1
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. Gut Microbes 2025; 17:2458189. [PMID: 39930324 PMCID: PMC11817531 DOI: 10.1080/19490976.2025.2458189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal growth barrier dysfunction, and aberrant inflammatory responses. Further, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, mostly commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no U.S. Food and Drug Administration (FDA) approved countermeasures that can treat radiation-induced GI injuries. To meet this critical need, Synedgen Inc. has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract, which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy partial body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, Vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory responses mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera while suppressing potentially pathogenic bacteria Enterococcus and Staphylococcus compared with Vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and reducing pro-inflammatory responses. Further development of this drug as an FDA-approved medical countermeasure is of critical importance.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Mahdy RNE, Nader MA, Helal MG, Abu-Risha SE, Abdelmageed ME. Protective effect of Dulaglutide, a GLP1 agonist, on acetic acid-induced ulcerative colitis in rats: involvement of GLP-1, TFF-3, and TGF-β/PI3K/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5611-5628. [PMID: 39579211 PMCID: PMC11985593 DOI: 10.1007/s00210-024-03631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
A chronic inflammatory condition of the colon called ulcerative colitis (UC) is characterized by mucosal surface irritation that extends from the rectum to the near proximal colon portions. The rationale of this work was to conclude if dulaglutide (Dula) could protect rats from developing colitis caused by exposure to acetic acid (AA). Rats were randomly divided into seven groups (each with eight rats): Normal control, Dula control, AA (received 2 milliliters of 3% v/v AA through the rectum), Sulfasalazine (SLZ); given SLZ (100 mg/kg) orally from day 11 to day 21 then AA intrarectally on day 22 and Dula groups ( pretreated with 50, 100 or 150 μg/kg subcutaneous injection of Dula - once weekly for three weeks and AA on day 22 to induce ulcerative colitis, colon tissues and blood samples were taken on day 23. By generating colonic histological deviations such as inflammatory processes, goblet cell death, glandular hyperplasia, and mucosa ulcers, Dula dropped AA-induced colitis. Additionally, these modifications diminished blood lactate dehydrogenase (LDH), C-reactive protein (CRP), colon weight, and the weight/length ratio of the colon. In addition, Dula decreased the oxidative stress biomarker malondialdehyde (MDA) and increased the antioxidant enzymes (total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) concentrations). Dula also significantly reduced the expression of transforming growth factor-1 (TGF-β1), phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) signaling pathway, and the inflammatory cytokines: nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and interferon-γ (IFN-γ) in colonic cellular structures. In addition, Dula enforced the levels of glucagon-like peptide-1 (GLP-1) and trefoil factor-3 (TFF-3) that were crucial to intestinal mucosa regeneration and healing of wounds. By modulating TGF-β1 in conjunction with other inflammatory pathways like PI3K/AKT and NF-κB, regulating the oxidant/antioxidant balance, and improving the integrity of the intestinal barrier, Dula prevented AA-induced colitis in rats.
Collapse
Affiliation(s)
- Raghda N El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University- Kantra Branch, Ismailia, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Altınok Ö, Baş M, Gelenli Dolanbay E, Kolgazi M, Mert T, Uslu Ü. Collagen Peptides and Saccharomyces boulardiiCNCM I-745 Attenuate Acetic Acid-Induced Colitis in Rats by Modulating Inflammation and Barrier Permeability. Food Sci Nutr 2025; 13:e70189. [PMID: 40255550 PMCID: PMC12008002 DOI: 10.1002/fsn3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent episodes of inflammation and tissue damage, with limited treatment options. This study aimed to investigate the effects of collagen peptides and Saccharomyces boulardii on acetic acid (AA)-induced colitis. Thirty-six male Sprague-Dawley rats were randomly divided into the following four groups: normal control (NC), colitis control (CC), collagen peptide (CP; 0.6 g/kg/day), and S. boulardii (SB; 250 mg/day). Colitis was induced by an intrarectal administration of AA in all groups except NC, and treatments were administered daily for 7 days. The therapeutic effects were evaluated by assessing the disease activity index (DAI), colon mass index, macroscopic and microscopic tissue damage, histopathological changes, zonula occludens (ZO)-1 protein expression, and myeloperoxidase (MPO) activity. The results showed that CP and SB treatments substantially alleviated DAI scores (p < 0.05) and reduced the colon mass index. Colon macroscopic and microscopic damages improved compared to the CC group (p < 0.01). Histologically, both treatments reduced inflammatory cell infiltration, crypt damage, and ulceration, with CP showing a slightly more pronounced effect. Immunohistochemical analysis revealed significant restoration of ZO-1 protein expression in the treated groups, indicating improvement in intestinal barrier integrity (p < 0.01). Furthermore, MPO activity was reduced in both CP and SB groups, significantly in the SB group (p < 0.01). These findings are consistent with previous studies that highlight the anti-inflammatory and barrier-enhancing effects of collagen peptides and probiotics in UC models.
Collapse
Affiliation(s)
- Öykü Altınok
- Department of Nutrition and DieteticsInstitute of Health Sciences, Acibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
- Department of Nutrition and Dietetics, Faculty of Health SciencesFenerbahçe UniversityIstanbulTurkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health SciencesAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Elif Gelenli Dolanbay
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Meltem Kolgazi
- Department of Physiology, School of MedicineAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Tugay Mert
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Ünal Uslu
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| |
Collapse
|
4
|
Parfenov AI, Indejkina LK, Sabelnikova EA, Leontiev AV, Makarova AA. [Radiation-induced intestinal injury]. TERAPEVT ARKH 2025; 97:101-108. [PMID: 40237744 DOI: 10.26442/00403660.2025.02.203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025]
Abstract
This article addresses theoretical and clinical aspects of radiation-induced intestinal injuries, which complicate radiation therapy for malignant neoplasms of the abdominal and pelvic organs. Many clinical aspects of this issue remain unknown due to the lack of awareness among doctors and patients. Further study of radiation-induced intestinal injuries and the development of personalized approaches to their prevention and treatment represent a relevant direction in internal medicine.
Collapse
Affiliation(s)
| | - L K Indejkina
- Loginov Moscow Clinical Scientific Center
- Research Institute for Healthcare and Medical Management
| | - E A Sabelnikova
- Loginov Moscow Clinical Scientific Center
- Russian University of Medicine
| | - A V Leontiev
- Loginov Moscow Clinical Scientific Center
- Moscow University for Industry and Finance "Synergy"
| | | |
Collapse
|
5
|
Du S, Sun R, Wang M, Fang Y, Wu Y, Yuan B, Jin Y. Synergistic effect of inulin hydrogels on multi-strain probiotics for prevention of ionizing radiation-induced injury. Int J Biol Macromol 2025; 287:138497. [PMID: 39647719 DOI: 10.1016/j.ijbiomac.2024.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Prebiotics and probiotics are applied against multiple diseases including ionizing radiation-induced injury but their functions are not revealed enough. Here, we used a prebiotic, inulin hydrogels (IGs) to load multi-strain probiotics (MSPs) for protecting them from the gastrointestinal environment and improving their colonization in the gut; more importantly, they showed the synergistic effect against ionizing radiation-induced injury. Probiotics were embedded in a great number of channels of the IGs and used IGs as food. The MSP was composed of Clostridium butyricum (Cb), Bifidobacterium adolescentis (Ba), and Akkermansia muciniphila (Akk), which separately mainly produced butyl acid, acetic acid and lactic acid, and stimulated mucin proteins. Although the MSP showed higher effect against mouse radiation enteritis than the single probiotics and the similar effect to IGs, the IG/MSP-based synbiotic had the highest protection and improved many factors close to the normal levels, including animal physical activity, enteric barrier function, occludin and ZO-1 expressions, injury extension, the levels of pro-inflammatory factors (IL-6, TNF-α), gut microbiota, and short-chained fatty acids. Moreover, the synbiotic had strong protection against whole-body irradiation with high blood cell numbers, hemopoietic system recovery, and high levels of IL-3 and IL-10. IGs greatly synergized probiotics against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Shumin Du
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Rui Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Minting Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yubao Fang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
6
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Zheng C, Niu M, Kong Y, Liu X, Li J, Gong X, Ren X, Hong C, Yin M, Wang L. Oral administration of probiotic spore ghosts for efficient attenuation of radiation-induced intestinal injury. J Nanobiotechnology 2024; 22:303. [PMID: 38822376 PMCID: PMC11140926 DOI: 10.1186/s12951-024-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.
Collapse
Affiliation(s)
- Cuixia Zheng
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yueyue Kong
- Xinjiang Aksu First People's Hospital, Akesu, 843000, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Junxiu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xunwei Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Hong
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Menghao Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Pingyuan Lab, Henan Normal University, Xinxiang, 453007, China.
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China.
| |
Collapse
|
8
|
Tang FL, Xie LW, Tang LF, Lu HY, Zhu RQ, Wang DF, Tian Y, Cai S, Li M. Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside) confers protection against ionizing radiation-induced intestinal epithelial injury in vitro and in vivo. Int Immunopharmacol 2024; 129:111637. [PMID: 38335653 DOI: 10.1016/j.intimp.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.
Collapse
Affiliation(s)
- Feng-Ling Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Li-Wei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Lin-Feng Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hai-Yan Lu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Rui-Qiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou 215123, China
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Hahn S, Kim G, Jin SM, Kim JH. Protective effects of metformin in the pro-inflammatory cytokine induced intestinal organoids injury model. Biochem Biophys Res Commun 2024; 690:149291. [PMID: 38006803 DOI: 10.1016/j.bbrc.2023.149291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Pathogenesis of inflammatory bowel disease (IBD) accompanies disrupted intestinal tight junctions. However, many approaches of therapeutics for IBD are focused only on anti-inflammatory effects and most cellular experiments are based on two-dimensional cell lines which have insufficient circumstances of intestine. Thus, here, we used three-dimensional structure intestinal organoids to investigate effects of metformin in the in vitro IBD condition. In this study, we focused on both tight junctions and the levels of inflammatory cytokines. Metformin enhances the intestinal barrier in injured intestine via upregulation of AMP-activated protein kinase, dysfunction of which contributes to the pathogenesis of intestinal diseases. We aim to investigate the effects of metformin on cytokine-induced injured intestinal organoids. Tumor necrosis factor-alpha (TNF-α) was used to induce intestinal injury in an organoid model, and the effects of metformin were assessed. Cell viability and levels of inflammatory cytokines were quantified in addition to tight junction markers. Furthermore, 4 kDa FITC-dextran was used to assess intestinal permeability. The upregulation of inflammatory cytokine levels was alleviated by metformin, which also restored the intestinal epithelium permeability in TNF-α-treated injury organoids. We confirmed that claudin-2 and claudin-7, representative tight junction markers, were also protected by metformin treatment. This study confirms the protective effects of metformin, which could be used as a therapeutic strategy for inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Soojung Hahn
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Jae Hyeon Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| |
Collapse
|
10
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
11
|
Park HY, Yu JH. X-ray radiation-induced intestinal barrier dysfunction in human epithelial Caco-2 cell monolayers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115404. [PMID: 37625335 DOI: 10.1016/j.ecoenv.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
12
|
Brīvība M, Silamiķele L, Kalniņa I, Silamiķelis I, Birzniece L, Ansone L, Jagare L, Elbere I, Kloviņš J. Metformin targets intestinal immune system signaling pathways in a high-fat diet-induced mouse model of obesity and insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1232143. [PMID: 37795356 PMCID: PMC10546317 DOI: 10.3389/fendo.2023.1232143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin's modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states. Methods The high-fat diet-induced mouse model of obesity and insulin resistance of both sexes was developed in a randomized block experiment and bulk RNA-Seq of the ileum tissue was the method of choice for comparative transcriptional profiling after metformin intervention for ten weeks. Results We found a prominent transcriptional effect of the diet itself with comparatively fewer genes responding to metformin intervention. The overrepresentation of immune-related genes was observed, including pronounced metformin-induced upregulation of immunoglobulin heavy-chain variable region coding Ighv1-7 gene in both high-fat diet and control diet-fed animals. Moreover, we provide evidence of the downregulation NF-kappa B signaling pathway in the small intestine of both obese and insulin-resistant animals as well as control animals after metformin treatment. Finally, our data pinpoint the gut microbiota as a crucial component in the metformin-mediated downregulation of NF-kappa B signaling evidenced by a positive correlation between the Rel and Rela gene expression levels and abundances of Parabacteroides distasonis, Bacteroides spp., and Lactobacillus spp. in the gut microbiota of the same animals. Discussion Our study supports the immunomodulatory effect of metformin in the ileum of obese and insulin-resistant C57BL/6N mice contributed by intestinal immunoglobulin responses, with a prominent emphasis on the downregulation of NF-kappa B signaling pathway, associated with alterations in the composition of the gut microbiome.
Collapse
Affiliation(s)
- Monta Brīvība
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Devarakonda S, Thorsell A, Hedenström P, Rezapour A, Heden L, Banerjee S, Johansson MEV, Birchenough G, Toft Morén A, Gustavsson K, Skokic V, Pettersson VL, Sjöberg F, Kalm M, Al Masri M, Ekh M, Fagman H, Wolving M, Perkins R, Morales RA, Castillo F, Villablanca EJ, Yrlid U, Bergmark K, Steineck G, Bull C. Low-grade intestinal inflammation two decades after pelvic radiotherapy. EBioMedicine 2023; 94:104691. [PMID: 37480626 PMCID: PMC10393618 DOI: 10.1016/j.ebiom.2023.104691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Radiotherapy is effective in the treatment of cancer but also causes damage to non-cancerous tissue. Pelvic radiotherapy may produce chronic and debilitating bowel symptoms, yet the underlying pathophysiology is still undefined. Most notably, although pelvic radiotherapy causes an acute intestinal inflammation there is no consensus on whether the late-phase pathophysiology contains an inflammatory component or not. To address this knowledge gap, we examined the potential presence of a chronic inflammation in mucosal biopsies from irradiated pelvic cancer survivors. METHODS We biopsied 24 cancer survivors two to 20 years after pelvic radiotherapy, and four non-irradiated controls. Using tandem mass tag (TMT) mass spectrometry and mRNA sequencing (mRNA-seq), we charted proteomic and transcriptomic profiles of the mucosal tissue previously exposed to a high or a low/no dose of radiation. Changes in the immune cell populations were determined with flow cytometry. The integrity of the protective mucus layers were determined by permeability analysis and 16S rRNA bacterial detection. FINDINGS 942 proteins were differentially expressed in mucosa previously exposed to a high radiation dose compared to a low radiation dose. The data suggested a chronic low-grade inflammation with neutrophil activity, which was confirmed by mRNA-seq and flow cytometry and further supported by findings of a weakened mucus barrier with bacterial infiltration. INTERPRETATION Our results challenge the idea that pelvic radiotherapy causes an acute intestinal inflammation that either heals or turns fibrotic without progression to chronic inflammation. This provides a rationale for exploring novel strategies to mitigate chronic bowel symptoms in pelvic cancer survivors. FUNDING This study was supported by the King Gustav V Jubilee Clinic Cancer Foundation (CB), The Adlerbertska Research Foundation (CB), The Swedish Cancer Society (GS), The Swedish State under the ALF agreement (GS and CB), Mary von Sydow's foundation (MA and VP).
Collapse
Affiliation(s)
- Sravani Devarakonda
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Hedenström
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azar Rezapour
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisen Heden
- Pelvic Cancer Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sanghita Banerjee
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - George Birchenough
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amelie Toft Morén
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Gustavsson
- Pelvic Cancer Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Viktor Skokic
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Medicine and Surgery and Department of Pelvic Cancer, Karolinska Institute, Stockholm, Sweden
| | - Victor L Pettersson
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fei Sjöberg
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Mohammad Al Masri
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michaela Ekh
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg and Department of Clinical Patology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Wolving
- Department of Pathology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rodrigo A Morales
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Francisca Castillo
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Bergmark
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Steineck
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Bull
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
16
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
17
|
Chen Z, Dai G, Wu X, Li L, Tian Y, Tan L. Protective effects of Fagopyrum dibotrys on oxidized oil-induced oxidative stress, intestinal barrier impairment, and altered cecal microbiota in broiler chickens. Poult Sci 2023; 102:102472. [PMID: 36758369 PMCID: PMC9929599 DOI: 10.1016/j.psj.2022.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The objective of this study was to evaluate protective effects of Fagopyrum dibotrys on antioxidant ability, intestinal barrier functions, and cecal microbiota in broiler chickens fed oxidized soybean oil. A total of 640 male Tiejiaoma broilers were randomly assigned to 8 treatments with 8 cages (10 birds per cage), as follows: birds fed basal diets containing fresh soybean oil and 0, 0.5, 1, or 2% F. dibotrys (FSCON, FSFAL, FSFAM, and FSFAH, respectively), and birds fed basal diets containing oxidized oil and 0, 0.5, 1, or 2% F. dibotrys (OSCON, OSFAL, OSFAM, and OSFAH). Oxidized oil significantly decreased transcription of Nrf2 and its downstream genes, including CAT and SOD1 in the jejunal mucosa, increased jejunal mucosa IL-6 mRNA expression, and decreased jejunal mucosa IL-22 mRNA expression and downregulated Claudin-1 and ZO-1; however, all these effects were reversed by F. dibotrys. Either 1 or 2% F. dibotrys alleviated the decreased liver SOD induced by oxidized oil on d 42. The decreased SOD and GPX, and increased MDA induced by oxidized oil were reversed by adding 1 or 2% F. dibotrys in jejunal mucosa. In addition, based on 16S rDNA, 2% F. dibotrys promoted the Firmicutes phylum and Candidatus_Arthromitus genera, but suppressed the Proteobacteria phylum and Streptococcus, Enterococcus, and Escherichia genera. In summary, oxidative stress induced by oxidized oil was ameliorated by F. dibotrys upregulating transcription of Nrf2 and its downstream genes to restore redox balance, reinforcing the intestinal barrier via higher expression of Claudin-1/ZO-1, ameliorating the inflammatory response by regulating expression of IL-6 and IL-22, and facilitating growth of Candidatus_arthromitus in the cecum. Therefore, F. dibotrys has potential as a feed additive for poultry by ameliorating oxidative stress caused by oxidized oil, enhancing barrier function, and improving gut microbiome composition.
Collapse
Affiliation(s)
- Zhaojun Chen
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China,School of Food Science, Southwest University, Chongqing 400715, China,The Potato Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Guotao Dai
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Xian Wu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Lina Li
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yujie Tian
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Lulin Tan
- Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China.
| |
Collapse
|
18
|
Zhou Q, Shen B, Huang R, Liu H, Zhang W, Song M, Liu K, Lin X, Chen S, Liu Y, Wang Y, Zhi F. Bacteroides fragilis strain ZY-312 promotes intestinal barrier integrity via upregulating the STAT3 pathway in a radiation-induced intestinal injury mouse model. Front Nutr 2022; 9:1063699. [PMID: 36590229 PMCID: PMC9798896 DOI: 10.3389/fnut.2022.1063699] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation-induced intestinal injury is characterized by intestinal barrier impairment. However, the therapeutic effects of probiotics for intestinal epithelial barrier repair in a mouse model of radiation-induced intestinal injury remain unclear. Previously, we isolated a strain of Bacteroides fragilis from the feces of a healthy infant and named it as B. fragilis strain ZY-312 (B. fragilis). In this study, we showed that B. fragilis can ameliorate radiation-induced intestinal injury in mice, manifested by decreased weight loss, intestinal length shortening, and intestinal epithelial cell (IEC) shedding. Moreover, we found that B. fragilis promoted IEC proliferation, stem cell regeneration, mucus secretion, and tight junction integrity by upregulating the STAT3 signaling pathway, through an experimental verification in Stat3 △IEC mice (STAT3 defects in intestinal epithelial cells). Thus, the underlying protective mechanism of B. fragilis in radiation-induced intestinal injury is related to IEC proliferation, stem cell regeneration, goblet cell secretion, and tight junction repair via activation of the STAT3 signaling pathway. In addition, the therapeutic effects of B. fragilis were studied to provide new insights into its application as a functional and clinical drug for radiation-induced intestinal injury after radiotherapy.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binhai Shen
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo Huang
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liu
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wendi Zhang
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Song
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Liu
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinlong Lin
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Guangzhou Zhiyi Biotechnology Co., Ltd., Guangzhou, China
| | - Ye Wang
- Guangzhou Zhiyi Biotechnology Co., Ltd., Guangzhou, China
| | - Fachao Zhi
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Fachao Zhi, ; orcid.org/0000-0001-8674-4737
| |
Collapse
|
19
|
Xin JY, Wang J, Ding QQ, Chen W, Xu XK, Wei XT, Lv YH, Wei YP, Feng Y, Zu XP. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114341. [PMID: 36442401 DOI: 10.1016/j.ecoenv.2022.114341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.
Collapse
Affiliation(s)
- Jia-Yun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian-Qian Ding
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xi-Ke Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xin-Tong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Hui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Ping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xian-Peng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
Kim JM, Kim H, Oh SH, Jang WI, Lee SB, Park M, Kim S, Park S, Shim S, Jang H. Combined Administration of Pravastatin and Metformin Attenuates Acute Radiation-Induced Intestinal Injury in Mouse and Minipig Models. Int J Mol Sci 2022; 23:ijms232314827. [PMID: 36499155 PMCID: PMC9739896 DOI: 10.3390/ijms232314827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced gastrointestinal (GI) damage is one of the critical factors that serve as basis for the lethality of nuclear accidents or terrorism. Further, there are no Food and Drug Administration-approved agents available to mitigate radiation-induced intestinal injury. Although pravastatin (PS) has been shown to exhibit anti-inflammatory and epithelial reconstructive effects following radiation exposure using mouse and minipig models, the treatment failed to improve the survival rate of high-dose irradiated intestinal injury. Moreover, we previously found that metformin (MF), a common drug used for treating type 2 diabetes mellitus, has a mitigating effect on radiation-induced enteropathy by promoting stem cell properties. In this study, we investigated whether the combined administration of PS and MF could achieve therapeutic effects on acute radiation-induced intestinal injury in mouse and minipig models. We found that the combined treatment markedly increased the survival rate and attenuated histological damage in a radiation-induced intestinal injury mouse model, in addition to epithelial barrier recovery, anti-inflammatory effects, and improved epithelial proliferation with stem cell properties. Furthermore, in minipig models, combined treatment with PS and MF ameliorates gross pathological damage in abdominal organs and attenuated radiation-induced intestinal histological damage. Therefore, the combination of PS and MF effectively alleviated radiation-induced intestinal injury in the mouse and minipig models. We believe that the combined use of PS and MF is a promising therapeutic approach for treating radiation-induced intestinal injury.
Collapse
Affiliation(s)
- Jung Moon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Su Hyun Oh
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Mineon Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Soyeon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (H.J.); Tel.: +82-2-3399-5873 (S.S.); +82-2-970-1302 (H.J.)
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (H.J.); Tel.: +82-2-3399-5873 (S.S.); +82-2-970-1302 (H.J.)
| |
Collapse
|
21
|
Thenet S, Carrière V. Special Issue on the "Regulation and Physiopathology of the Gut Barrier". Int J Mol Sci 2022; 23:10638. [PMID: 36142548 PMCID: PMC9502765 DOI: 10.3390/ijms231810638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of gut barrier integrity in intestinal homeostasis and the consequences of its alteration in the etiology of human pathologies have been subjects of exponentially growing interest during the last decade [...].
Collapse
Affiliation(s)
- Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, F-75012 Paris, France
- EPHE, PSL University, F-75014 Paris, France
| | - Véronique Carrière
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, F-75012 Paris, France
| |
Collapse
|