1
|
Yang X, Yue R, Zhao L, Wang Q. Integration of transcriptome and Mendelian randomization analyses in exploring the extracellular vesicle-related biomarkers of diabetic kidney disease. Ren Fail 2025; 47:2458767. [PMID: 39957315 PMCID: PMC11834810 DOI: 10.1080/0886022x.2025.2458767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Diabetic Kidney Disease (DKD) is a common complication in patients with diabetes, and its pathogenesis remains incompletely understood. Recent studies have suggested that extracellular vesicles (EVs) may play a significant role in the initiation and progression of DKD. This study aimed to identify biomarkers associated with EVs in DKD through bioinformatics and Mendelian randomization (MR) analysis. METHODS This study utilized two DKD-related datasets, GSE96804 and GSE30528, alongside 121 exosome-related genes (ERGs) and 200 inflammation-related genes (IRGs). Differential analysis, co-expression network construction, and MR analysis were conducted to identify candidate genes. Machine learning techniques and expression validation were then employed to determine biomarkers. Finally, the potential mechanisms of action of these biomarkers were explored through Immunohistochemistry (IHC) staining, enrichment analysis, immune infiltration analysis, and regulatory network construction. RESULTS A total of 22 candidate genes were identified as causally linked to DKD. CMAS and RGS10 were identified as biomarkers, with both showing reduced expression in DKD. IHC confirmed low RGS10 expression, providing new insights into DKD management. CMAS was involved primarily in mitochondria-related pathways, while RGS10 was enriched in the extracellular matrix and associated pathways. Significant differences were observed in neutrophils and M2 macrophages between DKD and normal groups, correlating strongly with the biomarkers. CONCLUSION This study identified two EV-associated biomarkers, CMAS and RGS10, linked to DKD and elucidated their potential roles in disease progression. These results offer valuable insights for further exploration of DKD pathogenesis and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Xu Yang
- Second Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangbin Zhao
- Second Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyue Wang
- Department of Pediatrics, Chengdu Jinniu Hospital of TCM, Chengdu, China
| |
Collapse
|
2
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2025; 48:269-293. [PMID: 39298081 PMCID: PMC11997007 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
3
|
Srinivasan S, Hoff PD, Morey AL, Vuppala A, Mochizuki M, Morey RE, Meads M, Duggan E, Wildman DE, Nolan JP, Pantham P. Miniaturized Workflow for Transcriptomic Profiling of Urinary Extracellular RNA during Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.639539. [PMID: 40093060 PMCID: PMC11908132 DOI: 10.1101/2025.03.03.639539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Urine contains extracellular RNA (exRNA) carried by extracellular vesicles (EVs) and other biomolecular complexes. There is currently a need for studies focused on female cohorts to develop new methods for non-invasive analysis of biofluids to create reference profiles and for identification of biomarkers of reproductive and pregnancy disorders. The objective of this study was therefore to identify optimal methods for transcriptomic profiling of urine by testing different exRNA isolation and scalable library preparation methods that enable detection of biomarkers that reflect pregnancy-associated changes in the placenta and maternal tissues. RNA was extracted from pooled and individual urine samples obtained from normal non-pregnant and pregnant females, as well as males, using input volumes of either 0.6 mL, 1 mL, or 4 mL. Samples were extracted using methods that focused either on isolating vesicular (EV-associated) or total (EV-associated and non EV-associated) exRNA. Small RNA libraries (n=208) were prepared using the NEBNext Small RNA Library Prep kit and long RNA libraries (n=97) were prepared using the SMART-Seq v4 Ultra Low Input RNA or the SMARTer Stranded Total RNA-Seq Kit v2 Pico Input kits (Takara). Principal component analysis showed that the greatest source of variance amongst technical replicates of small RNA libraries (n=176 which passed quality control) was exRNA isolation method, and amongst long RNA libraries (n=97 which passed quality control) was library preparation method. Long RNA libraries prepared from exRNA extracted using miRCURY showed that the SMART-Seq v4 method yielded significantly more uniquely mapped reads compared to the Pico v2 method (p<0.05). We have established a scalable pipeline for small and long RNA-Seq profiling of exRNA in urine in a reproducible manner, which we used to identify differentially expressed urinary exRNAs in pregnancy, and will enable transcriptomic profiling of urinary exRNA in disorders of pregnancy, including preeclampsia.
Collapse
|
4
|
Hallal SM, Sida LA, Tűzesi Á, Shivalingam B, Sim H, Buckland ME, Satgunaseelan L, Alexander KL. Size matters: Biomolecular compositions of small and large extracellular vesicles in the urine of glioblastoma patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70021. [PMID: 39554867 PMCID: PMC11565258 DOI: 10.1002/jex2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The promise of urinary extracellular vesicles (uEVs) in biomarker discovery is emerging. However, the characteristics and compositions of different uEV subpopulations across normal physiological and pathological states require rigorous explication. We recently reported proteomic signatures of small (s)-uEVs (<200 nm membranous nanoparticles) and described putative biomarkers corresponding to the diagnosis, tumour burden and recurrence of the lethal adult primary brain tumour, glioblastoma. Here, we comprehensively characterise uEV populations with significantly different mean and mode particle sizes obtained by differential centrifugation at 100,000 × g (100K-uEVs; smaller) and 17,000 × g (17K-uEVs; larger) using Fourier-transform infrared spectroscopy and quantitative data-independent acquisition mass spectrometry. We show distinct differences in protein and lipid content, prominent protein secondary structures, and proteome distributions between uEV populations that can distinguish glioblastoma patients from healthy controls and correspond to clinically relevant tumour changes (i.e., recurrence and treatment resistance). Among the key findings is a putative seven-protein biomarker panel associated with 17K-uEVs that could distinguish all glioblastoma patients from healthy controls and accurately classify 98.2% of glioblastoma samples. These novel, significant findings demonstrate that both uEV populations offer individual and combined biomarker potential. Further research is warranted to elucidate the complete diagnostic, prognostic, and predictive capabilities of often-neglected 17K-uEV populations.
Collapse
Affiliation(s)
- Susannah M. Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Liam A. Sida
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Ágota Tűzesi
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Brindha Shivalingam
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Neurosurgery DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Hao‐Wen Sim
- Department of Medical OncologyChris O'Brien LifehouseCamperdownNSWAustralia
- NHMRC Clinical Trials CentreThe University of SydneyCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of New South WalesKensingtonNSWAustralia
| | - Michael E. Buckland
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Laveniya Satgunaseelan
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
5
|
Ergunay T, Collino F, Bianchi G, Sedrakyan S, Perin L, Bussolati B. Extracellular vesicles in kidney development and pediatric kidney diseases. Pediatr Nephrol 2024; 39:1967-1975. [PMID: 37775581 PMCID: PMC11147923 DOI: 10.1007/s00467-023-06165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are membranous cargo particles that mediate intercellular communication. They are heterogeneous in size and mechanism of release, and found in all biological fluids. Since EV content is in relation to the originating cell type and to its physiopathological conditions, EVs are under study to understand organ physiology and pathology. In addition, EV surface cargo, or corona, can be influenced by the microenvironment, leading to the concept that EV-associated molecules can represent useful biomarkers for diseases. Recent studies also focus on the use of natural, engineered, or synthetic EVs for therapeutic purposes. This review highlights the role of EVs in kidney development, pediatric kidney diseases, including inherited disorders, and kidney transplantation. Although few studies exist, they have promising results and may guide researchers in this field. Main limitations, including the influence of age on EV analyses, are also discussed.
Collapse
Affiliation(s)
- Tunahan Ergunay
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaia Bianchi
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Sargis Sedrakyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura Perin
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
- Molecular Biotechnology Center, University of Turin, via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
6
|
Yang R, Zhang H, Chen S, Lou K, Zhou M, Zhang M, Lu R, Zheng C, Li L, Chen Q, Liu Z, Zen K, Yuan Y, Liang H. Quantification of urinary podocyte-derived migrasomes for the diagnosis of kidney disease. J Extracell Vesicles 2024; 13:e12460. [PMID: 38853287 PMCID: PMC11162892 DOI: 10.1002/jev2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non-invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)-coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte-derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte-derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.
Collapse
Affiliation(s)
- Rong Yang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Heng Zhang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Si Chen
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaibin Lou
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Meng Zhou
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Rui Lu
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Limin Li
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Qihan Chen
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacauSARChina
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Ke Zen
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Yanggang Yuan
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongwei Liang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
7
|
Bu L, Zhang L, Wang X, Du G, Wu R, Liu W. Association between NDUFS1 from urinary extracellular vesicles and decreased differential renal function in children with ureteropelvic junction obstruction. BMC Nephrol 2024; 25:158. [PMID: 38720274 PMCID: PMC11080270 DOI: 10.1186/s12882-024-03592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Ureteropelvic junction obstruction (UPJO) is the most common cause of pediatric congenital hydronephrosis, and continuous kidney function monitoring plays a role in guiding the treatment of UPJO. In this study, we aimed to explore the differentially expressed proteins (DEPs) in the urinary extracellular vesicles(uEVs) of children with UPJO and determine potential biomarkers of uEVs proteins that reflect kidney function changes. METHODS Preoperative urine samples from 6 unilateral UPJO patients were collected and divided into two groups: differential renal function (DRF) ≥ 40% and DRF < 40%.We subsequently used data-independent acquisition (DIA) to identify and quantify uEVs proteins in urine, screened for DEPs between the two groups, and analyzed biofunctional enrichment information. The proteomic data were evaluated by Western blotting and enzyme-linked immunosorbent assay (ELISA) in a new UPJO testing cohort. RESULTS After one-way ANOVA, a P adj value < 0.05 (P-value corrected by Benjamin-Hochberg) was taken, and the absolute value of the difference multiple was more than 1.5 as the screening basis for obtaining 334 DEPs. After analyzing the enrichment of the DEPs according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment combined with the protein-protein interaction (PPI) network results, we selected nicotinamide adenine dinucleotide-ubiquinone oxidoreductase core subunit S1 (NDUFS1) for further detection. The expression of NDUFS1 in uEVs was significantly lower in patients with DRF < 40% (1.182 ± 0.437 vs. 1.818 ± 0.489, P < 0.05), and the expression level of NDUFS1 was correlated with the DRF in the affected kidney (r = 0.78, P < 0.05). However, the NDUFS1 concentration in intravesical urine was not necessarily related to the change in DRF (r = 0.28, P = 0.24). CONCLUSIONS Reduced expression of NDUFS1 in uEVs might indicate the decline of DRF in children with UPJO.
Collapse
Affiliation(s)
- Lingyun Bu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324Jingwu Road, Jinan, China
| | - Lingling Zhang
- Department of Minimally Invasive Urology, Jinan Children's Hospital, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324Jingwu Road, Jinan, China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324Jingwu Road, Jinan, China
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324Jingwu Road, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324Jingwu Road, Jinan, China.
| |
Collapse
|
8
|
Carland C, Zhao L, Salman O, Cohen JB, Zamani P, Xiao Q, Dongre A, Wang Z, Ebert C, Greenawalt D, van Empel V, Richards AM, Doughty RN, Rietzschel E, Javaheri A, Wang Y, Schafer PH, Hersey S, Carayannopoulos LN, Seiffert D, Chang C, Gordon DA, Ramirez‐Valle F, Mann DL, Cappola TP, Chirinos JA. Urinary Proteomics and Outcomes in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033410. [PMID: 38639358 PMCID: PMC11179922 DOI: 10.1161/jaha.123.033410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.
Collapse
Affiliation(s)
- Corinne Carland
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Qing Xiao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Robert N. Doughty
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University Hospital and Ghent UniversityGhentBelgium
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | - Yixin Wang
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
9
|
Wang J, Tao Y, Zhao F, Liu T, Shen X, Zhou L. Expression of urinary exosomal miRNA-615-3p and miRNA-3147 in diabetic kidney disease and their association with inflammation and fibrosis. Ren Fail 2023; 45:2121929. [PMID: 36695327 PMCID: PMC9879181 DOI: 10.1080/0886022x.2022.2121929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common chronic complications of type 2 diabetes mellitus (T2DM), and it is particularly important to identify a high-quality method for evaluating disease progression. Urinary exosomes contain microRNA that might promise early diagnostic and monitoring markers of DKD. The present study aimed to identify novel exosome-related markers associated with inflammation and fibrosis to assess the progression of DKD. METHOD Exosomes were extracted from the urine of 83 participants to determine the expression levels of miRNA-615-3p and miRNA-3147 in 20 healthy people, 21 patients with T2DM and 42 patients with DKD, as determined by RT-qPCR. The circulating expression level of TGF-β1 was detected by ELISA. Serum Cystatin C was measured by a latex-enhanced immunoturbidimetric method. The correlation analyses were performed for all clinical and laboratory parameters. RESULT The expression level of urinary exosomal miRNA-615-3p in DKD patients was significantly higher than that in the control group and the T2DM group by RT-qPCR. The expression of miRNA-3147 showed an upward trend in the three groups of subjects, but it was not statistically significant. The urinary exosomal miRNA-615-3p was positively correlated with serum Cystatin C, plasma TGF-β1, creatinine, BUN, PCR and 24-h urine protein, and negatively correlated with eGFR and albumin. The diagnostic efficacy of urinary exosomal miRNA-615-3p combined with the ACR was higher than that of ACR alone. CONCLUSIONS Urinary exosomal miRNA-615-3p may be used as a novel biomarker for evaluating the progression of DKD, and may be involved in the process of inflammation and fibrosis in DKD. The combined diagnosis of urinary exosomal miRNA-615-3p and ACR may be used as more stable and sensitive diagnostic criteria for DKD.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiying Tao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China,CONTACT Ling Zhou Department of Nephrology, The First Affiliated Hospital of Soochow University, 889 Pinghai Rd, Suzhou, 215000, People’s Republic of China
| |
Collapse
|
10
|
Zhao Z, Yan Q, Fang L, Li G, Liu Y, Li J, Pan S, Zhou S, Duan J, Liu D, Liu Z. Identification of urinary extracellular vesicles differentially expressed RNAs in diabetic nephropathy via whole-transcriptome integrated analysis. Comput Biol Med 2023; 166:107480. [PMID: 37738894 DOI: 10.1016/j.compbiomed.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes and a leading cause of chronic kidney disease worldwide. Urinary extracellular vesicles (uEVs), which are natural nanoscale vesicles that protect RNA from degradation, have the potential to serve as an invasive diagnostic biomarker for DN. METHODS We enrolled 24 participants, including twelve with renal biopsy-proven T2DN and twelve with T2DM, and isolated uEVs using ultracentrifugation. We performed microarrays for mRNAs, lncRNAs, and circRNAs in parallel, and Next-Generation Sequencing for miRNAs. Differentially expressed RNAs (DE-RNAs) were subjected to CIBERSORTx, ssGSEA analysis, GO enrichment, PPI network analysis, and construction of the lncRNA/circRNA-miRNA-mRNA regulatory network. Candidate genes and potential biomarker RNAs were validated using databases and machine learning models. RESULTS A total of 1684 mRNAs, 126 lncRNAs, 123 circRNAs and 66 miRNAs were found in uEVs in T2DN samples compared with T2DM. CIBERSORTx revealed the involvement of uEVs in immune activity and ssGSEA explored possible cell or tissue sources of uEVs. A ceRNA co-expression and regulation relationship network was constructed. Candidate genes MYO1C and SP100 mRNA were confirmed to be expressed in the kidney using Nephroseq database, scRNA-seq dataset, and Human Protein Atlas database. We further selected 2 circRNAs, 2 miRNAs, and 2 lncRNAs from WGCNAs and ceRNAs and demonstrated their efficacy as potential diagnostic biomarkers for T2DN using machine learning algorithms. CONCLUSIONS This study reported, for the first time, the whole-transcriptome genetic resources found in urine extracellular vesicles of T2DN patients. The results provide additional support for the possible interactions, and regulators between RNAs from uEVs themselves and as potential biomarkers in DN.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Fang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Guangpu Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yong Liu
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jia Li
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| |
Collapse
|
11
|
Bruschi M, Candiano G, Angeletti A, Lugani F, Panfoli I. Extracellular Vesicles as Source of Biomarkers in Glomerulonephritis. Int J Mol Sci 2023; 24:13894. [PMID: 37762196 PMCID: PMC10530272 DOI: 10.3390/ijms241813894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both primary and secondary, is generally characterized by an inflammatory glomerular injury and may lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn. Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we provide an overview of the most recent proteomic findings on the role of EVs in several aspects of glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects of Gn etiology which have remained elusive so far.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
12
|
Sałaga-Zaleska K, Kuchta A, Bzoma B, Chyła-Danił G, Safianowska A, Płoska A, Kalinowski L, Dębska-Ślizień A, Jankowski M. Nanoparticle Tracking Analysis of Urinary Extracellular Vesicle Proteins as a New Challenge in Laboratory Medicine. Int J Mol Sci 2023; 24:12228. [PMID: 37569604 PMCID: PMC10419144 DOI: 10.3390/ijms241512228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Urinary extracellular vesicle (uEV) proteins may be used as specific markers of kidney damage in various pathophysiological conditions. The nanoparticle-tracking analysis (NTA) appears to be the most useful method for the analysis of uEVs due to its ability to analyze particles below 300 nm. The NTA method has been used to measure the size and concentration of uEVs and also allows for a deeper analysis of uEVs based on their protein composition using fluorescence measurements. However, despite much interest in the clinical application of uEVs, their analysis using the NTA method is poorly described and requires meticulous sample preparation, experimental adjustment of instrument settings, and above all, an understanding of the limitations of the method. In the present work, we demonstrate the usefulness of an NTA. We also present problems encountered during analysis with possible solutions: the choice of sample dilution, the method of the presentation and comparison of results, photobleaching, and the adjustment of instrument settings for a specific analysis. We show that the NTA method appears to be a promising method for the determination of uEVs. However, it is important to be aware of potential problems that may affect the results.
Collapse
Affiliation(s)
- Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| | - Beata Bzoma
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
- Clinical of Nephrology, Transplantology and Internal Diseases, University Clinical Centre in Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
| | - Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| | - Anna Safianowska
- Clinical of Nephrology, Transplantology and Internal Diseases, University Clinical Centre in Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostic—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostic—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
- Clinical of Nephrology, Transplantology and Internal Diseases, University Clinical Centre in Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| |
Collapse
|
13
|
Li Q, Zhang J, Fang Y, Dai Y, Jia P, Shen Z, Xu S, Ding X, Zhou F. Phosphoproteome Profiling of uEVs Reveals p-AQP2 and p-GSK3β as Potential Markers for Diabetic Nephropathy. Molecules 2023; 28:5605. [PMID: 37513479 PMCID: PMC10383182 DOI: 10.3390/molecules28145605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3β (p-GSK3β[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.
Collapse
Affiliation(s)
- Qing Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Yan Dai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Sujuan Xu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Feng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Minister of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Kamra E, Prasad T, Rais A, Dahiya B, Sheoran A, Soni A, Sharma S, Mehta PK. Diagnosis of genitourinary tuberculosis: detection of mycobacterial lipoarabinomannan and MPT-64 biomarkers within urine extracellular vesicles by nano-based immuno-PCR assay. Sci Rep 2023; 13:11560. [PMID: 37463964 DOI: 10.1038/s41598-023-38740-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
We detected a cocktail of Mycobacterium tuberculosis lipoarabinomannan (LAM) and MPT-64 biomarkers within urine extracellular vesicles (EVs) of genitourinary TB (GUTB) patients by nano-based immuno-PCR (I-PCR) assay, i.e., magnetic bead-coupled gold nanoparticle-based I-PCR (MB-AuNP-I-PCR) and compared the results with I-PCR and Magneto-ELISA. The size (s) of urine EVs ranged between 52.6 and 220.4 nm as analyzed by transmission electron microscopy (TEM) and nanoparticle tracking analysis. Functionalized AuNPs (coupled with detection antibodies/oligonucleotides) were characterized by UV-vis spectroscopy, TEM, ELISA, PCR, Atomic Force Microscopy and Fourier Transform Infrared spectroscopy, while conjugation of capture antibodies with MBs was validated by UV-vis spectroscopy and Magneto-ELISA. Our MB-AuNP-I-PCR exhibited sensitivities of 85% and 87.2% in clinically suspected (n = 40) and total (n = 47) GUTB cases, respectively, with 97.1% specificity in non-TB controls (n = 35). These results were further authenticated by the quantitative SYBR Green MB-AuNP-real-time I-PCR (MB-AuNP-RT-I-PCR). Concurrently, I-PCR and Magneto-ELISA showed sensitivities of 68.1% and 61.7%, respectively in total GUTB cases, which were significantly lower (p < 0.05-0.01) than MB-AuNP-I-PCR. Markedly, a wide range (400 fg/mL-11 ng/mL) of LAM+MPT-64 was quantified within urine EVs of GUTB cases by SYBR Green MB-AuNP-RT-I-PCR, which can assess the disease dynamics. This study will certainly improve the current algorithms used in GUTB diagnostics.
Collapse
Affiliation(s)
- Ekta Kamra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Tulika Prasad
- Special Centre for Nano Science and Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anam Rais
- Special Centre for Nano Science and Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Abhishek Sheoran
- Department of Statistics, Ramanujan College, University of Delhi, New Delhi, 110019, India
| | - Aishwarya Soni
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, 131039, India
| | - Suman Sharma
- Department of Microbiology, University of Health Sciences (UHS), Rohtak, 124001, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, India.
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon, 122505, India.
| |
Collapse
|
15
|
Yalameha B, Reza Nejabati H. Urinary Exosomal Metabolites: Overlooked Clue for Predicting Cardiovascular Risk. Clin Chim Acta 2023:117445. [PMID: 37315726 DOI: 10.1016/j.cca.2023.117445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Over the last decade, increasing research has focused on urinary exosomes (UEs) in biological fluids and their relationship with physiological and pathological processes. UEs are membranous vesicles with a size of 40-100 nm, containing a number of bioactive molecules such as proteins, lipids, mRNAs, and miRNAs. These vesicles are an inexpensive non-invasive source that can be used in clinical settings to differentiate healthy patients from diseased patients, thereby serving as potential biomarkers for the early identification of disease. Recent studies have reported the isolation of small molecules called exosomal metabolites from individuals' urine with different diseases. These metabolites could utilize for a variety of purposes, such as the discovery of biomarkers, investigation of mechanisms related to disease development, and importantly prediction of cardiovascular diseases (CVDs) risk factors, including thrombosis, inflammation, oxidative stress, hyperlipidemia as well as homocysteine. It has been indicated that alteration in urinary metabolites of N1-methylnicotinamide, 4-aminohippuric acid, and citric acid can be valuable in predicting cardiovascular risk factors, providing a novel approach to evaluating the pathological status of CVDs. Since the UEs metabolome has been clearly and precisely so far unexplored in CVDs, the present study has specifically addressed the role of the mentioned metabolites in the prediction of CVDs risk factors.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Pietrangelo T, Santangelo C, Bondi D, Cocci P, Piccinelli R, Piacenza F, Rosato E, Azman SNA, Binetti E, Farina M, Locatelli M, Brunetti V, Le Donne C, Marramiero L, Di Filippo ES, Verratti V, Fulle S, Scollo V, Palermo F. Endurance-dependent urinary extracellular vesicle signature: shape, metabolic miRNAs, and purine content distinguish triathletes from inactive people. Pflugers Arch 2023; 475:691-709. [PMID: 37156970 PMCID: PMC10185655 DOI: 10.1007/s00424-023-02815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) enriched with bioactive molecules have gained considerable attention in nanotechnology because they are critical to intercellular communication while maintaining low immunological impact. Among biological matrices, urine has emerged as a noninvasive source of extracellular-contained liquid biopsy, currently of interest as a readout for physiological adaptations. Therefore, we aimed to evaluate chronic adaptations of endurance sport practice in terms of urinary EV parameters and evaluated by food consumption assessment. Two balanced groups of 13 inactive controls vs. triathlon athletes were enrolled; their urinary EVs were obtained by differential ultracentrifugation and analyzed by dynamic light scattering and transmission electron and atomic force microscopy. The cargo was analyzed by means of purine and miRNA content through HPLC-UV and qRT-PCR. Specific urinary EV signatures differentiated inactive versus endurance-trained in terms of peculiar shape. Particularly, a spheroid shape, smaller size, and lower roughness characterize EVs from triathletes. Metabolic and regulatory miRNAs often associated with skeletal muscle (i.e., miR378a-5p, miR27a-3p, miR133a, and miR206) also accounted for a differential signature. These miRNAs and guanosine in urinary EVs can be used as a readout for metabolic status along with the shape and roughness of EVs, novel informative parameters that are rarely considered. The network models allow scholars to entangle nutritional and exercise factors related to EVs' miRNA and purine content to depict metabolic signatures. All in all, multiplex biophysical and molecular analyses of urinary EVs may serve as promising prospects for research in exercise physiology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Raffaela Piccinelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Francesco Piacenza
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Enrica Rosato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - S N Afifa Azman
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Enrico Binetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
- Institute for Microelectronics and Microsystems, National Research Council of Italy, Lecce, Italy
| | - Marco Farina
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Valentina Scollo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesco Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
18
|
Mishra DD, Sahoo B, Maurya PK, Sharma R, Varughese S, Prasad N, Tiwari S. Therapeutic potential of urine exosomes derived from rats with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1157194. [PMID: 37251672 PMCID: PMC10213426 DOI: 10.3389/fendo.2023.1157194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Kidney disease is prevalent in diabetes. Urinary exosomes (uE) from animal models and patients with Diabetic nephropathy (DN) showed increased levels of miRs with reno-protective potential. We examined whether urinary loss of such miRs is associated with their reduced renal levels in DN patients. We also tested whether injecting uE can leverage kidney disease in rats. In this study (study-1) we performed microarray profiling of miRNA in uE and renal tissues in DN patients and subjects with diabetes without DN (controls). In study-2, diabetes was induced in Wistar rats by Streptozotocin (i.p. 50 mg/kg of body weight). Urinary exosomes were collected at 6th, 7th and 8th weeks, and injected back into the rats (100ug/biweekly, uE-treated n=7) via tail vein on weeks 9 and 10. Equal volume of vehicle was injected in controls (vehicle, n=7). uE from the human and rat showed the presence of exosome-specific proteins by immunoblotting. Microarray profiling revealed a set of 15 miRs having high levels in the uE, while lower in renal biopsies, from DN, compared to controls (n=5-9/group). Bioinformatic analysis also confirmed the Renoprotective potential of these miRs. Taqman qPCR confirmed the opposite regulation of miR-200c-3p and miR-24-3p in paired uE and renal biopsy samples from DN patients (n=15), relative to non-DN controls. A rise in 28 miRs levels, including miR-200c-3p, miR-24-3p, miR-30a-3p and miR-23a-3p were observed in the uE of DN rats, collected between 6th-8th weeks, relative to baseline (before diabetes induction). uE- treated DN rats had significantly reduced urine albumin-to-creatinine ratio, attenuated renal pathology, and lower miR-24-3p target fibrotic/inflammatory genes (TGF-beta, and Collagen IV), relative to vehicle treated DN rats. In uE treated rats, the renal expression of miR-24-3p, miR-30a-3p, let-7a-5p and miR-23a-3p was increased, relative to vehicle control. Patients with diabetic nephropathy had reduced renal levels, while higher uE abundance of miRs with reno-protective potential. Reverting the urinary loss of miRs by injecting uE attenuated renal pathology in diabetic rats.
Collapse
Affiliation(s)
- Deendayal Das Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Biswajit Sahoo
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pramod Kumar Maurya
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
19
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
20
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Mighty J, Rubio-Navarro A, Shi C, Zhou J, Flores-Bellver M, Heissel S, Onwumere O, Einbond L, Gharbaran R, Casper DS, Benito-Martin A, Redenti S. Extracellular vesicles of human diabetic retinopathy retinal tissue and urine of diabetic retinopathy patients are enriched for the junction plakoglo bin protein. Front Endocrinol (Lausanne) 2023; 13:1077644. [PMID: 36686464 PMCID: PMC9854122 DOI: 10.3389/fendo.2022.1077644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetic Retinopathy (DR) is a potentially blinding retinal disorder that develops through the pathogenesis of diabetes. The lack of disease predictors implies a poor prognosis with frequent irreversible retinal damage and vision loss. Extracellular Vesicles (EVs) present a novel opportunity for pre-symptomatic disease diagnosis and prognosis, both severely limited in DR. All biological fluids contain EVs, which are currently being studied as disease biomarkers. EV proteins derived from urine have emerged as potential noninvasive biomarkers. Methods In this study, we isolated EVs from DR retinal tissue explants and from DR patients' urine, and characterized the vesicles, finding differences in particle number and size. Next, we performed proteomic analysis on human explanted DR retinal tissue conditioned media, DR retinal EVs and DR urinary EVs and compared to normal human retinal tissue, retinal EVs, and urinary EVs, respectively. Results Our system biology analysis of DR tissue and EV expression profiles revealed biological pathways related to cell-to-cell junctions, vesicle biology, and degranulation processes. Junction Plakoglobin (JUP), detected in DR tissue-derived EVs and DR urinary EVs, but not in controls, was revealed to be a central node in many identified pathogenic pathways. Proteomic results were validated by western blot. Urinary EVs obtained from healthy donors and diabetic patient without DR did not contain JUP. Conclusion The absence of JUP in healthy urinary EVs provide the basis for development of a novel Diabetic Retinopathy biomarker, potentially facilitating diagnosis.
Collapse
Affiliation(s)
- Jason Mighty
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Instituto de Investigación Biosanitaria ibs GRANADA, University Hospitals of Granada-University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Cui Shi
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Jing Zhou
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz- Rodgers Eye Center, University of Colorado, Aurora, CO, United States
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States
| | - Onyekwere Onwumere
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Linda Einbond
- Lehman College, City University of New York, Bronx, NY, United States
| | | | - Daniel S. Casper
- Department of Ophthalmology, Columbia University Vagelos College of Physicians & Surgeons Naomi Berrie Diabetes Center, New York, NY, United States
| | - Alberto Benito-Martin
- Lehman College, City University of New York, Bronx, NY, United States
- Universidad Alfonso X El Sabio, Facultad de Medicina. Unidad de Investigación Biomédica, Madrid, Spain
| | - Stephen Redenti
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
- Department of Ophthalmology, Columbia University Vagelos College of Physicians & Surgeons Naomi Berrie Diabetes Center, New York, NY, United States
| |
Collapse
|
22
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
23
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
24
|
Identifying stable reference genes in polyethene glycol precipitated urinary extracellular vesicles for RT-qPCR-based gene expression studies in renal graft dysfunction patients. Transpl Immunol 2022; 75:101715. [PMID: 36122652 DOI: 10.1016/j.trim.2022.101715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary extracellular vesicles (UEVs) hold RNA in their cargo and are potential sources of biomarkers for gene expression studies. The most used technique for gene-expression studies is quantitative polymerase chain reaction (qPCR). It is critical to use stable reference genes (RGs) as internal controls for normalising gene expression data, which aren't currently available for UEVs. METHODS UEVs were precipitated from urine of graft dysfunction patients and healthy controls by Polyethylene glycol, Mn6000 (PEG6K). Vesicular characterisation confirmed the presence of UEVs. Gene expression levels of five commonly used RGs, i.e., Beta-2-Microglobulin (B2M), ribosomal-protein-L13a (RPL13A), Peptidylprolyl-Isomerase-A (PPIA), hydroxymethylbilane synthase (HMBS), and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) were quantified, and their stability was established through the RefFinder. The stability of identified RGs was validated by quantification of Perforin and granzyme B, signature molecules of renal graft dysfunction. RESULTS Urine precipitated with 12% 6 K PEG yielded round and double-membraned UEVs of size ranging from 30 to 100 nm, as confirmed through transmission electron microscopy. Nanoparticle tracking analysis (59 ± 22 nm) and Dynamic-light-scattering (78 ± 56.5 nm) confirmed their size profile. Semi-quantitative Exocheck antibody array demonstrated the presence of EV protein markers in UEV. Using the comparative ΔCт method and RefFinder analysis, B2M (1.6) and RPL13A (1.8) genes emerged as the most stable reference genes. Validation of target gene expression in renal graft dysfunction patients confirmed the efficiency of B2M and RPL13A through significant upregulation compared to other RGs. CONCLUSIONS Our study identified and validated B2M and RPL13A as optimal RGs for mRNA quantification studies in the UEVs of patients with renal graft dysfunction.
Collapse
|
25
|
Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022; 16:885190. [PMID: 35836741 PMCID: PMC9274459 DOI: 10.3389/fncel.2022.885190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a major public health issue, corresponding to the second cause of mortality and the first cause of severe disability. Ischemic stroke is the most common type of stroke, accounting for 87% of all strokes, where early detection and clinical intervention are well known to decrease its morbidity and mortality. However, the diagnosis of ischemic stroke has been limited to the late stages, and its therapeutic window is too narrow to provide rational and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, inactivation, allergic reactions, and non-specific tissue targeting. Another problem is the limited ability of current neuroprotective agents to promote recovery of the ischemic brain tissue after stroke, which contributes to the progressive and irreversible nature of ischemic stroke and also the severity of the outcome. Fortunately, because of biomaterials’ inherent biochemical and biophysical properties, including biocompatibility, biodegradability, renewability, nontoxicity, long blood circulation time, and targeting ability. Utilization of them has been pursued as an innovative and promising strategy to tackle these challenges. In this review, special emphasis will be placed on the recent advances in the study of nanomaterials for the diagnosis and therapy of ischemic stroke. Meanwhile, nanomaterials provide much promise for neural tissue salvage and regeneration in brain ischemia, which is also highlighted.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| |
Collapse
|
26
|
Dev I, Pal S, Lugun O, Singh N, Ansari KM. Ochratoxin A treated rat derived urinary exosomes enhanced cell growth and extracellular matrix production in normal kidney cells through modulation of TGF-β1/smad2/3 signaling pathway. Life Sci 2022; 298:120506. [DOI: 10.1016/j.lfs.2022.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
27
|
Stratman AN, Crewe C, Stahl PD. The microenvironment‐ a general hypothesis on the homeostatic function of extracellular vesicles. FASEB Bioadv 2022; 4:284-297. [PMID: 35520390 PMCID: PMC9065581 DOI: 10.1096/fba.2021-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs), exosomes and microvesicles, is a burgeoning field of biological and biomedical research that may change our understanding of cell communication in plants and animals while holding great promise for the diagnosis of disease and the development of therapeutics. However, the challenge remains to develop a general hypothesis about the role of EVs in physiological homeostasis and pathobiology across kingdoms. While they can act systemically, EVs are often seen to operate locally within a microenvironment. This microenvironment is built as a collection of microunits comprised of cells that interact with each other via EV exchange, EV signaling, EV seeding, and EV disposal. We propose that microunits are part of a larger matrix at the tissue level that collectively communicates with the surrounding environment, including other end‐organ systems. Herein, we offer a working model that encompasses the various facets of EV function in the context of the cell biology and physiology of multicellular organisms.
Collapse
Affiliation(s)
- Amber N Stratman
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Clair Crewe
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
- Department of Internal Medicine Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Philip D Stahl
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| |
Collapse
|