1
|
Jiang L, Yi R, Chen H, Wu S. Quercetin alleviates metabolic-associated fatty liver disease by tuning hepatic lipid metabolism, oxidative stress and inflammation. Anim Biotechnol 2025; 36:2442351. [PMID: 39718035 DOI: 10.1080/10495398.2024.2442351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. In vivo study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD). The results revealed that quercetin ameliorated the aberrant enhancement of body and liver weight. The hepatic histological anomalie induced by MAFLD were also mitigated by quercetin. HFD-induced imbalance in serum LDL, HDL, AST, ALT, TG, and LDH was mitigated by quercetin. Mechanically, we found that quercetin improved lipid metabolism by reducing lipogenesis proteins including ACC, FASN, and SREBP-1c and enhancing β-oxidation proteins including PPARα and CPT1A. In vitro study demonstrated that quercetin regulated hepatic lipid metabolism by targeting SREBP-1c and PPARα. Additionally, quercetin enhanced the antioxidant capacity in HFD-treated mice by downregulating Nrf2 and HO-1 expressions and upregulating SOD and GPX1 expressions. The hyper-activation of inflammation was also restored by quercetin via eliminating the phosphorylation of IκBα and NF-κB p65. Collectively, our observations highlight that quercetin exerts hepatoprotective properties in MAFLD mice by regulating hepatic lipid metabolism, oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Rong Yi
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Huan Chen
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Shuwu Wu
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| |
Collapse
|
2
|
Hu Y, Li N, Zhang R, Wang J, Fang D, Zhou Q, Zhang H, Cai H, Lu Y. Linghe granules reduces hepatic lipid accumulation in Non-alcoholic fatty liver disease through regulating lipid metabolism and redox balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156654. [PMID: 40220422 DOI: 10.1016/j.phymed.2025.156654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/15/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder with no approved pharmacological therapies. Linghe granules, a hospital-based formulation derived from a classic prescription, have demonstrated potential in reducing hepatic fat accumulation and improving metabolic health. This study provides a novel, comprehensive assessment of Linghe granules, integrating clinical, preclinical, and molecular analyses for NAFLD management. PURPOSE This study aims to evaluate the therapeutic efficacy of Linghe granules in alleviating NAFLD through an integrated approach. METHODS A clinical trial involving 40 patients with NAFLD was conducted, with participants divided into a control group (lifestyle interventions) and a treatment group (lifestyle interventions plus oral Linghe granules). Various metabolic and liver function indicators were assessed before and after treatment. Additionally, a high-fat diet (HFD) was used to induce a NAFLD model in rat, followed by treatment with different doses of Linghe granules. In vitro studies on HepG2 and L02 cells were performed to the effects of the granules on lipid metabolism. Transcriptomic profiling, Weighted Gene Co-expression Network Analysis (WGCNA), Dynamic Network Biomarkers (DNB) analysis, and molecular docking were employed to explore the underlying mechanisms. RESULTS Linghe granules led to significant reductions in BMI, liver enzymes (AST, ALT), triglycerides, LDL-C, and GGT in patients with NAFLD, accompanied by a notable decrease in hepatic fat accumulation. In the rat model, treatment improved liver weight, liver function, and lipid metabolism. In vitro, Linghe granules decreased lipid accumulation and regulated key lipid metabolism markers, including sterol regulatory element-binding protein 1 (SREBP-1), stearoyl-CoA desaturase 1 (SCD1), and fatty acid-binding protein 5 (FABP5). Mechanistic analyses revealed that Linghe granules modulated oxidative stress-related pathways and genes involved in lipid metabolism. CONCLUSION This study represents the first integrated evaluation of Linghe granules' efficacy and mechanisms in treating NAFLD, demonstrating their potential to improve liver function, reduce lipid accumulation, and modulate key metabolic markers. These results suggest that Linghe granules may serve as an effective adjunctive treatment for NAFLD.
Collapse
Affiliation(s)
- Yuting Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ni'ao Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rumian Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361015, China
| | - Jia Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Cai
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361015, China.
| | - Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Li Y, Zhang YN, Zhang PL, Li YC, Zhang L, Yang H, Li P. Inhibition of citrate transport reduces HIF-1α/GABA-T-mediated succinate accumulation in macrophages: The role of astragaloside IV in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156449. [PMID: 39923425 DOI: 10.1016/j.phymed.2025.156449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/02/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The occurrence of ischemic stroke is closely associated with the inflammatory infiltration of peripheral monocytes/macrophages, and the inflammatory activation of macrophages is often affected by metabolic reprogramming. The Slc25a1 regulates mitochondrial citrate transport and has been shown to affect cell proliferation and migration in cancer. Astragaloside IV exhibits significant anti-inflammatory activity and improves ischemic stroke, but its regulatory effect on macrophage metabolic reprogramming has not been elucidated. OBJECTIVES This study aims to explore the effect of astragaloside IV on ischemic stroke injury from the perspective of Slc25a1-mediated cellular metabolic reprogramming. METHODS A total of 170 mice were used to establish the middle cerebral artery occlusion (MCAO) model. The therapeutic effect of astragaloside IV was evaluated by neurobehavioral scores and infarct volume, with its impact further verified through the depletion of peripheral macrophages. The modulation of Slc25a1 by astragaloside IV and its influence on macrophages were investigated in mouse bone marrow-derived macrophages (BMDMs) and peripheral blood mononuclear cell-derived macrophages (PBMC-derived macrophages). RESULTS Astragaloside IV significantly mitigated neurological impairment and reduced cerebral infarction volume in MCAO mice by inhibition of peripheral monocytes/macrophage inflammatory infiltration. In activated BMDMs and PBMC-derived macrophages, astragaloside IV interacted with Slc25a1, attenuated citrate transport, maintained mitochondrial function, therefore enhancing the shift from the M1- to M2-like macrophages. Mechanistically, astragaloside IV inhibited the transcriptional regulation of HIF-1α on GABA-T via citate-mediated histone H3 and H4 deacetylation and promoted the resumption of the broken TCA cycle and mitochondrial OXPHOS in macrophages. CONCLUSIONS Our study unveiled a therapeutic strategy for ischemic stroke by intervening in the inflammatory infiltration of peripheral monocytes/macrophages. Astragaloside IV, by binding to the mitochondrial citrate transporter Slc25a1, maintained the homeostasis of the TCA cycle and mitochondrial function, ultimately blocking the inflammation of peripheral macrophages to ameliorate ischemic stroke damage. This discovery provides data support for expanding the clinical application of astragaloside IV and offers research insights into the external treatment of encephalopathy.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu-Ning Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Pei-Lin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu-Chen Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Niu YJ, Xia CJ, Ai X, Xu WM, Lin XT, Zhu YQ, Zhu HY, Zeng X, Cao ZL, Zhou W, Huang H, Shi XL. Sequential activation of ERα-AMPKα signaling by the flavonoid baicalin down-regulates viral HNF-dependent HBV replication. Acta Pharmacol Sin 2025; 46:653-661. [PMID: 39478159 PMCID: PMC11845607 DOI: 10.1038/s41401-024-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/08/2024] [Indexed: 02/23/2025]
Abstract
Baicalin (BA), a natural component found in many traditional Chinese medicines, exerts protective effects against several viruses. Although our previous studies have revealed that the anti-hepatitis B virus (anti-HBV) activity of BA depends on hepatocyte nuclear factor (HNF) signaling, the specific mechanisms remain unclear. The present study explored the potential signaling mechanisms involved in BA-mediated HBV suppression. Transcriptomic analysis suggested that BA significantly modulates the estrogen receptor (ER) and AMPK signaling pathways in HepG2 cells. The ER alpha (ERα) binding affinity of BA and its estrogen-like agonist activity were subsequently verified through molecular docking assays, BA-ERα affinity detection experiments, ERα luciferase reporter gene assays, and qRT-PCR. ERα knockdown (shRNA) and AMPK inhibition (Compound C and doxorubicin [Dox]) experiments revealed that the sequential activation of the ERα-LKB1-AMPK-HNF signaling axis is essential for the anti-HBV effects of BA. This study indicates that BA may trigger the ERα-AMPKα-HNF pathway to inhibit HBV replication, providing insights into its potential protective mechanisms against other viruses.
Collapse
Affiliation(s)
- Yi-Jun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Cheng-Jie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Wei-Ming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xiao-Tong Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Ying-Qi Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Zhong-Lian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai, 201203, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xun-Long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China.
| |
Collapse
|
5
|
Saeed K, Chughtai MFJ, Ahsan S, Mehmood T, Khalid MZ, Khaliq A, Zuhair M, Khalid W, Alsulami T, Law D, Mukonzo EL. Hepatoprotective Effect of a Kalanchoe pinnata-Based Beverage Against Carbon Tetrachloride- and Gentamicin-Induced Hepatotoxicity in Wistar Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-17. [PMID: 39937610 DOI: 10.1080/27697061.2024.2442615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
OBJECTIVE Chronic liver diseases are accountable for approximately 2 million deaths annually. The current study aimed to test the putative prophylactic role of Kalanchoe pinnata against hepatic stress. METHOD Kalanchoe pinnata leaf extracts utilized in beverage production were obtained via 3 different extraction techniques (conventional solvent extraction, supercritical fluid extraction, microwave-assisted extraction). RESULTS The highest values on 2,2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay were from a beverage prepared with supercritical fluid extract. When the prophylactic aspects of a Kalanchoe pinnata-based beverage were explored against carbon tetrachloride- (CCl4-) and gentamicin-induced hepatotoxic conditions in male Wistar rats, results revealed a reduction in serum aspartate aminotransferase, serum alkaline phosphatase, serum alanine transaminase, and bilirubin levels in rats with CCl4 and gentamicin-induced toxicity. The study also concluded that the administration of a therapeutic beverage significantly improved serum total protein, albumin, and globulin levels in Kalanchoe pinnata-treated rats. CONCLUSIONS Our findings support the ameliorative potential of Kalanchoe pinnata against liver diseases.
Collapse
Affiliation(s)
- Kanza Saeed
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Faculty of Food Technology and Nutrition Sciences, University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Samreen Ahsan
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Tariq Mehmood
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Zubair Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Adnan Khaliq
- Institute of Food Science and Technology, Faculty of Food Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Zuhair
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Ciudad Real, Spain
| | - Tawfiq Alsulami
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabi
| | - Douglas Law
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Emery Lenge Mukonzo
- Land Evaluation and Agro-metrology Research Unit, Department of Soil Science, Faculty of Agriculture Research, University of Lubumbashi, Lubumbashi, DR Congo
| |
Collapse
|
6
|
Fu M, Yoon KS, Ha J, Kang I, Choe W. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants (Basel) 2025; 14:203. [PMID: 40002389 PMCID: PMC11852089 DOI: 10.3390/antiox14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, "Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health", highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
Collapse
Affiliation(s)
- Minghao Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Li M, Ding L, Cao L, Zhang Z, Li X, Li Z, Xia Q, Yin K, Song S, Wang Z, Du H, Zhao D, Li X, Wang Z. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Front Pharmacol 2025; 16:1534634. [PMID: 39963239 PMCID: PMC11830733 DOI: 10.3389/fphar.2025.1534634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetes mellitus (DM) ranks among the most prevalent chronic metabolic diseases, characterized primarily by a persistent elevation in blood glucose levels. This condition typically stems from either insufficient insulin secretion or a functional defect in the insulin itself. Clinically, diabetes is primarily classified into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), with T2DM comprising nearly 90% of all diagnosed cases. Notably, the global incidence of T2DM has surged dramatically over recent decades. The adenylate-activated protein kinase (AMPK) signaling pathway is crucial in regulating cellular energy metabolism, marking it as a significant therapeutic target for diabetes and related complications. Natural products, characterized by their diverse origins, multifaceted bioactivities, and relative safety, hold considerable promise in modulating the AMPK pathway. This review article explores the advances in research on natural products that target the AMPK signaling pathway, aiming to inform the development of innovative antidiabetic therapies.
Collapse
Affiliation(s)
- Min Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Liyuan Cao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xueyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zirui Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Qinjing Xia
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Kai Yin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zihan Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Haijian Du
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
8
|
Sun Y, Li B, Song B, Xia Y, Ye Z, Lin F, Zhou X, Li W, Rao T, Cheng F. UHRF1 promotes calcium oxalate-induced renal fibrosis by renal lipid deposition via bridging AMPK dephosphorylation. Cell Biol Toxicol 2025; 41:39. [PMID: 39899077 PMCID: PMC11790803 DOI: 10.1007/s10565-025-09991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Nephrolithiasis, a common urinary system disorder, exhibits high morbidity and recurrence rates, correlating with renal dysfunction and the increased risk of chronic kidney disease. Nonetheless, the precise role of disrupted cellular metabolism in renal injury induced by calcium oxalate (CaOx) crystal deposition is unclear. The purpose of this study is to investigate the involvement of the ubiquitin-like protein containing PHD and RING finger structural domain 1 (UHRF1) in CaOx-induced renal fibrosis and its impacts on cellular lipid metabolism. METHODS Various approaches, including snRNA-seq, transcriptome RNA-seq, immunohistochemistry, and western blot analyses, were employed to assess UHRF1 expression in kidneys of nephrolithiasis patients, hyperoxaluric mice, and CaOx-induced renal tubular epithelial cells. Subsequently, knockdown of UHRF1 in mice and cells corroborated its effect of UHRF1 on fibrosis, ectopic lipid deposition (ELD) and fatty acid oxidation (FAO). Rescue experiments using AICAR, ND-630 and Compound-C were performed in UHRF1-knockdown cells to explore the involvement of the AMPK pathway. Then we confirmed the bridging molecule and its regulatory pathway in vitro. Experimental results were finally confirmed using AICAR and chemically modified si-UHRF1 in vivo of hyperoxaluria mice model. RESULTS Mechanistically, UHRF1 was found to hinder the activation of the AMPK/ACC1 pathway during CaOx-induced renal fibrosis, which was mitigated by employing AICAR, an AMPK agonist. As a nuclear protein, UHRF1 facilitates nuclear translocation of AMPK and act as a molecular link targeting the protein phosphatase PP2A to dephosphorylate AMPK and inhibit its activity. CONCLUSION This study revealed that UHRF1 promotes CaOx -induced renal fibrosis by enhancing lipid accumulation and suppressing FAO via inhibiting the AMPK pathway. These findings underscore the feasible therapeutic implications of targeting UHRF1 to prevent renal fibrosis due to stones.
Collapse
Affiliation(s)
- Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
9
|
Sun W, Zhou S, Peng L, Wang W, Liu Y, Wang T, Cheng D, Li Z, Xiong H, Jia X, Lian W, Jiao J, Ni C. Fatty Acid Oxidation-Glycolysis Metabolic Transition Affects ECM Homeostasis in Silica-Induced Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407134. [PMID: 39721015 PMCID: PMC11831484 DOI: 10.1002/advs.202407134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear. Herein, a phenotype with reduction in fatty acid oxidation (FAO) but enhanced glycolysis in myofibroblasts is shown. Perturbation of the glycolytic and FAO pathways, respectively, reveals distinct roles in the metabolic distribution of ECM deposition and degradation. Suppressed glycolysis leads to a decrease in insoluble ECM, primarily due to the inhibition of ECM-modifying enzyme activity and a decrease in glycine synthesis. Notably, promoted FAO facilitates the intracellular degradation pathway of ECM. In addition, the findings revealed that hypoxia-inducible factor-1 alpha (HIF-1α) serves as a crucial metabolic regulator in the transition from FAO to glycolysis, thereby playing a significant role in ECM deposition in silica-induced pulmonary fibrosis. Further, the promotion of FAO, inhibition of glycolysis and HIF-1α reduce ECM production and promote ECM degradation, ultimately impeding the progression of fibrosis and providing therapeutic relief for established pulmonary fibrosis in vivo. These findings unveil the metabolic rewire underpinning the deposition of ECM in silica-induced lung fibrosis and identify novel targets for promoting regression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Lan Peng
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Wei Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Yi Liu
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Ting Wang
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Demin Cheng
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Ziwei Li
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Xinying Jia
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Jiandong Jiao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Public HealthKangda College of Nanjing Medical UniversityLianyungang320700China
| |
Collapse
|
10
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
11
|
Cai Y, Fang L, Chen F, Zhong P, Zheng X, Xing H, Fan R, Yuan L, Peng W, Li X. Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101052. [PMID: 40034684 PMCID: PMC11873010 DOI: 10.1016/j.jpha.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 03/05/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lu Fang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Fei Chen
- Department of Pharmacy, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Peiling Zhong
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Xiangru Zheng
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| |
Collapse
|
12
|
Lu Q, La M, Wang Z, Huang J, Zhu J, Zhang D. Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 26:50. [PMID: 39795910 PMCID: PMC11719989 DOI: 10.3390/ijms26010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has rapidly emerged as the most prevalent chronic liver disease globally, representing a significant and escalating public health challenge. Meconopsis integrifolia (Maxim.) Franch, a traditional Tibetan medicinal herb used for treating hepatitis, remains largely unexplored regarding its therapeutic potential and active components in combating NAFLD. This study first evaluated the in vitro lipid accumulation inhibitory activity of different extraction fractions of M. integrifolia using a HepG2 cell steatosis model. The ethyl acetate fraction was found to significantly reduce triglyceride (TG) and low-density lipoprotein (LDL) levels, inhibit lipid droplet deposition in HepG2 cells, and promote lipid metabolism balance through modulation of the AMPK/SREPB-1c/PPAR-α signaling pathway. Further analysis utilizing chromatographic techniques and nuclear magnetic resonance spectroscopy (NMR) led to the isolation of 13 compounds from the active ethyl acetate fraction. Notably, compounds 6, 9, 10, 11, 12, and 13 were identified for the first time from this Tibetan herb. In vitro activity assays and molecular docking analyses further confirmed that the compounds Luteolin (1), Quercetin 3-O-[2‴, 6‴-O-diacetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside] (6), and Quercetin 3-O-[2‴-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside] (8) are potential key components responsible for the NAFLD-ameliorating effects of M. integrifolia. This study highlights the therapeutic potential of M. integrifolia in treating NAFLD and provides a foundation for its further development and application, underscoring its significance in the advanced utilization of traditional Tibetan medicine.
Collapse
Affiliation(s)
- Qiqin Lu
- Research Center for High Altitude Medicine, Key Laboratory of the Ministry of High Altitude Medicine, Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China;
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Majia La
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Ziyang Wang
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Jiaomei Huang
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Jiahui Zhu
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of the Ministry of High Altitude Medicine, Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China;
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
13
|
Katsaros I, Sotiropoulou M, Vailas M, Papachristou F, Papakyriakopoulou P, Grigoriou M, Kostomitsopoulos N, Giatromanolaki A, Valsami G, Tsaroucha A, Schizas D. The Effect of Quercetin on Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Beclin1, P62, and LC3: An Experimental Study. Nutrients 2024; 16:4282. [PMID: 39770904 PMCID: PMC11678826 DOI: 10.3390/nu16244282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression. Methods: Forty-seven male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD, followed by quercetin treatment for 4 weeks. Mice were divided into baseline, control, and two quercetin groups, receiving low (10 mg/kg) and high (50 mg/kg) doses. Liver histology was scored using the NAFLD Activity Score (NAS). Immunohistochemistry and immunoblotting were performed to analyze autophagy markers. Results: Quercetin-treated groups showed significant reductions in NAS compared to controls (p = 0.011), mainly in steatosis and steatohepatitis. Immunohistochemistry indicated increased expression of autophagy markers LCA and p62 in quercetin groups. Western blot analysis revealed significant elevations in LC3A in the treated groups, suggesting improved autophagic activity and lipid degradation. Conclusions: Quercetin effectively reduces NAFLD severity and modulates autophagy-related proteins. These findings suggest that quercetin enhances autophagic flux, supporting its therapeutic potential for NAFLD. Additional research is needed to clarify the molecular mechanisms of quercetin and to determine the optimal dosing for clinical application.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Paraskevi Papakyriakopoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Marirena Grigoriou
- Laboratory of Molecular Developmental Biology & Molecular Neurobiology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
14
|
Markowska J, Kasprzak-Drozd K, Niziński P, Dragan M, Kondracka A, Gondek E, Oniszczuk T, Oniszczuk A. Quercetin: A Promising Candidate for the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Molecules 2024; 29:5245. [PMID: 39598636 PMCID: PMC11596905 DOI: 10.3390/molecules29225245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a chronic liver disease. The development of MASLD is influenced by a multitude of diseases associated with modern lifestyles, including but not limited to diabetes mellitus, hypertension, hyperlipidaemia and obesity. These conditions are often consequences of the adoption of unhealthy habits, namely a sedentary lifestyle, a lack of physical activity, poor dietary choices and excessive alcohol consumption. The treatment of MASLD is primarily based on modifying the patient's lifestyle and pharmacological intervention. Despite the absence of FDA-approved pharmacological agents for the treatment of MASLD, several potential therapeutic modalities have demonstrated efficacy in reversing the histopathological features of the disease. Among the botanical ingredients belonging to the flavonoid group is quercetin (QE). QE has been demonstrated to possess a number of beneficial physiological effects, including anti-inflammatory, anticancer and antifungal properties. Additionally, it functions as a natural antioxidant. Preclinical evidence indicates that QE may play a beneficial role in reducing liver damage and improving metabolic health. Early human studies also suggest that QE may be an effective treatment for MASLD due to its antioxidant, anti-inflammatory, and lipid-regulating properties. This review aims to summarize the available information on the therapeutic effects of QE in MASLD.
Collapse
Affiliation(s)
- Julia Markowska
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland; (J.M.); (M.D.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Magdalena Dragan
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland; (J.M.); (M.D.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ewa Gondek
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
15
|
Giannotti L, Stanca E, Di Chiara Stanca B, Spedicato F, Massaro M, Quarta S, Del Rio D, Mena P, Siculella L, Damiano F. Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes. Mol Nutr Food Res 2024; 68:e2400338. [PMID: 39370560 DOI: 10.1002/mnfr.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
SCOPE Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. METHODS AND RESULTS The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. CONCLUSION These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | | | - Francesco Spedicato
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| |
Collapse
|
16
|
Li Y, Kong H, Li C, Gu Z, Ban X, Li Z. Cooperative action of non-digestible oligosaccharides improves lipid metabolism of high-fat diet-induced mice. Food Funct 2024; 15:10434-10446. [PMID: 39324226 DOI: 10.1039/d4fo03183k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Non-digestible oligosaccharides are known to exert health-promoting effects. However, the specific mechanisms by which they regulate host physiology remain unclear. Understanding these mechanisms will facilitate the development of non-digestible oligosaccharide compositions that can achieve synergistic effects. This study selected three representative non-digestible oligosaccharides, namely xylo-oligosaccharides (XOS), galacto-oligosaccharides (GOS), and isomalto-oligosaccharides (IMO), to investigate their effects as dietary interventions on mice fed a high-fat diet. The results demonstrated that XOS and IMO synergistically mitigated weight gain and ectopic lipid deposition. Further analysis revealed that XOS significantly altered the composition of the gut microbiota, while IMO significantly enhanced insulin sensitivity via the PI3K/Akt pathway. Moreover, the combination of XOS and IMO synergistically promoted the oxidation and breakdown of fatty acids and increased the abundance of acetate and propionate-producing bacteria, such as Lactobacillus. These findings suggest a novel strategy for obesity management based on dietary intervention with XOS and IMO.
Collapse
Affiliation(s)
- Yiwen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
17
|
Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD, Nicolau CCT, Yanaguizawa Junior JL, Fiorini AMR, Méndez-Sánchez N, Abenavoli L, Direito R, Valente VE, Laurindo LF, Barbalho SM. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals (Basel) 2024; 17:1354. [PMID: 39458995 PMCID: PMC11510109 DOI: 10.3390/ph17101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical-pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise many natural chemical compounds that can be helpful in managing metabolic diseases. Therefore, the aim of this review was to investigate the impact of oxidative stress, inflammation, mitochondrial dysfunction, and the role of polyphenols in managing MAFLD. Some polyphenols can reverse part of the liver damage related to inflammation, oxidative stress, or mitochondrial dysfunction, and among them are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid, didymin, epigallocatechin-3-gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol, and silymarin. These compounds have actions in reducing plasma liver enzymes, body mass index, waist circumference, adipose visceral indices, lipids, glycated hemoglobin, insulin resistance, and the HOMA index. They also reduce nuclear factor-KB (NF-KB), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), blood pressure, liver fat content, steatosis index, and fibrosis. On the other hand, they can improve HDL-c, adiponectin levels, and fibrogenesis markers. These results show that polyphenols are promising in the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Raissa Bulaty Tauil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Paula Takano Golono
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Claudia C. T. Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - José Luiz Yanaguizawa Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana M. R. Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Vitor Engrácia Valente
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil;
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
18
|
Rong J, Zhang Z, Peng X, Li P, Zhao T, Zhong Y. Mechanisms of hepatic and renal injury in lipid metabolism disorders in metabolic syndrome. Int J Biol Sci 2024; 20:4783-4798. [PMID: 39309427 PMCID: PMC11414397 DOI: 10.7150/ijbs.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of metabolic abnormalities that identifies people at risk for diabetes and cardiovascular disease. MetS is characterized by lipid disorders, and non-alcoholic fatty liver disease (NAFLD) and diabetic kidney disease (DKD) are thought to be the common hepatic and renal manifestations of MetS following abnormal lipid metabolism. This paper reviews the molecular mechanisms of lipid deposition in NAFLD and DKD, highlighting the commonalities and differences in lipid metabolic pathways in NAFLD and DKD. Hepatic and renal steatosis is the result of lipid acquisition exceeding lipid processing, i.e., fatty acid uptake and lipid regeneration exceed fatty acid oxidation and export. This process is directly regulated by the interactions of nuclear receptors, transporter proteins and transcription factors, whereas pathways such as oxidative stress, autophagy, cellular pyroptosis and gut flora are also key regulatory hubs for lipid metabolic homeostasis but act slightly differently in the liver and kidney. Such insights based on liver-kidney similarities and differences offer potential options for improved treatment.
Collapse
Affiliation(s)
- Jin Rong
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
- College of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, PR China
| | - Zixuan Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiaoyu Peng
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Ping Li
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
19
|
Gostyńska A, Buzun K, Żółnowska I, Krajka-Kuźniak V, Mańkowska-Wierzbicka D, Jelińska A, Stawny M. Natural bioactive compounds-The promising candidates for the treatment of intestinal failure-associated liver disease. Clin Nutr 2024; 43:1952-1971. [PMID: 39032247 DOI: 10.1016/j.clnu.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Parenteral nutrition (PN) is a life-saving procedure conducted to maintain a proper nutritional state in patients with severe intestinal failure who cannot be fed orally. A serious complication of PN therapy is liver failure, known as intestinal failure-associated liver disease (IFALD). The pathogenesis of IFALD is multifactorial and includes inhibition of the farnesoid X receptor (FXR) by PN components, bacteria translocation from impaired intestines, and intravenous line-associated bloodstream infection. Currently, the most frequently researched therapeutic option for IFALD is using lipid emulsions based on soy or fish oil and, therefore, free from phytosterols known as FXR antagonists. Nevertheless, the potential side effects of the lack of soybean oil delivery seem to outweigh the benefits, especially in the pediatric population. PN admixture provides all the necessary nutrients; however, it is deprived of exogenous natural bioactive compounds (NBCs) of plant origin, such as polyphenols, characterized by health-promoting properties. Among them, many substances have already been known to demonstrate the hepatoprotective effect in various liver diseases. Therefore, searching for new therapeutic options for IFALD among NBCs seems reasonable and potentially successful. This review summarizes the recent research on polyphenols and their use in treating various liver diseases, especially metabolic dysfunction-associated steatotic liver diseases (MASLD). Furthermore, based on scientific reports, we have described the molecular mechanism of action of selected NBCs that exert hepatoprotective properties. We also summarized the current knowledge on IFALD pathogenesis, described therapeutic options undergoing clinical trials, and presented the future perspective of the potential use of NBCs in PN therapy.
Collapse
Affiliation(s)
- Aleksandra Gostyńska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Kamila Buzun
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Izabela Żółnowska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
20
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
21
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
22
|
Alves-Silva JM, Pedreiro S, Zuzarte M, Cruz MT, Figueirinha A, Salgueiro L. Unlocking the Bioactive Potential and Exploring Novel Applications for Portuguese Endemic Santolina impressa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1943. [PMID: 39065470 PMCID: PMC11280954 DOI: 10.3390/plants13141943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The infusion of Santolina impressa, an endemic Portuguese plant, is traditionally used to treat various infections and disorders. This study aimed to assess its chemical profile by HPLC-DAD-ESI-MSn and validate its anti-inflammatory potential. In addition, the antioxidant capacity and effects on wound healing, lipogenesis, melanogenesis, and cellular senescence, all processes in which a dysregulated inflammatory response plays a pivotal role, were unveiled. The anti-inflammatory potential was assessed in lipopolysaccharide (LPS)-stimulated macrophages, cell migration was determined using a scratch wound assay, lipogenesis was assessed on T0901317-stimulated keratinocytes and melanogenesis on 3-isobutyl-1-methylxanthine (IBMX)-activated melanocytes. Etoposide was used to induce senescence in fibroblasts. Our results point out a chemical composition predominantly characterized by dicaffeoylquinic acids and low amounts of flavonols. Regarding the infusion's bioactive potential, an anti-inflammatory effect was evident through a decrease in nitric oxide production and inducible nitric oxide synthase and pro-interleukin-1β protein levels. Moreover, a decrease in fibroblast migration was observed, as well as an inhibition in both intracellular lipid accumulation and melanogenesis. Furthermore, the infusion decreased senescence-associated β-galactosidase activity, γH2AX nuclear accumulation and both p53 and p21 protein levels. Overall, this study confirms the traditional uses of S. impressa and ascribes additional properties of interest in the pharmaceutical and dermocosmetics industries.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.)
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Sónia Pedreiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.)
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Maria Teresa Cruz
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra Center for Neuroscience and Cell Biology (CNC-UC), Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
23
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
24
|
Wang S, Ren H, Qin C, Su J, Song X, Li R, Cui K, Liu Y, Shi D, Liu Q, Li Z. A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland. Genes (Basel) 2024; 15:779. [PMID: 38927715 PMCID: PMC11203352 DOI: 10.3390/genes15060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARG) has various splicing variants and plays essential roles in the regulation of adipocyte differentiation and lipogenesis. However, little is known about the expression pattern and effect of the PPARG on milk fat synthesis in the buffalo mammary gland. In this study, we found that only PPARG-X17 and PPARG-X21 of the splicing variant were expressed in the buffalo mammary gland. Amino acid sequence characterization showed that the proteins encoded by PPARG-X17 and PPARG-X21 are endonuclear non-secreted hydrophilic proteins. Protein domain prediction found that only the PPARG-X21-encoded protein had PPAR ligand-binding domains (NR_LBD_PPAR), which may lead to functional differences between the two splices. RNA interference (RNAi) and the overexpression of PPARG-X17 and PPARG-X21 in buffalo mammary epithelial cells (BMECs) were performed. Results showed that the expression of fatty acid synthesis-related genes (ACACA, CD36, ACSL1, GPAT, AGPAT6, DGAT1) was significantly modified (p < 0.05) by the RNAi and overexpression of PPARG-X17 and PPARG-X21. All kinds of FAs detected in this study were significantly decreased (p < 0.05) after RNAi of PPARG-X17 or PPARG-X21. Overexpression of PPARG-X17 or PPARG-X21 significantly decreased (p < 0.05) the SFA content, while significantly increased (p < 0.05) the UFA, especially the MUFA in the BMECs. In conclusion, there are two PPARG splicing variants expressed in the BMECs that can regulate FA synthesis by altering the expression of diverse fatty acid synthesis-related genes. This study revealed the expression characteristics and functions of the PPARG gene in buffalo mammary glands and provided a reference for further understanding of fat synthesis in buffalo milk.
Collapse
Affiliation(s)
- Shuwan Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Honghe Ren
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Chaobin Qin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Jie Su
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Xinhui Song
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Ruijia Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (K.C.); (Q.L.)
| | - Yang Liu
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning 530022, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (K.C.); (Q.L.)
| | - Zhipeng Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (S.W.); (H.R.); (C.Q.); (J.S.); (X.S.); (R.L.); (D.S.)
| |
Collapse
|
25
|
Shao G, Liu Y, Lu L, Wang L, Ji G, Xu H. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117999. [PMID: 38447616 DOI: 10.1016/j.jep.2024.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| |
Collapse
|
26
|
Nasri A, Kowaluk M, Widenmaier SB, Unniappan S. Nesfatin-1 and nesfatin-1-like peptide attenuate hepatocyte lipid accumulation and nucleobindin-1 disruption modulates lipid metabolic pathways. Commun Biol 2024; 7:623. [PMID: 38802487 PMCID: PMC11130297 DOI: 10.1038/s42003-024-06314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Saskatchewan, Canada
| | - Mateh Kowaluk
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Saskatchewan, Canada
| | - Scott B Widenmaier
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Saskatchewan, Canada.
| |
Collapse
|
27
|
Sun HJ, Jiao B, Wang Y, Zhang YH, Chen G, Wang ZX, Zhao H, Xie Q, Song XH. Necroptosis contributes to non-alcoholic fatty liver disease pathoetiology with promising diagnostic and therapeutic functions. World J Gastroenterol 2024; 30:1968-1981. [PMID: 38681120 PMCID: PMC11045491 DOI: 10.3748/wjg.v30.i14.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.
Collapse
Affiliation(s)
- Hong-Ju Sun
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Bo Jiao
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yue-Hua Zhang
- Department of Medical Administration, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Ge Chen
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Zi-Xuan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Hong Zhao
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Hua Song
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| |
Collapse
|
28
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
29
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
30
|
Huang L, Tan L, Lv Z, Chen W, Wu J. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: A comprehensive review. Heliyon 2024; 10:e25053. [PMID: 38322838 PMCID: PMC10844061 DOI: 10.1016/j.heliyon.2024.e25053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with significant clinical implications. Emerging research indicates endoplasmic reticulum (ER) stress as a critical pathogenic factor governing inflammatory responses, lipid metabolism and insulin signal transduction in patients with NAFLD. ER stress-associated activation of multiple signal transduction pathways, including the unfolded protein response, disrupts lipid homeostasis and substantially contributes to NAFLD development and progression. Targeting ER stress for liver function enhancement presents an innovative therapeutic strategy. Notably, the natural bioactive compounds of plant extracts have shown potential for treating NAFLD by reducing the level of ER stress marker proteins and mitigating inflammation, stress responses, and de novo lipogenesis. However, owing to limited comprehensive reviews, the effectiveness and pharmacology of these bioactive compounds remain uncertain. Objectives To address the abovementioned challenges, the current review categorizes the bioactive compounds of plant extracts by chemical structures and properties into flavonoids, phenols, terpenoids, glycosides, lipids and quinones and examines their ameliorative potential for NAFLD under ER stress. Methods This review systematically analyses the literature on the interactions of bioactive compounds from plant extracts with molecular targets under ER stress, providing a holistic view of NAFLD therapy. Results Bioactive compounds from plant extracts may improve NAFLD by alleviating ER stress; reducing lipid synthesis, inflammation, oxidative stress and apoptosis and enhancing fatty acid metabolism. This provides a multifaceted approach for treating NAFLD. Conclusion This review underscores the role of ER stress in NAFLD and the potential of plant bioactive compounds in treating this condition. The molecular mechanisms by which plant bioactive compounds interact with their ER stress targets provide a basis for further exploration in NAFLD management.
Collapse
Affiliation(s)
- Liying Huang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Liping Tan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
31
|
Liao J, Xie X, Wang N, Wang Y, Zhao J, Chen F, Qu F, Wen W, Miao J, Cui H. Formononetin promotes fatty acid β-oxidation to treat non-alcoholic steatohepatitis through SIRT1/PGC-1α/PPARα pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155285. [PMID: 38185065 DOI: 10.1016/j.phymed.2023.155285] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), carries a high risk of cirrhosis and hepatocellular carcinoma. With the increasing incidence of NASH, the accompanying medical burden is also increasing rapidly, so the development of safe and reliable drugs is urgent. Formononetin (FMNT) has a variety of pharmacological effects such as antioxidant and anti-inflammation, and plays a major role in regulating lipid metabolism, reducing hepatic steatosis and so on, but the mechanism for alleviating NASH is unclear. MATERIALS AND METHODS We firstly established a mouse model on NASH through methionine-choline deficient (MCD) diet to investigate the improvement of FMNT as well as the effects of fatty acid β oxidation and SIRT1/PGC-1α/PPARα pathway. Then, we explored the mechanisms of FMNT regulation in SIRT1/PGC-1α/PPARα pathway and fatty acid β oxidation based on genes silencing of SIRT1 and PGC1A. In addition, SIRT1 agonist (SRT1720) and inhibitor (EX527) were used to verify the mechanism of FMNT on improvement of NASH. RESULTS Our study found that after FMNT intervention, activities of ALT and AST and TG level were improved, and liver function and hepatocellular steatosis on NASH mice were significantly improved. The detection of β oxidation related indicators showed that FMNT intervention up-regulated FAO capacity, level of carnitine, and the levels of ACADM and CPT1A. The detection of factors related to the SIRT1/PGC-1α/PPARα pathway showed that FMNT activated and promoted the expression of SIRT1/PGC-1α/PPARα pathway, including up-regulating the expression level of SIRT1, improving the activity of SIRT1, promoting the deacetylation of PGC-1α, and promoting the transcriptional activity of PPARα. Furthermore, after genes silencing of SIRT1 and PGC1A, we found that FMNT intervention could not alleviate NASH, including improvement of hepatocellular steatosis, enhancement of β oxidation, and regulation of SIRT1/PGC-1α/PPARα pathway. Afterwards, we used SRT1720 as a positive control, and the results indicated that FMNT and SRT1720 intervention had no significant difference on improving hepatocellular steatosis and promoting fatty acid β oxidation. Besides, we found that when EX527 intervention inhibited expression of SIRT1, the improvement of FMNT on NASH was weakened or even disappeared. CONCLUSION In summary, our results demonstrated that FMNT intervention activated SIRT1/PGC-1α/PPARα pathway to promote fatty acid β oxidation and regulate lipid metabolism in liver, ultimately improved hepatocellular steatosis on NASH mice.
Collapse
Affiliation(s)
- Jiabao Liao
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China; Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xuehua Xie
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Ning Wang
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Yuming Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Jie Zhao
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Feng Chen
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Fei Qu
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Weibo Wen
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China.
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China.
| | - Huantian Cui
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan, China.
| |
Collapse
|
32
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Oh E, Lee J, Cho S, Kim SW, Won K, Shin WS, Gwak SH, Ha J, Jeon SY, Park JH, Song IS, Thoudam T, Lee IK, Kim S, Choi SY, Kim KT. Gossypetin Prevents the Progression of Nonalcoholic Steatohepatitis by Regulating Oxidative Stress and AMP-Activated Protein Kinase. Mol Pharmacol 2023; 104:214-229. [PMID: 37595967 DOI: 10.1124/molpharm.123.000675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe liver metabolic disorder, however, there are still no effective and safe drugs for its treatment. Previous clinical trials used various therapeutic approaches to target individual pathologic mechanisms, but these approaches were unsuccessful because of the complex pathologic causes of NASH. Combinatory therapy in which two or more drugs are administered simultaneously to patients with NASH, however, carries the risk of side effects associated with each individual drug. To solve this problem, we identified gossypetin as an effective dual-targeting agent that activates AMP-activated protein kinase (AMPK) and decreases oxidative stress. Administration of gossypetin decreased hepatic steatosis, lobular inflammation and liver fibrosis in the liver tissue of mice with choline-deficient high-fat diet and methionine-choline deficient diet (MCD) diet-induced NASH. Gossypetin functioned directly as an antioxidant agent, decreasing hydrogen peroxide and palmitate-induced oxidative stress in the AML12 cells and liver tissue of MCD diet-fed mice without regulating the antioxidant response factors. In addition, gossypetin acted as a novel AMPK activator by binding to the allosteric drug and metabolite site, which stabilizes the activated structure of AMPK. Our findings demonstrate that gossypetin has the potential to serve as a novel therapeutic agent for nonalcoholic fatty liver disease /NASH. SIGNIFICANCE STATEMENT: This study demonstrates that gossypetin has preventive effect to progression of nonalcoholic steatohepatitis (NASH) as a novel AMP-activated protein kinase (AMPK) activator and antioxidants. Our findings indicate that simultaneous activation of AMPK and oxidative stress using gossypetin has the potential to serve as a novel therapeutic approach for nonalcoholic fatty liver disease /NASH patients.
Collapse
Affiliation(s)
- Eunji Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Jae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Sungji Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Kyung Won
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Won Sik Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Seung Hee Gwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Joohun Ha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - So Yeon Jeon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Jin-Hyang Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Im-Sook Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Themis Thoudam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - In-Kyu Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Seonyong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Se-Young Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang Republic of Korea (E.O., J.L., S.C., S.W.K., K.W.J., W.S.S., S.H.G., K-T.K.); Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.H.); College of Pharmacy, Dankook University, Cheonan, Republic of Korea (S.Y.J.); College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea (J-H.P., I.-M.S.); Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea (T.T., I.-K.L.); Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea (I.-K.L.); Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (S.K., S-Y.C.); and Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Republic of Korea (K.-T.K.)
| |
Collapse
|
34
|
Zhou Y, Qian C, Tang Y, Song M, Zhang T, Dong G, Zheng W, Yang C, Zhong C, Wang A, Zhao Y, Lu Y. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytother Res 2023; 37:4999-5016. [PMID: 37491826 DOI: 10.1002/ptr.7966] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Numerous pharmacological effects of quercetin have been illustrated, including antiinflammation, antioxidation, and anticancer properties. In recent years, the antioxidant activity of quercetin has been extensively reported, in particular, its impacts on glutathione, enzyme activity, signaling transduction pathways, and reactive oxygen species (ROS). Quercetin has also been demonstrated to exert a striking antiinflammatory effect mainly by inhibiting the production of cytokines, reducing the expression of cyclooxygenase and lipoxygenase, and preserving the integrity of mast cells. By regulating oxidative stress and inflammation, which are regarded as two critical processes involved in the defense and regular physiological operation of biological systems, quercetin has been validated to be effective in treating a variety of disorders. Symptoms of these reactions have been linked to degenerative processes and metabolic disorders, including metabolic syndrome, cardiovascular, neurodegeneration, cancer, and nonalcoholic fatty liver disease. Despite that evidence demonstrates that antioxidants are employed to prevent excessive oxidative and inflammatory processes, there are still concerns regarding the expense, accessibility, and side effects of agents. Notably, natural products, especially those derived from plants, are widely accessible, affordable, and generally safe. In this review, the antioxidant and antiinflammatory abilities of the active ingredient quercetin and its application in oxidative stress-related disorders have been outlined in detail.
Collapse
Affiliation(s)
- Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chongjin Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Xu J, Chen P, Wu D, Zhou Q, Chen S, Ding X, Xiong H. The novel GLP-1/GIP dual agonist DA3-CH improves rat type 2 diabetes through activating AMPK/ACC signaling pathway. Aging (Albany NY) 2023; 15:11152-11161. [PMID: 37851373 PMCID: PMC10637786 DOI: 10.18632/aging.205118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) accounts for more than 95% of all diabetes. DA3-CH is a novel dual receptor agonist of glucagon like peptide-1 (GLP-1) and glucose dependent insulin stimulating polypeptide (GIP). The regulatory role of DA3-CH in T2DM has not been reported. METHODS T2DM rat model was established successfully with high sugar and fat feed and streptomycin (STZ) induction. The mRNA and protein expression were measured with RT-PCR and western blotting. The apoptosis level in the pancreatic tissue was evaluated with Tunel staining. Blood glucose, fat, and oxidative stress indicators were measured. RESULTS DA3-CH greatly improved T2DM symptoms by reducing blood glucose, blood fat, pancreatic tissue injury, apoptosis, and oxidative stress condition. The inactivation of Adenylate activated protein kinase (AMPK)/acetyl CoA carboxylase (ACC) signaling pathway in T2DM rats was promoted by DA3-CH. The influence of DA3-CH was significantly reversed by Com-C, the inhibitor of AMPK/ACC signaling pathway. CONCLUSIONS DA3-CH might improve T2DM through targeting AMPK/ACC signaling pathway. This study might provide a novel therapeutic strategy for the prevention and treatment of T2DM through targeting DA3-CH and AMPK/ACC signaling pathway.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou 362002, Fujian Province, China
| | - Peng Chen
- Department of Internal Neurology, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
| | - Dongzhi Wu
- Department of Orthopedics Institute, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
| | - Qiang Zhou
- Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
| | - Sijie Chen
- Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
| | - Xiang Ding
- Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
| | - Hongping Xiong
- Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, Fujian Province, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou 362002, Fujian Province, China
| |
Collapse
|
36
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
37
|
Koza J, Jurgoński A. Partially defatted rather than native poppy seeds beneficially alter lipid metabolism in rats fed a high-fat diet. Sci Rep 2023; 13:14171. [PMID: 37644060 PMCID: PMC10465602 DOI: 10.1038/s41598-023-40888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Partially defatted poppy seeds, a by-product of poppy oil cold pressing, could be an interesting dietary supplement for obesity management. The aim of this study was to compare the effects of dietary supplementation with a small amount of native or partially defatted poppy seeds on gastrointestinal function and lipid metabolism in rats fed a high-fat diet. The defatted poppy seeds had, among others, lower fat content and higher fibre and protein content than native poppy seeds. The rats fed with a high-fat diet were characterised by severe metabolic disorders, especially in the liver, and poppy seeds were unable to prevent them. However, depending on the seed form, dietary supplementation with poppy seeds differentially affected the microbial and endogenous lipid metabolism in rats. In the distal intestine, both dietary seed forms stimulated microbial acetate production, and the supplementation with partially defatted poppy seeds additionally inhibited isobutyrate and isovalerate formation, which indicates a reduction in putrefaction. Both dietary seed forms increased cholesterol accumulation in the liver. Only dietary supplementation with partially defatted poppy seeds attenuated visceral fat and hepatic triglyceride accumulations and lowered blood triglyceride concentrations, and at the transcriptional level, the inhibition of SREBP-1c, which upregulates genes responsible for de novo lipogenesis, was additionally observed in this organ. In conclusion, a low and regular consumption of partially defatted poppy seeds may be beneficial in managing obesity-related disorders.
Collapse
Affiliation(s)
- Jarosław Koza
- Department of Gastroenterology and Nutrition Disorders, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75 Str., 85-168, Bydgoszcz, Poland.
| | - Adam Jurgoński
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland.
| |
Collapse
|
38
|
Fang X, Song J, Zhou K, Zi X, Sun B, Bao H, Li L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023; 28:5645. [PMID: 37570615 PMCID: PMC10419790 DOI: 10.3390/molecules28155645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and its incidence continues to increase each year. Yet, there is still no definitive drug that can stop its development. This review focuses mainly on lipotoxicity, oxidative stress, inflammation, and intestinal flora dysbiosis to understand NAFLD's pathogenesis. In this review, we used NCBI's PubMed database for retrieval, integrating in vivo and in vitro experiments to reveal the therapeutic effects of natural compounds on NAFLD. We also reviewed the mechanisms by which the results of these experiments suggest that these compounds can protect the liver from damage by modulating inflammation, reducing oxidative stress, decreasing insulin resistance and lipid accumulation in the liver, and interacting with the intestinal microflora. The natural compounds discussed in these papers target a variety of pathways, such as the AMPK pathway and the TGF-β pathway, and have significant therapeutic effects. This review aims to provide new possible therapeutic lead compounds and references for the development of novel medications and the clinical treatment of NAFLD. It offers fresh perspectives on the development of natural compounds in preventing and treating NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.F.)
| |
Collapse
|
39
|
Zhang Y, Yang Y, Zhang S, Liu Q, Dang W, Song Y. Lipid accumulation and SNF1 transcriptional analysis of Mucor circinelloides on xylose under nitrogen limitation. Antonie Van Leeuwenhoek 2023; 116:383-391. [PMID: 36656419 DOI: 10.1007/s10482-023-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) plays a crucial role in utilizing non-glucose carbon sources and regulating lipid metabolism. However, the mechanism by which SNF1 regulates lipid accumulation in oleaginous filamentous fungi in response to nutrient signals remains unclear. In the present study, by analysing the growth and lipid accumulation of M. circinelloides on xylose under nitrogen limitation, combined with the transcriptional changes of each subunit of SNF1, the regulation of SNF1 between nutrient signal and lipid accumulation was explored. The results showed that with the increase of carbon/nitrogen (C/N) ratio, the xylose consumption and cell growth of M. circinelloides decreased, and the lipid accumulation increased gradually. The optimal C/N ratio was 160:1, and the maximum lipid yield was 4.1 g/L. Two subunits of SNF1, Snf-α1 and Snf-β, are related to the regulation of lipid metabolism in response to nutrient signals from different external nitrogen sources. This is the first report on the transcriptional analysis of SNF1 subunits on xylose metabolism under nitrogen limitation. This study provides a basis for further understanding of lipid synthesis mechanism on xylose in oleaginous fungi, and it also lays a foundation for the genetic engineering of high-lipid strain.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Silu Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
40
|
The hypocholesterolemic effect of methanolic extract of Bassia muricata l. on hypercholesterolemic rats. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
AbstractHypercholesterolemia is correlated with cardiovascular diseases. The search for effective alternatives for lipid-lowering drugs is continuous. We investigated the hypocholesterolemic activity of Bassia muricata methanolic extract (BMME) in a model of hyperlipidemia. B. muricata was extracted with methanol. Male rats were randomly divided into six groups: normal control group (G1) was fed normal diet, negative control group (G2) was fed high cholesterol and fat diet (HCFD), positive control group (G3) was fed HCFD and treated with atorvastatin (20 mg/kg), a fourth, fifth and sixth groups (G4, G5, and G6) were fed HCFD and treated with 10, 30 and 100 mg/Kg of BMME, respectively. All rat groups received, for 4 weeks, the appropriate daily dose after initial two weeks of feeding normal diet or HCFD. Body weight, lipid profile, serum glucose, liver enzymes were measured weekly. HCFD caused an increased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and glucose, decreased triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C), and blunted the normal gain of body weight. BMME doses restored the normal gain of body weight, caused significant decrease in serum TC, LDL-C, and increased HDL-C when compared to G2. 10 mg/kg and 30 mg/kg of BMME failed to induce any change in alkaline phosphatase whereas 100 mg/Kg of BMME caused a significant increase in alanine transaminase. 10 mg/kg and 30 mg/kg of BMME significantly decreased serum glucose whereas 100 mg/kg BMME significantly increased it. BMME had significant hypocholesterolemic effect and 100 mg/kg BMME increased alanine transaminase, TG and glucose in rats.
Graphical abstract
Collapse
|
41
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
42
|
Ding M, Zhou F, Li Y, Liu C, Gu Y, Wu J, Fan G, Li Y, Li X. Cassiae Semen improves non-alcoholic fatty liver disease through autophagy-related pathway. CHINESE HERBAL MEDICINES 2023. [PMID: 37538867 PMCID: PMC10394324 DOI: 10.1016/j.chmed.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Objective Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD). Methods High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism. Results Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5). Conclusion Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.
Collapse
|
43
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
44
|
Liu Y, Li Y, Wang J, Yang L, Yu X, Huang P, Song H, Zheng P. Salvia-Nelumbinis naturalis improves lipid metabolism of NAFLD by regulating the SIRT1/AMPK signaling pathway. BMC Complement Med Ther 2022; 22:213. [PMID: 35945571 PMCID: PMC9361555 DOI: 10.1186/s12906-022-03697-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Salvia-Nelumbinis naturalis (SNN), the extract of Chinese herbal medicine, has shown effects on NAFLD. This study aims to explore the underlying mechanism of SNN for regulating the lipid metabolism disorder in NAFLD based on the SIRT1/AMPK signaling pathway.
Methods
Male C57BL/6J mice fed with a high-fat diet (HFD) were used to establish the NAFLD model. Dynamic changes of mice including body weight, liver weight, serological biochemical indexes, liver histopathological changes, and protein level of AMPK and SIRT1 were monitored. After18 weeks, SNN treatment was administrated to the NAFLD mice for another 4 weeks. Besides the aforementioned indices, TC and TG of liver tissues were also measured. Western blot and quantitative RT-PCR were used to detect the expression and/or activation of SIRT1 and AMPK, as well as the molecules associated with lipid synthesis and β-oxidation. Furthermore, AML12 cells with lipid accumulation induced by fatty acids were treated with LZG and EX527 (SIRT1 inhibitor) or Compound C (AMPK inhibitor ) to confirm the potential pharmacological mechanism.
Results
Dynamic observation found the mice induced by HFD with gradually increased body and liver weight, elevated serum cholesterol, hepatic lipid accumulation, and liver injury. After 16 weeks, these indicators have shown obvious changes. Additionally, the hepatic level of SIRT1 and AMPK activation was identified gradually decreased with NAFLD progress. The mice with SNN administration had lower body weight, liver weight, and serum level of LDL-c and ALT than those of the NAFLD model. Hepatosteatosis and hepatic TG content in the liver tissues of the SNN group were significantly reduced. When compared with control mice, the NAFLD mice had significantly decreased hepatic expression of SIRT1, p-AMPK, p-ACC, ACOX1, and increased total Acetylated-lysine, SUV39H2, and SREBP-1c. The administration of SNN reversed the expression of these molecules. In vitro experiments showed the effect of SNN in ameliorating hepatosteatosis and regulating the expression of lipid metabolism-related genes in AML12 cells, which were diminished by EX527 or Compound C co-incubation.
Conclusions
Taken together, the SIRT1/AMPK signaling pathway, involved in hepatic lipid synthesis and degradation, plays a pivotal role in the pathogenesis of NAFLD development. The regulation of SIRT1/AMPK signaling greatly contributes to the underlying therapeutic mechanism of SNN for NAFLD.
Collapse
|
45
|
Tang Z, Li L, Xia Z. Exploring Anti-Nonalcoholic Fatty Liver Disease Mechanism of Gardeniae Fructus by Network Pharmacology, Molecular Docking, and Experiment Validation. ACS OMEGA 2022; 7:25521-25531. [PMID: 35910181 PMCID: PMC9330257 DOI: 10.1021/acsomega.2c02629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 05/08/2023]
Abstract
Gardeniae fructus (GF), the fruit from Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of nonalcoholic fatty liver disease (NAFLD) in the clinic. To explore the hepatoprotective mechanism of GF for the treatment of NAFLD, we proposed a novel strategy that integrated in vivo efficacy evaluation, network pharmacology analysis, molecular docking, and experimental validation. A NAFLD animal model induced by high fat diet (HFD) feed was established, then orally administrated with or without GF. The results showed that GF significantly decreased the levels of serum total cholesterol (TC), lipoprotein cholesterol, triglyceride (TG), alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, free fatty acids, glucose, and insulin and the levels of liver TG, TC, and malondialdehyde compared with the nontreated HFD group. Network pharmacology studies showed that quercetin, oleanolic acid, kaempferol, and geniposide were the main biocompounds in GF that targeted the PPARα and PPARγ genes through regulating the PPAR and AMPK signal pathways to protect against NAFLD. The interactions between bioactive compounds and their corresponding target proteins were analyzed by molecular docking and subsequently confirmed using the qRT-PCR assay. Collectively, GF was a therapeutic drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Zhongyan Tang
- Department
of Emergency and Critical Care Medicine, Jin Shan Hospital, Fudan University, Shanghai 201508, China
| | - Lin Li
- Department
of Operative Dentistry and Endodontics, School and Hosipital of Stomatology,
Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
| | - Zhengxiang Xia
- Department
of Pharmacy, School and Hosipital of Stomatology, Shanghai Engineering
Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
- . Tel: +8621-66315500
| |
Collapse
|
46
|
Research Progress on the Mechanism of Acupuncture Treatment for Nonalcoholic Fatty Liver Disease. Gastroenterol Res Pract 2022; 2022:5259088. [PMID: 35782337 PMCID: PMC9242809 DOI: 10.1155/2022/5259088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease worldwide, ranging from simple steatosis and nonalcoholic steatohepatitis to fibrosis, cirrhosis, and hepatocellular carcinoma. Acupuncture is a long-established treatment in traditional Chinese medicine. In recent years, increasing evidence has pointed to the effectiveness of acupuncture in the treatment of NAFLD, and a certain degree of progress has been made in the study of related mechanisms. However, previous systematic reviews have not discussed the characteristics and the related mechanisms of acupuncture in the treatment of NAFLD. Therefore, this review synthesizes the progress in research on acupuncture in the context of NAFLD treatment by the inhibition of inflammatory responses, regulation of lipid metabolism disorder, treatment of insulin resistance, antagonization of oxidative stress injury, and interference with endoplasmic reticulum stress. Overall, we sought to highlight the latest research results, potential applications, and ongoing challenges of this therapy.
Collapse
|