1
|
Tien NTN, Choi EJ, Thu NQ, Yu SJ, Nguyen DN, Kim DH, Long NP, Lee HS. An exploratory multi-omics study reveals distinct molecular signatures of ulcerative colitis and Crohn's disease and their correlation with disease activity. J Pharm Biomed Anal 2025; 255:116652. [PMID: 39740478 DOI: 10.1016/j.jpba.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Clinically heterogeneous spectrum and molecular phenotypes of inflammatory bowel disease (IBD) remain to be comprehensively elucidated. This exploratory multi-omics study investigated the serum molecular profiles of Crohn's disease (CD) and ulcerative colitis (UC), in association with elevated fecal calprotectin and disease activity states. The serum proteome, metabolome, and lipidome of 75 treated IBD patients were profiled. Single- and multi-omic data analysis was performed to determine differential analytes and integrative biosignatures for biological interpretations. We found that chronic inflammation, phosphatidylcholines and bile acid homeostasis disturbances underlined the differences between CD and UC. Besides, elevated calprotectin was associated with higher levels of inflammatory proteins and sphingomyelins (SM) and lower levels of bile acids, amino acids, and triacylglycerols (TG). Relative to the remission disease state, the active form was characterized by decreased abundances of SMs and increased abundances of inflammatory proteins and TGs. We also observed that molecular changes upon treatment escalation were putatively related to altered levels of inflammatory response proteins, amino acids, and TGs. ISM1, ANGPTL4, chenodeoxycholate, Cer(18:1;2 O/24:1), and TG were identified as candidates subject to further investigation. Altogether, our study revealed that disturbances in immune response, bile acid homeostasis, amino acids, and lipids potentially underlie the clinically heterogeneous spectrum of IBD.
Collapse
Affiliation(s)
- Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Eun Jeong Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Seung Jung Yu
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Duc Ninh Nguyen
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| | - Hong Sub Lee
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| |
Collapse
|
2
|
Zhao X, Zhang M, He J, Li X, Zhuang X. Emerging insights into ferroptosis in cholangiocarcinoma (Review). Oncol Lett 2024; 28:606. [PMID: 39483963 PMCID: PMC11526429 DOI: 10.3892/ol.2024.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises within the biliary system, which exhibits a progressively increasing incidence and a poor patient prognosis. A thorough understanding of the molecular pathogenesis that drives the progression of CCA is essential for the development of effective molecular target therapeutic approaches. Ferroptosis is driven by excessive iron accumulation and catalysis, lipid peroxidation and the failure of antioxidant defense systems. Key molecular targets of iron metabolism, lipid metabolism and antioxidant defense systems involve molecules such as transferrin receptor, ACSL4 and GPX4, respectively. Inhibitors of ferroptosis include ferrostatin-1, liproxstatin-1, vitamin E and coenzyme Q10. By contrast, compounds such as erastin, RSL3 and FIN56 have been identified as inducers of ferroptosis. Ferroptosis serves a notable role in the onset and progression of CCA. CCA cells exhibit high sensitivity to ferroptosis and aberrant iron metabolism in these cells increases oxidative stress and iron accumulation. The induction of ferroptosis markedly reduces the ability of CCA cells to proliferate and migrate. Certain ferroptosis agonists, such as RSL3 and erastin, cause lipid peroxide build up and GPX4 inhibition to induce ferroptosis in CCA cells. Current serological markers, such as CA-199, have low specificity and cause difficulties in the diagnosis of CCA. However, novel techniques, such as non-invasive liquid biopsy and assays for oxidative stress markers and double-cortin-like kinase 1, could improve diagnostic accuracy. CCA is primarily treated with surgery and chemotherapy. A close association between the progression of CCA with ferroptosis mechanisms and related regulatory pathways has been demonstrated. Therefore, it could be suggested that multi-targeted therapeutic approaches, such as ferroptosis inducers, iron chelating agents and novel modulators such as YL-939, may improve treatment efficacy. Iron death-related genes, such as GPX4, that are highly expressed in CCA and are associated with a poor prognosis for patients may represent potential prognostic markers for CCA. The present review focused on molecular targets such as p53 and ACSL4, the process of targeted medications in combination with PDT in CCA and the pathways of lipid peroxidation, the Xc-system and GSH-GPX4 in ferroptosis. The present review thus offered novel perspectives to improve the current understanding of CCA.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Miao Zhang
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xin Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xuewei Zhuang
- Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
3
|
Bayoumy AB, Derijks LJJ, Oldenburg B, de Boer NKH. The Use of Tissue Concentrations of Biological and Small-Molecule Therapies in Clinical Studies of Inflammatory Bowel Diseases. Pharmaceutics 2024; 16:1497. [PMID: 39771479 PMCID: PMC11676153 DOI: 10.3390/pharmaceutics16121497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
The introduction of biological therapies has revolutionized inflammatory bowel disease (IBD) management. A critical consideration in developing these therapies is ensuring adequate drug concentrations at the site of action. While blood-based biomarkers have shown limited utility in optimizing treatment (except for TNF-alpha inhibitors and thiopurines), tissue drug concentrations may offer valuable insights. In antimicrobial therapies, tissue concentration monitoring is standard practice and could provide a new avenue for understanding the pharmacokinetics of biological and small-molecule therapies in IBD. Various methods exist for measuring tissue concentrations, including whole tissue sampling, MALDI-MSI, microdialysis, and fluorescent labeling. These techniques offer unique advantages, such as spatial drug-distribution mapping, continuous sampling, or cellular-level analysis. However, challenges remain, including sampling invasiveness, heterogeneity in tissue compartments, and a lack of standardized bioanalytical guidelines. Drug pharmacokinetics are influenced by multiple factors, including molecular properties, disease-induced changes in the gastrointestinal tract, and the timing of sample collection. For example, drug permeability, solubility, and interaction with transporters may vary between Crohn's disease and ulcerative colitis. Research into the tissue concentrations of drugs like anti-TNF agents, ustekinumab, vedolizumab, and tofacitinib has shown variable correlations with clinical outcomes, suggesting potential roles for tissue concentration monitoring in therapeutic drug management. Although routine clinical application is not yet established, exploring tissue drug concentrations may enhance understanding of IBD pharmacotherapy.
Collapse
Affiliation(s)
- Ahmed B. Bayoumy
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy & Pharmacology, Máxima Medical Centre, 5631 BM Eindhoven, The Netherlands
- Department of Clinical Pharmacy & Toxicology and NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nanne K. H. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Qi Y, Wang X, Chen Y, Sheng L, Wu D, Leng Y, Wang X, Wang J. Protective effect of walnut active peptide against dextran sulfate sodium-induced colitis in mice based on untargeted metabolomics. Int Immunopharmacol 2024; 141:112998. [PMID: 39182265 DOI: 10.1016/j.intimp.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by inflammation of the digestive tract, whose exact cause remains unknown, and its prevalence is on the rise. This study investigated the effects of a walnut-derived peptide LPLLR (LP-5) on intestinal inflammation and metabolism in IBD mice. Metabolomics revealed that LP-5 regulated the levels of metabolites, such as thalsimidine, fumagillin, and geniposide, and LP-5 could regulate several signaling pathways, such as protein digestion and absorption, aminoacyl-tRNA biosynthesis, and ABC transporters. Additionally, LP-5 alleviated dextran sulfate sodium (DSS)-induced colitis by modulating autophagy and inflammasome pathways. Western blotting demonstrated that LP-5 reduced the expressions of NLRP3, Caspase-1, ASC and IL-1β, and increased the expressions of Beclin-1 and LC3-II/LC3-I, corresponding to activation of the AMPK/mTOR/ULK1 pathway. These findings suggested that LP-5 activated autophagy in vivo to suppress inflammation and modulate metabolic substances, highlighting potential implications for gut health and the development of functional foods containing LP-5.
Collapse
Affiliation(s)
- Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xuehang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yiming Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Lihan Sheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China.
| |
Collapse
|
5
|
Chen C, Quan J, Chen X, Yang T, Yu C, Ye S, Yang Y, Wu X, Jiang D, Weng Y. Explore key genes of Crohn's disease based on glycerophospholipid metabolism: A comprehensive analysis Utilizing Mendelian Randomization, Multi-Omics integration, Machine Learning, and SHAP methodology. Int Immunopharmacol 2024; 141:112905. [PMID: 39173401 DOI: 10.1016/j.intimp.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic, complex inflammatory condition with increasing incidence and prevalence worldwide. However, the causes of CD remain incompletely understood. We identified CD-related metabolites, inflammatory factors, and key genes by Mendelian randomization (MR), multi-omics integration, machine learning (ML), and SHAP. METHODS We first performed a mediation MR analysis on 1400 serum metabolites, 91 inflammatory factors, and CD. We found that certain phospholipids are causally related to CD. In the scRNA-seq data, monocytes were categorized into high and low metabolism groups based on their glycerophospholipid metabolism scores. The differentially expressed genes of these two groups of cells were extracted, and transcription factor prediction, cell communication analysis, and GSEA analysis were performed. After further screening of differentially expressed genes (FDR<0.05, log2FC>1), least absolute shrinkage and selection operator (LASSO) regression was performed to obtain hub genes. Models for hub genes were built using the Catboost, XGboost, and NGboost methods. Further, we used the SHAP method to interpret the models and obtain the gene with the highest contribution to each model. Finally, qRT-PCR was used to verify the expression of these genes in the peripheral blood mononuclear cells (PBMC) of CD patients and healthy subjects. RESULT MR results showed 1-palmitoyl-2-stearoyl-gpc (16:0/18:0) levels, 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) levels, 1-arachidonoyl-gpc (20:4n6) levels, 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels, and 1-arachidonoyl-GPE (20:4n6) levels were significantly associated with CD risk reduction (FDR<0.05), with CXCL9 acting as a mediation between these phospholipids and CD. The analysis identified 19 hub genes, with Catboost, XGboost, and NGboost achieving AUC of 0.91, 0.88, and 0.85, respectively. The SHAP methodology obtained the three genes with the highest model contribution: G0S2, S100A8, and PLAUR. The qRT-PCR results showed that the expression levels of S100A8 (p = 0.0003), G0S2 (p < 0.0001), and PLAUR (p = 0.0141) in the PBMC of CD patients were higher than healthy subjects. CONCLUSION MR findings suggest that certain phospholipids may lower CD risk. G0S2, S100A8, and PLAUR may be potential pathogenic genes in CD. These phospholipids and genes could serve as novel diagnostic and therapeutic targets for CD.
Collapse
Affiliation(s)
- Changan Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xintian Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Tingmei Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiu Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Danxian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| | - Yijie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
6
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
7
|
Chen Y, Chen W, Dai Y, Yan X, Jiang C, Zhang F, Zhang M, Hu X, Zhao J, Wu T, Li S, Han S, Chen X. Human breast milk-derived phospholipid DOPE ameliorates intestinal injury associated with NEC by inhibiting ferroptosis. Food Funct 2024; 15:10811-10822. [PMID: 39403969 DOI: 10.1039/d4fo03904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Neonatal necrotizing enterocolitis (NEC) is a severe inflammatory bowel disease that commonly affects premature infants. Breastfeeding has been proven to be one of the most effective methods for preventing NEC. However, the specific role of lipids, the second major nutrient category in human breast milk (HBM), in intestinal development remains unclear. Our preliminary lipidomic analysis of the HBM lipidome revealed that dioleoyl phosphatidylethanolamine (DOPE) is not only abundant but also shows high solubility in lipids, endowing it with significant biological utility. Experimental results confirmed that DOPE significantly reduces the mortality of neonatal rats, ameliorates impairment of intestinal barrier function, and alleviates the expression of intestinal inflammatory factors IL-1β and IL-6. Furthermore, DOPE promotes the migration and proliferation of intestinal epithelial cells, thereby enhancing the integrity of the intestinal barrier function in vitro. The progression of NEC is linked with the onset of ferroptosis. Our cellular-level analysis of lipid peroxide and iron ion concentrations revealed that DOPE significantly reduces the indicators of ferroptosis, while also modulating the expression of pivotal ferroptosis-associated factors, including SLC7A11, GPX4, and ACSL4. Hence, this research on DOPE is expected to provide novel insights into the bioactive lipids present in HBM.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Wenjuan Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Yu Dai
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Xiangyun Yan
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Chengyao Jiang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Fan Zhang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Min Zhang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Xiaoshan Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Juyi Zhao
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Tingyue Wu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Shushu Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Xiaohui Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Ojo BA, Heo L, Fox SR, Waddell A, Moreno-Fernandez ME, Gibson M, Tran T, Dunn AL, Elknawy EIA, Saini N, López-Rivera JA, Divanovic S, de Jesus Perez VA, Rosen MJ. Patient-derived colon epithelial organoids reveal lipid-related metabolic dysfunction in pediatric ulcerative colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609271. [PMID: 39229116 PMCID: PMC11370613 DOI: 10.1101/2024.08.22.609271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background & Aims Ulcerative colitis (UC) is associated with epithelial metabolic derangements which exacerbate gut inflammation. Patient-derived organoids recapitulate complexities of the parent tissue in health and disease; however, whether colon organoids (colonoids) model metabolic impairments in the pediatric UC epithelium is unclear. This study determined the functional metabolic differences in the colon epithelia using epithelial colonoids from pediatric patients. Methods We developed biopsy-derived colonoids from pediatric patients with endoscopically active UC, inactive UC, and those without endoscopic or histologic evidence of colon inflammation (non-IBD controls). We extensively interrogated metabolic dysregulation through extracellular flux analyses and tested potential therapies that recapitulate or ameliorate such metabolic dysfunction. Results Epithelial colonoids from active UC patients exhibit elevated oxygen consumption and proton leak supported by enhanced glycolytic capacity and dysregulated lipid metabolism. The hypermetabolic features in active UC colonoids were associated with increased cellular stress and chemokine secretion, specifically during differentiation. Transcriptomic and pathway analyses indicated a role for PPAR-α in lipid-induced hypermetabolism in active UC colonoids, which was validated by PPAR-α activation in non-IBD colonoids. Accordingly, limiting neutral lipid accumulation in active UC colonoids through pharmacological inhibition of PPAR-α induced a metabolic shift towards glucose consumption, suppressed hypermetabolism and chemokine secretion, and improved cellular stress markers. Control and inactive UC colonoids had similar metabolic and transcriptomic profiles. Conclusions Our pediatric colonoids revealed significant lipid-related metabolic dysregulation in the pediatric UC epithelium that may be alleviated by PPAR-α inhibition. This study supports the advancement of colonoids as a preclinical human model for testing epithelial-directed therapies against such metabolic dysfunction. What You Need to Know Background and Context: Colon mucosa healing in pediatric UC requires reinstating normal epithelial function but a lack of human preclinical models of the diseased epithelium hinders the development of epithelial-directed interventions. New Findings Using colon biopsy-derived epithelial organoids, samples from pediatric patients with active UC show hyperactive metabolic function largely driven by enhanced lipid metabolism. Pharmacologic inhibition of lipid metabolism alleviates metabolic dysfunction, cellular stress, and chemokine production. Limitations Though our epithelial colon organoids from active UC patients show targetable metabolic and molecular features from non-IBD controls, they were cultured under sterile conditions, which may not fully capture any potential real-time contributions of the complex inflammatory milieu typically present in the disease. Clinical Research Relevance Current therapies for pediatric UC mainly target the immune system despite the need for epithelial healing to sustain remission. We identified a pharmacologic target that regulates epithelial metabolism and can be developed for epithelial-directed therapy in UC.Basic Research Relevance: Pediatric UC patient tissue adult stem cell-derived colon epithelial organoids retain disease-associated metabolic pathology and can serve as preclinical human models of disease. Excess reliance on lipids as an energy source leads to oxidative and inflammatory dysfunction in pediatric UC colon organoids. Preprint: This manuscript is currently on bioRxiv. doi: https://doi.org/10.1101/2024.08.22.609271 Lay Summary: Using patient tissue-derived colon epithelial organoids, the investigators identified epithelial metabolic dysfunction and inflammation in pediatric ulcerative colitis that can be alleviated by PPAR-a inhibition.
Collapse
|
9
|
Tian Y, Hu Q, Sun Z, Yu Y, Li X, Tian T, Bi X, Li Y, Niu B, Zhang Z. Colon Targeting pH-Responsive Coacervate Microdroplets for Treatment of Ulcerative Colitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311890. [PMID: 38577919 DOI: 10.1002/smll.202311890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Ulcerative colitis (UC), an immune-mediated chronic inflammatory disease, drastically impacts patients' quality of life and increases their risk of colorectal cancer worldwide. However, effective oral targeted delivery and retention of drugs in colonic lesions are still great challenges in the treatment of UC. Coacervate microdroplets, formed by liquid-liquid phase separation, are recently explored in drug delivery as the simplicity in fabrication, spontaneous enrichment on small molecules and biological macromolecules, and high drug loading capacity. Herein, in this study, a biocompatible diethylaminoethyl-dextran hydrochloride/sodium polyphenylene sulfonate coacervates, coated with eudragit S100 to improve the stability and colon targeting ability, named EU-Coac, is developed. Emodin, an active ingredient in traditional Chinese herbs proven to alleviate UC symptoms, is loaded in EU-Coac (EMO@EU-Coac) showing good stability in gastric acid and pepsin and pH-responsive release behavior. After oral administration, EMO@EU-Coac can effectively target and retain in the colon, displaying good therapeutic effects on UC treatment through attenuating inflammation and oxidative stress response, repairing colonic epithelia, as well as regulating intestinal flora balance. In short, this study provides a novel and facile coacervate microdroplet delivery system for UC treatment.
Collapse
Affiliation(s)
- Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengjun Sun
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinying Bi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan, 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
10
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
11
|
Crisi PE, Giordano MV, Luciani A, Gramenzi A, Prasinou P, Sansone A, Rinaldi V, Ferreri C, Boari A. Evaluation of the fatty acid-based erythrocyte membrane lipidome in cats with food responsive enteropathy, inflammatory bowel disease and low-grade intestinal T-cell lymphoma. PLoS One 2024; 19:e0307757. [PMID: 39074116 DOI: 10.1371/journal.pone.0307757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Feline chronic enteropathies (FCE), include food-responsive-enteropathy (FRE), inflammatory bowel disease (IBD), and low-grade intestinal T-cell lymphoma (LGITL), and are common causes of chronic gastrointestinal signs in cats. Distinguishing between different subgroups of FCE can be challenging due to the frequent overlap of anamnestic, clinical, and laboratory data. While dysregulation in lipid metabolism has been reported in humans and dogs with chronic IBD, similar changes in cats are not yet completely understood. Assessing the fatty acid (FA) profile of red blood cell (RBC) membranes offers a valuable method for evaluating the quantity and quality of structural and functional molecular components in the membranes. Therefore, this study aimed to examine the FA composition of RBC membranes in FCE in comparison to healthy cats (HC). Gas-chromatography was used to quantitatively analyze a cluster of 11 FA, and based on these results, parameters of lipid homeostasis and enzyme activity indexes were calculated. A total of 41 FCE cats (17 FRE, 15 IBD, 9 LGITL) and 43 HC were enrolled. In FCE cats, the values of docosapentaenoic acid (p = 0.0002) and docosahexaenoic acid (p = 0.0246), were significantly higher, resulting in an overall increase in ω-3 polyunsaturated fatty acids (PUFA) (p = 0.006), and that of linoleic acid (p = 0.0026) was significantly lower. Additionally, FCE cats exhibited an increased PUFA balance (p = 0.0019) and Δ6-desaturase index (p = 0.0151), along with a decreased ω-6/ω-3 ratio (p = 0.0019). No differences were observed among cats affected by FRE, IBD and LGITL. Like humans and dogs, the results of this study indicate that FCE cats also display changes in their FA lipid profile at the level of the RBC membrane. The non-invasive analysis of RBC membrane shows promise as a potential tool for gaining a better understanding of lipid imbalances in this disease.
Collapse
Affiliation(s)
- Paolo Emidio Crisi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Maria Veronica Giordano
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Alessia Luciani
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Paraskevi Prasinou
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Anna Sansone
- Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Valentina Rinaldi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Carla Ferreri
- Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Andrea Boari
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| |
Collapse
|
12
|
Morozova M, Andrejeva J, Snytnikova O, Boldyreva L, Tsentalovich Y, Kozhevnikova E. Phospholipid supplementation inhibits male and female odor discrimination in mice. Front Behav Neurosci 2024; 18:1397284. [PMID: 39132447 PMCID: PMC11310928 DOI: 10.3389/fnbeh.2024.1397284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Dietary phospholipids (PLs) are promising supplements that are commonly found as natural food ingredients and emulsifier additives. The present study aimed to evaluate the effect of major PLs found in food supplements on social behavior in mice. In this study, the effect of short-term high dietary PL content was studied in terms of social odor discrimination and social interactions with male and female intruders in male mice. We used odor discrimination and habituation tests to demonstrate that PL-fed male mice tend to lose preference toward female odor and fail to discriminate against socially significant scents. At the same time, test animals recognize non-social odors. We also found that PL affected the social behavior of the test males, who tend to behave indiscriminately toward male and female intruders during direct contact. Brain metabolomic profiling revealed no major changes in the intermediary metabolism or neurotransmitter biosynthesis. At the same time, intranasal PL application resembled the effects of dietary supplementation. These data suggest that certain PL might suppress pheromone perception in the olfactory system and affect the sense of socially important odor cues.
Collapse
Affiliation(s)
- Maryana Morozova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | | | | | - Lidiya Boldyreva
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | | | - Elena Kozhevnikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
13
|
Abdel-Mohsen M, Deeks S, Giron L, Hong KY, Goldman A, Zhang L, Huang SSY, Verrill D, Guo S, Selzer L, de Vries CR, Vendrame E, SenGupta D, Wallin JJ, Cai Y. Circulating immune and plasma biomarkers of time to HIV rebound in HIV controllers treated with vesatolimod. Front Immunol 2024; 15:1405348. [PMID: 38979421 PMCID: PMC11229794 DOI: 10.3389/fimmu.2024.1405348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Antiretroviral therapy (ART) for HIV-1 treatment has improved lifespan but requires lifelong adherence for people living with HIV (PLWH), highlighting the need for a cure. Evaluation of potential cure strategies requires analytic treatment interruption (ATI) with close monitoring of viral rebound. Predictive biomarkers for HIV-1 rebound and/or duration of control during ATI will facilitate these HIV cure trials while minimizing risks. Available evidence suggests that host immune, glycomic, lipid, and metabolic markers of inflammation may be associated with HIV-1 persistence in PLWH who are treated during chronic HIV-1 infection. Methods We conducted post-hoc analysis of HIV controllers who could maintain low levels of plasma HIV-1 without ART in a phase 1b vesatolimod trial. Baseline and pre-ATI levels of immune, glycomic, lipidomic, and metabolomic markers were tested for association with ATI outcomes (time of HIV-1 rebound to 200 copies/mL and 1,000 copies/mL, duration of HIV-1 RNA ≤400 copies/mL and change in intact proviral HIV-1 DNA during ATI) using Spearman's correlation and Cox proportional hazards model. Results Higher levels of CD69+CD8+ T-cells were consistently associated with shorter time to HIV-1 rebound at baseline and pre-ATI. With few exceptions, baseline fucosylated, non-galactosylated, non-sialylated, bisecting IgG N-glycans were associated with shorter time to HIV rebound and duration of control as with previous studies. Baseline plasma MPA and HPA binding glycans and non-galactosylated/non-sialylated glycans were associated with longer time to HIV rebound, while baseline multiply-galactosylated glycans and sialylated glycans, GNA-binding glycans, NPA-binding glycans, WGA-binding glycans, and bisecting GlcNAc glycans were associated with shorter time to HIV rebound and duration of control. Fourteen bioactive lipids had significant baseline associations with longer time to rebound and duration of control, and larger intact proviral HIV-1 DNA changes; additionally, three baseline bioactive lipids were associated with shorter time to first rebound and duration of control. Conclusion Consistent with studies in HIV non-controllers, proinflammatory glycans, lipids, and metabolites were generally associated with shorter duration of HIV-1 control. Notable differences were observed between HIV controllers vs. non-controllers in some specific markers. For the first time, exploratory biomarkers of ATI viral outcomes in HIV-controllers were investigated but require further validation.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Leila Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kai Ying Hong
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Liao Zhang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susie S. Y. Huang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Donovan Verrill
- Statistical Programming, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susan Guo
- Biostatistics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Lisa Selzer
- Clinical Virology, Gilead Sciences, Inc., Foster City, CA, United States
| | | | - Elena Vendrame
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Devi SenGupta
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Jeffrey J. Wallin
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Yanhui Cai
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| |
Collapse
|
14
|
Higueras C, Sainz Á, García-Sancho M, Rodríguez-Franco F, Rey AI. Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:1825. [PMID: 38929444 PMCID: PMC11201139 DOI: 10.3390/ani14121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) are classified based on treatment trials, and new methods are being sought for earlier differentiation and characterization. Giardia infection (GIA) is one of the first differential diagnoses and may be present in CIE-affected dogs. The aim of this study was to evaluate the faecal characteristics and faecal fatty acid profile (short, medium, long, and branched-chain fatty acids) in dogs with food-responsive enteropathy (FRE), immunosuppressant-responsive enteropathy (IRE), and dogs infected with Giardia compared to healthy control (HC) animals as a potential non-invasive indicator of intestinal health that helps in the differentiation of CIEs. The C16:1n-7 percentage (p = 0.0001) and C16:1n-7/C16:0 ratio (p = 0.0001) served to differentiate between HC, FRE, and IRE. IRE dogs presented lower levels of short-chain fatty acids (∑SCFAs) (p = 0.0008) and acetic acid (C2) (p = 0.0007) compared to the other three groups and lower propionic acid (C3) (p = 0.0022) compared to HCs. IRE and GIA presented higher faecal fat content (p = 0.0080) and ratio of iso/anteiso branched-chain fatty acids (BCFAs) compared to HC and FRE. Correlations between some fatty acids and desaturation indices with the canine inflammatory bowel disease activity index and faecal characteristics were observed, suggesting that these compounds could play an important role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Cristina Higueras
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Ana I. Rey
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
15
|
Li W, Zhang Y, Wang Q, Wang Y, Fan Y, Shang E, Jiang S, Duan J. 6-Gingerol ameliorates ulcerative colitis by inhibiting ferroptosis based on the integrative analysis of plasma metabolomics and network pharmacology. Food Funct 2024; 15:6054-6067. [PMID: 38753306 DOI: 10.1039/d4fo00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
6-Gingerol (6-G), an active ingredient of ginger with anti-inflammation and anti-oxidation properties, can treat ulcerative colitis (UC). However, its underlying mechanism is still unclear. In this study, the pharmacodynamic evaluation of 6-G for treating UC was performed, and the mechanism of 6-G in ameliorating UC was excavated by plasma metabolomics and network pharmacology analysis, which was further validated by experimental and molecular docking. The results showed that 6-G could notably reduce diarrhea, weight loss, colonic pathological damage, and inflammation in UC mice. Plasma metabolomic results indicated that 6-G could regulate 19 differential metabolites, and its metabolic pathways mainly involved linoleic acid metabolism and arachidonic acid metabolism, which were closely associated with ferroptosis. Moreover, 60 potential targets for 6-G intervention on ferroptosis in UC were identified by network pharmacology, and enrichment analysis revealed that 6-G suppressed ferroptosis by modulating lipid peroxidation. Besides, the integration of metabolomics and network pharmacology showed that the regulation of 6-G on ferroptosis focused on 3 key targets, including ALOX5, ALOX15, and PTGS2. Further investigation indicated that 6-G significantly inhibited ferroptosis by decreasing iron load and malondialdehyde (MDA), and enhanced antioxidant capacity by reducing the content of glutathione disulfide (GSSG) and increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in UC mice and RSL3-induced Caco-2 cells. Furthermore, molecular docking showed the high affinity of 6-G with the identified 3 key targets. Collectively, this study elucidated the potential of 6-G in ameliorating UC by inhibiting ferroptosis. The integrated strategy also provided a theoretical basis for 6-G in treating UC.
Collapse
Affiliation(s)
- Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
16
|
Wang N, Wang C, Qi M, Lin X, Zha A, Tan B, Yin Y, Wang J. Phosphatidylethanolamine Improves Postnatal Growth Retardation by Regulating Mucus Secretion of Intestinal Goblet Cells in Piglets. Animals (Basel) 2024; 14:1193. [PMID: 38672341 PMCID: PMC11047706 DOI: 10.3390/ani14081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to their body weight (BW 2.79 ± 0.50 kg or 1.88 ± 0.40 kg) at 7 days old, CON-NBW, PE-NBW, CON-PGR, and PE-PGR. PE was supplemented to NBW piglets and PGR piglets during lactation and post-weaning periods. Compared with the NBW piglets, the growth performance of PGR piglets was lower, while PE improved the poor growth performance. PGR piglets showed injured intestinal morphology, as evidenced by the reduced ratio of villus height to crypt depth (VH/CD) and goblet cell numbers in the jejunum and ileum. PE recovered the intestinal barrier injury by increasing VH/CD and goblet cell numbers. The decreased MUC2 mRNA and protein expressions were observed in the small intestine of PGR piglets, and PE remarkably increased the expression of MUC2. Mechanistically, PE increased the goblet cell differentiation promoting gene spdef mRNA levels and reduced the mRNA expressions involved in endoplasmic reticulum stress in the jejunal and ileal mucosa of PGR piglets. Overall, we found that PE alleviated growth retardation by regulating intestinal health and generalized its application in neonates.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Andong Zha
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yulong Yin
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
17
|
Wu J, Lv Y, Hao P, Zhang Z, Zheng Y, Chen E, Fan Y. Immunological profile of lactylation-related genes in Crohn's disease: a comprehensive analysis based on bulk and single-cell RNA sequencing data. J Transl Med 2024; 22:300. [PMID: 38521905 PMCID: PMC10960451 DOI: 10.1186/s12967-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Crohn's disease (CD) is a disease characterized by intestinal immune dysfunction, often accompanied by metabolic abnormalities. Disturbances in lactate metabolism have been found in the intestine of patients with CD, but studies on the role of lactate and related Lactylation in the pathogenesis of CD are still unknown. METHODS We identified the core genes associated with Lactylation by downloading and merging three CD-related datasets (GSE16879, GSE75214, and GSE112366) from the GEO database, and analyzed the functions associated with the hub genes and the correlation between their expression levels and immune infiltration through comprehensive analysis. We explored the Lactylation levels of different immune cells using single-cell data and further analyzed the differences in Lactylation levels between inflammatory and non-inflammatory sites. RESULTS We identified six Lactylation-related hub genes that are highly associated with CD. Further analysis revealed that these six hub genes were highly correlated with the level of immune cell infiltration. To further clarify the effect of Lactylation on immune cells, we analyzed single-cell sequencing data of immune cells from inflammatory and non-inflammatory sites in CD patients and found that there were significant differences in the levels of Lactylation between different types of immune cells, and that the levels of Lactylation were significantly higher in immune cells from inflammatory sites. CONCLUSIONS These results suggest that Lactylation-related genes and their functions are closely associated with changes in inflammatory cells in CD patients.
Collapse
Affiliation(s)
- Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yinyin Lv
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Pei Hao
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ziyi Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yongtian Zheng
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ermei Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| |
Collapse
|
18
|
Wu YL, Zhu AQ, Zhou XT, Zhang KW, Yuan XJ, Yuan M, He J, Pineda MA, Li KP. A Novel Ultrafiltrate Extract of Propolis Exerts Anti-inflammatory Activity through Metabolic Rewiring. Chem Biodivers 2024; 21:e202301315. [PMID: 38189169 DOI: 10.1002/cbdv.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both in vitro and in vivo. Total flavonoids and total phenolic acids content in P30K were 244.6 mg/g and 275.8 mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30 μg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11β-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.
Collapse
Affiliation(s)
- Yong-Lin Wu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - An-Qi Zhu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xiao-Ting Zhou
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Ke-Wei Zhang
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xu-Jiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Min Yuan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Jian He
- BYHEALTH Institute of Nutrition & Health., Guangzhou, 510000, China
| | - Miguel A Pineda
- Centre for the Cellular Microenvironment, University of Glasgow, University Place, Glasgow, G12 8TA, UK
| | - Kun-Ping Li
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| |
Collapse
|
19
|
Abilkassymova A, Turgumbayeva A, Sarsenova L, Tastambek K, Altynbay N, Ziyaeva G, Blatov R, Altynbayeva G, Bekesheva K, Abdieva G, Ualieva P, Shynykul Z, Kalykova A. Exploring Four Atraphaxis Species: Traditional Medicinal Uses, Phytochemistry, and Pharmacological Activities. Molecules 2024; 29:910. [PMID: 38398660 PMCID: PMC10891555 DOI: 10.3390/molecules29040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Atraphaxis is a genus of flowering plants in the family Polygonaceae, with approximately 60 species. Species of Atraphaxis are much-branched woody plants, forming shrubs or shrubby tufts, primarily inhabiting arid zones across the temperate steppe and desert regions of Central Asia, America, and Australia. Atraphaxis species have been used by diverse groups of people all over the world for the treatment of various diseases. However, their biologically active compounds with therapeutic properties have not been investigated well. Studying the biologically active components of Atraphaxis laetevirens, Atraphaxis frutescens, Atraphaxis spinosa L., and Atraphaxis pyrifolia is crucial for several reasons. Firstly, it can unveil the therapeutic potential of these plants, aiding in the development of novel medicines or natural remedies for various health conditions. Understanding their bioactive compounds enables scientists to explore their pharmacological properties, potentially leading to the discovery of new drugs or treatments. Additionally, investigating these components contributes to preserving traditional knowledge and validating the historical uses of these plants in ethnomedicine, thus supporting their conservation and sustainable utilization. These herbs have been used as an anti-inflammatory and hypertension remedies since the dawn of time. Moreover, they have been used to treat a variety of gastrointestinal disorders and problems related to skin in traditional Kazakh medicine. Hence, the genus Atraphaxis can be considered as a potential medicinal plant source that is very rich in biologically active compounds that may exhibit great pharmacological properties, such as antioxidant, antibacterial, antiulcer, hypoglycemic, wound healing, neuroprotective, antidiabetic, and so on. This study aims to provide a collection of publications on the species of Atraphaxis, along with a critical review of the literature data. This review will constitute support for further investigations on the pharmacological activity of these medicinal plant species.
Collapse
Affiliation(s)
- Alima Abilkassymova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Lazzat Sarsenova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Kuanysh Tastambek
- Institute of Ecology, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Nazym Altynbay
- Institute of Ecological Problems, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Gulnar Ziyaeva
- Department of Biology, Taraz Regional University Named after M.Kh.Dulaty, Taraz 080000, Kazakhstan;
| | - Ravil Blatov
- Department of Pharmacy, Kazakh-Russian Medical University, Almaty 050000, Kazakhstan;
| | - Gulmira Altynbayeva
- School of Pharmacy, JSC “S.D. Asfendiyarov Kazakh National Medical University”, Almaty 050000, Kazakhstan;
- Neonatology and Neonatal Surgery Department, JSC “Scientific Center of Pediatrics and Pediatric Surgery”, Almaty 050060, Kazakhstan
| | - Kuralay Bekesheva
- JSC “Scientific Centre for Anti-Infectious Drugs”, Almaty 010000, Kazakhstan;
| | - Gulzhamal Abdieva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (G.A.); (P.U.)
| | - Perizat Ualieva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (G.A.); (P.U.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Assem Kalykova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
20
|
Xiao N, He W, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Egg Yolk Lipids Alleviated Dextran Sulfate Sodium-Induced Colitis by Inhibiting NLRP3 Inflammasome and Regulating Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300509. [PMID: 38037542 DOI: 10.1002/mnfr.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Indexed: 12/02/2023]
Abstract
The increasing incidence of inflammatory bowel disease (IBD) has become a global phenomenon. Egg yolk lipids are one of the essential dietary foods, but its effects on intestinal immunity remain unclear. Here, egg yolk lipids are obtained using ethanol extraction and a total of 601 kinds of lipids are detected via lipidomics, including 251 kinds of triglycerides, 133 kinds of phosphatidylcholines, 44 kinds of phosphatidylethanolamines. Then, the study finds that egg yolk lipids significantly alleviate dextran sulfate sodium-induced colitis and reduce the production of inflammatory factors. Meanwhile, egg yolk lipids also maintain intestinal barrier integrity and decrease lipopolysaccharide translocation by alleviating intestinal structure damage and increasing the numbers of goblet cells and mucin 2. Mechanistically, egg yolk lipids attenuate colitis by inhibiting the assembly and activation of NLRP3 inflammasome. Moreover, the study also finds that egg yolk lipids reverse gut microbiota dysbiosis referring to increased relative abundance of Bacteroides acidifaciens and decrease relative abundance of Akkermansia muciniphila, as well as increased short chain fatty acids concentration in the gut. Together, the study elucidates the anti-colitis effect of egg yolk lipids and provides positive evidences for egg yolk lipids involving in dietary strategy and IBD therapy.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
21
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
22
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
23
|
Wang W, Su S, Dong P, Feng W, Li J, Zhang C, Tang Y. Effects of simulated winter short photoperiods on the microbiome and intestinal metabolism in Huanghe carp ( Cyprinus carpio haematopterus). Front Endocrinol (Lausanne) 2024; 14:1293749. [PMID: 38250741 PMCID: PMC10798037 DOI: 10.3389/fendo.2023.1293749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Objective As one of the most important environmental signals, photoperiod plays a crucial role in regulating the growth, metabolism, and survival of organisms. The photoperiod shifts with the transition of the seasons. The difference in photoperiod between summer and winter is the greatest under natural conditions. However, the effect of photoperiod on Huanghe carp (Cyprinus carpio haematopterus) was paid little attention. We investigated the impact of artificial manipulation of seasonal photoperiod on Huanghe carp by integrating growth performance, intestinal flora, and intestinal metabolome. Method We conducted an 8-week culture experiment with summer photoperiod (14 h light:10 h dark, n = 60) as the control group and winter photoperiod (10 h light:14 h dark, n = 60) based on the natural laws. Results Winter photoperiod provokes significant weight increases in Huanghe carp. The altered photoperiod contributed to a significant increase in triglyceride and low-density lipoprotein cholesterol levels and the gene expressions of lipid metabolism in the intestine of Huanghe carp. 16s rDNA sequencing revealed that winter photoperiod diminished intestinal flora diversity and altered the abundance. Specifically, the relative abundances of Fusobacteria and Acidobacteriota phyla were higher but Proteobacteria, Firmicutes, and Bacteroidetes phyla were reduced. Analogously, photoperiodic changes induced a significant reduction in the Pseudomonas, Vibrio, Ralstonia, Acinetobacter, and Pseudoalteromonas at the genus level. Additionally, metabolomics analysis showed more than 50% of differential metabolites were associated with phospholipids and inflammation. Microbiome and metabolome correlation analyses revealed that intestinal microbe mediated lipid metabolism alteration. Conclusion The winter photoperiod induced intestinal flora imbalance and lipid metabolism modification, ultimately affecting the growth of Huanghe carp. This study provides new insights into the effects of seasonal photoperiodic alteration on the well-being of fish.
Collapse
Affiliation(s)
- Wenqian Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ping Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Wenrong Feng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jianlin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Chengfeng Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
24
|
Ma CY, Zhao J, Qian KY, Xu Z, Xu XT, Zhou JY. Analysis of nutritional risk, skeletal muscle depletion, and lipid metabolism phenotype in acute radiation enteritis. World J Gastrointest Surg 2023; 15:2831-2843. [PMID: 38222011 PMCID: PMC10784828 DOI: 10.4240/wjgs.v15.i12.2831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Radiation enteritis, which often occurs during radiation-induced acute intestinal symptoms (RIAIS), is the most common and important complication during radiotherapy for cervical cancer. RIAIS caused by abdominal and pelvic radiotherapy will affect nutrient intake, digestion, absorption, and metabolism, leading to malnutrition or poorer nutritional status. In patients with malignant tumors, malnutrition can adversely affect the curative effect and response of radiotherapy by reducing radiosensitivity, affecting the precision of radiotherapy placement and increasing the incidence of radiotherapy-related adverse reactions. AIM To analyze nutritional risk, skeletal muscle depletion, and lipid metabolism phenotype in acute radiation enteritis. METHODS Fifty patients with cervical cancer received external beam radiotherapy, and 15 patients received brachytherapy after external beam radiotherapy. Body weight, body composition parameters, nutritional risk screening (NRS) 2002 score, and blood biochemical indices of patients with cervical cancer during periradiation were tested by a one-way repeated measures analysis of variance. Metabolomics analysis was used to identify characteristic lipid metabolism pathways. Clinical factors that affect linoleic acid changes were screened using the generalized evaluation equation. RESULTS Among the 50 patients, 37 had RIAIS, including 34 patients with grade 1-2 RIAIS and 3 patients with grade 3 RIAIS. The NRS 2002 score of patients who underwent cervical cancer radiotherapy continued to increase during the periradiation period, and 42 patients who underwent cancer radiotherapy had nutritional deficits (NRS 2002 score ≥ 3 points) at the end of radiotherapy. Correlation analyses revealed that body weight and body mass index changes were closely associated with body fat content (R2 = 0.64/0.51). The results of the univariate analysis showed that radiotherapy time, percentage reduction of serum albumin, and percentage reduction of serum prealbumin were the key factors affecting skeletal muscle exhaustion (P < 0.05). Metabolomic analysis of fecal supernatants of cervical cancer patients during the periradiation period revealed the involvement of linoleic acid, cholic acid, arachidonic acid, and N-acetyl-L-benzene alanine in the metabolic pathway of linoleic acid. CONCLUSION Cervical cancer radiotherapy patients faced nutritional risks, decreased serum albumin synthesis, and increased risk of skeletal muscle exhaustion. Linoleic acid was a biomarker of high nutritional risk.
Collapse
Affiliation(s)
- Chen-Ying Ma
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jing Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ke-Yan Qian
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhe Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiao-Ting Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
25
|
Zhao P, Lu W, Avellán-Llaguno RD, Liao X, Ye G, Pan Z, Hu A, Huang Q. Gut microbiota related response of Oryzias melastigma to combined exposure of polystyrene microplastics and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167359. [PMID: 37769716 DOI: 10.1016/j.scitotenv.2023.167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The co-existence of microplastics (MPs) and antibiotics in the coastal environment poses a combined ecological risk. Single toxic effects of MPs or antibiotics on aquatic organisms have been verified, however, the exploration of their combined toxic effects remains limited. Here, foodborne polystyrene microplastics (PS-MPs, 10 μm, 0.1 % w/w in food) and waterborne tetracyclines (TC, 50 μg/L) were used to expose an estuarine fish Oryzias melastigma for four weeks. We found that the aqueous availability of TC was not significantly altered coexisting with MPs. The fish body weight gain was significantly slower in TC alone or combined groups than the control group, consistent with the lower lipid content in livers. The body length gain was significantly inhibited by the combined presence compared to the single exposure. Both exposures led to a shift of gut microbiota composition and diversity. TC and the combined group possessed similar gut microbiota which is distinct from PS-MPs and the control group. The Firmicutes/Bacteroidetes (F/B) ratio in the TC and combined groups were significantly lower compared to the control, while the PS-MPs group showed no significant impact. Metabolomic analysis of the fish liver confirmed the shift of metabolites in specific pathways after different exposures. More, a number of gut microbiota-related metabolites on lipid metabolism was perturbed, which were annotated in arachidonic acid metabolism and linoleic acid metabolism. In all, TC modulates bacterial composition in the fish gut and disturbs their liver metabolites via the gut-liver axis, which led to the slower growth of O. melastigma. More, the adverse impact was aggravated by the co-exposure to foodborne PS-MPs.
Collapse
Affiliation(s)
- Peiqiang Zhao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Liao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
26
|
Yin Y, Cao L, Zhang M, Li Y, Sun C, Ma Q, Liu Z, Li C, Yu Z, Guan X. Integrative proteomic and metabonomic profiling elucidates amino acid and lipid metabolism disorder in CA-MRSA-infected breast abscesses. Front Cell Infect Microbiol 2023; 13:1240743. [PMID: 38029258 PMCID: PMC10679464 DOI: 10.3389/fcimb.2023.1240743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Bacterial culture and drug sensitivity testing have been the gold standard for confirming community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infection in breast abscess with a long history. However, these tests may delay treatment and increase the risk of nosocomial infections. To handle and improve this critical situation, this study aimed to explore biomarkers that could facilitate the rapid diagnosis of CA-MRSA infection. Methods This study for the first time applied label-free quantitative proteomics and non-targeted metabonomics to identify potential differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs) in breast abscess infected with CA-MRSA compared to methicillin-susceptible S. aureus (MSSA). The two omics data were integrated and analyzed using bioinformatics, and the results were validated using Parallel Reaction Monitoring (PRM). Receiver operating characteristic (ROC) curves were generated to evaluate the predictive efficiency of the identified biomarkers for diagnosing CA-MRSA infection. Results After using the above-mentioned strategies, 109 DEPs were identified, out of which 86 were upregulated and 23 were downregulated. Additionally, a total of 61 and 26 DEMs were initially screened in the positive and negative ion modes, respectively. A conjoint analysis indicated that the amino acid metabolism, glycosphingolipid biosynthesis, and glycerophospholipid metabolism pathways were co-enriched by the upstream DEPs and downstream DEMs, which may be involved in structuring the related network of CA-MRSA infection. Furthermore, three significant DEMs, namely, indole-3-acetic acid, L-(-)-methionine, and D-sedoheptulose 7-phosphate, displayed good discriminative abilities in early identification of CA-MRSA infection in ROC analysis. Conclusion As there is limited high-quality evidence and multiple omics research in this field, the explored candidate biomarkers and pathways may provide new insights into the early diagnosis and drug resistance mechanisms of CA-MRSA infection in Chinese women.
Collapse
Affiliation(s)
- Yongshuo Yin
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Breast Surgery, Shandong University Cancer Center, Jinan, Shandong, China
| | - Lina Cao
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Meng Zhang
- Department of Urology Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yingjie Li
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinghua Ma
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhaoyun Liu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chao Li
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhiyong Yu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Breast Surgery, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xiao Guan
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Chen B, Wang Y, Wang Q, Li D, Huang X, Kuang X, Wang S, Hu Z. Untargeted metabolomics identifies potential serum biomarkers associated with Crohn's disease. Clin Exp Med 2023; 23:1751-1761. [PMID: 36329220 DOI: 10.1007/s10238-022-00931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Crohn's disease (CD) is well characterized by chronic inflammation of the gastrointestinal tract. The diagnose of CD relays on the comprehensive evaluation of patient symptoms, laboratory examination, radiology, and endoscopy. There is lack of biomarkers or simple test for CD detection. Serum samples from healthy subjects (n = 16) and CD patients (n = 16) were collected and prepared for untargeted metabolomics analysis using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method. The alterations of serum metabolites and the potential biomarkers were profiled by statistical analysis. And the associated metabolic pathway was analyzed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The performance of potential biomarkers was assessed by receiver operating characteristic (ROC) analysis. A complete separation between HS and CD groups was seen in OPLS-DA. A total of 108 and 131 significantly altered metabolites in positive and negative ion mode, respectively, were identified, and most of them belong to several pathways ranging from lipid metabolism to amino acid metabolism and energy homeostasis. KEGG analysis revealed that lipid metabolism enriched most significantly. Further, ceramide, phosphatidylethanolamine (PE), and taurochenodeoxycholic acid (TCDCA) presented the highest predictive accuracy of the patients with CD as analyzed by ROC. The current study demonstrated that lipid metabolism is mostly related to CD pathogenesis. Further investigations are indicated to examine the use of lipid-related metabolites of ceramide, PE, and TCDCA as potential biomarkers for CD diagnosis.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Qing Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Dingqi Li
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaotan Huang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaojin Kuang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Shuzhong Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Zhaotun Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| |
Collapse
|
28
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
29
|
Zhang Z, Cui Y, Ouyang H, Zhu W, Feng Y, Yao M, Yang S. Radix Pueraria lobata polysaccharide relieved DSS-induced ulcerative colitis through modulating PI3K signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
30
|
Saydakova S, Morozova K, Snytnikova O, Morozova M, Boldyreva L, Kiseleva E, Tsentalovich Y, Kozhevnikova E. The Effect of Dietary Phospholipids on the Ultrastructure and Function of Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021788. [PMID: 36675301 PMCID: PMC9866517 DOI: 10.3390/ijms24021788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary composition substantially determines human health and affects complex diseases, including obesity, inflammation and cancer. Thus, food supplements have been widely used to accommodate dietary composition to the needs of individuals. Among the promising supplements are dietary phospholipids (PLs) that are commonly found as natural food ingredients and as emulsifier additives. The aim of the present study was to evaluate the effect of major PLs found as food supplements on the morphology of intestinal epithelial cells upon short-term and long-term high-dose feeding in mice. In the present report, the effect of short-term and long-term high dietary PL content was studied in terms of intestinal health and leaky gut syndrome in male mice. We used transmission electron microscopy to evaluate endothelial morphology at the ultrastructural level. We found mitochondrial damage and lipid droplet accumulation in the intracristal space, which rendered mitochondria more sensitive to respiratory uncoupling as shown by a mitochondrial respiration assessment in the intestinal crypts. However, this mitochondrial damage was insufficient to induce intestinal permeability. We propose that high-dose PL treatment impairs mitochondrial morphology and acts through extensive membrane utilization via the mitochondria. The data suggest that PL supplementation should be used with precaution in individuals with mitochondrial disorders.
Collapse
Affiliation(s)
- Snezhanna Saydakova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Ksenia Morozova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga Snytnikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Maryana Morozova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Lidiya Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Elena Kiseleva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | | | - Elena Kozhevnikova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
31
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Ai R, Xu J, Ji G, Cui B. Exploring the Phosphatidylcholine in Inflammatory Bowel Disease: Potential Mechanisms and Therapeutic Interventions. Curr Pharm Des 2022; 28:3486-3491. [PMID: 36424797 DOI: 10.2174/1381612829666221124112803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a significant health problem with an increasing financial burden worldwide. Although various treatment strategies have been used, the results were not satisfactory. More and more researches have proved that the application of phosphatidylcholine (PC) may become an alternative therapy for IBD. OBJECTIVE This review aims to provide an overview of the possible mechanisms of PC and promote the potential application of PC for IBD therapy further. METHODS A comprehensive literature search was performed in PubMed with the following keywords: 'phosphatidylcholine', 'inflammatory bowel disease', 'Crohn's disease', 'inflammation', 'ulcerative colitis', 'therapy', 'nanomedicines', 'PKCζ', 'lysophosphatidylcholine', 'microbiota' and 'drug carrier'. The logical operators "AND" and "OR" were applied to combine different sets of the search results. RESULTS Studies suggested that PC displays a significant effect in the treatment of IBD by modulating gut barrier function, remodeling gut microbiota structure, regulating polarization of macrophages, and reducing the inflammatory response. PC has also been exploited as a drug carrier for anticancer or anti-inflammation agents in multiple forms, which implies that PC has immense potential for IBD therapy. CONCLUSION PC has shown promising potential as a new therapeutic agent or a drug carrier, with a novel, stable, prolonged mechanism of action in treating IBD. However, more high-quality basic and clinical studies are needed to confirm this.
Collapse
Affiliation(s)
- Rujun Ai
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211100, China
| | - Jie Xu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211100, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211100, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
33
|
Wieder C, Lai RPJ, Ebbels TMD. Single sample pathway analysis in metabolomics: performance evaluation and application. BMC Bioinformatics 2022; 23:481. [PMID: 36376837 PMCID: PMC9664704 DOI: 10.1186/s12859-022-05005-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures. RESULTS While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/ ), providing implementations of all the methods benchmarked in this study. CONCLUSION This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data.
Collapse
Affiliation(s)
- Cecilia Wieder
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Rachel P J Lai
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Timothy M D Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
34
|
Ge W, Zhou BG, Zhong YB, Liu SQ, Huang JQ, Yuan WY, Xie CY, Liu DY, Wang HY, Zuo ZY. Sishen Pill Ameliorates Dextran Sulfate Sodium (DSS)-Induced Colitis with Spleen-Kidney Yang Deficiency Syndromes: Role of Gut Microbiota, Fecal Metabolites, Inflammatory Dendritic Cells, and TLR4/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6132289. [PMID: 36310616 PMCID: PMC9605852 DOI: 10.1155/2022/6132289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Sishen pill (SSP) is an old Chinese medicine used to treat colitis with spleen-kidney-yang deficiency (SKYD) syndromes. However, its exact mechanism of action has not yet been fully elucidated. The aim of this study was to evaluate the effects and potential mechanisms of SSP on colitis with SKYD syndromes in mice. Colitis with SKYD syndromes was induced by rhubarb, hydrocortisone, and dextran sulfate sodium (DSS), and treatment was provided with SSP. Flow cytometry was performed to examine the inflammatory dendritic cell (infDC) regulations of SSP. The changes in the gut microbiota (GM) and fecal metabolites post-SSP treatment were investigated using the combination of 16S rRNA sequencing and untargeted metabolomics. Additionally, we also examined whether SSPs could regulate the infDCs by modifying TLR4/NF-κB signaling pathways. Compared with the DSS group, the disease activity index, colonic weight, index of colonic weight, and colonic injury scores, as well as the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-12p70 decreased significantly in the DSS + SSP group, while free triiodothyronine (FT3), free tetraiodothyronine (FT4), testosterone (TESTO), body weight change, colonic length, and the levels of IL-10 increased. Also, SSP decreased the amounts of CD103+CD11c+iNOS+, CD103+CD11c+TNF-α +, CD11c+CD103+CD324+, CD103+CD11c+MHC-II+, and CD103+CD11c+CD115+. Interestingly, 16S rRNA sequencing and untargeted metabolomics showed that SSP treatment restored the dysbiosis of GM and improved the dysfunction in fecal metabolism in colitis mice with SKYD syndromes. Correlation analysis indicated that the modulatory effects of SSP on FT3, FT4, IL-10, colonic weight index, CD103+CD11c+TNF-α +, CD103+CD11c+MHC-II+, and 13 common differential metabolites were related to alterations in the abundance of Parvibacter, Aerococcus, norank_f_Lachnospiraceae, Lachnospiraceae_UCG-006, Akkermansia, and Rhodococcus in the GM. In addition, SSP markedly inhibited the activation of the TLR4, MyD88, TRAF6, TAB2, and NF-κBp65 proteins and activated IκB. These results indicate that SSP can effectively alleviate colitis mice with SKYD syndrome by regulating infDCs, GM, fecal metabolites, and TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bu-Gao Zhou
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Su-Qing Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wang-Yuan Yuan
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chang-Ying Xie
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hai-Yan Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zheng-Yun Zuo
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
35
|
Comprehensive analysis of microbiome, metabolome and transcriptome revealed the mechanisms of Moringa oleifera polysaccharide on preventing ulcerative colitis. Int J Biol Macromol 2022; 222:573-586. [PMID: 36115453 DOI: 10.1016/j.ijbiomac.2022.09.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the protective effect of Moringa oleifera polysaccharide (MOP) on ulcerative colitis (UC) and explore its mechanism through the combined analysis of microbiome, metabolome and transcriptome. A UC model in mice was established using dextran sulphate sodium. After a 21-day experiment, results showed that MOP could inhibit the weight loss and disease activity index in UC mice. The intervention of MOP decreased the expression of inflammatory cytokines and promoted the secretion of tight junctions. MOP could promote the growth of probiotics such as Lachnospiraceae_NK4A136, Intestinimonas and Bifidobacterium in UC mice. The results of metabolomic and transcriptomic analysis indicated that MOP could regulated the metabolism of polyunsaturated fatty acid and PPAR, TLR and TNF signalling pathways might play important roles in the process. Altogether, MOP could be used as a functional food to prevent UC.
Collapse
|
36
|
Thomaidou A, Deda O, Begou O, Lioupi A, Kontou A, Gika H, Agakidou E, Theodoridis G, Sarafidis K. A Prospective, Case-Control Study of Serum Metabolomics in Neonates with Late-Onset Sepsis and Necrotizing Enterocolitis. J Clin Med 2022; 11:jcm11185270. [PMID: 36142917 PMCID: PMC9505627 DOI: 10.3390/jcm11185270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) are major causes of neonatal morbidity and mortality. In this prospective, case-control study, we evaluated the metabolic profile of neonates with LOS and NEC. Blood samples were collected from 15 septic neonates and 17 neonates with NEC at the clinical suspicion of the specific diseases. Sixteen gestational and postnatal age-matched neonates without sepsis/NEC served as controls. Serum metabolic profiles were assessed using liquid chromatography–quadrupole time-of-flight mass spectrometry. Metabolomic analysis revealed significant differences in the metabolic profile of neonates with LOS or NEC compared to controls. More specifically, a number of molecules possibly identified as phosphatidylcholines or lysophosphatidylcholines were found to be significantly reduced both in neonates with LOS and those with NEC compared to controls. Additionally, L-carnitine could efficiently discriminate NEC cases from controls. The results of the current study suggest that certain phospholipids and their derivatives could possibly be used as biomarkers for the early detection of LOS and NEC.
Collapse
Affiliation(s)
- Agathi Thomaidou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Hippokrateion General Hospital, 54642 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 54124 Thessaloniki, Greece
| | - Olga Begou
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 54124 Thessaloniki, Greece
- School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Artemis Lioupi
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 54124 Thessaloniki, Greece
- School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Kontou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Hippokrateion General Hospital, 54642 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 54124 Thessaloniki, Greece
| | - Eleni Agakidou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Hippokrateion General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Theodoridis
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 54124 Thessaloniki, Greece
- School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kosmas Sarafidis
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Hippokrateion General Hospital, 54642 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-89-2426
| |
Collapse
|
37
|
Lin Z, Li Y, Hang Y, Wang C, Liu B, Li J, Yin L, Jiang X, Du X, Qiao Z, Zhu F, Zhang Z, Zhang Q, Zhou Z. Tuning the Size of Large Dense-Core Vesicles and Quantal Neurotransmitter Release via Secretogranin II Liquid-Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202263. [PMID: 35896896 PMCID: PMC9507364 DOI: 10.1002/advs.202202263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Large dense-core vesicles (LDCVs) are larger in volume than synaptic vesicles, and are filled with multiple neuropeptides, hormones, and neurotransmitters that participate in various physiological processes. However, little is known about the mechanism determining the size of LDCVs. Here, it is reported that secretogranin II (SgII), a vesicle matrix protein, contributes to LDCV size regulation through its liquid-liquid phase separation in neuroendocrine cells. First, SgII undergoes pH-dependent polymerization and the polymerized SgII forms phase droplets with Ca2+ in vitro and in vivo. Further, the Ca2+ -induced SgII droplets recruit reconstituted bio-lipids, mimicking the LDCVs biogenesis. In addition, SgII knockdown leads to significant decrease of the quantal neurotransmitter release by affecting LDCV size, which is differently rescued by SgII truncations with different degrees of phase separation. In conclusion, it is shown that SgII is a unique intravesicular matrix protein undergoing liquid-liquid phase separation, and present novel insights into how SgII determines LDCV size and the quantal neurotransmitter release.
Collapse
Affiliation(s)
- Zhaohan Lin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Yinglin Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Yuqi Hang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Yin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xiaohan Jiang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xingyu Du
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhongjun Qiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Quanfeng Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
38
|
Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int J Mol Sci 2022; 23:ijms23052719. [PMID: 35269861 PMCID: PMC8911014 DOI: 10.3390/ijms23052719] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ceramides, composed of a sphingosine and a fatty acid, are bioactive lipid molecules involved in many key cellular pathways (e.g., apoptosis, oxidative stress and inflammation). There is much evidence on the relationship between ceramide species and cardiometabolic disease, especially in relationship with the onset and development of diabetes and acute and chronic coronary artery disease. This review reports available evidence on ceramide structure and generation, and discusses their role in cardiometabolic disease, as well as current translational chances and difficulties for ceramide application in the cardiometabolic clinical settings.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153525
| |
Collapse
|
39
|
Zhou B, Liu J, Wang Y, Wu F, Wang C, Wang C, Liu J, Li P. Protective Effect of Ethyl Rosmarinate against Ulcerative Colitis in Mice Based on Untargeted Metabolomics. Int J Mol Sci 2022; 23:1256. [PMID: 35163182 PMCID: PMC8836019 DOI: 10.3390/ijms23031256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aiming at assessing the therapeutic effect of ethyl rosmarinate (ER) on ulcerative colitis (UC), the following activities were performed in vitro and in vivo in the present study. Firstly, a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation model was established to determine the level of inflammatory factors. Then, a UC mice model induced by dextran sodium sulfate (DSS) was established to further investigate the effects of ER on symptoms, inflammatory factors and colon histopathology. Finally, serum and colon metabolomics studies were performed to identify the biomarkers and metabolisms closely related to the protective effect of ER on UC. The results showed that after ER intervention, the levels of inflammatory factors (NO, TNF-α, IL-1β and IL-6) and key enzyme (MPO) in cell supernatant, serum or colon were significantly decreased, and the disease activity index and colon tissue damage in mice were also effectively improved or restored. In addition, 28 biomarkers and 6 metabolisms were found to be re-regulated by ER in the UC model mice. Therefore, it could be concluded that ER could effectively ameliorate the progression of UC and could be used as a new natural agent for the treatment of UC.
Collapse
Affiliation(s)
- Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Yaru Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| |
Collapse
|