1
|
Senthil Kumar SA, Praveenkumar K, Jothipandian S, Swaroop S, Nithyanand P. Nanoscale surface modifications on Titanium plates- A strategy to mitigate MRSA biofilm-mediated implant infections: A pilot study. Microb Pathog 2025; 203:107481. [PMID: 40089195 DOI: 10.1016/j.micpath.2025.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Orthopaedic implant infections pose a major threat after implantation. Biofilms of pathogenic bacteria resistant to antibiotics cause biomaterial mediated infections. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the prevalent biofilm-forming pathogens associated with implant infection in high proportion. Loss of effectiveness of antibiotics against these drug-resistant pathogens demands alternative approaches to surmount this crisis. Various strategies involving antibiotics, biocides, and metal ions are employed as the prohibiting steps of biofilm formation. Hence, to prevent biofilm formation and infections caused by biofilms formed over the orthopaedic implants, we involved laser micro-machining to modify the surface of the Titanium (Ti) plate, the most widely used implant material. Interestingly, we found that the laser-peening process generated widespread nanosized pores and micro-roughness to the surface of the Ti plate. Laser-peened Ti plate reduced the adhesion of MRSA over the metal surface and also retained its capacity to inhibit biofilm formation, which was confirmed with scanning electron microscopy (SEM). The biofilm assays like quantification of biofilm by crystal violet, determination of colony forming unit from biofilm formed over the control and laser-peened Ti plates showed that the laser-peened Ti plate significantly reduced the adherence of biofilm-forming MRSA. Moreover, the genes responsible for biofilm adhesion were found to be downregulated which was confirmed by qPCR. From our results, it was found that laser-peened Ti implants would be an alternative strategy to prevent biofilm-mediated infection on orthopaedic implant material.
Collapse
Affiliation(s)
- Sudaarsan Aruna Senthil Kumar
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - K Praveenkumar
- Department of Materials Engineering, Indian Institute of Science, Banglore, 560012, India
| | - Sowndarya Jothipandian
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - S Swaroop
- Surface Modification Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
2
|
Demidov VV, Bond MC, Demidova N, Gitajn IL, Nadell CD, Elliott JT. Assessment of photodynamic therapy efficacy against Escherichia coli- Enterococcus faecalis biofilms using optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036003. [PMID: 40083371 PMCID: PMC11905920 DOI: 10.1117/1.jbo.30.3.036003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
Significance In orthopedic trauma surgery, spatially structured biofilm ecosystems of bacteria that colonize orthopedic devices account for up to 65% of all healthcare infections, including tens of millions of people affected in the United States. These biofilm infections typically show increased resistance to antibiotics due to their structure and composition, which contributes significantly to treatment failure. Anti-biofilm approaches are needed together with clinically usable microscopic-resolution imaging techniques for treatment efficacy assessment. Aim Antimicrobial photodynamic therapy (aPDT) has been recently proposed to combat clinically relevant biofilms (chronic wound infections, dental biofilms, etc.) using photosensitizers excited with visible light to generate reactive oxygen species that can kill bacteria residing within pathogenic biofilms. We aim to assess the efficacy of this treatment for eradication of biofilms typically present on surfaces of orthopedic devices (e.g., intramedullary nails and osseointegrated prosthetic implants). Approach In the first phase reported here, we test aPDT in vitro by growing biofilms of Escherichia coli and Enterococcus faecalis bacteria (two of the seven most common pathogens found in orthopedic trauma patients) inside soft lithography-fabricated microfluidic devices. We treat these biofilms with 5-aminolevulinic acid (5-ALA)-based aPDT, evaluate treatment efficacy with optical coherence tomography, and compare with regular clinical antibiotic treatment outcomes. Results The antibacterial efficiency of 5-ALA-based aPDT showed nonlinear dependence on the photosensitizer concentration and the light power density, with low parameters ( 30 J / cm 2 light dose, 100 mg / mL 5-ALA concentration) being significantly more effective than antibiotic-treated groups ( p < 0.01 ), reaching 99.98% of bacteria killed at 150 J / cm 2 light dose and 200 mg / mL 5-ALA concentration setting. Conclusions Performed experiments enable the translation of this portable treatment/imaging platform to the second phase of the study: aPDT treatment response assessment of biofilms grown on orthopedic hardware.
Collapse
Affiliation(s)
- Valentin V. Demidov
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Matthew C. Bond
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire, United States
| | - Natalia Demidova
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Ida Leah Gitajn
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Carey D. Nadell
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire, United States
| | - Jonathan Thomas Elliott
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
3
|
Batool SA, Ghazanfar E, Ahmed H, Hussain R, Azeem M, Rasheed MM, Minhas B, Farooq MT, Mele A, Hinchliffe J, Khaliq A, Subhani T, Alghamdi AS, Hussain SW, Roy I, Atiq-Ur-Rehman M. Improved physicochemical properties of structurally modified titanium coated with zein-mesoporous bioactive glass nanoparticles-Commiphora wightii for orthopaedic applications. Int J Biol Macromol 2025; 305:140870. [PMID: 39938829 DOI: 10.1016/j.ijbiomac.2025.140870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Titanium (Ti) is an ideal implant material due to its strength, biocompatibility, and corrosion resistance. Ti is often structurally modified to overcome its inert nature. Nanostructures (pores, rods, tubes, etc.) formed on the surface of Ti followed by bioactive and antibacterial coatings can be exploited for many biomedical applications. A combination of zein (a biopolymer with low elastic modulus), mesoporous bioactive glass nanoparticles (MBGNs, a bioactive material) and Commiphora wightii (CW, an antibacterial herb) could result in a multi-functional coating for osteogenic purposes. Zein, not only reduces the stress shielding effect at the bone-implant interface but also acts as a binder for MBGNs and CW particles in the matrix and facilitates their uniform dispersion in the coating. In this work, zein nanoparticles (ZNPs), MBGNs, and CW were deposited on electrochemically synthesized titania nanotubes (TNTs) via electrophoretic deposition (EPD). A uniform and adherent composite coating named ZNPs/MBGNs/CW was obtained. The in-vitro bioactivity test in the simulated body fluid (SBF) revealed the formation of a biologically active calcium-deficient apatitic layer (cd-HA) on the coating surface. The electrophoretically deposited composite coating was also resistant to corrosion in SBF. Furthermore, the viability of MG-63 cells was tested in which coating displayed 100 % viability after 14 days of incubation. The presence of natural herb CW inhibited the growth of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Hence, the results demonstrate that the ZNPs/MBGNs/CW composite coating system may be a strong candidate for orthopaedic applications.
Collapse
Affiliation(s)
- Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Esha Ghazanfar
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Hamdaan Ahmed
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Azeem
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Momin Rasheed
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Badar Minhas
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Tahir Farooq
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Andrea Mele
- Department of Materials Science and Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Jonathan Hinchliffe
- Department of Materials Science and Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Abdul Khaliq
- Department of Mechanical Engineering, College of Engineering, University of Ha'il, Saudi Arabia
| | - Tayyab Subhani
- Department of Mechanical Engineering, College of Engineering, University of Ha'il, Saudi Arabia
| | - Abdulaziz S Alghamdi
- Department of Mechanical Engineering, College of Engineering, University of Ha'il, Saudi Arabia
| | - Syed Wilayat Hussain
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan
| | - Ipsita Roy
- Department of Materials Science and Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Muhammad Atiq-Ur-Rehman
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Islamabad 44000, Pakistan.
| |
Collapse
|
4
|
Tripathi S, Raheem A, Dash M, Kumar P, Elsebahy A, Singh H, Manivasagam G, Nanda HS. Surface engineering of orthopedic implants for better clinical adoption. J Mater Chem B 2024; 12:11302-11335. [PMID: 39412900 DOI: 10.1039/d4tb01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Musculoskeletal disorders are on the rise, and despite advances in alternative materials, treatment for orthopedic conditions still heavily relies on biometal-based implants and scaffolds due to their strength, durability, and biocompatibility in load-bearing applications. Bare metallic implants have been under scrutiny since their introduction, primarily due to their bioinert nature, which results in poor cell-material interaction. This challenge is further intensified by mechanical mismatches that accelerate failure, tribocorrosion-induced material degradation, and bacterial colonization, all contributing to long-term implant failure and posing a significant burden on patient populations. Recent efforts to improve orthopedic medical devices focus on surface engineering strategies that enhance the interaction between cells and materials, creating a biomimetic microenvironment and extending the service life of these implants. This review compiles various physical, chemical, and biological surface engineering approaches currently under research, providing insights into their potential and the challenges associated with their adoption from bench to bedside. Significant emphasis is placed on exploring the future of bioactive coatings, particularly the development of smart coatings like self-healing and drug-eluting coatings, the immunomodulatory effects of functional coatings and biomimetic surfaces to tackle secondary infections, representing the forefront of biomedical surface engineering. The article provides the reader with an overview of the engineering approaches to surface modification of metallic implants, covering both clinical and research perspectives and discussing limitations and future scope.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ahmad Elsebahy
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| |
Collapse
|
5
|
Singh R, Popat KC. Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61714-61724. [PMID: 39478289 PMCID: PMC11565481 DOI: 10.1021/acsami.4c13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial's surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell-cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.
Collapse
Affiliation(s)
- Ramesh Singh
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Sarker S, Köster M, Desai O, Rahim MI, Herrmann S, Behme S, Stiesch M, Hauser H, Wirth D. A generic cell-based biosensor converts bacterial infection signals into chemoattractants for immune cells. Biofabrication 2024; 17:015020. [PMID: 39467389 DOI: 10.1088/1758-5090/ad8bf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Bacterial infection is a major challenge to human health. Although various potent antibiotics have emerged in recent decades, current challenges arise from the increasing number of multi-drug-resistant species. Infections associated with implants represent a particular challenge because they are usually diagnosed at an advanced stage and are difficult to treat with antibiotics owing to the formation of protective biofilms. In this study, we designed and explored a synthetic biology-inspired cell-based biosensor/actor for the detection and counteraction of bacterial infections. The system is generic, as it senses diverse types of infections and acts by enhancing the endogenous immune system. This strategy is based on genetically engineered sensor/actor cells that can sense type I interferons (IFNs), which are released by immune cells at the early stages of infection. IFN signalling activates a synthetic circuit to induce reporter genes with a sensitivity of only 5 pg ml-1of IFN and leads to a therapeutic protein output of 100 ng ml-1, resulting in theranostic cells that can visualize and fight infections. Robustness and resilience were achieved by implementing a positive feedback loop. We showed that diverse gram-positive and gram-negative implant-associated pathogenic bacteria activate the cascade in co-culture systems in a dose-dependent manner. Finally, we showed that this system can be used to secrete chemoattractants that facilitate the infiltration of immune cells in response to bacterial triggers. Together, the system is not only universal to bacterial infections, but also hypersensitive, allowing the sensing of infections at initial stages.
Collapse
Affiliation(s)
- Sushobhan Sarker
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Omkar Desai
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Muhammad Imran Rahim
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Sabrina Herrmann
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Sara Behme
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Scientific Strategy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Carvalho EO, Fernandes MM, Ivanova K, Rodriguez-Lejarraga P, Tzanov T, Ribeiro C, Lanceros-Mendez S. Multifunctional piezoelectric surfaces enhanced with layer-by-layer coating for improved osseointegration and antibacterial performance. Colloids Surf B Biointerfaces 2024; 243:114123. [PMID: 39079183 DOI: 10.1016/j.colsurfb.2024.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Implant failure is primarily caused by poor osseointegration and bacterial colonization, which demands readmissions and revision surgeries to correct it. A novel approach involves engineering multifunctional interfaces using piezoelectric polyvinylidene fluoride (PVDF) materials, which mimic bone tissue's electroactive properties to promote bone integration and provide antibacterial functionality when mechanically stimulated. In this study, PVDF films were coated with antibacterial essential oil nanoparticles and antibiofilm enzymes using a layer-by-layer (LBL) approach to ensure antibacterial properties even without mechanical stimulation. The experimental results confirmed the LBL build-up and demonstrated notable antibiofilm properties against Pseudomonas aeruginosa and Staphylococcus aureus while enhancing pre-osteoblast cell proliferation under mechanical dynamic conditions in a bioreactor that replicated the real-life environment of implants within the body. The findings highlight the potential of PVDF-coated surfaces to prevent biofilm formation and boost cell proliferation through the piezoelectric effect, paving the way for advanced implantable devices with improved osseointegration and antibacterial performance.
Collapse
Affiliation(s)
- E O Carvalho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga, 4710-057, Portugal.
| | - M M Fernandes
- LABBELS-Associate Laborator, Braga, Guimarães, Portugal; Centre for MicroElectroMechanics Systems (CMEMS), University of Minho, Guimarães 4710-057, Portugal
| | - K Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - P Rodriguez-Lejarraga
- BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - T Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga, 4710-057, Portugal
| | - S Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain.
| |
Collapse
|
8
|
Jeyaraman M, Jayakumar T, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Muthu S, Jain VK. Combating antimicrobial resistance in osteoarticular infections: Current strategies and future directions. J Clin Orthop Trauma 2024; 58:102791. [PMID: 39564592 PMCID: PMC11570504 DOI: 10.1016/j.jcot.2024.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) has profoundly impacted the management of osteoarticular infections (OAIs), presenting significant challenges for healthcare systems worldwide. This review provides a comprehensive overview of the current landscape of AMR in OAIs, emphasizing the necessity for assertive and innovative strategies to combat this escalating health threat. It discusses the evolution of resistance among key pathogens, including ESKAPEE organisms, and the implications for treatment protocols and healthcare outcomes. The importance of antibiotic stewardship programs (ASPs) is highlighted as a core strategy to optimize antibiotic use and mitigate the development of resistance. Additionally, the review explores the potential of pharmacological approaches, including novel antibiotic regimens and combination therapies, alongside surgical interventions and alternative therapies such as bacteriophage-based treatments and probiotics, in managing these complex infections. The role of rapid diagnostic methods in improving treatment accuracy and the critical need for global surveillance to track AMR trends are also examined. By integrating insights from recent literature and expert recommendations, this review underscores the multifaceted approach required to address the challenge of AMR in OAIs effectively. It calls for a concerted effort among clinicians, researchers, and policymakers to foster innovation in treatment strategies, enhance diagnostic capabilities, and implement robust stewardship and surveillance programs. The goal is to adapt to the evolving landscape of OAIs and ensure optimal patient care in the face of rising AMR.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, 500032, Telangana, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, 609602, Puducherry, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001, India
| |
Collapse
|
9
|
Carvalho EO, Marques-Almeida T, Cruz BDD, Correia DM, Esperança JMSS, Irastorza I, Silvan U, Fernandes MM, Lanceros-Mendez S, Ribeiro C. Piezoelectric biomaterials with embedded ionic liquids for improved orthopedic interfaces through osseointegration and antibacterial dual characteristics. BIOMATERIALS ADVANCES 2024; 164:213970. [PMID: 39106539 DOI: 10.1016/j.bioadv.2024.213970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Orthopedic implant failures, primarily attributed to aseptic loosening and implant site infections, pose significant challenges to patient recovery and lead to revision surgeries. Combining piezoelectric materials with ionic liquids as interfaces for orthopedic implants presents an innovative approach to addressing both issues simultaneously. In this study, films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) incorporated with 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) ionic liquid were developed. These films exhibited strong antibacterial properties, effectively reducing biofilm formation, thereby addressing implant-related infections. Furthermore, stem cell-based differentiation assays exposed the potential of the composite materials to induce osteogenesis. Interestingly, our findings also revealed the upregulation of calcium channel expression as a result of electromechanical stimulation, pointing to a mechanistic basis for the observed biological effects. This work highlights the potential of piezoelectric materials with ionic liquids to improve the longevity and biocompatibility of orthopedic implants. Offering dual-functionality for infection prevention and bone integration, these advancements hold significant potential for advancing orthopedic implant technologies and improving patient outcomes.
Collapse
Affiliation(s)
- E O Carvalho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - T Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - B D D Cruz
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, Braga 4710-057, Portugal; Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - D M Correia
- Centre of Chemistry, University of Minho, Braga 4710-057, Portugal
| | - J M S S Esperança
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, 2829-516 Caparica, Portugal
| | - I Irastorza
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - U Silvan
- BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - M M Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - S Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
10
|
Costa JP, Sousa SA, Leitão JH, Marques F, Alves MM, Carvalho MFNN. Insights into the Dual Anticancer and Antibacterial Activities of Composites Based on Silver Camphorimine Complexes. J Funct Biomater 2024; 15:240. [PMID: 39330216 PMCID: PMC11433458 DOI: 10.3390/jfb15090240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Hydroxyapatite (HAp) is a widely used biocompatible material in orthopedic composite preparations. However, HAp composites that exhibit both anticancer and antibacterial activities through bioactive coordination complexes are relatively rare. To explore orthopedic applications, we blended several silver camphorimine compounds with HAp to create [Ag(I)] composites. All compounds [Ag(NO3)(L)n] (n = 1,2) based on camphorimine (LA), camphor sulfonimine (LB) or imine bi-camphor (LC) ligands demonstrated significant cytotoxic activity (IC50 = 0.30-2.6 μgAg/mL) against osteosarcoma cancer cells (HOS). Based on their structural and electronic characteristics, four complexes (1-4) were selected for antibacterial evaluation against Escherichia coli, Burkholderia contaminans, Pseudomonas aeruginosa, and Staphylococcus aureus. All complexes (1-4) revealed combined anticancer and antibacterial activities; therefore, they were used to prepare [Ag(I)]:HAp composites of 50:50% and 20:80% weight compositions and the activities of the composites were assessed. Results showed that they retain the dual anticancer and antibacterial characteristics of their precursor complexes. To replicate the clinical context of bone-filling applications, hand-pressed surfaces (pellets) were prepared. It is worth highlighting that no agglutination agent was necessary for the pellet's consistency. The biological properties of the so-prepared pellets were assessed, and the HOS cells and bacteria spreading on the pellet's surface were analyzed by SEM. Notably, composite 4B, derived from the bicamphor (LC) complex [Ag(NO3)(OC10H14N(C6H4)2NC10H14O)], exhibited significant anticancer activity against HOS cells and antibacterial activity against P. aeruginosa, fostering potential clinical applications on post-surgical OS treatment.
Collapse
Affiliation(s)
- Joana P Costa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Fernanda Marques
- C2TN-Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10, km 139.7, Bobadela, 2695-066 Loures, Portugal
| | - Marta M Alves
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| |
Collapse
|
11
|
Zhang Y, Wei H, Zhu P, Hao X, Chen J, Zhang H. NH 2-MXene/OXG nanocomposite hydrogel with efficient photothermal antibacterial activity for potentially removing biofilms. Heliyon 2024; 10:e34889. [PMID: 39157356 PMCID: PMC11327595 DOI: 10.1016/j.heliyon.2024.e34889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
The adhesion of bacteria to the surface leads to formation of biofilms causing numerous infection problems in implanting medical devices or interventional therapy. Traditional treatment for such problems is generally to administrate patients with antibiotics or antifungal agent. Alternatively, devices are taken out of the body to mechanically destroy the biofilm and re-used by surgery. In this study, a straightforward method was developed to remove biofilms using a MXene-based photothermal hydrogel. The hydrogel consists of dynamic crosslinking network formed by Schiff-base reaction between aldehyde-containing xyloglucan (OXG) and amine-containing MXene (NH2-MXene), which showed efficient killing of both gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacteria upon near-infrared (NIR) laser irradiation. The NH2-MXene/OXG nanocomposite hydrogel showed a high photothermal antibacterial efficiency and stable photothermal conversion, demonstrated by efficient removal of biofilms ex vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Pingguang Zhu
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
| | - Xiaojuan Hao
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Haina Zhang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
| |
Collapse
|
12
|
Mannala GK, Rupp M, Walter N, Youf R, Bärtl S, Riool M, Alt V. Repetitive combined doses of bacteriophages and gentamicin protect against Staphylococcus aureus implant-related infections in Galleria mellonella. Bone Joint Res 2024; 13:383-391. [PMID: 39089687 PMCID: PMC11293943 DOI: 10.1302/2046-3758.138.bjr-2023-0340.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Aims Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required.
Collapse
Affiliation(s)
- Gopala K. Mannala
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
- Department for Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Raphaelle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Bärtl
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Seregina T, Shelomentsev I, Krivoborodov E, Vaniushenkova A, Toropygin I, Dyatlov A, Lukashov N, Dyatlov V. Physicochemical and Biological Properties of Vancomycin-Containing Antibacterial Polysaccharide Gels for Biocomposite Bone Implant Impregnation. Biomacromolecules 2024; 25:4156-4167. [PMID: 38922325 DOI: 10.1021/acs.biomac.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Polymeric drugs containing up to 60% by weight of the antibiotic vancomycin were synthesized based on dextran carriers activated with epichlorohydrin. Vancomycin was covalently bound, involving the primary amino group of the molecule through the hydroxypropyl radical to the C6 position of the anhydroglucose units of the dextran main chain. Covalent binding is necessary to prevent spontaneous release of the antibiotic from the gel, thereby reducing the risk of bacterial multiresistance. Antibacterial depot gels were obtained from those polymers, containing up to 17.5% by weight of polysaccharide with a cross-linking density of q = 3-5 nodes per macromolecule for the deposition of another type of drugs not covalently bound to the polymer gel. They were used to coat the surface of the internal pores of biocomposite bone implants based on bovine cancellous bone used in orthopedics. The chemical structure of the polymer was studied using 13C NMR spectroscopy and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The stiffness of the gels was evaluated by the values of the accumulation modulus G' = 170-270 kPa and the loss modulus G″ = 3.7-4.2 kPa determined on a rheometer. Their values are close to those typical for materials used to replace soft tissue in plastic surgery. The minimum inhibitory concentration of the gels against Staphylococcus aureus P209 depends on the antibiotic content in the polymer. It equals 2.5 mg/L for vancomycin we used and 100 mg/L for a polymer containing 50% by weight of covalently bound antibiotic. The cytotoxic concentration measured with cell culture HEK 293T exceeds 1200 mg/L in 24 h exposure. The release dynamics of drugs not covalently bound to dextran from the depot gel were studied using fluorescein as a model. The release time is independent of the gel density and lasts up to 6 days for a 2 mm thick layer. Both the gel and the bone implants impregnated with it maintained consistently high antibacterial activity throughout the experiment, up to its completion after 168 h, with the local concentration of the released antibiotic at the site of bacterial attack exceeding the therapeutic level by 200 times.
Collapse
Affiliation(s)
- Tatiana Seregina
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Shelomentsev
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Efrem Krivoborodov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anna Vaniushenkova
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Toropygin
- V. N. Orekhovich Institute of Biomedical Chemistry, Pogodinskaya str., 10, p. 8, 119121 Moscow, Russia
| | - Alexander Dyatlov
- The Hebrew University of Jerusalem, POB 12272, Jerusalem 9112000, Israel
| | - Nikolay Lukashov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Valerie Dyatlov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| |
Collapse
|
14
|
Wu S, Lai Y, Zheng X, Yang Y. Facile fabrication of linezolid/strontium coated hydroxyapatite/graphene oxide nanocomposite for osteoporotic bone defect. Heliyon 2024; 10:e31638. [PMID: 38947479 PMCID: PMC11214387 DOI: 10.1016/j.heliyon.2024.e31638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Hydroxyapatite (HAp) coatings currently have limited therapeutic applications because they lack anti-infection, osteoinductivity, and poor mechanical characteristics. On the titanium substrate, electrochemical deposition (ECD) was used to construct the strontium (Sr)-featuring hydroxyapatite (HAp)/graphene oxides (GO)/linezolid (LZ) nanomaterial coated with antibacterial and drug delivery properties. The newly fabricated nanomaterials were confirmed by X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis and morphological features were examined by scanning electron microscope (SEM) analysis. The results reveal multiple nucleation sites for SrHAp/GO/LZ composite coatings due to oxygen-comprising moieties on the 2D surface of GO. It was shown to be favorable for osteoblast proliferation and differentiation. The elastic modulus and hardness of LZ nanocomposite with SrHAp/GO/LZ coatings were increased by 67 % and 121 %, respectively. An initial 5 h burst of LZ release from the SrHAp/GO/LZ coating was followed by 14 h of gradual release, owing to LZ's physical and chemical adsorption. The SrHAp/GO/LZ coating effectively inhibited both S. epidermidis and S. aureus, and the inhibition lasted for three days, as demonstrated by the inhibition zone and colony count assays. When MG-63 cells are coated with SrHAp/GO/LZ composite coating, their adhesion, proliferation, and differentiation greatly improve when coated with pure titanium. A novel surface engineering nanomaterial for treating and preventing osteoporotic bone defects, SrHAp/GO/LZ, was shown to have high mechanical characteristics, superior antibacterial abilities, and osteoinductivity.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Yunxiao Lai
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling, 317500, China
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| |
Collapse
|
15
|
Williams M, Harris RM. Efficacy of a Novel Intraoperative Surgical Irrigant in Preventing Periprosthetic Joint Infections in Primary Knee, Hip, and Shoulder Arthroplasties: A Retrospective Analysis. Orthop Surg 2024; 16:1277-1283. [PMID: 38627352 PMCID: PMC11144508 DOI: 10.1111/os.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 06/04/2024] Open
Abstract
OBJECTIVE Primary joint arthroplasty (JA) is one of the most common operating room (OR) procedures, with knee and hip arthroplasties being listed in the top five most frequent OR procedures and while not as common, shoulder arthroplasties are increasing at greater rates than knee and hip arthroplasties. Periprosthetic joint/shoulder infections (PJI/PSI) are a devastating complication of primary JAs with infection prevention deemed as the single most important strategy in combating them. The objective of this study was to retrospectively evaluate the efficacy of XPERIENCE® Advanced Surgical Irrigation (XP) in preventing PJI following primary joint arthroplasty. METHODS This is a retrospective study of primary knee, hip and shoulder arthroplasties that were performed by multiple orthopedic surgeons at a single hospital setting. XPERIENCE was used as an intraoperative surgical irrigant either solely, or with other intraoperative practices for prevention of infection. Incidence of acute PJI occurring within 90 days of index surgery were retrospectively collated. RESULTS Four hundred and twenty-three (423) primary joint replacement surgeries treated intraoperatively with XP, were evaluated for acute PJI incidence. Retrospective evaluations determined that 95% of the subjects had at least one risk factor predisposing them to PJI. There were zero PJIs diagnosed in the knee and hip arthroplasty cohorts and zero PSIs diagnosed in the shoulder arthroplasty cohorts. CONCLUSION The absence of PJI/PSI diagnoses in the JA cohorts treated intraoperatively with XP indicates that it could be an efficacious antimicrobial irrigant in preventing PJI, and warrants being evaluated in prospective, randomized controlled clinical trials as the sole intraoperative irrigant, as well as in combination with the other intraoperative infection prevention regimens evaluated in this retrospective study.
Collapse
MESH Headings
- Humans
- Retrospective Studies
- Prosthesis-Related Infections/prevention & control
- Male
- Female
- Therapeutic Irrigation/methods
- Aged
- Middle Aged
- Arthroplasty, Replacement, Shoulder/methods
- Intraoperative Care/methods
- Arthroplasty, Replacement, Knee/adverse effects
- Arthroplasty, Replacement, Knee/methods
- Arthroplasty, Replacement, Hip/methods
- Arthroplasty, Replacement, Hip/adverse effects
- Aged, 80 and over
- Adult
Collapse
Affiliation(s)
- Marshall Williams
- Jack Hughston Memorial HospitalPhenix CityALUSA
- Hughston FoundationColumbusGAUSA
| | - Robert M. Harris
- Quillen College of Medicine, East Tennessee State UniversityJohnson CityTNUSA
| |
Collapse
|
16
|
Jaekel C, Windolf CD, Bieler D, Oezel L, Seiler LF, Lakomek FN, Beyersdorf C, Mertens J, Steuwe A, Windolf J, Grassmann JP. Efficacy of lysostaphin-coated titanium plates on implant-associated MRSA osteitis in minipigs. Eur J Trauma Emerg Surg 2024; 50:887-895. [PMID: 38265442 PMCID: PMC11249774 DOI: 10.1007/s00068-024-02448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE The growing incidence of implant-associated infections (IAIs) caused by biofilm-forming Staphylococcus aureus in combination with an increasing resistance to antibiotics requires new therapeutic strategies. Lysostaphin has been shown to eliminate this biofilm. Own studies confirm the effectiveness in a murine model. The current study characterizes the effects of lysostaphin-coated plates in an IAI minipig model. METHODS The femur of 30 minipigs was stabilized with a five-hole plate, a bone defect was created, and in 20 cases methicillin-resistant Staphylococcus aureus was applied. Ten animals served as control group. After 14 days, local debridement, lavage, and plate exchange (seven-hole plate) were performed. Ten of the infected minipigs received an uncoated plate and 10 a lysostaphin-coated plate. On day 84, the minipigs were again lavaged, followed by euthanasia. Bacterial load was quantified by colony-forming units (CFU). Immunological response was determined by neutrophils, as well as interleukins. Fracture healing was assessed radiologically. RESULTS CFU showed significant difference between infected minipigs with an uncoated plate and minipigs with a lysostaphin-coated plate (p = 0.0411). The infection-related excessive callus formation and calcification was significantly greater in the infected animals with an uncoated plate than in animals with a lysostaphin-coated plate (p = 0.0164/p = 0.0033). The analysis of polymorphonuclear neutrophils and interleukins did not reveal any pioneering findings. CONCLUSION This study confirms the minipig model for examining IAI. Furthermore, coating of plates using lysostaphin could be a promising tool in the therapeutic strategies of IAI. Future studies should focus on coating technology of implants and on translation into a clinical model.
Collapse
Affiliation(s)
- Carina Jaekel
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Ceylan D Windolf
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Dan Bieler
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Trauma Surgery and Orthopedics, Reconstructive Surgery, Hand Surgery and Burn Medicine, German Armed Forces Central Hospital Koblenz, Koblenz, Germany
| | - Lisa Oezel
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lars F Seiler
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Felix N Lakomek
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christoph Beyersdorf
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jann Mertens
- Department of Trauma Surgery, Orthopaedics and Hand Surgery, Städtisches Klinikum Solingen, Solingen, Germany
| | - Andrea Steuwe
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan P Grassmann
- Department of Trauma, Hand and Reconstructive Surgery, Klinikum Osnabrück GmbH, Osnabrück, Germany
| |
Collapse
|
17
|
Priyadarshini E, Kumar R, Balakrishnan K, Pandit S, Kumar R, Jha NK, Gupta PK. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS APPLIED BIO MATERIALS 2024; 7:2604-2619. [PMID: 38622845 DOI: 10.1021/acsabm.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215 Tamil Nadu, India
| | - Soumya Pandit
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105 Tamil Nadu, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401 Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
18
|
Kim BI, Schwartz AM, Wixted CM, Prado IP, Polascik BA, Seidelman JL, Seyler TM. Outcomes After Pseudomonas Prosthetic Joint Infections. J Am Acad Orthop Surg 2024; 32:e489-e502. [PMID: 38354412 DOI: 10.5435/jaaos-d-23-00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Pseudomonas species are a less common but devastating pathogen family in prosthetic joint infections (PJIs). Despite advancements in management, Pseudomonas PJIs remain particularly difficult to treat because of limited antibiotic options and robust biofilm formation. This study aimed to evaluate Pseudomonas PJI outcomes at a single institution and review outcomes reported in the current literature. METHODS All hip or knee PJIs at a single institution with positive Pseudomonas culture were evaluated. Forty-two patients (24 hips, 18 knees) meeting inclusion criteria were identified. The primary outcome of interest was infection clearance at 1 year after surgical treatment, defined as reassuring aspirate without ongoing antibiotic treatment. Monomicrobial and polymicrobial infections were analyzed separately. A focused literature review of infection clearance after Pseudomonas PJIs was performed. RESULTS One-year infection clearance was 58% (n = 11/19) for monomicrobial PJIs and 35% (n = 8/23) for polymicrobial PJIs. Among monomicrobial infections, the treatment success was 63% for patients treated with DAIR and 55% for patients treated with two-stage exchange. Monotherapy with an oral or intravenous antipseudomonal agent (minimum 6 weeks) displayed the lowest 1-year clearance of 50% (n = 6/12). Resistance to antipseudomonal agents was present in 16% (n = 3/19), and two of eight patients with monomicrobial and polymicrobial PJIs developed resistance to antipseudomonal therapy in a subsequent Pseudomonas PJI. Polymicrobial infections (55%) were more common with a mortality rate of 44% (n = 10/23) at a median follow-up of 3.6 years. CONCLUSION Pseudomonas infections often present as polymicrobial PJIs but are difficult to eradicate in either polymicrobial or monomicrobial setting. A review of the current literature on Pseudomonas PJI reveals favorable infection clearance rates (63 to 80%) after DAIR while infection clearance rates (33 to 83%) vary widely after two-stage revision.
Collapse
Affiliation(s)
- Billy I Kim
- From the Department of Orthopaedic Surgery, Duke University, Durham, NC (Kim, Schwartz, Wixted, Prado, Polascik, and Seyler), and the Division of Infectious Diseases, Duke University, Durham, NC (Dr. Seidelman)
| | | | | | | | | | | | | |
Collapse
|
19
|
Vicente M, Nomdedeu J, Lakhani K, Corona PS. Are silver-coated megaprostheses superior to uncoated megaprostheses in managing chronic end-stage periprosthetic hip and knee infection? Arch Orthop Trauma Surg 2024; 144:2197-2205. [PMID: 38520549 DOI: 10.1007/s00402-024-05244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/17/2024] [Indexed: 03/25/2024]
Abstract
INTRODUCTION Outcomes for silver coated megaprostheses (SC-MP) used in cases of end-stage periprosthetic joint infection (PJI) have not been clearly defined. Although attractive, concerns over implant longevity and the risk of infection relapse exist among the scientific community. Therefore, we sought to investigate the effect of silver coating in lower-extremity MPs used in such difficult-to-treat scenarios. The study's primary hypothesis was that the periprosthetic infection control rate would be higher in patients with silver-coated implants. MATERIALS AND METHODS Non-interventional retrospective study with a historical comparison group. We identified all consecutive end-stage hip and knee PJI cases at our center managed with exchange arthroplasty using a silver-coated megaprosthesis from January 2016 to March 2021, these cases were compared with a historical cohort of end-stage PJI cases managed with uncoated megaprostheses. The main outcome studied was infection control rate. Secondarily, we analyzed the short-to-medium-term survivorship of this type of silver-coated implant. RESULTS Fifty-nine megaprostheses used in cases of end-stage PJI were included in this study. We identified 30 cases of chronic hip or knee PJI in which a silver-coated modular megaprosthesis was implanted. Our non-coated megaprosthesis (NC-MP) historical group included 29 patients. Both groups had similar demographic characteristics. We found no statistically significant differences in infection control rate (80% vs. 82.8%, p = 0.47) or implant survivorship (90% vs. 89.65%, p = 1) after a mean follow-up for SC-MP of 46.43 months, and 48 months for the non-coated MP group. In relapsed cases, there were no differences in infection eradication after DAIR (66% SC-MP vs. 60% NC-MP success rate, p = 1). During the follow-up we observed one case of skin argyria without further repercussion. CONCLUSION We were unable to confirm our initial hypothesis that use of silver-coated implants in end-stage PJI scenarios may be associated with better outcomes in terms of infection control or implant survivorship.
Collapse
MESH Headings
- Humans
- Prosthesis-Related Infections/prevention & control
- Prosthesis-Related Infections/etiology
- Retrospective Studies
- Male
- Female
- Silver
- Aged
- Coated Materials, Biocompatible
- Knee Prosthesis/adverse effects
- Hip Prosthesis/adverse effects
- Middle Aged
- Arthroplasty, Replacement, Knee/methods
- Arthroplasty, Replacement, Knee/adverse effects
- Arthroplasty, Replacement, Hip/methods
- Arthroplasty, Replacement, Hip/instrumentation
- Prosthesis Design
- Aged, 80 and over
Collapse
Affiliation(s)
- Matías Vicente
- Septic and Reconstructive Surgery Unit, Orthopaedic Surgery Department, Vall d'Hebrón University Hospital, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Josep Nomdedeu
- Orthopaedic Surgery Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kushal Lakhani
- Septic and Reconstructive Surgery Unit, Orthopaedic Surgery Department, Vall d'Hebrón University Hospital, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo S Corona
- Septic and Reconstructive Surgery Unit, Orthopaedic Surgery Department, Vall d'Hebrón University Hospital, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Ceresa C, Travagin F, Marchetti A, Tessarolo F, Fracchia L, Giovenzana GB, Bosetti M. An In Vitro Study on the Application of Silver-Doped Platelet-Rich Plasma in the Prevention of Post-Implant-Associated Infections. Int J Mol Sci 2024; 25:4842. [PMID: 38732057 PMCID: PMC11084394 DOI: 10.3390/ijms25094842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:β-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Fabio Travagin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy;
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Giovanni Battista Giovenzana
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (F.T.); (A.M.); (G.B.G.)
| |
Collapse
|
21
|
Hammami I, Graça MPF, Gavinho SR, Jakka SK, Borges JP, Silva JC, Costa LC. Exploring the Impact of Copper Oxide Substitution on Structure, Morphology, Bioactivity, and Electrical Properties of 45S5 Bioglass ®. Biomimetics (Basel) 2024; 9:213. [PMID: 38667224 PMCID: PMC11048336 DOI: 10.3390/biomimetics9040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Manuel Pedro Fernandes Graça
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Sílvia Rodrigues Gavinho
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - João Paulo Borges
- CENIMAT-I3N and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Jorge Carvalho Silva
- CENIMAT-I3N and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Luís Cadillon Costa
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| |
Collapse
|
22
|
MacConnell AE, Levack AE, Brown NM. Biofilm and How It Relates to Prosthetic Joint Infection. Orthop Clin North Am 2024; 55:161-169. [PMID: 38403363 DOI: 10.1016/j.ocl.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Prosthetic joint infection following total joint arthroplasty is a devastating complication, resulting in increased morbidity and mortality for the patient. The formation of a biofilm on implanted hardware contributes to the difficulty in successful identification and eradication of the infection. Antibiotic therapy and surgical intervention are necessary for addressing this condition; we present a discussion on different treatment options, including those that are not yet routinely utilized in the clinical setting or are under investigation, to highlight the present and future of PJI management.
Collapse
Affiliation(s)
- Ashley E MacConnell
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, 2160 South First Avenue, Suite 1700, Maywood, IL 60153, USA.
| | - Ashley E Levack
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, 2160 South First Avenue, Suite 1700, Maywood, IL 60153, USA
| | - Nicholas M Brown
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, 2160 South First Avenue, Suite 1700, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Lei Z, Liang H, Sun W, Chen Y, Huang Z, Yu B. A biodegradable PVA coating constructed on the surface of the implant for preventing bacterial colonization and biofilm formation. J Orthop Surg Res 2024; 19:175. [PMID: 38459593 PMCID: PMC10921624 DOI: 10.1186/s13018-024-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Bone implant infections pose a critical challenge in orthopedic surgery, often leading to implant failure. The potential of implant coatings to deter infections by hindering biofilm formation is promising. However, a shortage of cost-effective, efficient, and clinically suitable coatings persists. Polyvinyl alcohol (PVA), a prevalent biomaterial, possesses inherent hydrophilicity, offering potential antibacterial properties. METHODS This study investigates the PVA solution's capacity to shield implants from bacterial adhesion, suppress bacterial proliferation, and thwart biofilm development. PVA solutions at concentrations of 5%, 10%, 15%, and 20% were prepared. In vitro assessments evaluated PVA's ability to impede bacterial growth and biofilm formation. The interaction between PVA and mCherry-labeled Escherichia coli (E. coli) was scrutinized, along with PVA's therapeutic effects in a rat osteomyelitis model. RESULTS The PVA solution effectively restrained bacterial proliferation and biofilm formation on titanium implants. PVA solution had no substantial impact on the activity or osteogenic potential of MC3T3-E1 cells. Post-operatively, the PVA solution markedly reduced the number of Staphylococcus aureus and E. coli colonies surrounding the implant. Imaging and histological scores exhibited significant improvements 2 weeks post-operation. Additionally, no abnormalities were detected in the internal organs of PVA-treated rats. CONCLUSIONS PVA solution emerges as an economical, uncomplicated, and effective coating material for inhibiting bacterial replication and biofilm formation on implant surfaces, even in high-contamination surgical environments.
Collapse
Affiliation(s)
- Zhonghua Lei
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Sixth Peoples Hospital of Huizhou, Huizhou, 516211, China
| | - Haifeng Liang
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Sun
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Huang
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China.
| | - Bo Yu
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
24
|
Sousa AM, Ferreira D, Rodrigues LR, Pereira MO. Aptamer-based therapy for fighting biofilm-associated infections. J Control Release 2024; 367:522-539. [PMID: 38295992 DOI: 10.1016/j.jconrel.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Biofilms are key players in the pathogenesis of most of chronic infections associated with host tissue or fluids and indwelling medical devices. These chronic infections are hard to be treated due to the increased biofilms tolerance towards antibiotics in comparison to planktonic (or free living) cells. Despite the advanced understanding of their formation and physiology, biofilms continue to be a challenge and there is no standardized therapeutic approach in clinical practice to eradicate them. Aptamers offer distinctive properties, including excellent affinity, selectivity, stability, making them valuable tools for therapeutic purposes. This review explores the flexibility and designability of aptamers as antibiofilm drugs but, importantly, as targeting tools for diverse drug and delivery systems. It highlights specific examples of application of aptamers in biofilms of diverse species according to different modes of action including inhibition of motility and adhesion, blocking of quorum sensing molecules, and dispersal of biofilm-cells to planktonic state. Moreover, it discusses the limitations and challenges that impaired an increased success of the use of aptamers on biofilm management, as well as the opportunities related to aptamers modifications that can significantly expand their applicability on the biofilm field.
Collapse
Affiliation(s)
- Ana Margarida Sousa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Débora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Lígia Raquel Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
25
|
Mirzaei R, Campoccia D, Ravaioli S, Arciola CR. Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics. Antibiotics (Basel) 2024; 13:184. [PMID: 38391570 PMCID: PMC10885942 DOI: 10.3390/antibiotics13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular matrix, still represent an open challenge in many clinical contexts, including orthopedics, where biofilm-associated bone and joint infections remain the main cause of implant failure. This study explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, highlighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these infections. The classic mechanisms through which biofilms form and the more recently proposed new ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi. New findings on biofilm formation with host components are presented. The article also delves into the emerging and critical concept of immunometabolism, a key function of immune cells that biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy of biofilm infections is highlighted, referring to the latest research.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.)
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.)
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
26
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
27
|
Grooters KE, Ku JC, Richter DM, Krinock MJ, Minor A, Li P, Kim A, Sawyer R, Li Y. Strategies for combating antibiotic resistance in bacterial biofilms. Front Cell Infect Microbiol 2024; 14:1352273. [PMID: 38322672 PMCID: PMC10846525 DOI: 10.3389/fcimb.2024.1352273] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Biofilms, which are complexes of microorganisms that adhere to surfaces and secrete protective extracellular matrices, wield substantial influence across diverse domains such as medicine, industry, and environmental science. Despite ongoing challenges posed by biofilms in clinical medicine, research in this field remains dynamic and indeterminate. This article provides a contemporary assessment of biofilms and their treatment, with a focus on recent advances, to chronicle the evolving landscape of biofilm research.
Collapse
Affiliation(s)
- Kayla E. Grooters
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - David M. Richter
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Matthew J. Krinock
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Ashley Minor
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Patrick Li
- University of Michigan, Ann Arbor, MI, United States
- Division of Biomedical Engineering, Department of Orthopedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Audrey Kim
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Robert Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Division of Biomedical Engineering, Department of Orthopedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
28
|
刘 鹏, 樊 博, 邹 磊, 吕 利, 高 秋. [Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1300-1313. [PMID: 37848328 PMCID: PMC10581867 DOI: 10.7507/1002-1892.202306025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Objective To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research. Methods The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances. Results At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity. Conclusion The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
Collapse
Affiliation(s)
- 鹏 刘
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
- 中国人民解放军联勤保障部队第九四〇医院骨科中心(兰州 730000)Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| | - 博 樊
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| | - 磊 邹
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| | - 利军 吕
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| | - 秋明 高
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| |
Collapse
|
29
|
Kamnev AA, Dyatlova YA, Kenzhegulov OA, Fedonenko YP, Evstigneeva SS, Tugarova AV. Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition. Molecules 2023; 28:molecules28041949. [PMID: 36838937 PMCID: PMC9962177 DOI: 10.3390/molecules28041949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Biofilms represent the main mode of existence of bacteria and play very significant roles in many industrial, medical and agricultural fields. Analysis of biofilms is a challenging task owing to their sophisticated composition, heterogeneity and variability. In this study, biofilms formed by the rhizobacterium Azospirillum baldaniorum (strain Sp245), isolated biofilm matrix and its macrocomponents have for the first time been studied in detail, using Fourier transform infrared (FTIR) spectroscopy, with a special emphasis on the methodology. The accompanying novel data of comparative chemical analyses of the biofilm matrix, its fractions and lipopolysaccharide isolated from the outer membrane of the cells of this strain, as well as their electrophoretic analyses (SDS-PAGE) have been found to be in good agreement with the FTIR spectroscopic results.
Collapse
|
30
|
Cacaci M, Squitieri D, Palmieri V, Torelli R, Perini G, Campolo M, Di Vito M, Papi M, Posteraro B, Sanguinetti M, Bugli F. Curcumin-Functionalized Graphene Oxide Strongly Prevents Candida parapsilosis Adhesion and Biofilm Formation. Pharmaceuticals (Basel) 2023; 16:275. [PMID: 37259419 PMCID: PMC9967767 DOI: 10.3390/ph16020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 10/15/2023] Open
Abstract
Candida parapsilosis is the major non-C. albicans species involved in the colonization of central venous catheters, causing bloodstream infections. Biofilm formation on medical devices is considered one of the main causes of healthcare-associated infections and represents a global public health problem. In this context, the development of new nanomaterials that exhibit anti-adhesive and anti-biofilm properties for the coating of medical devices is crucial. In this work, we aimed to characterize the antimicrobial activity of two different coated-surfaces, graphene oxide (GO) and curcumin-graphene oxide (GO/CU) for the first time, against C. parapsilosis. We report the capacity of GO to bind and stabilize CU molecules, realizing a homogenous coated surface. We tested the anti-planktonic activity of GO and GO/CU by growth curve analysis and quantification of Reactive Oxigen Species( ROS) production. Then, we tested the antibiofilm activity by adhesion assay, crystal violet assay, and live and dead assay; moreover, the inhibition of the formation of a mature biofilm was investigated by a viability test and the use of specific dyes for the visualization of the cells and the extra-polymeric substances. Our data report that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, showing a 72% cell viability reduction and a decrease of 85% in the secretion of extra-cellular substances (EPS) after 72 h of incubation. In conclusion, we show that the GO/CU conjugate is a promising material for the development of medical devices that are refractory to microbial colonization, thus leading to a decrease in the impact of biofilm-related infections.
Collapse
Affiliation(s)
- Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Damiano Squitieri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, Centro Nazionale Ricerche (CNR), 00185, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168, Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Campolo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168, Rome, Italy
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
31
|
Liu X, Zhang H, Yan B, Yeung KWK, Liao Y, Ouyang L, Liu X. On-Off Phagocytosis and Switchable Macrophage Activation Stimulated with NIR for Infected Percutaneous Tissue Repair of Polypyrrole-Coated Sulfonated PEEK. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205048. [PMID: 36515274 PMCID: PMC9929275 DOI: 10.1002/advs.202205048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Intelligent control of the immune response is essential for obtaining percutaneous implants with good sterilization and tissue repair abilities. In this study, polypyrrole (Ppy) nanoparticles enveloping a 3D frame of sulfonated polyether ether ketone (SP) surface are constructed, which enhance the surface modulus and hardness of the sulfonated layer by forming a cooperative structure of simulated reinforced concrete and exhibit a superior photothermal effect. Ppy-coated SP could quickly accumulate heat on the surface by responding to 808 nm near-infrared (NIR) light, thereby killing bacteria, and destroying biofilms. Under NIR stimulation, the phagocytosis and M1 activation of macrophages cultured on Ppy-coated SP are enhanced by activating complement 3 and its receptor, CD11b. Phagocytosis and M1 activation are impaired along with abolishment of NIR stimulation in the Ppy-coated SP group, which is favorable for tissue repair. Ppy-coated SP promotes Collagen-I, vascular endothelial growth factor, connective tissue growth factor, and α-actin (Acta2) expression by inducing M2 polarization owing to its higher surface modulus. Overall, Ppy-coated SP with enhanced mechanical properties could be a good candidate for clinical percutaneous implants through on-off phagocytosis and switchable macrophage activation stimulated with NIR.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kelvin W. K. Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaGuangdong Engineering Technology Research Center for Orthopaedic Trauma RepairDepartment of Orthopaedics and TraumatologyThe University of Hong Kong Shenzhen HospitalShenzhen518053China
| | - Yun Liao
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Liping Ouyang
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
- Hongqiao International Institute of MedicineShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|
32
|
Dao A, O'Donohue AK, Vasiljevski E, Bobyn J, Little D, Schindeler A. Murine models of orthopedic infection featuring Staphylococcus aureus biofilm. J Bone Jt Infect 2023; 8:81-89. [PMID: 37123502 PMCID: PMC10134754 DOI: 10.5194/jbji-8-81-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/04/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Osteomyelitis remains a major clinical challenge. Many published rodent fracture infection models are costly compared with murine models for rapid screening and proof-of-concept studies. We aimed to develop a dependable and cost-effective murine bone infection model that mimics bacterial bone infections associated with biofilm and metal implants. Methods: Tibial drilled hole (TDH) and needle insertion surgery (NIS) infection models were compared in C57BL/6 mice (female, N = 150 ). Metal pins were inserted selectively into the medullary canal adjacent to the defect sites on the metaphysis. Free Staphylococcus aureus (ATCC 12600) or biofilm suspension (ATCC 25923) was locally inoculated. Animals were monitored for physiological or radiographic evidence of infection without prophylactic antibiotics for up to 14 d. At the end point, bone swabs, soft-tissue biopsies, and metal pins were taken for cultures. X-ray and micro-CT scans were performed along with histology analysis. Results: TDH and NIS both achieved a 100 % infection rate in tibiae when a metal implant was present with injection of free bacteria. In the absence of an implant, inoculation with a bacterial biofilm still induced a 40 %-50 % infection rate. In contrast, freely suspended bacteria and no implant consistently showed lower or negligible infection rates. Micro-CT analysis confirmed that biofilm infection caused local bone loss even without a metal implant as a nidus. Although a metal surface permissive for biofilm formation is impermeable to create progressive bone infections in animal models, the metal implant can be dismissed if a bacterial biofilm is used. Conclusion: These models have a high potential utility for modeling surgery-related osteomyelitis, with NIS being simpler to perform than TDH.
Collapse
Affiliation(s)
- Aiken Dao
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| | - Alexandra K. O'Donohue
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| | - Emily R. Vasiljevski
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - Justin D. Bobyn
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - David G. Little
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
33
|
Batool S, Hasan M, Dilshad M, Zafar A, Tariq T, Shaheen A, Iqbal R, Ali Z, Munawar T, Iqbal F, Hassan SG, Shu X, Caprioli G. Green synthesized ZnO-Fe2O3-Co3O4 nanocomposite for antioxidant, microbial disinfection and degradation of pollutants from wastewater. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
HVISTENDAHL MA, HANBERG P, STILLING M, KASPERSEN AE, HØY K, BUE M. Subtherapeutic levels of cefuroxime inside a cannulated pedicle screw used in spine surgery: results from a porcine microdialysis study. Acta Orthop 2022; 93:874-879. [PMID: 36445157 PMCID: PMC9707378 DOI: 10.2340/17453674.2022.5276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Minimally invasive spine surgery has continuously evolved for specific surgical procedures and patient populations to lower morbidity and the risk of postoperative bacterial infection. Perioperative antibiotic prophylaxis is an important preventive measure and local tissue concentrations can be quantified with microdialysis. Insertion of spinal implants induces tissue trauma and inflammation, which may affect antibiotic proximate implant concentrations. We compared perioperative cefuroxime concentrations inside a cannulated pedicle screw used in minimally invasive spine surgery with the opposite non-instrumented vertebral pedicle. MATERIALS AND METHODS Microdialysis catheters were placed inside a cannulated pedicle screw and in the opposite non-instrumented vertebral pedicle of the same vertebra (L1) in 8 female pigs through a posterior lumbar surgical approach. Following a single-dose intravenous cefuroxime administration (1.5 g), dialysates and plasma were dynamically sampled over 8 hours. The primary endpoint was time above the cefuroxime clinical breakpoint minimal inhibitory concentration for Staphylococcus aureus of 4 μg/mL (T>MIC4). RESULTS Median T>MIC4 was 0 h (range 0-0) inside the cannulated pedicle screw, 1.6 h (range 1.1-2.4) in non-instrumented vertebral pedicle, and 1.9 h (range 1.9-2.9) in plasma. CONCLUSION A single-dose intravenous cefuroxime administration provided low and subtherapeutic concentrations for prevention of infection inside a cannulated pedicle screw in the lumbar spine. Therapeutic concentrations were achieved in the opposite non-instrumented vertebral pedicle up to 1.5-2 h. Therefore, additional prophylactic strategies may be considered in cannulated instrumented spine surgery, especially in high-risk patients. Alternative dosing regimens seem relevant in lumbar spine surgery lasting longer than 1.5 h.
Collapse
Affiliation(s)
- Magnus A HVISTENDAHL
- Department of Clinical Medicine, Aarhus University, Aarhus N,Aarhus Denmark Microdialysis Research (ADMIRE), Orthopedic Research Laboratory, Aarhus University Hospital, Aarhus N
| | - Pelle HANBERG
- Department of Clinical Medicine, Aarhus University, Aarhus N,Aarhus Denmark Microdialysis Research (ADMIRE), Orthopedic Research Laboratory, Aarhus University Hospital, Aarhus N
| | - Maiken STILLING
- Department of Clinical Medicine, Aarhus University, Aarhus N,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Kristian HØY
- Department of Clinical Medicine, Aarhus University, Aarhus N,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Mats BUE
- Department of Clinical Medicine, Aarhus University, Aarhus N,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
35
|
Biały M, Hasiak M, Łaszcz A. Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses. J Funct Biomater 2022; 13:jfb13040245. [PMID: 36412886 PMCID: PMC9680474 DOI: 10.3390/jfb13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The continuous development of novel materials for biomedical applications is resulting in an increasingly better prognosis for patients. The application of more advanced materials relates to fewer complications and a desirable higher percentage of successful treatments. New, innovative materials being considered for biomedical applications are metallic alloys with an amorphous internal structure called metallic glasses. They are currently in a dynamic phase of development both in terms of formulating new chemical compositions and testing their properties in terms of intended biocompatibility. This review article intends to synthesize the latest research results in the field of biocompatible metallic glasses to create a more coherent picture of these materials. It summarizes and discusses the most recent findings in the areas of mechanical properties, corrosion resistance, in vitro cellular studies, antibacterial properties, and in vivo animal studies. Results are collected mainly for the most popular metallic glasses manufactured as thin films, coatings, and in bulk form. Considered materials include alloys based on zirconium and titanium, as well as new promising ones based on magnesium, tantalum, and palladium. From the properties of the examined metallic glasses, possible areas of application and further research directions to fill existing gaps are proposed.
Collapse
|
36
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
37
|
Sun C, Wang X, Dai J, Ju Y. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects. Int J Mol Sci 2022; 23:11348. [PMID: 36232647 PMCID: PMC9569886 DOI: 10.3390/ijms231911348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The misuse and mismanagement of antibiotics have made the treatment of bacterial infections a challenge. This challenge is magnified when bacteria form biofilms, which can increase bacterial resistance up to 1000 times. It is desirable to develop anti-infective materials with antibacterial activity and no resistance to drugs. With the rapid development of nanotechnology, anti-infective strategies based on metal and metal oxide nanomaterials have been widely used in antibacterial and antibiofilm treatments. Here, this review expounds on the state-of-the-art applications of metal and metal oxide nanomaterials in bacterial infective diseases. A specific attention is given to the antibacterial mechanisms of metal and metal oxide nanomaterials, including disrupting cell membranes, damaging proteins, and nucleic acid. Moreover, a practical antibiofilm mechanism employing these metal and metal oxide nanomaterials is also introduced based on the composition of biofilm, including extracellular polymeric substance, quorum sensing, and bacteria. Finally, current challenges and future perspectives of metal and metal oxide nanomaterials in the anti-infective field are presented to facilitate their development and use.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Animal Bacteriology (Ministry of Agriculture), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
38
|
Lu Y, Cai WJ, Ren Z, Han P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022; 10:1909. [PMID: 36296183 PMCID: PMC9612000 DOI: 10.3390/microorganisms10101909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, implant-associated infection remains a major challenge for orthopedic surgeries. The subject of bacterial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the clinical environment, as well as the extreme difficulty in eradicating them. Biofilm can be defined as a structured microbial community of cells that are attached to a substratum and embedded in a matrix of extracellular polymeric substances (EPS) that they have produced. Biofilm development has been proposed as occurring in a multi-step process: (i) attachment and adherence, (ii) accumulation/maturation due to cellular aggregation and EPS production, and (iii) biofilm detachment (also called dispersal) of bacterial cells. In all these stages, characteristic proteinaceous and non-proteinaceous compounds are expressed, and their expression is strictly controlled. Bacterial biofilm formation around implants shelters the bacteria and encourages the persistence of infection, which could lead to implant failure and osteomyelitis. These complications need to be treated by major revision surgeries and extended antibiotic therapies, which could lead to high treatment costs and even increase mortality. Effective preventive and therapeutic measures to reduce risks for implant-associated infections are thus in urgent need.
Collapse
Affiliation(s)
| | | | | | - Pei Han
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
39
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
40
|
[Research progress of antibacterial modification of orthopaedic implants surface]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:511-516. [PMID: 35426294 PMCID: PMC9011072 DOI: 10.7507/1002-1892.202112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To summarize the related research progress of antibacterial modification of orthopaedic implants surface in recent years. METHODS The domestic and foreign related literature in recent years was extensively consulted, the research progress on antibacterial modification of orthopaedic implants surface was discussed from two aspects of characteristics of infection in orthopedic implants and surface anti-infection modification. RESULTS The orthopaedic implants infections are mainly related to aspects of bacterial adhesion, decreased host immunity, and surface biofilm formation. At present, the main antimicrobial coating methods of orthopaedic implants are antibacterial adhesion coating, antibiotic coating, inorganic antimicrobial coating, composite antimicrobial coating, nitric oxide coating, immunomodulation, three-dimensional printing, polymer antimicrobial coating, and "smart" coating. CONCLUSION The above-mentioned antibacterial coating methods of orthopedic implants can not only inhibit bacterial adhesion, but also solve the problems of low immunity and biofilm formation. However, its mechanism of action and modification are still controversial and require further research.
Collapse
|
41
|
Shi T, Ruan Z, Wang X, Lian X, Chen Y. Erythrocyte Membrane-Enveloped Molybdenum Disulfide Nanodots for Biofilm Elimination on Implants via Toxin Neutralization and Immune Modulation. J Mater Chem B 2022; 10:1805-1820. [PMID: 35199816 DOI: 10.1039/d1tb02615a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implant-related infections (IRIs) caused by bacterial biofilms remain a prevalent but tricky clinical issue, which are characterized by drug resistance, toxin impairment and immunity suppression. Recently, antimicrobial therapies based on...
Collapse
Affiliation(s)
- Tingwang Shi
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Zesong Ruan
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Xin Wang
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Xiaofeng Lian
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Yunfeng Chen
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| |
Collapse
|