conducted CWD monitoring using real-time quaking-induced conversion (RT-QuIC) assay which can detect the low level of CWD prions. A total of 690 obex samples collected from sika deer and Reeves's muntjac in Hokkaido and Honshu was tested for CWD prions. No CWD-positive cases were found, suggesting that CWD is nonexistent in Japan. Our results also indicate that RT-QuIC assay is useful for continuous monitoring of CWD. Furthermore, nucleotide sequence analysis of the PrP gene revealed sika deer in Japan harbor CWD susceptible allele.
Collapse
Affiliation(s)
- Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kazuhei Sawada
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Temuulen Erdenebat
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Takeshi Yamasaki
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kinuyo Suga
- Hyogo Prefecture Nishiharima Meat Hygiene Inspection Office, Shingu-cho, Tatsuno, Hyogo 679-4322, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
34
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
35
|
Selective Breeding for Disease-Resistant PRNP Variants to Manage Chronic Wasting Disease in Farmed Whitetail Deer. Genes (Basel) 2021; 12:genes12091396. [PMID: 34573378 PMCID: PMC8471411 DOI: 10.3390/genes12091396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy (TSE) of cervids caused by a misfolded variant of the normal cellular prion protein, and it is closely related to sheep scrapie. Variations in a host's prion gene, PRNP, and its primary protein structure dramatically affect susceptibility to specific prion disorders, and breeding for PRNP variants that prevent scrapie infection has led to steep declines in the disease in North American and European sheep. While resistant alleles have been identified in cervids, a PRNP variant that completely prevents CWD has not yet been identified. Thus, control of the disease in farmed herds traditionally relies on quarantine and depopulation. In CWD-endemic areas, depopulation of private herds becomes challenging to justify, leading to opportunities to manage the disease in situ. We developed a selective breeding program for farmed white-tailed deer in a high-prevalence CWD-endemic area which focused on reducing frequencies of highly susceptible PRNP variants and introducing animals with less susceptible variants. With the use of newly developed primers, we found that breeding followed predictable Mendelian inheritance, and early data support our project's utility in reducing CWD prevalence. This project represents a novel approach to CWD management, with future efforts building on these findings.
Collapse
|
36
|
Kim YC, Park KJ, Hwang JY, Park HC, Kang HE, Sohn HJ, Jeong BH. In-depth examination of PrP Sc in Holstein cattle carrying the E211K somatic mutation of the bovine prion protein gene (PRNP). Transbound Emerg Dis 2021; 69:e356-e361. [PMID: 34470082 DOI: 10.1111/tbed.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Prion diseases are transmissible spongiform encephalopathies caused by deleterious prion protein (PrPSc ) derived from normal prion protein (PrPC ), which is encoded by the prion protein gene (PRNP). We performed an in-depth examination to detect PrPSc by using enzyme immunoassay (EIA), real-time quaking-induced conversion reactions (RT-QuIC) and protein misfolding cyclic amplification (PMCA) in nine brain tissues derived from three Holstein cattle carrying the E211K somatic mutation of the bovine PRNP gene. The EIA, RT-QuIC and PMCA analyses were not able to detect the PrPSc band in any tested samples. To the best of our knowledge, this report is the first to describe an in-depth examination of PrPSc in cattle carrying the E211K somatic mutation of the bovine PRNP gene.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ji-Yong Hwang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|