1
|
Kang DY, Bae SW, Jang KJ. Natural bioactive gallic acid shows potential anticancer effects by inhibiting the proliferation and invasiveness behavior in human embryonic carcinoma cells. Mol Med Rep 2025; 31:151. [PMID: 40211726 PMCID: PMC11997742 DOI: 10.3892/mmr.2025.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
Embryonic cancer stem cells (CSCs), referred to as self‑renewable cells, are commonly found in liquid and solid cancers and can also be attributed to tumor onset, resistance, expansion, recurrence and metastasis following treatment. Cancer therapy targeting CSCs using natural bioactive products is an optimal option for inhibiting cancer recurrence, thereby improving prognosis. Several natural compounds and extracts have been used to identify direct or indirect therapy effects that reduce the pathological activities of CSCs. Natural gallic acid (GA) is noted to have anticancer properties for oncogene expression, cycle arrest, apoptosis, angiogenesis, migration and metastasis in various cancers. The present study demonstrated that GA has various anticancer activities in NTERA‑2 and NCCIT human embryonic carcinoma cells. In two types of embryonic CSCs, GA effectively induced cell death via late apoptosis. Furthermore, GA showed the G0/G1 cell cycle arrest activity in embryonic CSCs by inducing the increase of p21, p27 and p53 expression and the decrease of CDK4, cyclin E and cyclin D1 expression. The present study showed that GA inhibited the expression levels of mRNA and protein for stem cell markers, such as SOX2, NANOG and OCT4, in NTERA‑2 and NCCIT cells. The induction of cellular and mitochondrial reactive oxygen species by GA also activated the cellular DNA damage response pathway by raising the phosphorylated‑BRCA1, ATM, Chk1, Chk2 and histone. Finally, GA inhibited CSCs invasion and migration by inhibiting the expression of matrix metalloproteinase by the downregulation of EGFR/JAK2/STAT5 signaling pathway. Thus, it is hypothesized that GA could be a potential inhibitor of cancer emergence by suppressing CSC properties.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Immunology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju. Chungcheong 27478, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju, Jejudo 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
2
|
Terzi E, Ozdemir-Sanci T, Oz-Bedir BE, Geneci F, Jafarova S, Aydin T. COMPARISON OF THE EFFECTS OF β-ARBUTIN ON THE NF-κB PATHWAY IN TWO-DIMENSIONAL (2D) AND THREE-DIMENSIONAL (3D) COLORECTAL CANCER CELL LINES. Chem Biol Interact 2025:111533. [PMID: 40319997 DOI: 10.1016/j.cbi.2025.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide and is associated with significant mortality, primarily due to metastatic spread and resistance to therapy. In approximately half of CRC cases, the NF-κB signaling pathway is dysregulated, contributing to tumor progression, cell survival, and invasive behavior. β-Arbutin, a natural β-glucoside compound, has demonstrated potential anticancer activity. This study investigated the suppressive impact of β-Arbutin on NF-κB signaling in CRC, utilizing both conventional 2D and advanced 3D cell culture systems. HT-29 colorectal cancer cells were grown using both two-dimensional (2D) monolayer cultures and three-dimensional (3D) alginate bead models. Cell viability was assessed via WST-1 assay to establish the half-maximal inhibitory concentration (IC50) values for β-Arbutin and the reference drug Sulfasalazine. Flow cytometry was employed to quantify apoptotic cell populations, Caspase 3/7 enzymatic activity, and related protein expression. Immunofluorescence staining further validated the protein levels detected by flow cytometry. All data were statistically analyzed using GraphPad Prism software, with a p-value threshold of <0.05 considered significant. β-Arbutin exhibited a more pronounced reduction in cell viability in 3D culture systems compared to conventional 2D cultures. The compound induced significantly higher apoptosis rates in 3D models (56.46%) versus 2D cultures (22.11%; p<0.0001). Similarly, Caspase 3/7 activity was markedly elevated in β-Arbutin-treated 3D cells (53.56%) relative to their 2D counterparts (34.04%; p<0.0001). Furthermore, β-Arbutin treatment resulted in a more substantial decrease in target protein expression levels in 3D cultures compared to 2D systems. The 3D CRC models demonstrated significantly greater sensitivity to β-Arbutin than 2D cultures, with more robust NF-κB pathway suppression and apoptotic response. This differential efficacy underscores the superior biomimetic properties of 3D culture systems. Our results position β-Arbutin as a potent NF-κB-targeting agent and validate its potential for clinical translation in colorectal cancer therapy.
Collapse
Affiliation(s)
- Emine Terzi
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit University Yenimahalle Training and Research Hospital, Ankara, Türkiye.
| | - Tuba Ozdemir-Sanci
- Department of Histology and Embriyology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit University Yenimahalle Training and Research Hospital, Ankara, Türkiye
| | - Beyza Ecem Oz-Bedir
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit University Yenimahalle Training and Research Hospital, Ankara, Türkiye
| | - Ferhat Geneci
- Department of Anatomy, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye
| | - Shahla Jafarova
- Department of Pharmaceutics, Faculty of Veterinary Medicine, Azerbaijan State Agricultural University, Ganja, Azerbajian
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Agri İbrahim Cecen University, Agri, Türkiye
| |
Collapse
|
3
|
Huang J, Mao H, Wu W, Jiang S, Chen L, Ma T, Zhai C, Meng Y. Identifying Antihepatocellular Carcinoma Compounds in Gansui Banxia Decoction Using Live Cell Adsorption. Drug Des Devel Ther 2025; 19:3437-3457. [PMID: 40322038 PMCID: PMC12049131 DOI: 10.2147/dddt.s513086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Gansui Banxia Decoction (GSBXD) is a traditional Chinese medicine formula for the treatment of hepatocellular carcinoma (HCC). Preliminary studies have identified the constituents and anticancer efficacy of GSBXD, but there is a gap in the screening of its lead compounds. Using live cell affinity combined with solid-phase extraction (LCA-SPE) and virtual screening and in vitro activity assays, we obtained 14 reliable potential lead compounds. Methods Coculturing H22 mouse HCC cells with GSBXD ethanol extract, isolating and purifying the bioactive fractions using LCA-SPE, and identifying the unknown bioactive components by ultraperformance liquid chromatography coupled with quadrupole time-of-flight full information tandem mass spectrometry (UPLC-QTOF-MSE) with the UNIFI information processing platform were performed. Network pharmacology and molecular docking techniques predicted the potential mechanisms of these compounds against HCC. The enzyme-linked immunosorbent assay was used to examine the effects of core compounds on the expression of p53 and Bcl-2 in vitro. Results Fourteen compounds screened from GSBXD using SPE-LCA-UPLC-QTOF-MSE may be the main bioactive components. Network pharmacology predictions suggested that protein kinases regulate Bcl-2 and p53 expression to trigger the apoptosis in cancer cells. Molecular docking identified three core compounds, namely, lactiflorin, schaftoside, and violanthin, which showed high affinities for the relevant proteins. Experimental verification confirmed their superior anticancer activity in vitro. Their anti-HCC effects likely involved in the upregulation of p53 and downregulation of Bcl-2 expression at the cellular level. Conclusion We developed a stable and accurate SPE-LCA method, which successfully isolated and characterized 14 potentially active compounds from GSBXD. They may improve HCC by promoting p53 expression and reducing Bcl-2 expression. This work lays a foundation for discovering lead compounds and exploring potential mechanisms in traditional Chinese medicine formulas.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Mice
- Animals
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/chemistry
- Drug Screening Assays, Antitumor
- Molecular Docking Simulation
- Cell Proliferation/drug effects
- Humans
- Dose-Response Relationship, Drug
- Solid Phase Extraction
- Adsorption
- Structure-Activity Relationship
- Tumor Cells, Cultured
- Cell Line, Tumor
- Medicine, Chinese Traditional
- Tumor Suppressor Protein p53/metabolism
- Apoptosis/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Jiahao Huang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Hongyu Mao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Sinopharm Harbin General Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Weidong Wu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Siliang Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Lanru Chen
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Tianyu Ma
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chunmei Zhai
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yonghai Meng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
4
|
Alrumaihi F, Babiker AY, Khan A. Lipid-Based Nanoformulations of [6]-Gingerol for the Chemoprevention of Benzo[a] Pyrene-Induced Lung Carcinogenesis: Preclinical Evidence. Pharmaceuticals (Basel) 2025; 18:574. [PMID: 40284009 PMCID: PMC12030401 DOI: 10.3390/ph18040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive efficacy in benzo[a]pyrene (BaP)-induced lung carcinogenesis. Methods: 6-G-Lip was synthesized using a modified thin-film hydration technique and characterized for size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE%), and release kinetics. The chemopreventive effects were assessed in BaP-induced lung cancer in Swiss albino mice, with prophylactic 6-G-Lip administration from two weeks before BaP exposure through 21 weeks. Cancer biomarkers, antioxidant enzyme activity, reactive oxygen species (ROS) generation, induction of apoptosis, and histopathological alterations were analyzed. Results: 6-G-Lip exhibited a particle size of 129.7 nm, a polydispersity index (PDI) of 0.16, a zeta potential of -18.2 mV, and an encapsulation efficiency (EE%) of 91%, ensuring stability and effective drug loading. The formulation exhibited a controlled release profile, with 26.5% and 47.5% of [6]-G released in PBS and serum, respectively, at 72 h. 6-G-Lip significantly lowered cancer biomarkers, restored antioxidant defenses (SOD: 5.60 U/min/mg protein; CAT: 166.66 μm H2O2/min/mg protein), reduced lipid peroxidation (MDA: 3.3 nm/min/mg protein), and induced apoptosis (42.2%), highlighting its chemopreventive efficacy. Conclusions: This study is the first to prepare, characterize, and evaluate PEGylated [6]-G-Lip for the chemoprevention of lung cancer. It modulates oxidative stress, restores biochemical homeostasis, and selectively induces apoptosis. These findings support 6-G-Lip as a promising nanotherapeutic strategy for cancer prevention.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Xie J, Liu H, Yang C, Shen W, Zhang J. VANGL2 downregulates HINT1 to inhibit the ATM-p53 pathway and promote cisplatin resistance in small cell lung cancer. Cell Death Discov 2025; 11:153. [PMID: 40199845 PMCID: PMC11979007 DOI: 10.1038/s41420-025-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Cisplatin is a first-line drug for the treatment of small cell lung cancer (SCLC). Although the majority of patients with SCLC initially respond to cisplatin therapy, cisplatin resistance readily develops, leading to tumor progression. Therefore, this study aims to elucidate the mechanisms underlying cisplatin resistance in SCLC. We found that VANGL2 is a poor prognostic factor and promotes cisplatin resistance in SCLC. Mechanistically, in cisplatin-resistant cells, VANGL2 overexpression leads to the autophagic degradation of HINT1. This reduction in HINT1 expression further reduces the phosphorylation of ATM and p53 induced by cisplatin-mediated DNA damage. The decreased phosphorylation of p53 inhibits downstream apoptotic pathways, thereby reducing cisplatin-induced apoptosis. In conclusion, VANGL2 regulates the ATM-p53 pathway-mediated apoptotic response of SCLC to cisplatin by downregulating HINT1, thereby promoting cisplatin resistance. Thus, VANGL2 may serve as a potential therapeutic target for reversing cisplatin resistance in SCLC patients.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huiying Liu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunqian Yang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Wang X, Li S, Wang Z, Kang B, Yan H. The Co-Delivery of Natural Products and Small RNAs for Cancer Therapy: A Review. Molecules 2025; 30:1495. [PMID: 40286130 PMCID: PMC11990496 DOI: 10.3390/molecules30071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This review summarizes the research progress in the co-delivery of natural products (NPs) and small RNAs in cancer therapy. NPs such as paclitaxel, camptothecin, and curcumin possess multi-target antitumor effects, but their applications are limited by drug resistance and non-specific distribution. Small RNAs can achieve precise antitumor effects through gene regulation, yet their delivery efficiency is low, and they are prone to degradation by nucleases. Nanomaterial-based drug delivery systems (nano-DDSs) provide an efficient platform for the co-delivery of both, which can enhance the targeting of their delivery and improve the synergistic antitumor effects simultaneously. The mechanisms of the antitumor action of natural compounds and small RNAs, the design and application of nanocarriers, and the latest research progress in co-delivery systems are introduced in detail in this paper. The application prospects of the co-delivery of natural compounds and small RNAs in cancer therapy are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Hong Yan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.W.); (S.L.); (Z.W.); (B.K.)
| |
Collapse
|
7
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
8
|
Gomaa MBM, Abdelhameed KMA, Sobhy SE, Konper HMA, Hassanein ZAE, Saleh AA, Jamal MT, Hafez EE. Antioxidant activity, antibacterial behavior, and anticancer impact of Egyptian propolis. Open Vet J 2025; 15:126-138. [PMID: 40092203 PMCID: PMC11910300 DOI: 10.5455/ovj.2024.v15.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Background Propolis, a resinous substance produced by bees, exhibits significant phytochemical and biological properties, which have been explored for various therapeutic applications. Aim This study investigates the phytochemical composition, antioxidant activity, antibacterial efficacy, and anticancer potential of ethanolic extracts from three propolis samples (P1, P2, and P3). Methods Phytochemical screening was conducted to determine the presence of bioactive compounds, such as ascorbic acid, saponins, and tannins. Antioxidant activity was evaluated using the phosphomolybdate (PMA) and ferric reducing power (FRP) assays. The antibacterial efficacy against Salmonella Typhimurium and Staphylococcus aureus was assessed using the well diffusion method. Cytotoxicity and anticancer effects were investigated using the MTT assay on red blood cells (RBCs) and various carcinoma cell lines (HepG2, MDA, and A549). Gene expression analysis was performed using RT-qPCR to assess the upregulation of immune response genes (P53, Bcl2, Bax, Ca125, and C3). Results Phytochemical screening revealed considerable quantities of ascorbic acid, saponins, and tannins in the propolis samples. The P1 sample exhibited the most substantial antioxidant activity, with FRP values at 62.9 mg/g DM and PMA content at 20.7 mg/g DM. In antibacterial assays, P1 demonstrated the highest inhibitory zones at the maximum concentration (400 mg/ml), outperforming standard antibiotic treatments. In cytotoxicity and anticancer assays, P1 preserved the highest percentage of RBCs from hemolysis and showed marked anticancer activity, with the lowest cell viability observed at 3.9 µg/ml. Gene expression analysis revealed significant upregulation of immune response genes, particularly in MDA and HepG2 cell lines upon P1 treatment. Conclusion This study underscores the potent antioxidant, antibacterial, and anticancer properties of propolis, highlighting its potential as a natural therapeutic agent. The observed activities suggest promising applications for propolis in combating bacterial infections and various cancer types, warranting further exploration into its molecular mechanisms and potential clinical uses.
Collapse
Affiliation(s)
- Marwa B. M. Gomaa
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
- These authors contributed equally to the current work
| | - Khaled M. A. Abdelhameed
- Apicalture Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sherien E. Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| | - Hanan M. A. Konper
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | | | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
- These authors contributed equally to the current work
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Elsayed E. Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| |
Collapse
|
9
|
Abdullah, Ahmad N, Xiao J, Tian W, Khan NU, Hussain M, Ahsan HM, Hamed YS, Zhong H, Guan R. Gingerols: Preparation, encapsulation, and bioactivities focusing gut microbiome modulation and attenuation of disease symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156352. [PMID: 39740381 DOI: 10.1016/j.phymed.2024.156352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects. PURPOSE This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved. METHOD Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms. RESULTS Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption. CONCLUSION Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.
Collapse
Affiliation(s)
- Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naveed Ahmad
- Multan College of Food & Nutrition Sciences, Multan Medical & Dental College, Multan, Pakistan
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahya Saud Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Gomaa MBM, Abdelhameed KMA, Sobhy SE, Konper HMA, Hassanein ZAE, Saleh AA, Jamal MT, Hafez EE. Antioxidant activity, antibacterial behavior, and anticancer impact of Egyptian propolis. Open Vet J 2025; 15:126-138. [PMID: 40092203 PMCID: PMC11910300 DOI: 10.5455/ovj.2025.v15.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 04/11/2025] Open
Abstract
Background Propolis, a resinous substance produced by bees, exhibits significant phytochemical and biological properties, which have been explored for various therapeutic applications. Aim This study investigates the phytochemical composition, antioxidant activity, antibacterial efficacy, and anticancer potential of ethanolic extracts from three propolis samples (P1, P2, and P3). Methods Phytochemical screening was conducted to determine the presence of bioactive compounds, such as ascorbic acid, saponins, and tannins. Antioxidant activity was evaluated using the phosphomolybdate (PMA) and ferric reducing power (FRP) assays. The antibacterial efficacy against Salmonella Typhimurium and Staphylococcus aureus was assessed using the well diffusion method. Cytotoxicity and anticancer effects were investigated using the MTT assay on red blood cells (RBCs) and various carcinoma cell lines (HepG2, MDA, and A549). Gene expression analysis was performed using RT-qPCR to assess the upregulation of immune response genes (P53, Bcl2, Bax, Ca125, and C3). Results Phytochemical screening revealed considerable quantities of ascorbic acid, saponins, and tannins in the propolis samples. The P1 sample exhibited the most substantial antioxidant activity, with FRP values at 62.9 mg/g DM and PMA content at 20.7 mg/g DM. In antibacterial assays, P1 demonstrated the highest inhibitory zones at the maximum concentration (400 mg/ml), outperforming standard antibiotic treatments. In cytotoxicity and anticancer assays, P1 preserved the highest percentage of RBCs from hemolysis and showed marked anticancer activity, with the lowest cell viability observed at 3.9 µg/ml. Gene expression analysis revealed significant upregulation of immune response genes, particularly in MDA and HepG2 cell lines upon P1 treatment. Conclusion This study underscores the potent antioxidant, antibacterial, and anticancer properties of propolis, highlighting its potential as a natural therapeutic agent. The observed activities suggest promising applications for propolis in combating bacterial infections and various cancer types, warranting further exploration into its molecular mechanisms and potential clinical uses.
Collapse
Affiliation(s)
- Marwa B. M. Gomaa
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
- These authors contributed equally to the current work
| | - Khaled M. A. Abdelhameed
- Apicalture Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sherien E. Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| | - Hanan M. A. Konper
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | | | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
- These authors contributed equally to the current work
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Elsayed E. Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| |
Collapse
|
11
|
Lim SW, Chen WC, Ko HJ, Su YF, Wu CH, Huang FL, Li CF, Tsai CY. 6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation. Biomol Ther (Seoul) 2025; 33:129-142. [PMID: 39632791 PMCID: PMC11704400 DOI: 10.4062/biomolther.2024.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan 702, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Wei-Chung Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fu-Long Huang
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Cheng Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
El Fawal G, Sobhy SE, Hafez EE. Biological activities of fig latex -loaded cellulose acetate/poly(ethylene oxide) nanofiber for potential therapeutics: Anticancer and antioxidant material. Int J Biol Macromol 2024; 270:132176. [PMID: 38750845 DOI: 10.1016/j.ijbiomac.2024.132176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Cancer is a fatal disease, and unfortunately, the anticancer drugs harm normal cells. Plant's extracts are the golden key to solving this issue. In this research, fig latex - from Ficus carica- was encapsulated using cellulose acetate (CA) and poly (ethylene oxide) (PEO) polymers via electrospinning method (Fig@CA/PEO). Fig@CA/PEO nanofiber scaffold was characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The average fiber diameter was decreased with an increase in latex concentration from 715 nm to 583 nm. FT-IR spectroscopy indicated the presence of fig latex in Fig@CA/PEO nanofibers. Compared to 5-fluorouracil, Fig@CA/PEO nanofiber scaffold considered safe towards normal cells (WI-38). Moreover, the nanofiber scaffold was efficient against colon cancer cells (Caco) and liver cancer cells (HepG2) as it demonstrated IC50 values for cells by 23.97 μg/mL and 23.96 μg/mL, respectively. Besides, the nanofiber scaffold revealed mechanistic variations in apoptotic oncogenes; described by the upregulation of BCL2 and P21, combined by downregulation of p53 and TNF. Moreover, the nanofiber scaffold showed antioxidant activity counting 33.4, 36 and 41 % of DPPH scavenging as the fig latex concentration increased. The results demonstrate that the Fig@CA/PEO nanofiber scaffold is a promising substitute to traditional chemotherapy.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Sherien E Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, 21934, Alexandria, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
13
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Chiang YF, Huang KC, Chen HY, Hamdy NM, Huang TC, Chang HY, Shieh TM, Huang YJ, Hsia SM. Hinokitiol Inhibits Breast Cancer Cells In Vitro Stemness-Progression and Self-Renewal with Apoptosis and Autophagy Modulation via the CD44/Nanog/SOX2/Oct4 Pathway. Int J Mol Sci 2024; 25:3904. [PMID: 38612715 PMCID: PMC11011552 DOI: 10.3390/ijms25073904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BC) represents one of the most prevalent malignant threats to women globally. Tumor relapse or metastasis is facilitated by BC stemness progression, contributing to tumorigenicity. Therefore, comprehending the characteristics of stemness progression and the underlying molecular mechanisms is pivotal for BC advancement. Hinokitiol (β-thujaplicin), a tropolone-related compound abundant in the heartwood of cupressaceous plants, exhibits antimicrobial activity. In our study, we employed three BC cell lines (MDA-MB-231, MCF-7, and T47D) to assess the expression of stemness-, apoptosis-, and autophagy-related proteins. Hinokitiol significantly reduced the viability of cancer cells in a dose-dependent manner. Furthermore, we observed that hinokitiol enhances apoptosis by increasing the levels of cleaved poly-ADP-ribose polymerase (PARP) and phospho-p53. It also induces dysfunction in autophagy through the upregulation of LC3B and p62 protein expression. Additionally, hinokitiol significantly suppressed the number and diameter of cancer cell line spheres by reducing the expression of cluster of differentiation44 (CD44) and key transcription factors. These findings underscore hinokitiol's potential as a therapeutic agent for breast cancer, particularly as a stemness-progression inhibitor. Further research and clinical studies are warranted to explore the full therapeutic potential of hinokitiol in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City 710301, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan; (Y.-F.C.); (K.-C.H.); (H.-Y.C.)
- School of Food and Safety, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
15
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
16
|
Asghari Lalami Z, Tafvizi F, Naseh V, Salehipour M. Fabrication, optimization, and characterization of pH-responsive PEGylated nanoniosomes containing gingerol for enhanced treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3867-3886. [PMID: 37368028 DOI: 10.1007/s00210-023-02579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Multiple potential drug delivery strategies have emerged as a result of recent advances in nanotechnology and nanomedicine. The aim of this research was to prepare an optimized system of PEGylated gingerol-loaded niosomes (Nio-Gin@PEG) as an excellent candidate for the treatment of human breast cancer cells. The preparation procedure was modified by adjusting the drug concentration, lipid content, and Span60/Tween60 ratio, resulting in high encapsulation efficacy (EE%), rapid release rate, and reduced size. The Nio-Gin@PEG exhibited significantly improved storage stability compared to the gingerol-loaded niosomes formulation (Nio-Gin), with minimal changes in EE%, release profile, and size during storage. Furthermore, Nio-Gin@PEG demonstrated pH-dependent release behavior, with delayed drug diffusion at physiological pH and significant drug diffusion under acidic conditions (pH = 5.4), making it a promising option for cancer treatment. Cytotoxicity tests indicated that Nio-Gin@PEG possessed excellent biocompatibility with human fibroblast cells while exerting a remarkable inhibitory effect on MCF-7 and SKBR3 breast cancer cells, attributed to the presence of gingerol and the PEGylated structure in the preparation. Nio-Gin@PEG also exhibited the ability to modulate the expression of target genes. We observed statistically significant down-regulation of the expression of BCL2, MMP2, MMP9, HER2, CCND1, CCNE1, BCL2, CDK4, and VEGF genes, along with up-regulation of the expression of BAX, CASP9, CASP3, and P21 genes. Flow cytometry results revealed that Nio-Gin@PEG could induce a higher rate of apoptosis in both cancerous cells compared to gingerol and Nio-Gin, owing to the optimal encapsulation and efficient drug release from the formulation, as confirmed by cell cycle tests. ROS generation demonstrated the superior antioxidant effect of Nio-Gin@PEG compared to other prepared formulations. The results of this study emphasize the potential of formulating highly biocompatible niosomes in the future of nanomedicine, enabling more precise and effective treatment of cancers.
Collapse
Affiliation(s)
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Vahid Naseh
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
17
|
Kang DY, Park S, Song KS, Bae SW, Lee JS, Jang KJ, Park YM. Anticancer Effects of 6-Gingerol through Downregulating Iron Transport and PD-L1 Expression in Non-Small Cell Lung Cancer Cells. Cells 2023; 12:2628. [PMID: 37998363 PMCID: PMC10670414 DOI: 10.3390/cells12222628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Sanghyeon Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeong-Sang Lee
- Department of Functional Foods and Biotechnology, College of Medical Sciences, Jeonju University, Jeonju 55069, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
18
|
Martínez-Esquivias F, Guzmán-Flores JM, Chávez-Díaz IF, Iñiguez-Muñoz LE, Reyes-Chaparro A. Pharmacological network study on the effect of 6-gingerol on cervical cancer using computerized databases. J Biomol Struct Dyn 2023; 42:11750-11761. [PMID: 37776009 DOI: 10.1080/07391102.2023.2264943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cervical cancer (CC) is the most frequent cancer in the female population worldwide. Although there are treatments available, they are ineffective and cause adverse effects. 6-gingerol is an active component in ginger with anticancer activity. This research aims to discover the mechanism by which 6-gingerol act as an anticancer agent on CC through a pharmacological network using bioinformatics databases. From MalaCard, Swiss Target Prediction, Comparative Toxicogenomics Database, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, we obtained the target genes for 6-gingerol and CC and matched them. We got 26 genes and analyzed them in ShinyGO-0.76.3 and DAVID-Bioinformatics Resources. Then, we generated a protein-protein interaction network in Cytoscape and obtained 12 hub genes. Hub genes were analyzed in Gene Expression Profiling Interactive Analysis and TISIDB. In addition, molecular docking studies were performed between target proteins with 6-gingerol using SwissDock database. Finally, molecular dynamics studies for three proteins with the lowest interaction energy were implemented using Gromacs software. According to gene ontology results, 6-gingerol is involved in processes of apoptosis, cell cycle, and protein kinase complexes, affecting mitochondria and pathways related to HPV infection. CTNNB1 gene was negatively correlated with CD8+ infiltration but was not associated with a higher survival rate. Furthermore, the molecular docking study showed that 6-gingerol has a high binding to proteins, and the molecular dynamics showed a stable interaction of 6-gingerol to AKT1, CCNB1, and CTNNB1 proteins. Conclusion, our work helps to understand the anticancer activity of 6-gingerol in CC that should be studied experimentally.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, México
| | | | - Laura Elena Iñiguez-Muñoz
- Departamento de Ciencias de la Naturaleza, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán Municipio de Zapotlán el Grande, Jalisco, México
| | - Andrés Reyes-Chaparro
- Escuela Nacional de Ciencias Biologicas (ENCB) del Insituto Politécnico Nacional (IPN). Departamento de Morfología, Ciudad de México, México
| |
Collapse
|
19
|
Liu Y, Li D, Wang S, Peng Z, Tan Q, He Q, Wang J. 6-Gingerol Ameliorates Hepatic Steatosis, Inflammation and Oxidative Stress in High-Fat Diet-Fed Mice through Activating LKB1/AMPK Signaling. Int J Mol Sci 2023; 24:ijms24076285. [PMID: 37047258 PMCID: PMC10094681 DOI: 10.3390/ijms24076285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
6-Gingerol, one of the major pharmacologically active ingredients extracted from ginger, has been reported experimentally to exert hepatic protection in non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism remains largely elusive. RNA sequencing indicated the significant involvement of the AMPK signaling pathway in 6-gingerol-induced alleviation of NAFLD in vivo. Given the significance of the LKB1/AMPK pathway in metabolic homeostasis, this study aims to investigate its role in 6-gingerol-induced mitigation on NAFLD. Our study showed that 6-gingerol ameliorated hepatic steatosis, inflammation and oxidative stress in vivo and in vitro. Further experiment validation suggested that 6-gingerol activated an LKB1/AMPK pathway cascade in vivo and in vitro. Co-immunoprecipitation analysis demonstrated that the 6-gingerol-elicited activation of an LKB1/AMPK pathway cascade was related to the enhanced stability of the LKB1/STRAD/MO25 complex. Furthermore, radicicol, an LKB1 destabilizer, inhibited the activating effect of 6-gingerol on an LKB1/AMPK pathway cascade via destabilizing LKB1/STRAD/MO25 complex stability in vitro, thus reversing the 6-gingerol-elicited ameliorative effect. In addition, molecular docking analysis further predicated the binding pockets of LKB1 necessary for binding with 6-gingerol. In conclusion, our results indicate that 6-gingerol plays an important role in regulating the stability of the LKB1/STRAD/MO25 complex and the activation of LKB1, which might weigh heavily in the 6-gingerol alleviation of NAFLD.
Collapse
Affiliation(s)
- Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- Correspondence:
| |
Collapse
|
20
|
Ahmed SHH, Gonda T, Agbadua OG, Girst G, Berkecz R, Kúsz N, Tsai MC, Wu CC, Balogh GT, Hunyadi A. Preparation and Evaluation of 6-Gingerol Derivatives as Novel Antioxidants and Antiplatelet Agents. Antioxidants (Basel) 2023; 12:antiox12030744. [PMID: 36978992 PMCID: PMC10045534 DOI: 10.3390/antiox12030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Ginger (Zingiber officinale) is widely used as a spice and a traditional medicine. Many bioactivities have been reported for its extracts and the isolated compounds, including cardiovascular protective effects. Different pathways were suggested to contribute to these effects, like the inhibition of platelet aggregation. In this study, we synthesised fourteen 6-gingerol derivatives, including eight new compounds, and studied their antiplatelet, COX-1 inhibitor, and antioxidant activities. In silico docking of selected compounds to h-COX-1 enzyme revealed favourable interactions. The investigated 6-gingerol derivatives were also characterised by in silico and experimental physicochemical and blood-brain barrier-related parameters for lead and preclinical candidate selection. 6-Shogaol (2) was identified as the best overall antiplatelet lead, along with compounds 3 and 11 and the new compound 17, which require formulation to optimize their water solubility. Compound 5 was identified as the most potent antioxidant that is also promising for use in the central nervous system (CNS).
Collapse
Affiliation(s)
- Sara H H Ahmed
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Tímea Gonda
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Orinamhe G Agbadua
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Girst
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Meng-Chun Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - György T Balogh
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
21
|
Kazazi I, Ashrafi F, Malekloo M. Synthesis of Gingerol-loaded Uio-66 nanoparticles and its anti-cancer effect against gastric cancer cell line (AGS). Mol Biol Rep 2023; 50:3503-3513. [PMID: 36787050 DOI: 10.1007/s11033-022-07667-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND Gastric cancer is the world's fifth most prevalent cancer and its treatments are associated with issues. In this investigation, a UIO-66 nanoparticle was loaded with Gingerol (UIO-66-Gin) as a great drug carrier vehicle for chemotherapy of the AGS cancer cell lines. METHODS AND RESULTS UIO-66-Gin characterization was performed using SEM, DLS and FTIR tests. The release profile of Gin from UIO-66 was also assessed. The cytotoxicity of UIO-66-Gin against AGS cells was assessed using MTT assay. Caspase3, Caspase9, Bax, and Bcl2 genes expression was evaluated via Real-time PCR and apoptosis rate was performed using flow-cytometry assay. Size analysis indicated the spherical shape of nano-formulation with the mean size of 174.3 nm. Release analysis indicated that there was a 50% Gin release from the nanocarrier was reported in roughly 21 h, which revealed the regulated release of bioactive compound from the UIO-66 formulation in PBS medium. After 48 and 72 h, various concentration of both the Gin and UIO-66-Gin started to induce cytotoxicity in cancerous cells. However, the induction of cytotoxicity was higher in cells treated with UIO-66-Gin. UIO-66-Gin could induce the expression of pro-apoptotic (Bax, Caspase3, and Caspase9) genes and down-regulate the expression of Bcl2 as anti-apoptotic gene rather than other formulation. Flowcytometry results indicated that the elevation of apoptotic rate in cells treated with UIO-66-Gin was significantly higher than Gin treated cells. CONCLUSIONS Our investigation revealed the potent anticancer effect and apoptotic induction ability of UIO-66-Gin against cancerous cells through altering the expression of genes involved in apoptosis.
Collapse
Affiliation(s)
- Irana Kazazi
- Department of Biology, Tehran North Branch, Islamic Azad University, 16511-53311, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, Tehran North Branch, Islamic Azad University, 16511-53311, Tehran, Iran.
| | - Maryam Malekloo
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Singh V, Rana NK, Kashif M, Manna PP, Basu Baul TS, Koch B. Aqua-(2-formylbenzoato)triphenyltin(IV) induces cell cycle arrest and apoptosis in hypoxic triple negative breast cancer cells. Toxicol In Vitro 2023; 86:105484. [DOI: 10.1016/j.tiv.2022.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
23
|
Okuyama NCM, Ribeiro DL, da Rocha CQ, Pereira ÉR, Cólus IMDS, Serpeloni JM. Three-dimensional cell cultures as preclinical models to assess the biological activity of phytochemicals in breast cancer. Toxicol Appl Pharmacol 2023; 460:116376. [PMID: 36638973 DOI: 10.1016/j.taap.2023.116376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The demand for the development of three-dimensional (3D) cell culture models in both/either drug screening and/or toxicology is gradually magnified. Natural Products derived from plants are known as phytochemicals and serve as resources for novel drugs and cancer therapy. Typical examples include taxol analogs (i.e., paclitaxel and docetaxel), vinca alkaloids (i.e., vincristine, vinblastine), and camptothecin analogs (topotecan, irinotecan). Breast cancer is the most frequent malignancy in women, with a 70% chance of patients being cured; however, metastatic disease is not considered curable using currently available chemotherapeutic options. In addition, phytochemicals present promising options for overcoming chemotherapy-related problems, such as drug resistance and toxic effects on non-target tissues. In the toxicological evaluation of these natural compounds, 3D cell culture models are a powerful tool for studying their effects on different tissues and organs in similar environments and behave as if they are in vivo conditions. Considering that 3D cell cultures represent a valuable platform for identifying the biological features of tumor cells as well as for screening natural products with antitumoral activity, the present review aims to summarize the most common 3D cell culture methods, focusing on multicellular tumor spheroids (MCTS) of breast cancer cell lines used in the discovery of phytochemicals with anticancer properties in the last ten years.
Collapse
Affiliation(s)
- Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Diego Luís Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508-000, Brazil.
| | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, Brazil.
| | - Érica Romão Pereira
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
24
|
Kim TW, Lee HG. 6-Shogaol Overcomes Gefitinib Resistance via ER Stress in Ovarian Cancer Cells. Int J Mol Sci 2023; 24:ijms24032639. [PMID: 36768961 PMCID: PMC9916959 DOI: 10.3390/ijms24032639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
In women, ovary cancer is already the fifth leading cause of mortality worldwide. The use of cancer therapies, such as surgery, radiotherapy, and chemotherapy, may be a powerful anti-cancer therapeutic strategy; however, these therapies still have many problems, including resistance, toxicity, and side effects. Therefore, natural herbal medicine has the potential to be used for cancer therapy because of its low toxicity, fewer side effects, and high success. This study aimed to investigate the anti-cancer effect of 6-shogaol in ovarian cancer cells. 6-shogaol induces ER stress and cell death via the reduction in cell viability, the increase in LDH cytotoxicity, caspase-3 activity, and Ca2+ release, and the upregulation of GRP78, p-PERK, p-eIF2α, ATF-4, CHOP, and DR5. Moreover, 6-shogaol treatment medicates endoplasmic reticulum (ER) stress and cell death by upregulating Nox4 and releasing ROS. The knockdown of Nox4 in ovarian cancer cells inhibits ER stress and cell death by blocking the reduction in cell viability and the enhancement of LDH cytotoxicity, caspase-3 activity, Ca2+, and ROS release. In gefitinib-resistant ovarian cancer cells, A2780R and OVCAR-3R, 6-shogaol/gefitinib overcomes gefitinib resistance by inhibiting EMT phenomena such as the reduction in E-cadherin, and the increase in N-cadherin, vimentin, Slug, and Snail. Therefore, our results suggest that 6-shogaol exerts a potential anti-cancer effect in ovarian cancer and combination treatment with 6-shogaol and gefitinib may provide a novel anti-tumor therapeutic strategy in gefitinib-resistant ovarian cancer.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
- Correspondence:
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Review to Understand the Crosstalk between Immunotherapy and Tumor Metabolism. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020862. [PMID: 36677919 PMCID: PMC9863813 DOI: 10.3390/molecules28020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Immune checkpoint inhibitors have ushered in a new era of cancer treatment by increasing the likelihood of long-term survival for patients with metastatic disease and by introducing fresh therapeutic indications in cases where the disease is still in its early stages. Immune checkpoint inhibitors that target the proteins cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1/programmed death ligand-1 have significantly improved overall survival in patients with certain cancers and are expected to help patients achieve complete long-lasting remissions and cures. Some patients who receive immune checkpoint inhibitors, however, either experience therapeutic failure or eventually develop immunotherapy resistance. Such individuals are common, which necessitates a deeper understanding of how cancer progresses, particularly with regard to nutritional regulation in the tumor microenvironment (TME), which comprises metabolic cross-talk between metabolites and tumor cells as well as intracellular metabolism in immune and cancer cells. Combination of immunotherapy with targeted metabolic regulation might be a focus of future cancer research despite a lack of existing clinical evidence. Here, we reviewed the significance of the tumor microenvironment and discussed the most significant immunological checkpoints that have recently been identified. In addition, metabolic regulation of tumor immunity and immunological checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways were also incorporated to discuss the possible metabolism-based treatment methods being researched in preclinical and clinical settings. This review will contribute to the identification of a relationship or crosstalk between tumor metabolism and immunotherapy, which will shed significant light on cancer treatment and cancer research.
Collapse
|
26
|
Wu X, Wang N, Liang J, Wang B, Jin Y, Liu B, Yang Y. Is the Triggering of PD-L1 Dimerization a Potential Mechanism for Food-Derived Small Molecules in Cancer Immunotherapy? A Study by Molecular Dynamics. Int J Mol Sci 2023; 24:ijms24021413. [PMID: 36674929 PMCID: PMC9864258 DOI: 10.3390/ijms24021413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4′-hydroxy-3′-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.
Collapse
|
27
|
Salari Z, Khosravi A, Pourkhandani E, Molaakbari E, Salarkia E, Keyhani A, Sharifi I, Tavakkoli H, Sohbati S, Dabiri S, Ren G, Shafie’ei M. The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo. Front Oncol 2023; 13:1098429. [PMID: 36937441 PMCID: PMC10020515 DOI: 10.3389/fonc.2023.1098429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Epithelial ovarian cancer is very common in women and causes hundreds of deaths per year worldwide. Chemotherapy drugs including cisplatin have adverse effects on patients' health. Complementary treatments and the use of herbal medicines can help improve the performance of medicine. 6-Gingerol is the major pharmacologically active component of ginger. In this study, we compared the effects of 6-gingerol, cisplatin, and their combination in apoptotic and angiogenetic activities in silico, in test tubes, and in in vivo assays against two ovarian cancer cell lines: OVCAR-3 and human umbilical vein endothelial cells (HUVECs). Methods The drug-treated cell lines were evaluated for their cytotoxicity, cell cycle, and apoptotic and angiogenetic gene expression changes. Results The proportion of apoptosis treated by 6-gingerol coupled with cisplatin was significantly high. In the evaluation of the cell cycle, the combination therapy also showed a significant promotion of a higher extent of the S sequence. The expression of p53 level, Caspase-8, Bax, and Apaf1 genes was amplified again with combination therapy. Conversely, in both cell lines, the cumulative drug concentrations reduced the expression of VEGF, FLT1, KDR, and Bcl-2 genes. Similarly, in the control group, combination treatment significantly decreased the expression of VEGF, FLT1, KDR, and Bcl-2 genes in comparison to cisplatin alone. Conclusions The findings of the present study demonstrated that the cisplatin and 6-gingerol combination is more effective in inducing apoptosis and suppressing the angiogenesis of ovarian cancer cells than using each drug alone.
Collapse
Affiliation(s)
- Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Ahmad Khosravi, ; Elham Pourkhandani,
| | - Elham Pourkhandani
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Ahmad Khosravi, ; Elham Pourkhandani,
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Samira Sohbati
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Mohammad Shafie’ei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, Arslan-Acaroz D, Demirbas H, Hajrulai-Musliu Z, Istanbullugil FR, Soleimanzadeh A, Morozov D, Zhu K, Herman V, Ayad A, Athanassiou C, Ince S. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel) 2022; 14:6203. [PMID: 36551687 PMCID: PMC9777303 DOI: 10.3390/cancers14246203] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hayri Demirbas
- Department of Neurology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Zehra Hajrulai-Musliu
- Department of Chemistry, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, North Macedonia
| | - Fatih Ramazan Istanbullugil
- Department of Chemistry and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Dmitry Morozov
- Department of Epizootology and Infectious Diseases, Vitebsk State Academy of Veterinary Medicine, 210026 Vitebsk, Belarus
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Viorel Herman
- Department of Infectious Disease and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Abdelhanine Ayad
- Department of Physical Biology and Chemistry, Faculty of Nature and Life Sciences, Université de Bejaia, Bejaia 06000, Algeria
| | - Christos Athanassiou
- Laboratory of Entomology and Agriculture Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
29
|
Future Prospective of Radiopharmaceuticals from Natural Compounds Using Iodine Radioisotopes as Theranostic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228009. [PMID: 36432107 PMCID: PMC9694974 DOI: 10.3390/molecules27228009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
Collapse
|
30
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
31
|
Health benefits of bioactive components in pungent spices mediated via the involvement of TRPV1 channel. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Mesmar J, Abdallah R, Hamade K, Baydoun S, Al-Thani N, Shaito A, Maresca M, Badran A, Baydoun E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front Pharmacol 2022; 13:994025. [PMID: 36299882 PMCID: PMC9589507 DOI: 10.3389/fphar.2022.994025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Breast cancer (BC) is the second most common cancer overall. In women, BC is the most prevalent cancer and the leading cause of cancer-related mortality. Triple-negative BC (TNBC) is the most aggressive BC, being resistant to hormonal and targeted therapies. Hypothesis/Purpose: The medicinal plant Origanum syriacum L. is a shrubby plant rich in bioactive compounds and widely used in traditional medicine to treat various diseases. However, its therapeutic potential against BC remains poorly investigated. In the present study, we screened the phytochemical content of an ethanolic extract of O. syriacum (OSEE) and investigated its anticancer effects and possible underlying mechanisms of action against the aggressive and highly metastatic human TNBC cell line MDA-MB-231. Methods: MTT, trans-well migration, and scratch assays were used to assess cell viability, invasion, or migration, respectively. Antioxidant potential was evaluated in vitro using the DPPH radical-scavenging assay and levels of reactive oxygen species (ROS) were assessed in cells in culture using DHE staining. Aggregation assays were used to determine cell-cell adhesion. Flow cytometry was used to analyze cell cycle progression. Protein levels of markers of apoptosis (BCL-2, pro-Caspase3, p53), proliferation (p21, Ki67), cell migration, invasion, or adhesion (FAK, E-cadherin), angiogenesis (iNOS), and cell signaling (STAT3, p38) were determined by immunoblotting. A chorioallantoic Membrane (CAM) assay evaluated in ovo angiogenesis. Results: We demonstrated that OSEE had potent radical scavenging activity in vitro and induced the generation of ROS in MDA-MB-231 cells, especially at higher OSEE concentrations. Non-cytotoxic concentrations of OSEE attenuated cell proliferation and induced G0/G1 cell cycle arrest, which was associated with phosphorylation of p38 MAPK, an increase in the levels of tumor suppressor protein p21, and a decrease of proliferation marker protein Ki67. Additionally, only higher concentrations of OSEE were able to attenuate inhibition of proliferation induced by the ROS scavenger N-acetyl cysteine (NAC), indicating that the anti-proliferative effects of OSEE could be ROS-dependent. OSEE stimulated apoptosis and its effector Caspase-3 in MDA-MB-231 cells, in correlation with activation of the STAT3/p53 pathway. Furthermore, the extract reduced the migration and invasive properties of MDA-MB-231 cells through the deactivation of focal adhesion kinase (FAK). OSEE also reduced the production of inducible nitric oxide synthase (iNOS) and inhibited in ovo angiogenesis. Conclusion: Our findings reveal that OSEE is a rich source of phytochemicals and has robust anti-breast cancer properties that significantly attenuate the malignant phenotype of MD-MB-231 cells, suggesting that O. syriacum may not only act as a rich source of potential TNBC therapeutics but may also provide new avenues for the design of novel TNBC drugs.
Collapse
Affiliation(s)
- Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha, Qatar
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha, Qatar
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Marc Maresca
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| |
Collapse
|
33
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
34
|
Lalami ZA, Tafvizi F, Naseh V, Salehipour M. Characterization and optimization of co-delivery Farnesol-Gingerol Niosomal formulation to enhance anticancer activities against breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Liu CM, An L, Wu Z, Ouyang AJ, Su M, Shao Z, Lin Y, Liu X, Jiang Y. 6‑Gingerol suppresses cell viability, migration and invasion via inhibiting EMT, and inducing autophagy and ferroptosis in LPS‑stimulated and LPS‑unstimulated prostate cancer cells. Oncol Lett 2022; 23:187. [PMID: 35527779 PMCID: PMC9073581 DOI: 10.3892/ol.2022.13307] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
6-Gingerol is a bioactive compound isolated from Zingiber officinale. 6-Gingerol has been shown to have anticancer effects in numerous types of cancer cell. The mechanisms underlying the anticancer effect of 6-Gingerol in prostate cancer requires investigation. In the present study, the effect on cell viability of 6-Gingerol on LNCaP, PC3 and DU145 prostate cancer cells were determined using the MTT and colony formation assays. 6-Gingerol significantly inhibited cell migration, adhesion and invasion in LPS-stimulated and LPS-unstimulated prostate cancer cells. Furthermore, these changes were accompanied by alterations in the protein expression levels of epithelial-mesenchymal transition biomarkers, including E-cadherin, N-cadherin, Vimentin and zonula occludens-1. 6-Gingerol also induced autophagy by significantly increasing LC3B-II and Beclin-1 protein expression levels in prostate cancer cells. Combining 6-Gingerol with LY294002, an autophagy inhibitor, significantly increased cell survival in DU145 cells. Furthermore, 6-Gingerol significantly decreased the protein expression levels of glutathione (GSH) peroxidase 4 and nuclear factor erythroid 2-related factor 2 in prostate cancer cells. Reactive oxygen species (ROS) levels were significantly increased but GSH levels were decreased following 6-Gingerol treatment in prostate cancer cells. Co-treatment with the ferroptosis inhibitor, ferrostatin-1, significantly increased cell viability and significantly decreased ROS levels in 6-Gingerol-treated cells. These results suggested that 6-Gingerol may have inhibited prostate cell cancer viability via the regulation of autophagy and ferroptosis. In addition, 6-Gingerol inhibited cell migration, adhesion and invasion via the regulation of EMT-related protein expression levels in LPS-stimulated and LPS-unstimulated prostate cancer cells. In conclusion, 6-Gingerol may induce protective autophagy, autophagic cell death and ferroptosis-mediated cell death in prostate cancer cells. These findings may provide a strategy for the treatment and prevention of prostate cancer.
Collapse
Affiliation(s)
- Chi-Ming Liu
- School of Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Lijie An
- School of Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Zhengping Wu
- School of Aesthetic Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Ai-Jun Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mengqiao Su
- School of Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Zichen Shao
- School of Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Yi Lin
- School of Aesthetic Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Xiaoyu Liu
- School of Aesthetic Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| | - Yinjie Jiang
- School of Medicine, Yichun University, Yichun, Jiangxi 336000, P.R. China
| |
Collapse
|
36
|
Anticancer Efficacy of 6-Gingerol with Paclitaxel against Wild Type of Human Breast Adenocarcinoma. Molecules 2022; 27:molecules27092693. [PMID: 35566044 PMCID: PMC9104006 DOI: 10.3390/molecules27092693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the most common malignant neoplasms, and despite the dynamic development of anticancer therapies, 5-year survival in the metastatic stage is still less than 30%. 6-Gingerol (1-[4′-hydroxy-3′-methoxyphenyl]-5-hydroxy-3-decanone) is a substance contained in ginger, which exhibits anti-cancer properties. Paclitaxel is a cytostatic substance used to treat breast cancer, but its therapeutically effective dose has many adverse effects. The aim of the presented study was to assess the anticancer effect of 6-gingerol and the possibility of increasing the effectiveness of Paclitaxel in the death induction of wild type human breast cancer cells. MCF-7/WT cells were treated with drugs—6-gingerol and paclitaxel at selected concentrations. The mitochondrial activity assay, caspase 7 activity assay, ATP assay, microscopy studies, and RT-PCR assays were performed to evaluate the antitumor activity and mechanism of action of both compounds, alone and in combination. After 72 h of incubation, the mitochondrial activity showed that the combination of 5 nM Paclitaxel with 10 µM 6-Gingerol led to the same decrease in viability as the use of 20 nM Paclitaxel alone; 10 µM 6-Gingerol led to an enhancement of caspase 7 activity, with the highest activity observed after 24 h of incubation. A real-time PCR study showed that 6-Gingerol induces the simultaneous transcription of Bax with TP53 genes in large excess to BCL-2. In contrast, 5 nM Paclitaxel induces TP53 transcription in excess of BCL-2 and Bax. Our results suggest that 6-Gingerol may act as a cell death-inducing agent in cancer cells and, in combination with paclitaxel, and increase the effectiveness of conventional chemotherapy.
Collapse
|
37
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
38
|
Antitumor Effects of Natural Bioactive Ursolic Acid in Embryonic Cancer Stem Cells. JOURNAL OF ONCOLOGY 2022; 2022:6737248. [PMID: 35222644 PMCID: PMC8866021 DOI: 10.1155/2022/6737248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
Abstract
Embryonic cancer cells (CSCs) could cause different types of cancer, a skill that makes them even more dangerous than other cancer cells. Identifying CSCs using natural products is a good option as it inhibits the recurrence of cancer with moderate various effects. Ursolic acid (UA) is a pentacyclic triterpenoid extracted from fruit and herbal remedies and has known anticancer functions against various cancer cells. However, its potential against CSCs remains uncertain. This study was planned to examine the induction of cell apoptosis by the UA. For cell signaling studies, we performed experiments, which are real-time qPCR and immunoblotting. Also, various cellular processes were analyzed using flow cytometry. The results raised a barrier to cell proliferation by the UA in NTERA-2 and NCCIT cells. Morphological studies also confirmed the UA's ability to cause cell death in embryonic CSCs. Examination of cell death importation showed that the UA formed the expression of the iNOS and thus the cell generation and mitochondrial reactive oxygen generation, which created a reaction to cellular DNA damage by raising the protein levels of phospho-histone ATR and ATM. In addition, the UA created the binding of the G0/G1 cell cycle to NTERA-2 and NCCIT cells, improved the expression levels of p21 and p27, and reduced the expression levels of CDK4, cyclin D1, and cyclin E, confirming the UA's ability to initiate cell cycle arrest. Finally, the UA created an internal mechanism of apoptosis in the embryonic CSC using BAX and cytochrome c regulation as well as the regulation of BCL-xL and BCL-2 proteins. Therefore, UA could be the best candidate for targeting CSCs and thus suppressing the emergence of cancer.
Collapse
|
39
|
Yuan L, Cai Y, Zhang L, Liu S, Li P, Li X. Promoting Apoptosis, a Promising Way to Treat Breast Cancer With Natural Products: A Comprehensive Review. Front Pharmacol 2022; 12:801662. [PMID: 35153757 PMCID: PMC8836889 DOI: 10.3389/fphar.2021.801662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the top-ranked malignant carcinomas associated with morbidity and mortality in women worldwide. Chemotherapy is one of the main approaches to breast cancer treatment. Breast cancer initially responds to traditional first- and second-line drugs (aromatase inhibitor, tamoxifen, and carboplatin), but eventually acquires resistance, and certain patients relapse within 5 years. Chemotherapeutic drugs also have obvious toxic effects. In recent years, natural products have been widely used in breast cancer research because of their low side effects, low toxicity, and good efficacy based on their multitarget therapy. Apoptosis, a programmed cell death, occurs as a normal and controlled process that promotes cell growth and death. Inducing apoptosis is an important strategy to control excessive breast cancer cell proliferation. Accumulating evidence has revealed that natural products become increasingly important in breast cancer treatment by suppressing cell apoptosis. In this study, we reviewed current studies on natural product–induced breast cancer cell apoptosis and summarized the proapoptosis mechanisms including mitochondrial, FasL/Fas, PI3K/AKT, reactive oxygen species, and mitogen-activated protein kinase–mediated pathway. We hope that our review can provide direction in the search for candidate drugs derived from natural products to treat breast cancer by promoting cell apoptosis.
Collapse
Affiliation(s)
- Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Pan Li
- Department of Pharmacy, Fengdu County Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Xiaoli Li, ; Pan Li,
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
- *Correspondence: Xiaoli Li, ; Pan Li,
| |
Collapse
|
40
|
Kim TW, Ko SG. The Herbal Formula JI017 Induces ER Stress via Nox4 in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10121881. [PMID: 34942984 PMCID: PMC8698338 DOI: 10.3390/antiox10121881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Chemotherapy is a powerful anti-tumor therapeutic strategy; however, resistance to treatment remains a serious concern. To overcome chemoresistance, combination therapy with anticancer drugs is a potential strategy. We developed a novel herbal extract, JI017, with lower toxicity and lesser side effects. JI017 induced programmed cell death and excessive unfolded protein response through the release of intracellular reactive oxygen species (ROS) and calcium in breast cancer cells. JI017 treatment increased the expression of endoplasmic reticulum (ER) stress markers, including p-PERK, p-eIF2α, ATF4, and CHOP, via the activation of both exosomal GRP78 and cell lysate GRP78. The ROS inhibitors diphenyleneiodonium and N-acetyl cysteine suppressed apoptosis and excessive ER stress by inhibiting Nox4 in JI017-treated breast cancer cells. Furthermore, in paclitaxel-resistant breast cancer cell lines, MCF-7R and MDA-MB-231R, a combination of JI017 and paclitaxel overcame paclitaxel resistance by blocking epithelial-mesenchymal transition (EMT) processes, such as the downregulation of E-cadherin expression and the upregulation of HIF-1α, vimentin, Snail, and Slug expression. These findings suggested that JI017 exerts a powerful anti-cancer effect in breast cancer and a combination therapy of JI017 and paclitaxel may be a potential cancer therapy for paclitaxel resistant breast cancer.
Collapse
Affiliation(s)
| | - Seong-Gyu Ko
- Correspondence: ; Tel.: +82-2-961-0329; Fax: +82-2-961-1165
| |
Collapse
|
41
|
Sp N, Kang DY, Jo ES, Lee JM, Bae SW, Jang KJ. Pivotal Role of Iron Homeostasis in the Induction of Mitochondrial Apoptosis by 6-Gingerol Through PTEN Regulated PD-L1 Expression in Embryonic Cancer Cells. Front Oncol 2021; 11:781720. [PMID: 34804985 PMCID: PMC8595921 DOI: 10.3389/fonc.2021.781720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSCs with natural compounds is a promising approach as it suppresses cancer recurrence with fewer adverse effects. 6-Gingerol is an active component of ginger, which exhibits well-known anti-cancer activities. This study determined the mechanistic aspects of cell death induction by 6-gingerol. To analyze cellular processes, we used Western blot and real-time qPCR for molecular signaling studies and conducted flow cytometry. Our results suggested an inhibition of CSC marker expression and Wnt/β-catenin signaling by 6-gingerol in NCCIT and NTERA-2 cells. 6-Gingerol induced reactive oxygen species generation, the DNA damage response, cell cycle arrest, and the intrinsic pathway of apoptosis in embryonic CSCs. Furthermore, 6-gingerol inhibited iron metabolism and induced PTEN, which both played vital roles in the induction of cell death. The activation of PTEN resulted in the inhibition of PD-L1 expression through PI3K/AKT/p53 signaling. The induction of PTEN also mediated the downregulation of microRNAs miR-20b, miR-21, and miR-130b to result in PD-L1 suppression by 6-gingerol. Hence, 6-gingerol may be a promising candidate to target CSCs by regulating PTEN-mediated PD-L1 expression.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, South Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, South Korea
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si, South Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si, South Korea.,SK Bioscience, Seongnam-si, South Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju, South Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, South Korea
| |
Collapse
|
42
|
Sp N, Kang DY, Jo ES, Lee JM, Jang KJ. Iron Metabolism as a Potential Mechanism for Inducing TRAIL-Mediated Extrinsic Apoptosis Using Methylsulfonylmethane in Embryonic Cancer Stem Cells. Cells 2021; 10:cells10112847. [PMID: 34831070 PMCID: PMC8616102 DOI: 10.3390/cells10112847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSC using natural compounds is a good approach as it suppresses cancer recurrence with fewer adverse effects, and methylsulfonylmethane (MSM) is a sulfur-containing compound with well-known anticancer activities. This study determined the mechanistic aspects of the anticancer activity of MSM. We used Western blotting and real-time qPCR for molecular signaling studies and conducted flow cytometry for analyzing the processes in cells. Our results suggested an inhibition in the expression of CSC markers and Wnt/β-catenin signaling. MSM induced TRAIL-mediated extrinsic apoptosis in NCCIT and NTERA-2 cells rather than an intrinsic pathway. Inhibition of iron metabolism-dependent reactive oxygen species (ROS) generation takes part in TRAIL-mediated apoptosis induction by MSM. Suppressing iron metabolism by MSM also regulated p38/p53/ERK signaling and microRNA expressions, such as upregulating miR-130a and downregulating miR-221 and miR-222, which resulted in TRAIL induction and thereby extrinsic pathway of apoptosis. Hence, MSM could be a good candidate for neoadjuvant therapy by targeting CSCs by inhibiting iron metabolism.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
- SK Bioscience, Seongnam-si 13493, Korea
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
43
|
Albelwi FF, Teleb M, Abu-Serie MM, Moaty MNAA, Alsubaie MS, Zakaria MA, El Kilany Y, Aouad MR, Hagar M, Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int J Mol Sci 2021; 22:ijms221910324. [PMID: 34638665 PMCID: PMC8508768 DOI: 10.3390/ijms221910324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2–5.6-fold) and suppressed cyclin D expression (0.8–0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.
Collapse
Affiliation(s)
- Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed A. Zakaria
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Yeldez El Kilany
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
- Correspondence: (M.H.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
- Correspondence: (M.H.); (N.R.)
| |
Collapse
|
44
|
Mechanistic Insights of Anti-Immune Evasion by Nobiletin through Regulating miR-197/STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer (NSCLC) Cells. Int J Mol Sci 2021; 22:ijms22189843. [PMID: 34576006 PMCID: PMC8468939 DOI: 10.3390/ijms22189843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.
Collapse
|
45
|
Ahmed SHH, Gonda T, Hunyadi A. Medicinal chemistry inspired by ginger: exploring the chemical space around 6-gingerol. RSC Adv 2021; 11:26687-26699. [PMID: 35480015 PMCID: PMC9037716 DOI: 10.1039/d1ra04227k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe) has been used as a spice and as a traditional remedy since ancient times, especially in traditional Chinese medicine. It has been applied as a treatment for many diseases either alone or in combination with other remedies. Many studies were conducted on ginger and its constituents and a wide array of bioactivities were reported, e.g., antioxidant, anti-inflammatory, antiemetic, and anticancer activity. Most of these had been correlated to gingerols and shogaols, the most abundant secondary metabolites in ginger. This inspired several research groups to explore the biomedical value of the chemical space around these compounds, and many of their synthetic or semi-synthetic analogues have been prepared and studied for various bioactivities. Thanks to this, many valuable structure activity relationships have been revealed for such compounds. Herein, we provide a brief summary on the synthetic derivatization efforts that had so far been implemented on 6-gingerol, the main constituent of fresh ginger. This review covers 160 natural, semisynthetic, or synthetic 6-gingerol derivatives and their reported bioactivities. Structure and reported bioactivities of semi-synthetic and synthetic 6-gingerol derivatives.![]()
Collapse
Affiliation(s)
- Sara Hassan Hassan Ahmed
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456.,Faculty of Pharmacy, University of Khartoum 1996 Khartoum Sudan
| | - Tímea Gonda
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456.,Interdisciplinary Centre for Natural Products, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary
| |
Collapse
|