1
|
Ying J, Wen S, Cai Y, Ye Y, Li L, Qian R. Functional analysis of AobHLH88 involved in anthocyanin synthesis using multi-omics data in Asparagus officinalis. Int J Biol Macromol 2025; 312:144093. [PMID: 40354853 DOI: 10.1016/j.ijbiomac.2025.144093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Basic helix loop helix (bHLH) proteins play critical functions in various aspects of plant growth and development, especially in anthocyanin synthesis. Although the Asparagus genome has been sequenced, there is limited information on the bHLH gene family within this species. This study identifies 96 AobHLH transcription factor genes in the Asparagus genome. Chromosomal localization indicated 91 AobHLHs across nine chromosomes. Phylogenetic analysis categorized them into nine distinct subfamilies, each with specific motif characteristics. Synteny analysis showed that both dispersed duplication and whole-genome or segmental duplications contributed to the expansion of AobHLHs, identifying 19 orthologous pairs between Asparagus and Arabidopsis. Differential expression analysis indicated a notable increase in AobHLH10, AobHLH18, and AobHLH88 gene expression during anthocyanin synthesis, as shown in Asparagus RNA-seq data. Among them, AobHLH88 displayed the higher differential expression pattern in 'Purple Passion'. Subcellular localization analysis displayed that AobHLH88 was localized in the nucleus. Furthermore, overexpression of AobHLH88 in tobacco plants highlighted its significant role in enhancing anthocyanin accumulation in Asparagus spear color. Collectively, this in-depth identification and characterization of AobHLH gene family members establish a foundational resource for future investigations on the molecular mechanism involvement of bHLH genes in Asparagus.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Lebin Li
- Wenzhou Shenlu Seeds Co., Ltd, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China.
| |
Collapse
|
2
|
Lv S, Yang Y, Zhang X, He Y, Wang G, Hong N, Wang L. PcMYB44 regulated host resistance to Botryosphaeria dothidea through activation of lignin biosynthesis and disease-resistance gene expression in pear. Int J Biol Macromol 2025; 306:141255. [PMID: 39978501 DOI: 10.1016/j.ijbiomac.2025.141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Pear ring rot disease, the pathogen of Botryosphaeria dothidea causes significant threat to the healthy development of the pear industry, therefore the exploration of disease-resistant gene resources is crucial for disease prevention and control. Members of the R2R3-MYB subfamily play important roles in regulating pathogen resistance in plants, however the gene function in regulating host resistance in pear remains unclear. In this study, the role of PcMYB44 were investigated in regulating host resistance disease in pear calli using both forward and reverse genetic approaches. Overexpression of PcMYB44 positively regulates the disease resistance, whereas knockout of PcMYB44 results in a phenotype with decreased resistance. Our results further demonstrated that PcMYB44 could directly affect lignin content and resistance to fungal diseases by regulating the PcmiR397-PcLACs module and lignin biosynthesis gene expression levels. Additionally, overexpressing PcMYB44 also elevated expression levels of key genes of JA/SA/ET pathway. The obtained results revealed that PcMYB44 regulated host resistance to ring rot disease through synergistic regulation the lignification and activating disease-resistance gene expression of JA/SA/ET defense pathways as a underlying secondary mechanism, which provide valuable genetic resources for molecular breeding for disease resistance.
Collapse
Affiliation(s)
- Shamei Lv
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuekun Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang Fruit Tree Research Institute, Shijiazhuang 050061, China
| | - Xiaoyan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Yuan M, Wei X, Peng F, Wang Q, Zhou L, Wang Y. PdGSTF1, PdGSTU3, and PdGSTU5 are essential for the accumulation of isosalipurposide and other pigments in peonies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70178. [PMID: 40296670 DOI: 10.1111/tpj.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Isosalipurposide (ISP) is a critical substance that gives peony its yellow phenotype; however, studies on its synthesis and transport in petals have not yet been conducted. During plant coloration, the transport of pigments is closely related to glutathione S-transferases (GSTs). To this end, we performed the metabolomic analysis of petals from three different developmental stages of Paeonia delavayi var. lutea and combined it with transcriptomic data to comprehensively characterize the GST gene family. We identified 42 GST genes from P. delavayi var. lutea through transcriptome data mining. Among these, the molecular docking results of PdGSTF1, PdGSTU3, and PdGSTU5 showed that they have the ability to bind multiple flavonoids. Virus-induced gene silencing (VIGS) experiments and overexpression experiments demonstrated that PdGSTF1, PdGSTU3, and PdGSTU5 can not only transport ISP but also transfer various pigments, including flavone glycosides, flavonol glycosides, and anthocyanin glycosides. Additionally, through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, PdMYB2 was identified as a protein interacting with PdGSTF1 and PdGSTU3, co-participating in the transport of flavonoids. Our research findings have elucidated the roles of key candidate PdGSTs in pigment transportation in P. delavayi var. lutea and uncovered their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinrui Wei
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
4
|
Wen X, Lee CW, Kim S, Hwang JU, Choi YH, Han SK, Lee E, Yoon TH, Cha DG, Lee S, Son H, Son J, Jung SH, Lee J, Lim H, Chen H, Kim JK, Kwak JM. MYB74 transcription factor guides de novo specification of epidermal cells in the abscission zone of Arabidopsis. NATURE PLANTS 2025; 11:849-860. [PMID: 40181105 DOI: 10.1038/s41477-025-01976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The waxy cuticle layer is crucial for plant defence, growth and survival, and is produced by epidermal cells, which were thought to be specified only during embryogenesis. New surface cells are exposed during abscission, by which leaves, fruits, flowers and seeds are shed. Recent work has shown that nonepidermal residuum cells (RECs) can accumulate a protective cuticle layer after abscission, implying the potential de novo specification of epidermal cells by transdifferentiation. However, it remains unknown how this process occurs and what advantage this mechanism may offer over the other surface protection alternative, the wound healing pathways. Here we followed this transdifferentiation process with single-cell RNA sequencing analysis of RECs, showing that nonepidermal RECs transdifferentiate into epidermal cells through three distinct stages. During this vulnerable process, which involves a transient period when the protective layer is not yet formed, stress genes that protect the plant from environmental exposure are expressed before epidermis formation, ultimately facilitating cuticle development. We identify a central role for the transcription factor MYB74 in directing the transdifferentiation. In contrast to alternative protective mechanisms, our results suggest that de novo epidermal specification supports the subsequent growth of fruit at the abscission site. Altogether, we reveal a developmental programme by which plants use a transdifferentiation pathway to protect the plant while promoting growth.
Collapse
Affiliation(s)
- Xiaohong Wen
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Chan Woong Lee
- Department of Life Science, POSTECH, Pohang, Republic of Korea
| | - Seonghwan Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jae-Ung Hwang
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Science, POSTECH, Pohang, Republic of Korea
| | - Soon-Ki Han
- Department of Biological Science, Ajou University, Suwon, Republic of Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Taek-Han Yoon
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Aptamer Sciences Inc., Seongnam, Republic of Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Seulbee Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Heejeong Son
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jiwon Son
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Su Hyun Jung
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Heejin Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Huize Chen
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan, People's Republic of China
- School of Life Sciences, Shanxi Normal University, Taiyuan, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Science, POSTECH, Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Zhang C, Shen M, Xu Y, Sun Y, Sun L, Fan Y, Li H, Lu H. SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana. Int J Biol Macromol 2025; 295:139495. [PMID: 39788248 DOI: 10.1016/j.ijbiomac.2025.139495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells. In contrast, SCPL48 overexpression resulted in increased vessel cell abundance and accelerated degradation of vessel cell contents, suggesting its critical role in xylem vessel cell differentiation. Notably, SCPL48 expression was significantly up-regulated in response to ABA treatment and drought stress, with SCPL48 overexpression lines demonstrating enhanced drought resistance. Further molecular analyses revealed that SCPL48 was directly targeted and transcriptionally activated by key SCW regulators VND6, and MYB46. Furthermore, the expression of PCD-related protease genes, including XCP1, XSP1, RNS3, MC9, γVPE, and CEP1, showed compensatory changes in both scpl48 mutants and SCPL48 overexpression lines. Collectively, our findings demonstrate that SCPL48 functions as a key regulator in xylem vessel cell differentiation, PCD and drought stress responses.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxiao Shen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaoming Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Leiqian Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yawei Fan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Zhang D, Zhou H, Zhang Y, Zhao Y, Zhang Y, Feng X, Lin H. Diverse roles of MYB transcription factors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:539-562. [PMID: 40013511 DOI: 10.1111/jipb.13869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
Collapse
Affiliation(s)
- Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Huapeng Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yiyi Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xixian Feng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
7
|
Rai A, Skårn MN, Elameen A, Tengs T, Amundsen MR, Bjorå OS, Haugland LK, Yakovlev IA, Brurberg MB, Thorstensen T. CRISPR-Cas9-mediated deletions of FvMYB46 in Fragaria vesca reveal its role in regulation of fruit set and phenylpropanoid biosynthesis. BMC PLANT BIOLOGY 2025; 25:256. [PMID: 40000946 PMCID: PMC11853751 DOI: 10.1186/s12870-024-06041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025]
Abstract
The phenylpropanoid pathway, regulated by transcription factors of the MYB family, produces secondary metabolites that play important roles in fertilization and early phase of fruit development. The MYB46 transcription factor is a key regulator of secondary cell wall structure, lignin and flavonoid biosynthesis in many plants, but little is known about its activity in flowers and berries in F. vesca. For functional analysis of FvMYB46, we designed a CRISPR-Cas9 construct with an endogenous F. vesca-specific U6 promoter for efficient and specific expression of two gRNAs targeting the first exon of FvMYB46. This generated mutants with an in-frame 81-bp deletion of the first conserved MYB domain or an out-of-frame 82-bp deletion potentially knocking out gene function. In both types of mutant plants, pollen germination and fruit set were significantly reduced compared to wild type. Transcriptomic analysis of flowers revealed that FvMYB46 positively regulates the expression of genes involved in processes like xylan biosynthesis and metabolism, homeostasis of reactive oxygen species (ROS) and the phenylpropanoid pathway, including secondary cell wall biosynthesis and flavonoid biosynthesis. Genes regulating carbohydrate metabolism and signalling were also deregulated, suggesting that FvMYB46 might regulate the crosstalk between carbohydrate metabolism and phenylpropanoid biosynthesis. In the FvMYB46-mutant flowers, the flavanol and flavan-3-ol contents, especially epicatechin, quercetin-glucoside and kaempferol-3-coumaroylhexoside, were reduced, and we observed a local reduction in the lignin content in the anthers. Together, these results suggest that FvMYB46 controls fertility and efficient fruit set by regulating the cell wall structure, flavonoid biosynthesis, carbohydrate metabolism, and sugar and ROS signalling in flowers and early fruit development in F. vesca.
Collapse
Affiliation(s)
- Arti Rai
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Magne Nordang Skårn
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Mathias Rudolf Amundsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Oskar S Bjorå
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lisa K Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Igor A Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| |
Collapse
|
8
|
Ye H, Gao H, Li J, Lu L, Zheng S, Wu C, Jin Y, Cao C, Zhu H, Liu S, Zhong F. Mitigating Response of SlCSE06 Induced by 2-Ethylfuran to Botrytis cinerea Infection. PLANTS (BASEL, SWITZERLAND) 2025; 14:575. [PMID: 40006834 PMCID: PMC11859901 DOI: 10.3390/plants14040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Tomato (Solanum lycopersicum L.) is a major economic vegetable crop globally, yet it is prone to gray mold disease caused by Botrytis cinerea infection during cultivation. Caffeoyl shikimate esterase (CSE) is a crucial component of the lignin biosynthesis pathway, which significantly contributes to plant stress resistance. Therefore, investigating the expression patterns of SlCSE after Botrytis cinerea infection may offer a theoretical foundation for breeding resistant tomato varieties. In this study, 11 SlCSE family members were identified from the tomato genome using bioinformatics analyses. Public transcriptome databases and RT-qPCR experiments were used to analyze gene expression in tomato tissues, responses to Botrytis cinerea infection, and the temporal characteristics of the response to 2-ethylfuran treatment during infection. These experiments resulted in the identification of the key gene SlCSE06. Transgenic tomato lines that overexpressed SlCSE06 were constructed to examine their resistance levels to gray mold disease. Many SlCSE genes were upregulated when tomato fruit were infected with Botrytis cinerea during the ripening stage. Furthermore, 24 h after treatment with 2-ethylfuran, most SlCSE genes exhibited increased expression levels compared with the control group, but they exhibited significantly lower levels at other time points. Thus, 2-ethylfuran treatment may enhance the responsiveness of SlCSEs. Based on this research, SlCSE06 was identified as the key gene involved in the response to Botrytis cinerea infection. The SlCSE06-overexpressing (OE6) tomato plants exhibited a 197.94% increase in expression levels compared to the wild type (WT). Furthermore, the lignin content in OE6 was significantly higher than in WT, suggesting that the overexpression of SlCSE06 enhanced lignin formation in tomato plants. At 5 days post-inoculation with Botrytis cinerea, the lesion diameter in OE6 decreased by 31.88% relative to the WT, whereas the lignin content increased by 370.90%. Furthermore, the expression level of SlCSE06 was significantly upregulated, showing a 17.08-fold increase compared with the WT. These findings suggest that 2-ethylfuran enhances the activation of the critical tomato disease resistance gene SlCSE06 in response to gray mold stress, thereby promoting lignin deposition to mitigate further infection by Botrytis cinerea.
Collapse
Affiliation(s)
- Huilan Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongdou Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jinnian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Linye Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shilan Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chengxin Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Youliang Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chengjuan Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
| | - Haisheng Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
9
|
Qiao H, Wang Y, Shi L, Wang R, Yang Y, Wei D, Li Y, Chao K, Jia L, Liu G, Yu F, Zhang J, Yang H. Insights into Molecular Mechanism of Secondary Xylem Rapid Growth in Salix psammophila. PLANTS (BASEL, SWITZERLAND) 2025; 14:459. [PMID: 39943021 PMCID: PMC11819810 DOI: 10.3390/plants14030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Salix psammophila C. Wang & C. Y. Yang is an important windbreak and sand-fixing shrub species in Northwest China, with excellent characteristics such as resistance to drought, wind, and sand. S. psammophila needs to be stubbed flat after several years of growth to continue to grow, otherwise, its growth rate will slow down and even begin to die. To understand the genetic regulatory mechanism of secondary growth in S. psammophila, cell structure and transcriptome analysis were performed on the secondary xylem and secondary phloem of stems. The results showed that the secondary xylem and the secondary phloem of S. psammophila were well developed at 1, 2, and 3-year-old stages, and the secondary growth changes mainly occurred in the secondary xylem at the 2 to 3-year-old stage, with a faster growth rate. The CSE2 and CSE1 genes that regulate CSE (caffeoyl shikimate esterase) have high sequence similarity (92% and 93%) with the CSE2 and CSE1 genes of the genus Populus, respectively, and regulate lignin biosynthesis. Notably, the expression levels of these two genes decreased in the secondary xylem of 3-year-old S. psammophila, indicating that the rapid growth of S. psammophila may be related to lignin biosynthesis. Weighted gene co-expression network analysis (WGCNA) was utilized to screen candidate TFs and genes involved in the secondary growth processes of S. psammophila, which were categorized into six co-expression modules. A total of 79 genes were selected from these co-expression modules, and co-expression network maps of the genes were constructed. The results indicate that the secondary growth of S. psammophila was regulated by a TF regulatory network. Interestingly, PLATZ TFs were involved in the rapid secondary growth and stress tolerance in S. psammophila. This hints that S. psammophila may promote secondary growth by increasing stress tolerance.
Collapse
Affiliation(s)
- Hongxia Qiao
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Q.); (D.W.); (Y.L.); (K.C.)
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (G.L.)
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing 100097, China
| | - Yunhan Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (G.L.)
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing 100097, China
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Bejing 102206, China
| | - Lin Shi
- Ordos Research Institute of Forestry and Grassland Science, Ordos 017000, China;
| | - Ruiping Wang
- Inner Mongolia Ordos Forestry and Grassland Business Development Center, Ordos 017000, China; (R.W.); (Y.Y.); (L.J.)
| | - Yeru Yang
- Inner Mongolia Ordos Forestry and Grassland Business Development Center, Ordos 017000, China; (R.W.); (Y.Y.); (L.J.)
| | - Dongshan Wei
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Q.); (D.W.); (Y.L.); (K.C.)
| | - Yingjie Li
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Q.); (D.W.); (Y.L.); (K.C.)
| | - Kairui Chao
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Q.); (D.W.); (Y.L.); (K.C.)
| | - Li Jia
- Inner Mongolia Ordos Forestry and Grassland Business Development Center, Ordos 017000, China; (R.W.); (Y.Y.); (L.J.)
| | - Guiming Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (G.L.)
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing 100097, China
| | - Fengqiang Yu
- Inner Mongolia Ordos Forestry and Grassland Business Development Center, Ordos 017000, China; (R.W.); (Y.Y.); (L.J.)
| | - Jiewei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.W.); (G.L.)
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing 100097, China
| | - Haifeng Yang
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Q.); (D.W.); (Y.L.); (K.C.)
| |
Collapse
|
10
|
Liang SM, Abeer H, Fathi Abd Allah E, Wu QS. Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica. TREE PHYSIOLOGY 2025; 45:tpaf013. [PMID: 39883080 DOI: 10.1093/treephys/tpaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Root-associated endophytic fungi can create symbiotic relationships with trees to enhance stress tolerance, but the underlying mechanisms, especially with regard to waterlogging tolerance, remain unclear. This study aimed to elucidate the effects of Funneliformis mosseae and Serendipita indica on the growth, root cross-section structure, and root transcriptional responses of peach under waterlogging stress, with a focus on polyamine and proline metabolism. Genes and transcription factors associated with secondary cell wall biosynthesis were selected, and their expression profiles were analyzed. Funneliformis mosseae significantly increased the height, stem diameter and leaf number of peach seedlings subjected to 2 weeks of waterlogging stress, whereas S. indica only significantly improved stem diameter. Both fungal species substantially increased root diameter, stele diameter, the number of late metaxylem inside the stele and late metaxylem diameter, thus improving aeration within inoculated roots under waterlogging stress. Transcriptomic analysis of waterlogged roots identified 5425 and 5646 differentially expressed genes following inoculation with F. mosseae and S. indica, respectively. The arginine and proline metabolism and arginine biosynthesis pathways were enriched following fungal inoculations. Both fungi reduced the conversion of glutamate and ornithine for proline synthesis. However, S. indica promoted peptide-to-proline conversion by up-regulating the expression of PIPs. Although both fungi promoted the expression of genes involved in arginine and ornithine synthesis pathway, only F. mosseae led to increased levels of arginine and ornithine. Additionally, F. mosseae promoted the accumulation of putrescine and maintained polyamine homeostasis by down-regulating PAO2 and SAMDC. Moreover, F. mosseae facilitated the metabolism of cadaverine. In conclusion, both F. mosseae and S. indica formed symbiotic relationships with peach plants, with F. mosseae primarily improving polyamine accumulation and S. indica predominantly facilitating proline accumulation for enhanced waterlogging resistance.
Collapse
Affiliation(s)
- Sheng-Min Liang
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Hashem Abeer
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
| | - Qiang-Sheng Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
11
|
Amigo NL, Arias LA, Marchetti F, D'Ippólito S, Cascallares M, Lorenzani S, Frik J, Lombardo MC, Terrile MC, Casalongue CA, Pagnussat GC, Fiol DF. The DC1 domain protein Vacuoleless Gametophytes regulates stamen development in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109372. [PMID: 39647230 DOI: 10.1016/j.plaphy.2024.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Vacuoleless Gametophytes (VLG) is a DC1 domain protein that was initially characterized as essential for early female and male gametophytes development in Arabidopsis. However, VLG expression was also detected in stamens, pistils and other sporophytic tissues, implying a broader role for this protein. As homozygous insertional VLG lines resulted unviable, we generated Arabidopsis amiRNA VLG knock-down plants to study the role of VLG in sporophyte development. The phenotypic characterization of VLG knock-down plants showed reduced seed set and indehiscent anthers with shorter filaments and stigma exsertion. Moreover, amiRNA VLG knock-down plants displayed unbroken stomia and septa, markedly reduced endothecium lignification, diminished ROS accumulation, and lower transcript levels of genes involved in jasmonic acid and lignin biosynthesis. The indehiscent phenotype was rescued by exogenous application of either jasmonic acid or H2O2. Altogether, our results suggest that VLG is involved in lignin and jasmonic acid biosynthesis pathways, and that proper levels of VLG are required in the process that leads to stomium breakage and anther dehiscence. Our findings shed light on the mechanisms underlying stamen development and provide new insights into the roles of a DC1 domain protein in plant reproduction.
Collapse
Affiliation(s)
- Natalia L Amigo
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Leonardo A Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Fernanda Marchetti
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Salvador Lorenzani
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Jesica Frik
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - María Cristina Lombardo
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - María Cecilia Terrile
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Claudia A Casalongue
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina
| | - Diego F Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar Del Plata, Mar Del Plata, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2025; 288:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
13
|
Wang H, Wang ZX, Tian HY, Zeng YL, Xue H, Mao WT, Zhang LY, Chen JN, Lu X, Zhu Y, Li GB, Zhao ZX, Zhang JW, Huang YY, Fan J, Xu PZ, Chen XQ, Li WT, Wu XJ, Wang WM, Li Y. The miR172a-SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice. MOLECULAR PLANT 2025; 18:59-75. [PMID: 39616439 DOI: 10.1016/j.molp.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Plants mount induced resistance and adult-plant resistance against different pathogens throughout the whole growth period. Rice production faces threats from multiple major diseases, including rice blast, sheath blight, and bacterial leaf blight. Here, we report that the miR172a-SNB-MYB30 module regulates both induced and adult-plant resistance to these three major diseases via lignification in rice. Mechanistically, pathogen infections induce the expression of miR172a, which downregulates the transcription factor SNB to release its suppression of MYB30, leading to an increase in lignin biosynthesis and disease resistance throughout the whole growth period. Moreover, expression levels of miR172a and MYB30 gradually increase and are consistently correlated with lignin contents and disease resistance during rice development, reaching a peak at full maturity, whereas SNB RNA levels are negatively correlated with lignin contents and disease resistance, indicating the involvement of the miR172a-SNB-MYB30 module in adult-plant resistance. The functional domain of SNB protein and its binding sites in the MYB30 promoter are highly conserved among more than 4000 rice accessions, while abnormal expression of miR172a, SNB, or MYB30 compromises yield traits, suggesting artificial selection of the miR172a-SNB-MYB30 module during rice domestication. Taken together, these results reveal a novel role for a conserved miRNA-regulated module that contributes significantly to induced and adult-plant resistance against multiple pathogens by increasing lignin accumulation, deepening our understanding of broad-spectrum resistance and adult-plant resistance.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe-Xu Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Yuan Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Long Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wan-Ting Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu-Yue Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Ni Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei-Zhou Xu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Qiong Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wei-Tao Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xian-Jun Wu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Song S, Guo W, Guo Y, Chao E, Sun S, Zhao L, Zhao Y, Zhang H. Transcription factor PdMYB118 in poplar regulates lignin deposition and xylem differentiation in addition to anthocyanin synthesis through suppressing the expression of PagKNAT2/6b gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112277. [PMID: 39389317 DOI: 10.1016/j.plantsci.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
R2R3-MYB transcription factors function as the master regulators of the phenylpropanoid pathway in which both lignin and anthocyanin are produced. In poplar, R2R3-MYB transcription factor PdMYB118 positively regulates anthocyanin production to change leaf color. However, the molecular mechanism by which it controls different branches of the phenylpropanoid pathway still remains poorly understood. Here, we reported that in addition to anthocyanin synthesis, lignin deposition and xylem differentiation were regulated by PdMYB118 through inhibiting PagKNAT2/6b gene expression. The transgenic poplar plants overexpressing PdMYB118 accumulated more xylem, lignin and anthocyanin. Transcriptome and reverse transcription quantitative PCR analyses revealed that the expression of PagKNAT2/6b gene which inhibited lignin deposition and xylem differentiation was significantly down-regulated in transgenic poplar plants. Subsequent dual-luciferase reporter and yeast-one-hybrid assays demonstrated that PdMYB118 directly inhibited the transcription of PagKNAT2/6b by binding to the AC elements in its promoter region. Further experiments with transgenic poplar plants overexpressing PagKNAT2/6b demonstrated that overexpression of PagKNAT2/6b in the PdMYB118 overexpression background rescued lignin accumulation and xylem width to the same level of wild type plants. The findings in this work suggest that PdMYB118 is involved in the lignin deposition and xylem differentiation via modulating the expression of PagKNAT2/6b, and the PdMYB118- PagKNAT2/6b model can be used for the genetic breeding of new woody tree with high lignin production.
Collapse
Affiliation(s)
- Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Luohanya Road, Taian, Shandong 27100, China.
| | - Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Erkun Chao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Sujie Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Lizi Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| | - Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai 2640014, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong 265400, China; Yantai Technology Center of Characteristic Plant Gene Editing and Germplasm Innovation, Yantai 2640014, China.
| |
Collapse
|
15
|
Zhou J, Hu F, Berhe M, Zhou R, Li D, Li H, Yang L, Zhou T, Zhang Y, Wang L, You J. Genome-wide identification, classification, and expression profiling of LAC gene family in sesame. BMC PLANT BIOLOGY 2024; 24:1254. [PMID: 39725882 DOI: 10.1186/s12870-024-05982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop. RESULTS In this study, 51 sesame LAC genes (SiLACs) were identified, which were unevenly distributed across different chromosomes. The phylogeny of Arabidopsis LAC (AtLACs) subdivided the SiLAC proteins into seven subgroups (Groups I-VII), of which Group VII contained only sesame LACs. Within the same subgroup, SiLACs exhibit comparable structures and conserved motifs. The promoter region of SiLACs harbors various cis-acting elements that are related to plant growth, phytohormones, and stress responses. Most SiLACs were expressed in the roots and stems, whereas some were expressed specifically in flowers or seeds. RNA-seq analysis revealed that 19 SiLACs exhibited down-regulation and three showed up-regulation in response to drought stress, while 15 SiLACs were down-regulated and four up-regulated under salt stress. Additionally, qRT-PCR analysis showcased that certain SiLAC expression was significantly upregulated as a result of osmotic and salt stress. SiLAC5 and SiLAC17 exhibited the most significant changes in expression under osmotic and salt stresses, indicating that they may serve as potential targets for improving sesame resistance to various stresses. CONCLUSIONS Our study offers a thorough comprehension of LAC gene structure, classification, evolution, and abiotic stress response in sesame plants. Furthermore, we provide indispensable genetic resources for sesame functional characterization to enhance its tolerance to various abiotic stresses.
Collapse
Affiliation(s)
- Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, P.O. Box 62, Tigray, Ethiopia
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
16
|
Zhao P, Yu Q, He Y, Sun P, Wang H, Zhou X, Su Y, Guo H. PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20 modules positively regulate cambial activity and its differentiation into secondary xylem in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7174-7189. [PMID: 39243137 PMCID: PMC11630012 DOI: 10.1093/jxb/erae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Stem secondary xylem produced by cambial division and differentiation is the main source of tree biomass. Secondary xylem formation involves a complex transcriptional regulatory network; however, the underlying mechanism is still being explored. Here, we report that PagHAM4a and PagHAM4b are positive regulators of cambial differentiation into secondary xylem in hybrid poplar (Populus alba × Populus glandulosa clone 84K). Overexpression of PagHAM4a and PagHAM4b enhanced cambial activity and increased the number of secondary xylem cells in the stems of poplar. By contrast, single or double mutations of PagHAM4a and PagHAM4b generated by CRISPR/Cas9 decreased cambial activity, leading to a significant reduction of secondary xylem. Neither overexpression nor mutation of the two genes affected the size of vessels and fibers in xylem. Both PagHAM4a- and PagHAM4b-regulated gene networks were mainly centered at the stage when cambium had just initiated secondary growth, but the molecular networks regulated by the two genes were distinct. Further analysis revealed that PagSCL21 and PagTCP20 are direct targets of PagHAM4a and PagHAM4b, respectively, and their overexpression also promoted cambial differentiation into secondary xylem. Taken together, we identified two novel key regulatory modules in poplar, PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20, which provide new insights into the mechanism of secondary xylem formation in trees.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiulin Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yumei He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Pengfang Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huilin Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuting Su
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huihong Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Dokka N, Rathinam M, Sreevathsa R. Lignin lite: Boosting plant power through selective downregulation. PLANT, CELL & ENVIRONMENT 2024; 47:4945-4962. [PMID: 39115273 DOI: 10.1111/pce.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
SUMMARY STATEMENTThis article explores the dual benefits of reducing lignin content in plants, which streamlines biofuel production while maintaining robust defence mechanisms. It discusses how plants compensate for lower lignin levels through alternative defence strategies, recent biotechnological advances in lignin modification, and the implications for agriculture and industry.
Collapse
Affiliation(s)
- Narasimham Dokka
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Maniraj Rathinam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
18
|
Zhang L, Chen C, Li Y, Suo C, Zhou W, Liu X, Deng Y, Sohail H, Li Z, Liu F, Chen X, Yang X. Enhancing aphid resistance in horticultural crops: a breeding prospective. HORTICULTURE RESEARCH 2024; 11:uhae275. [PMID: 39712868 PMCID: PMC11659385 DOI: 10.1093/hr/uhae275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 12/24/2024]
Abstract
Increasing agricultural losses caused by insect infestations are a significant problem, so it is important to generate pest-resistant crop varieties to address this issue. Several reviews have examined aphid-plant interactions from an entomological perspective. However, few have specifically focused on plant resistance mechanisms to aphids and their applications in breeding for aphid resistance. In this review, we first outline the types of resistance to aphids in plants, namely antixenosis, tolerance (cell wall lignification, resistance proteins), and antibiosis, and we discuss strategies based on each of these resistance mechanisms to generate plant varieties with improved resistance. We then outline research on the complex interactions amongst plants, viruses, and aphids, and discuss how aspects of these interactions can be exploited to improve aphid resistance. A deeper understanding of the epigenetic mechanisms related to induced resistance, i.e. the phenomenon where plants become more resistant to a stress they have encountered previously, may allow for its exploitation in breeding for aphid resistance. Wild relatives of crop plants serve as important sources of resistance traits. Genes related to these traits can be introduced into cultivated crop varieties by breeding or genetic modification, and de novo domestication of wild varieties can be used to exploit multiple excellent characteristics, including aphid resistance. Finally, we discuss the use of molecular design breeding, genomic data, and gene editing to generate new aphid-resistant, high-quality crop varieties.
Collapse
Affiliation(s)
- Lili Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chaoyan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chunyu Suo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaowei Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yizhuo Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
19
|
Wang D, Li C, Liu H, Song W, Shi C, Li Q. Sweetpotato sucrose transporter IbSUT1 alters storage roots formation by regulating sucrose transport and lignin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:950-965. [PMID: 39283988 DOI: 10.1111/tpj.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 11/01/2024]
Abstract
The formation and development of storage roots is the most important physiological process in sweetpotato production. Sucrose transporters (SUTs) regulate sucrose transport from source to sink organs and play important roles in growth and development of plants. However, whether SUTs involved in sweetpotato storage roots formation is so far unknown. In this study, we show that IbSUT1, a SUT, is localized to the plasma membrane. Overexpression of IbSUT1 in sweetpotato promotes the sucrose efflux rate from leaves, leading to increased sucrose levels in roots, thus induces lignin deposition in the stele, which inhibits the storage roots formation and compromises the yield. Heterologous expression of IbSUT1 in Arabidopsis significantly increases the sucrose accumulation and promotes lignification in the inflorescence stems. RNA-seq and biochemical analysis further demonstrated that IbMYB1 negatively regulates the expression of IbSUT1. Overexpression of IbMYB1 in Arabidopsis reduces the sucrose accumulation and lignification degree in the inflorescence stems. Moreover, co-overexpression of IbMYB1 and IbSUT1 restores the phenotype of lignin over-deposition in Arabidopsis. Collectively, our results reveal that IbSUT1 regulates source-sink sucrose transport and participates in the formation of sweetpotato storage roots and highlight the potential application of IbSUT1 in improving sweetpotato yield in the future.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Chengyang Li
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Hongjuan Liu
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Weihan Song
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Chunyu Shi
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Li
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture and Rural Affairs, Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| |
Collapse
|
20
|
Khalilisamani N, Li Z, Pettolino FA, Moncuquet P, Reverter A, MacMillan CP. Leveraging transcriptomics-based approaches to enhance genomic prediction: integrating SNPs and gene networks for cotton fibre quality improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1420837. [PMID: 39372856 PMCID: PMC11450228 DOI: 10.3389/fpls.2024.1420837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Cultivated cotton plants are the world's largest source of natural fibre, where yield and quality are key traits for this renewable and biodegradable commodity. The Gossypium hirsutum cotton genome contains ~80K protein-coding genes, making precision breeding of complex traits a challenge. This study tested approaches to improving the genomic prediction (GP) accuracy of valuable cotton fibre traits to help accelerate precision breeding. With a biology-informed basis, a novel approach was tested for improving GP for key cotton fibre traits with transcriptomics of key time points during fibre development, namely, fibre cells undergoing primary, transition, and secondary wall development. Three test approaches included weighting of SNPs in DE genes overall, in target DE gene lists informed by gene annotation, and in a novel approach of gene co-expression network (GCN) clusters created with partial correlation and information theory (PCIT) as the prior information in GP models. The GCN clusters were nucleated with known genes for fibre biomechanics, i.e., fasciclin-like arabinogalactan proteins, and cluster size effects were evaluated. The most promising improvements in GP accuracy were achieved by using GCN clusters for cotton fibre elongation by 4.6%, and strength by 4.7%, where cluster sizes of two and three neighbours proved most effective. Furthermore, the improvements in GP were due to only a small number of SNPs, in the order of 30 per trait using the GCN cluster approach. Non-trait-specific biological time points, and genes, were found to have neutral effects, or even reduced GP accuracy for certain traits. As the GCN clusters were generated based on known genes for fibre biomechanics, additional candidate genes were identified for fibre elongation and strength. These results demonstrate that GCN clusters make a specific and unique contribution in improving the GP of cotton fibre traits. The findings also indicate that there is room for incorporating biology-based GCNs into GP models of genomic selection pipelines for cotton breeding to help improve precision breeding of target traits. The PCIT-GCN cluster approach may also hold potential application in other crops and trees for enhancing breeding of complex traits.
Collapse
Affiliation(s)
- Nima Khalilisamani
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Zitong Li
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | | | - Philippe Moncuquet
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Antonio Reverter
- Livestock and Aquatic Genomics, Agriculture and Food, CSIRO, St Lucia, QLD, Australia
| | | |
Collapse
|
21
|
Ranade SS, García-Gil MR. Lignin biosynthesis pathway repressors in gymnosperms: differential repressor domains as compared to angiosperms. FORESTRY RESEARCH 2024; 4:e031. [PMID: 39524426 PMCID: PMC11524278 DOI: 10.48130/forres-0024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Lignin is a polyphenolic polymer present in the cell walls of specialized plant cell types in vascular plants that provides structural support and plays a major role in plant protection. The lignin biosynthesis pathway is regulated by transcription factors from the MYB (myeloblastosis) family. While several MYB members positively regulate lignin synthesis, only a few negatively regulate lignin synthesis. These lignin suppressors are well characterized in model plant species; however, their role has not been fully explored in gymnosperms. Lignin forms one of the major hurdles for the forest-based industry e.g. paper, pulp, and biofuel production. Therefore, the detailed mechanisms involved in the regulation of lignin synthesis are valuable, especially in conifers that form the major source of softwood for timber and paper production. In this review, the potential and differential domains present in the MYB suppressors in gymnosperms are discussed, along with their phylogenetic analysis. Sequence analysis revealed that the N-terminal regions of the MYB suppressor members were found to be conserved among the gymnosperms and angiosperms containing the R2, R3, and bHLH domains, while the C-terminal regions were found to be highly variable. The typical repressor motifs like the LxLxL-type EAR motif and the TLLLFR motif were absent from the C-terminal regions of MYB suppressors from most gymnosperms. However, although the gymnosperms lacked the characteristic repressor domains, a R2R3-type MYB member from Ginkgo was reported to repress the lignin biosynthetic pathway. It is proposed that gymnosperms possess unique kinds of repressors that need further functional validation.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - María Rosario García-Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
22
|
Mao F, Luo L, Ma N, Qu Q, Chen H, Yi C, Cao M, Shao E, Lin H, Lin Z, Zhu F, Lu G, Lin D. A Spatiotemporal Transcriptome Reveals Stalk Development in Pearl Millet. Int J Mol Sci 2024; 25:9798. [PMID: 39337286 PMCID: PMC11432187 DOI: 10.3390/ijms25189798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Pearl millet is a major cereal crop that feeds more than 90 million people worldwide in arid and semi-arid regions. The stalk phenotypes of Poaceous grasses are critical for their productivity and stress tolerance; however, the molecular mechanisms governing stalk development in pearl millet remain to be deciphered. In this study, we spatiotemporally measured 19 transcriptomes for stalk internodes of four different early developmental stages. Data analysis of the transcriptomes defined four developmental zones on the stalks and identified 12 specific gene sets with specific expression patterns across the zones. Using weighted gene co-expression network analysis (WGCNA), we found that two co-expression modules together with candidate genes were involved in stalk elongation and the thickening of pearl millet. Among the elongation-related candidate genes, we established by SELEX that a MYB-family transcription factor PMF7G02448 can bind to the promoters of three cell wall synthases genes (CesAs). In summary, these findings provide insights into stalk development and offer potential targets for future genetic improvement in pearl millet.
Collapse
Affiliation(s)
- Fei Mao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Luo
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nana Ma
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Qu
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Chen
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Yi
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Cao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ensi Shao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangjie Zhu
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Peng A, Li S, Wang Y, Cheng F, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Mining Candidate Genes for Leaf Angle in Brassica napus L. by Combining QTL Mapping and RNA Sequencing Analysis. Int J Mol Sci 2024; 25:9325. [PMID: 39273273 PMCID: PMC11394825 DOI: 10.3390/ijms25179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Leaf angle (LA) is an important trait of plant architecture, and individuals with narrow LA can better capture canopy light under high-density planting, which is beneficial for increasing the overall yield per unit area. To study the genetic basis and molecular regulation mechanism of leaf angle in rapeseed, we carried out a series of experiments. Quantitative trait loci (QTL) mapping was performed using the RIL population, and seven QTLs were identified. Transcriptome analysis showed that the cell wall formation/biogenesis processes and biosynthesis/metabolism of cell wall components were the most enrichment classes. Most differentially expressed genes (DEGs) involved in the synthesis of lignin, xylan, and cellulose showed down-regulated expression in narrow leaf material. Microscopic analysis suggested that the cell size affected by the cell wall in the junction area of the stem and petiole was the main factor in leaf petiole angle (LPA) differences. Combining QTL mapping and RNA sequencing, five promising candidate genes BnaA01G0125600ZS, BnaA01G0135700ZS, BnaA01G0154600ZS, BnaA10G0154200ZS, and BnaC03G0294200ZS were identified in rapeseed, and most of them were involved in cell wall biogenesis and the synthesis/metabolism of cell wall components. The results of QTL, transcriptome analysis, and cytological analysis were highly consistent, collectively revealing that genes related to cell wall function played a crucial role in regulating the LA trait in rapeseed. The study provides further insights into LA traits, and the discovery of new QTLs and candidate genes is highly beneficial for genetic improvement.
Collapse
Affiliation(s)
- Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Shuyu Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuwen Wang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jun Chen
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Xiaoxiao Zheng
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jie Xiong
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ge Ding
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Bingchao Zhang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wen Zhai
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Laiqiang Song
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lunlin Chen
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
24
|
Li Q, Fu C, Yang B, Yu H, He H, Xu Q, Miao W, Liu R, Chen W, Zhang Z, Zou X, Hu B, Ou L. Stem lodging Resistance-1 controls stem strength by positively regulating the biosynthesis of cell wall components in Capsicum annuum L. HORTICULTURE RESEARCH 2024; 11:uhae169. [PMID: 39135730 PMCID: PMC11317896 DOI: 10.1093/hr/uhae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Lodging presents a significant challenge in cultivating high-yield crops with extensive above-ground biomass, yet the molecular mechanisms underlying this phenomenon in the Solanaceae family remain largely unexplored. In this study, we identified a gene, CaSLR1 (Capsicum annuum Stem Lodging Resistance 1), which encodes a MYELOBLASTOSIS (MYB) family transcription factor, from a lodging-affected C. annuum EMS mutant. The suppression of CaSLR1 expression in pepper led to notable stem lodging, reduced thickness of the secondary cell wall, and decreased stem strength. A similar phenotype was observed in tomato with the knockdown of SlMYB61, the orthologous gene to CaSLR1. Further investigations demonstrated that CaNAC6, a gene involved in secondary cell wall (SCW) formation, is co-expressed with CaSLR1 and acts as a positive regulator of its expression, as confirmed through yeast one-hybrid, dual-luciferase reporter assays, and electrophoretic mobility shift assays. These findings elucidate the CaNAC6-CaSLR1 module that contributes to lodging resistance, emphasizing the critical role of CaSLR1 in the lodging resistance regulatory network.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Rongyun Liu
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Zhuqing Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
25
|
Fan Y, Bai J, Wu S, Zhang M, Li J, Lin R, Hu C, Jing B, Wang J, Xia X, Hu Z, Yu J. The RALF2-FERONIA-MYB63 module orchestrates growth and defense in tomato roots. THE NEW PHYTOLOGIST 2024; 243:1123-1136. [PMID: 38831656 DOI: 10.1111/nph.19865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Plant secreted peptides RAPID ALKALINISATION FACTORs (RALFs), which act through the receptor FERONIA (FER), play important roles in plant growth. However, it remains unclear whether and how RALF-FER contributes to the trade-off of plant growth-defense. Here, we used a variety of techniques such as CRISPR/Cas9, protein-protein interaction and transcriptional regulation methods to investigate the role of RALF2 and its receptor FER in regulating lignin deposition, root growth, and defense against Fusarium oxysporum f. sp. lycopersici (Fol) in tomato (Solanum lycopersicum). The ralf2 and fer mutants show reduced primary root length, elevated lignin accumulation, and enhanced resistance against Fol than the wild-type. FER interacts with and phosphorylates MYB63 to promote its degradation. MYB63 serves as an activator of lignin deposition by regulating the transcription of dirigent protein gene DIR19. Mutation of DIR19 suppresses lignin accumulation, and reverses the short root phenotype and Fol resistance in ralf2 or fer mutant. Collectively, our results demonstrate that the RALF2-FER-MYB63 module fine-tunes root growth and resistance against Fol through regulating the deposition of lignin in tomato roots. The study sheds new light on how plants maintain the growth-defense balance via RALF-FER.
Collapse
Affiliation(s)
- Yanfen Fan
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Junyu Bai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Shaofang Wu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiajia Li
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Lin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiachun Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
26
|
Sun W, Zhao L, Zhou J, Feng H, Zhang Y, Feng Z, Zhu H, Wei F. VdP5CDH is involved in melanin formation, stress resistance and play a regulatory role in virulence of Verticillium dahliae. Front Microbiol 2024; 15:1429755. [PMID: 39113834 PMCID: PMC11303183 DOI: 10.3389/fmicb.2024.1429755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Verticillium dahliae, a soil-borne fungal pathogen, can cause cotton Verticillium wilt. In this study, VdP5CDH, the member of the ALDH_F4-17 family of carboxylate dehydrogenases, was identified in the genome of V. dahliae and investigated function in regulating virulence by generating gene deletion mutants and complementary mutants. Methods Homologous recombination method was used to construct mutants, transcriptome sequencing revealed gene-related metabolic pathways, and disease degree of cotton was observed through pathogen infection experiments. Results The conidial surface of VdP5CDH deletion strains was dented and shriveled, and the number of conidial spores increased. Compared with the wild-type (WT), the mycelial diameter of deletion mutants increased by 10.59%-11.16%, the mycelial growth showed irregular branching patterns, and misaligned arrangement. Although capable of penetrating cellophane, deletion mutants were unable to produce melanin. VdP5CDH was mainly associated with glucose metabolism, nitrogen metabolism, ABC transporter activity as well as various amino acid metabolic processes. After gene knockout, raffinose and pectin were used as the main carbon sources to promote the growth of strains and the growth rate of deletion strains in the medium containing raffinose was higher than that of WT. Consequently, the deletion mutant strains decreased utilization efficiency with which they utilized various nitrogen sources. The deletion mutants maintain responsiveness to osmotic stress and oxidative stress stimuli. Additionally, compared to WT strains, the deletion mutant strains exhibited differences in culture temperature tolerance, UV exposure response, and fungicide sensitivity. After cotton was infected with deletion strains conidial suspension, its disease index increased dramatically, while it gradually decreased after spraying with 2 mM glutamate in batches. With the increase of spraying times, the effect was more significant, and the disease index decreased by 18.95%-19.66% at 26 dpi. Discussion These results indicated that VdP5CDH regulates the pathogenicity of fungi and controls mycelia growth, melanin formation, conidia morphology, abiotic stress resistance, and the expression of infecting structure-related genes.
Collapse
Affiliation(s)
- Wanqing Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Zili Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
27
|
Liu L, Grover CE, Kong X, Jareczek J, Wang X, Si A, Wang J, Yu Y, Chen Z. Expression profile analysis of cotton fiber secondary cell wall thickening stage. PeerJ 2024; 12:e17682. [PMID: 38993976 PMCID: PMC11238726 DOI: 10.7717/peerj.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.
Collapse
Affiliation(s)
- Li Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianhui Kong
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Josef Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xuwen Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Aijun Si
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Juan Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Yu Yu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
| |
Collapse
|
28
|
Keret R, Drew DM, Hills PN. Xylem cell size regulation is a key adaptive response to water deficit in Eucalyptus grandis. TREE PHYSIOLOGY 2024; 44:tpae068. [PMID: 38896029 PMCID: PMC11247191 DOI: 10.1093/treephys/tpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.
Collapse
Affiliation(s)
- Rafael Keret
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
- Department of Forestry and Wood Sciences, Stellenbosch University, Bosman St, Stellenbosch 7599, South Africa
| | - David M Drew
- Department of Forestry and Wood Sciences, Stellenbosch University, Bosman St, Stellenbosch 7599, South Africa
| | - Paul N Hills
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
29
|
Li Q, Fu C, Hu B, Yang B, Yu H, He H, Xu Q, Chen X, Dai X, Fang R, Xiong X, Zhou K, Yang S, Zou X, Liu Z, Ou L. Lysine 2-hydroxyisobutyrylation proteomics analyses reveal the regulatory mechanism of CaMYB61-CaAFR1 module in regulating stem development in Capsicum annuum L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1039-1058. [PMID: 38804740 DOI: 10.1111/tpj.16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Xuejun Chen
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Rong Fang
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kunhua Zhou
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| |
Collapse
|
30
|
Umezawa T. Metabolic engineering of Oryza sativa for lignin augmentation and structural simplification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:89-101. [PMID: 39463768 PMCID: PMC11500570 DOI: 10.5511/plantbiotechnology.24.0131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 10/29/2024]
Abstract
The sustainable production and utilization of lignocellulose biomass are indispensable for establishing sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
Collapse
Affiliation(s)
- Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University
| |
Collapse
|
31
|
Li Q, Chen S, Chen L, Zhuang L, Wei H, Jiang S, Wang C, Qi J, Fang P, Xu J, Tao A, Zhang L. Cloning and functional mechanism of the dwarf gene gba affecting stem elongation and cellulose biosynthesis in jute (Corchorus olitorius). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2003-2019. [PMID: 38536089 DOI: 10.1111/tpj.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 06/14/2024]
Abstract
Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siyuan Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingling Zhuang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Wei
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaolian Jiang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuanyu Wang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
32
|
Saberi Riseh R, Fathi F, Lagzian A, Vatankhah M, Kennedy JF. Modifying lignin: A promising strategy for plant disease control. Int J Biol Macromol 2024; 271:132696. [PMID: 38823737 DOI: 10.1016/j.ijbiomac.2024.132696] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
33
|
Yang Y, Zhou X, Zhu X, Ding B, Jiang L, Zhang H, Li S, Cao S, Zhang M, Pei Y, Hou L. GhMYB52 Like: A Key Factor That Enhances Lint Yield by Negatively Regulating the Lignin Biosynthesis Pathway in Fibers of Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2024; 25:4921. [PMID: 38732136 PMCID: PMC11084151 DOI: 10.3390/ijms25094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.
Collapse
Affiliation(s)
- Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xue Zhou
- Laboratory Animal Center, Southwest University, Chongqing 400715, China;
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Shuyan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Li J, Ren J, Lei X, Fan W, Tang L, Zhang Q, Bao Z, Zhou W, Bai J, Zhang Y, Gong C. CsREV-CsTCP4-CsVND7 module shapes xylem patterns differentially between stem and leaf to enhance tea plant tolerance to drought. Cell Rep 2024; 43:113987. [PMID: 38517888 DOI: 10.1016/j.celrep.2024.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenmin Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhulatai Bao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenfei Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuzhou Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Guha PK, Magar ND, Kommana M, Barbadikar KM, Suneel B, Gokulan C, Lakshmi DV, Patel HK, Sonti RV, Sundaram RM, Madhav MS. Strong culm: a crucial trait for developing next-generation climate-resilient rice lines. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:665-686. [PMID: 38737321 PMCID: PMC11087419 DOI: 10.1007/s12298-024-01445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Lodging, a phenomenon characterized by the bending or breaking of rice plants, poses substantial constraints on productivity, particularly during the harvesting phase in regions susceptible to strong winds. The rice strong culm trait is influenced by the intricate interplay of genetic, physiological, epigenetic, and environmental factors. Stem architecture, encompassing morphological and anatomical attributes, alongside the composition of both structural and non-structural carbohydrates, emerges as a critical determinant of lodging resistance. The adaptive response of the rice culm to various biotic and abiotic environmental factors further modulates the propensity for lodging. Advancements in next-generation sequencing technologies have expedited the genetic dissection of lodging resistance, enabling the identification of pertinent genes, quantitative trait loci, and novel alleles. Concurrently, contemporary breeding strategies, ranging from biparental approaches to more sophisticated methods such as multi-parent-based breeding, gene pyramiding, genomic selection, genome-wide association studies, and haplotype-based breeding, offer perspectives on the genetic underpinnings of culm strength. This review comprehensively delves into physiological attributes, culm histology, epigenetic determinants, and gene expression profiles associated with lodging resistance, with a specialized focus on leveraging next-generation sequencing for candidate gene discovery.
Collapse
Affiliation(s)
- Pritam Kanti Guha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
- Department of Microbiology, Yogi Vemana University., Y.S.R Kadapa, India
| | - Nakul D. Magar
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Madhavilatha Kommana
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Kalyani M. Barbadikar
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - B. Suneel
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - C. Gokulan
- Department of Biotechnology, CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| | - D. Vijay Lakshmi
- Department of Microbiology, Yogi Vemana University., Y.S.R Kadapa, India
| | - Hitendra Kumar Patel
- Department of Biotechnology, CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| | - Ramesh V. Sonti
- Department of Biotechnology, CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - R. M. Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Maganti Sheshu Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
- ICAR-Central Tobacco Research Institute, Rajahmundry, India
| |
Collapse
|
36
|
Fick A, Swart V, Bombarely A, van den Berg N. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13453. [PMID: 38590150 PMCID: PMC11002358 DOI: 10.1111/mpp.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València (IBMCP‐CSIC‐UPV)ValenciaSpain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
37
|
Ma P, Li J, Sun G, Zhu J. Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment. FRONTIERS IN PLANT SCIENCE 2024; 15:1283912. [PMID: 38419781 PMCID: PMC10899697 DOI: 10.3389/fpls.2024.1283912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Suaeda dendroides, a succulent euhalophyte of the Chenopodiaceae family, intermittently spread around northern Xinjiang, China, has the ability to grow and develop in saline and alkali environments. The objective of this study was therefore to investigate the underlying molecular mechanisms of S. dendroides response to high salt conditions. 27 sequencing libraries prepared from low salt (200 mM NaCl) and high salt (800 mM NaCl) treated plants at 5 different stages were sequenced using Illumina Hiseq 2000. A total of 133,107 unigenes were obtained, of which 4,758 were DEGs. The number of DEGs in the high salt group (3,189) was more than the low salt treatment group (733) compared with the control. GO and KEGG analysis of the DEGs at different time points of the high salt treatment group showed that the genes related to cell wall biosynthesis and modification, plant hormone signal transduction, ion homeostasis, organic osmolyte accumulation, and reactive oxygen species (ROS) detoxification were significantly expressed, which indicated that these could be the main mechanisms of S. dendroides acclimate to high salt stress. The study provides a new perspective for understanding the molecular mechanisms of halophytes adapting to high salinity. It also provides a basis for future investigations of key salt-responsive genes in S. dendroides.
Collapse
Affiliation(s)
- Panpan Ma
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jilian Li
- Key Laboratory of Cotton Biology and Genetic Breeding in Northwest Inland Region of the Ministry of Agriculture (Xinjiang), Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
38
|
Wei Z, Wei H. Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation. HORTICULTURE RESEARCH 2024; 11:uhad281. [PMID: 38344650 PMCID: PMC10857936 DOI: 10.1093/hr/uhad281] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 04/29/2025]
Abstract
Wood quality is predominantly determined by the amount and the composition of secondary cell walls (SCWs). Consequently, unraveling the molecular regulatory mechanisms governing SCW formation is of paramount importance for genetic engineering aimed at enhancing wood properties. Although SCW formation is known to be governed by a hierarchical gene regulatory network (HGRN), our understanding of how a HGRN operates and regulates the formation of heterogeneous SCWs for plant development and adaption to ever-changing environment remains limited. In this review, we examined the HGRNs governing SCW formation and highlighted the significant key differences between herbaceous Arabidopsis and woody plant poplar. We clarified many confusions in existing literatures regarding the HGRNs and their orthologous gene names and functions. Additionally, we revealed many network motifs including feed-forward loops, feed-back loops, and negative and positive autoregulation in the HGRNs. We also conducted a thorough review of post-transcriptional and post-translational aspects, protein-protein interactions, and epigenetic modifications of the HGRNs. Furthermore, we summarized how the HGRNs respond to environmental factors and cues, influencing SCW biosynthesis through regulatory cascades, including many regulatory chains, wiring regulations, and network motifs. Finally, we highlighted the future research directions for gaining a further understanding of molecular regulatory mechanisms underlying SCW formation.
Collapse
Affiliation(s)
- Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministhry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
39
|
Karunarathne SI, Spokevicius AV, Bossinger G, Golz JF. Trees need closure too: Wound-induced secondary vascular tissue regeneration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111950. [PMID: 38070652 DOI: 10.1016/j.plantsci.2023.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Trees play a pivotal role in terrestrial ecosystems as well as being an important natural resource. These attributes are primarily associated with the capacity of trees to continuously produce woody tissue from the vascular cambium, a ring of stem cells located just beneath the bark. Long-lived trees are exposed to a myriad of biological and environmental stresses that may result in wounding, leading to a loss of bark and the underlying vascular cambium. This affects both wood formation and the quality of timber arising from the tree. In addition, the exposed wound site is a potential entry point for pathogens that cause disease. In response to wounding, trees have the capacity to regenerate lost or damaged tissues at this site. Investigating gene expression changes associated with different stages of wound healing reveals complex and dynamic changes in the activity of transcription factors, signalling pathways and hormone responses. In this review we summarise these data and discuss how they relate to our current understanding of vascular cambium formation and xylem differentiation during secondary growth. Based on this analysis, a model for wound healing that provides the conceptual foundations for future studies aimed at understanding this intriguing process is proposed.
Collapse
Affiliation(s)
- Sachinthani I Karunarathne
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antanas V Spokevicius
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gerd Bossinger
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
40
|
Im JH, Son S, Kim WC, Kim K, Mitsuda N, Ko JH, Han KH. Jasmonate activates secondary cell wall biosynthesis through MYC2-MYB46 module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1099-1114. [PMID: 37983636 DOI: 10.1111/tpj.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.
Collapse
Affiliation(s)
- Jong Hee Im
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kihwan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
41
|
Tang F, Jiao B, Zhang M, He M, Su R, Luo K, Lan T. PtoMYB031, the R2R3 MYB transcription factor involved in secondary cell wall biosynthesis in poplar. FRONTIERS IN PLANT SCIENCE 2024; 14:1341245. [PMID: 38298604 PMCID: PMC10828011 DOI: 10.3389/fpls.2023.1341245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
Introduction The biosynthesis of the secondary cell wall (SCW) is orchestrated by an intricate hierarchical transcriptional regulatory network. This network is initiated by first-layer master switches, SCW-NAC transcription factors, which in turn activate the second-layer master switches MYBs. These switches play a crucial role in regulating xylem specification and differentiation during SCW formation. However, the roles of most MYBs in woody plants are yet to be fully understood. Methods In this study, we identified and isolated the R2R3-MYB transcription factor, PtoMYB031, from Populus tomentosa. We explored its expression, mainly in xylem tissues, and its role as a transcriptional repressor in the nucleus. We used overexpression and RNA interference techniques in poplar, along with Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, to analyze the regulatory effects of PtoMYB031. Results Overexpression of PtoMYB031 in poplar significantly reduced lignin, cellulose, and hemicellulose content, and inhibited vascular development in stems, resulting in decreased SCW thickness in xylem tissues. Gene expression analysis showed that structural genes involved in SCW biosynthesis were downregulated in PtoMYB031-OE lines. Conversely, RNA interference of PtoMYB031 increased these compounds. Additionally, PtoMYB031 was found to recruit the repressor PtoZAT11, forming a transcriptional inhibition complex. Discussion Our findings provide new insights into how PtoMYB031, through its interaction with PtoZAT11, forms a complex that can suppress the expression of key regulatory genes, PtoWND1A and PtoWND2B, in SCW biosynthesis. This study enhances our understanding of the transcriptional regulation involved in SCW formation in poplar, highlighting the significant role of PtoMYB031.
Collapse
Affiliation(s)
- Feng Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Ruiying Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
42
|
Guo Y, Liu C, Zhang Y, Zheng S, Cao P, Wang X, Tian Z. Characterization key genes of Arabidopsis seedlings in response to β-caryophyllene, eugenol using combined transcriptome and WGCN analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1295779. [PMID: 38239209 PMCID: PMC10794411 DOI: 10.3389/fpls.2023.1295779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Weeds present a significant challenge to high crop yield and quality. In our study, we investigated the phytotoxic activity of β-caryophyllene (BCP) and eugenol, which are natural allelopathic chemical compounds, on Arabidopsis seedlings. We found that these compounds inhibited the growth of Arabidopsis thaliana plants. When either BCP or eugenol was applied, it led to decrease in the content of cell wall components such as lignin, cellulose, hemicellulose, and pectin; and increase in the levels of endogenous hormones like ETH, ABA, SA, and JA in the seedlings. Through transcriptome profiling, we identified 7181 differentially expressed genes (DEGs) in the roots and shoots that were induced by BCP or eugenol. The genes involved in the synthesis of lignin, cellulose, hemicellulose, and pectin were down-regulated, whereas genes related to synthesis and signal transduction of ABA, ETH, SA, and JA were up-regulated. However, genes related to IAA synthesis and signal transduction were found to be down-regulated. Furthermore, we characterized 24 hub genes using Weighted Correlation Network Analysis (WGCNA). Among them, the identified 16 genes in response to BCP was primarily associated with hypoxia stress, while 8 genes induced by eugenol were linked to inhibition of cell division. Our results suggested that BCP and eugenol had ability to target multiple genes to inhibit growth and development of Arabidopsis plants. Therefore, they can serve as excellent candidates for natural biological herbicides.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaran Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuting Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaomin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
43
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
44
|
Szymonik K, Klimek-Chodacka M, Lukasiewicz A, Macko-Podgórni A, Grzebelus D, Baranski R. Comparative analysis of the carrot miRNAome in response to salt stress. Sci Rep 2023; 13:21506. [PMID: 38057586 PMCID: PMC10700493 DOI: 10.1038/s41598-023-48900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Soil salinity adversely affects the yield and quality of crops, including carrot. During salt stress, plant growth and development are impaired by restricted water uptake and ion cytotoxicity, leading to nutrient imbalance and oxidative burst. However, the molecular mechanisms of the carrot plant response to salt stress remain unclear. The occurrence and expression of miRNAs that are potentially involved in the regulation of carrot tolerance to salinity stress were investigated. The results of small RNA sequencing revealed that salt-sensitive (DH1) and salt-tolerant (DLBA) carrot varieties had different miRNA expression profiles. A total of 95 miRNAs were identified, including 71 novel miRNAs, of which 30 and 23 were unique to DH1 and DLBA, respectively. The comparison of NGS and qPCR results allowed identification of two conserved and five novel miRNA involved in carrot response to salt stress, and which differentiated the salt-tolerant and salt-sensitive varieties. Degradome analysis supported by in silico-based predictions and followed by expression analysis of exemplary target genes pointed at genes related to proline, glutathione, and glutamate metabolism pathways as potential miRNA targets involved in salt tolerance, and indicated that the regulation of osmoprotection and antioxidant protection, earlier identified as being more efficient in the tolerant variety, may be controlled by miRNAs. Furthermore, potential miRNA target genes involved in chloroplast protection, signal transduction and the synthesis and modification of cell wall components were indicated in plants growing in saline soil.
Collapse
Affiliation(s)
- Kamil Szymonik
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120, Kraków, Poland.
| | - Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120, Kraków, Poland.
| | - Aneta Lukasiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120, Kraków, Poland
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120, Kraków, Poland
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. Mickiewicza 21, 31-120, Kraków, Poland.
| |
Collapse
|
45
|
Sumbur B, Gao F, Liu Q, Feng D, Bing J, Dorjee T, Li X, Sun H, Zhou Y. The Characterization of R2R3-MYB Genes in Ammopiptanthus nanus Uncovers That the miR858-AnaMYB87 Module Mediates the Accumulation of Anthocyanin under Osmotic Stress. Biomolecules 2023; 13:1721. [PMID: 38136592 PMCID: PMC10741500 DOI: 10.3390/biom13121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) participate in the modulation of plant development, secondary metabolism, and responses to environmental stresses. Ammopiptanthus nanus, a leguminous dryland shrub, tolerates a high degree of environmental stress, including drought and low-temperature stress. The systematic identification, structural analysis, evolutionary analysis, and gene profiling of R2R3-MYB TFs under cold and osmotic stress in A. nanus were performed. Up to 137 R2R3-MYB TFs were identified and clustered into nine clades, with most A. nanus R2R3-MYB members belonging to clade VIII. Tandem and segmental duplication events drove the expansion of the A. nanus R2R3-MYB family. Expression profiling revealed that multiple R2R3-MYB genes significantly changed under osmotic and cold stress conditions. MiR858 and miR159 targeted 88 R2R3-MYB genes. AnaMYB87, an miR858-targeted clade VIII R2R3-MYB TF, was up-regulated under both osmotic and cold stress. A transient expression assay in apples showed that the overexpression of AnaMYB87 promoted anthocyanin accumulation. A luciferase reporter assay in tobacco demonstrated that AnaMYB87 positively affected the transactivation of the dihydroflavonol reductase gene, indicating that the miR858-MYB87 module mediates anthocyanin accumulation under osmotic stress by regulating the dihydroflavonol reductase gene in A. nanus. This study provides new data to understand the roles of R2R3-MYB in plant stress responses.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Dandan Feng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xuting Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huigai Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
46
|
Wang H, Zhao P, He Y, Su Y, Zhou X, Guo H. Transcriptome and miRNAs Profiles Reveal Regulatory Network and Key Regulators of Secondary Xylem Formation in "84K" Poplar. Int J Mol Sci 2023; 24:16438. [PMID: 38003631 PMCID: PMC10671414 DOI: 10.3390/ijms242216438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Secondary xylem produced by stem secondary growth is the main source of tree biomass and possesses great economic and ecological value in papermaking, construction, biofuels, and the global carbon cycle. The secondary xylem formation is a complex developmental process, and the underlying regulatory networks and potential mechanisms are still under exploration. In this study, using hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a model system, we first ascertained three representative stages of stem secondary growth and then investigated the regulatory network of secondary xylem formation by joint analysis of transcriptome and miRNAs. Notably, 7507 differentially expressed genes (DEGs) and 55 differentially expressed miRNAs (DEMs) were identified from stage 1 without initiating secondary growth to stage 2 with just initiating secondary growth, which was much more than those identified from stage 2 to stage 3 with obvious secondary growth. DEGs encoding transcription factors and lignin biosynthetic enzymes and those associated with plant hormones were found to participate in the secondary xylem formation. MiRNA-target analysis revealed that a total of 85 DEMs were predicted to have 2948 putative targets. Among them, PagmiR396d-PagGRFs, PagmiR395c-PagGA2ox1/PagLHW/PagSULTR2/PagPolyubiquitin 1, PagmiR482d-PagLAC4, PagmiR167e-PagbHLH62, and PagmiR167f/g/h-PagbHLH110 modules were involved in the regulating cambial activity and its differentiation into secondary xylem, cell expansion, secondary cell wall deposition, and programmed cell death. Our results give new insights into the regulatory network and mechanism of secondary xylem formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Huihong Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (H.W.); (P.Z.); (Y.H.); (Y.S.); (X.Z.)
| |
Collapse
|
47
|
Li P, Liu Q, Wei Y, Xing C, Xu Z, Ding F, Liu Y, Lu Q, Hu N, Wang T, Zhu X, Cheng S, Li Z, Zhao Z, Li Y, Han J, Cai X, Zhou Z, Wang K, Zhang B, Liu F, Jin S, Peng R. Transcriptional Landscape of Cotton Roots in Response to Salt Stress at Single-cell Resolution. PLANT COMMUNICATIONS 2023; 5:100740. [PMID: 39492159 PMCID: PMC10873896 DOI: 10.1016/j.xplc.2023.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/02/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Increasing soil salinization has led to severe losses of plant yield and quality. Thus, it is urgent to investigate the molecular mechanism of the salt stress response. In this study, we took systematically analyzed cotton root response to salt stress by single-cell transcriptomics technology; 56,281 high-quality cells were totally obtained from 5-days-old lateral root tips of Gossypium arboreum under natural growth and different salt-treatment conditions. Ten cell types with an array of novel marker genes were synthetically identified and confirmed with in situ RNA hybridization, and some specific-type cells of pesudotime analysis also pointed out their potential differentiation trajectory. The prominent changes of cell numbers responding to salt stress were observed on outer epidermal and inner endodermic cells, which were significantly enriched in response to stress, amide biosynthetic process, glutathione metabolism, and glycolysis/gluconeogenesis. Other functional aggregations were concentrated on plant-type primary cell wall biogenesis, defense response, phenylpropanoid biosynthesis and metabolic pathways by analyzing the abundant differentially expressed genes (DEGs) identified from multiple comparisons. Some candidate DEGs related with transcription factors and plant hormones responding to salt stress were also identified, of which the function of Ga03G2153, an annotated auxin-responsive GH3.6, was confirmed by using virus-induced gene silencing (VIGS). The GaGH3.6-silenced plants presented severe stress-susceptive phenotype, and suffered more serious oxidative damages by detecting some physiological and biochemical indexes, indicating that GaGH3.6 might participate in salt tolerance in cotton through regulating oxidation-reduction process. For the first time, a transcriptional atlas of cotton roots under salt stress were characterized at a single-cell resolution, which explored the cellular heterogeneityand differentiation trajectory, providing valuable insights into the molecular mechanism underlying stress tolerance in plants.
Collapse
Affiliation(s)
- Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Qiankun Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiangqian Zhu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuang Cheng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhaoguo Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yanfang Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Jiangping Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China.
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
48
|
Liu G, Wu Z, Luo J, Wang C, Shang X, Zhang G. Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages. BMC PLANT BIOLOGY 2023; 23:500. [PMID: 37848837 PMCID: PMC10583469 DOI: 10.1186/s12870-023-04500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Wood is a secondary xylem generated by vascular cambium. Vascular cambium activities mainly include cambium proliferation and vascular tissue formation through secondary growth, thereby producing new secondary phloem inward and secondary xylem outward and leading to continuous tree thickening and wood formation. Wood formation is a complex biological process, which is strictly regulated by multiple genes. Therefore, molecular level research on the vascular cambium of different tree ages can lead to the identification of both key and related genes involved in wood formation and further explain the molecular regulation mechanism of wood formation. RESULTS In the present study, RNA-Seq and Pac-Bio Iso-Seq were used for profiling gene expression changes in Eucalyptus urophylla × Eucalyptus grandis (E. urograndis) vascular cambium at four different ages. A total of 59,770 non-redundant transcripts and 1892 differentially expressed genes (DEGs) were identified. The expression trends of the DEGs related to cell division and differentiation, cell wall biosynthesis, phytohormone, and transcription factors were analyzed. The DEGs encoding expansin, kinesin, cycline, PAL, GRP9, KNOX, C2C2-dof, REV, etc., were highly expressed in E. urograndis at three years old, leading to positive effects on growth and development. Moreover, some gene family members, such as NAC, MYB, HD-ZIP III, RPK, and RAP, play different regulatory roles in wood formation because of their sophisticated transcriptional network and function redundantly. CONCLUSIONS These candidate genes are a potential resource to further study wood formation, especially in fast-growing and adaptable eucalyptus. The results may also serve as a basis for further research to unravel the molecular mechanism underlying wood formation.
Collapse
Affiliation(s)
- Guo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jianzhong Luo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Chubiao Wang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Xiuhua Shang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Guowu Zhang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China.
| |
Collapse
|
49
|
Guo L, Chen T, Chu X, Sun K, Yu F, Que F, Ahmad Z, Wei Q, Ramakrishnan M. Anatomical and Transcriptome Analyses of Moso Bamboo Culm Neck Growth: Unveiling Key Insights. PLANTS (BASEL, SWITZERLAND) 2023; 12:3478. [PMID: 37836218 PMCID: PMC10574802 DOI: 10.3390/plants12193478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The Moso bamboo culm neck, connected with the rhizome and the shoot bud, is an important hub for connecting and transporting the aboveground and belowground systems of bamboo for the shoot bud development and rapid growth. Our previous study revealed that the culm neck generally undergoes six different developmental stages (CNS1-CNS6), according to the primary thickening growth of the underground shoot bud. However, the molecular mechanism of the culm neck development remains unknown. The present study focused on the developmental process of the CNS3-CNS5 stages, representing the early, middle, and late elongation stages, respectively. These stages are densely packed with vascular tissues and consist of epidermis, hypodermis, cortex, and ground tissue. Unlike the hollow structure of the culms, the culm necks are solid structures. As the culm neck continues to grow, the lignin deposition increases noticeably, contributing to its progressive strengthening. For the transcriptome analysis, a total of 161,160 transcripts with an average length of 2373 were obtained from these stages using both PacBio and Illumina sequencing. A total of 92.2% of the reads mapped to the Moso bamboo reference genome. Further analysis identified a total of 5524 novel genes and revealed a dynamic transcriptome. Secondary-metabolism- and transport-related genes were upregulated particularly with the growth of the culm neck. Further analysis revealed the molecular processes of lignin accumulation in the culm neck, which include differentially expressed genes (DEGs) related to cell wall loosening and remodeling and secondary metabolism. Moreover, the upregulations of transcription factors such as MYBH and RSM in the MYB family play crucial roles during critical transitions in the culm neck development, such as changes in the angle between the rhizome and the culm neck. Our new findings provide essential insights into the cellular roadmaps, transcriptional networks, and key genes involved in the culm neck development.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Tianguo Chen
- Changzhou Agricultural Technology Extension Center, Changzhou 213000, China
| | - Xue Chu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Sun
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fen Yu
- Changzhou Agricultural Technology Extension Center, Changzhou 213000, China
| | - Feng Que
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
50
|
Takawira LT, Hadj Bachir I, Ployet R, Tulloch J, San Clemente H, Christie N, Ladouce N, Dupas A, Rai A, Grima-Pettenati J, Myburg AA, Mizrachi E, Mounet F, Hussey SG. Functional investigation of five R2R3-MYB transcription factors associated with wood development in Eucalyptus using DAP-seq-ML. PLANT MOLECULAR BIOLOGY 2023; 113:33-57. [PMID: 37661236 DOI: 10.1007/s11103-023-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
A multi-tiered transcriptional network regulates xylem differentiation and secondary cell wall (SCW) formation in plants, with evidence of both conserved and lineage-specific SCW network architecture. We aimed to elucidate the roles of selected R2R3-MYB transcription factors (TFs) linked to Eucalyptus wood formation by identifying genome-wide TF binding sites and direct target genes through an improved DAP-seq protocol combined with machine learning for target gene assignment (DAP-seq-ML). We applied this to five TFs including a well-studied SCW master regulator (EgrMYB2; homolog of AtMYB83), a repressor of lignification (EgrMYB1; homolog of AtMYB4), a TF affecting SCW thickness and vessel density (EgrMYB137; homolog of PtrMYB074) and two TFs with unclear roles in SCW regulation (EgrMYB135 and EgrMYB122). Each DAP-seq TF peak set (average 12,613 peaks) was enriched for canonical R2R3-MYB binding motifs. To improve the reliability of target gene assignment to peaks, a random forest classifier was developed from Arabidopsis DAP-seq, RNA-seq, chromatin, and conserved noncoding sequence data which demonstrated significantly higher precision and recall to the baseline method of assigning genes to proximal peaks. EgrMYB1, EgrMYB2 and EgrMYB137 predicted targets showed clear enrichment for SCW-related biological processes. As validation, EgrMYB137 overexpression in transgenic Eucalyptus hairy roots increased xylem lignification, while its dominant repression in transgenic Arabidopsis and Populus reduced xylem lignification, stunted growth, and caused downregulation of SCW genes. EgrMYB137 targets overlapped significantly with those of EgrMYB2, suggesting partial functional redundancy. Our results show that DAP-seq-ML identified biologically relevant R2R3-MYB targets supported by the finding that EgrMYB137 promotes SCW lignification in planta.
Collapse
Affiliation(s)
- Lazarus T Takawira
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Ines Hadj Bachir
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Jade Tulloch
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Helene San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nathalie Ladouce
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Annabelle Dupas
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Avanish Rai
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France.
| | - Steven G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|