1
|
Shen L, Zhou Y, Gong J, Fan H, Liu L. The role of macrophages in hypertrophic scarring: molecular to therapeutic insights. Front Immunol 2025; 16:1503985. [PMID: 40226618 PMCID: PMC11986478 DOI: 10.3389/fimmu.2025.1503985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hypertrophic Scar (HS) is a common fibrotic disease of the skin, usually caused by injury to the deep dermis due to trauma, burns, or surgical injury. The main feature of HS is the thickening and hardening of the skin, often accompanied by itching and pain, which seriously affects the patient's quality of life. Macrophages are involved in all stages of HS genesis through phenotypic changes. M1-type macrophages primarily function in the early inflammatory phase by secreting pro-inflammatory factors, while M2-type macrophages actively contribute to tissue repair and fibrosis. Despite advances in understanding HS pathogenesis, the precise mechanisms linking macrophage phenotypic changes to fibrosis remain incompletely elucidated. This review addresses these gaps by discussing the pathological mechanisms of HS formation, the phenotypic changes of macrophages at different stages of HS formation, and the pathways through which macrophages influence HS progression. Furthermore, emerging technologies for HS treatment and novel therapeutic strategies targeting macrophages are highlighted, offering potential avenues for improved prevention and treatment of HS.
Collapse
Affiliation(s)
| | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Liana P, Syahbiran HG, Sari NP, Rahadiyanto KY, Nurwany R, Nurhidayat W, Umar TP. Haematology results, inflammatory haematological ratios, and inflammatory indices in cervical cancer: How is the difference between cancer stage? World J Exp Med 2025; 15:96988. [PMID: 40115758 PMCID: PMC11718581 DOI: 10.5493/wjem.v15.i1.96988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Cervical cancer is a prevalent form of cancer affecting women worldwide and it is the second most common cancer among women in Indonesia, accounting for 8.5% of all cancer-related deaths. Cervical cancer progression can be evaluated through laboratory tests to detect anaemia, an increased platelet count, and elevated inflammatory markers, therefore, effective laboratory examination is crucial for early detection and treatment of cervical cancer. AIM To evaluate the association between laboratory findings (haematology, haematology index, and inflammatory index) and the clinical stage of cervical cancer. METHODS This cross-sectional study analyzed adult cervical cancer patients' data from medical records and laboratory results including sociodemographic status, histopathological finding, clinical stage, and complete haematology examination. Numerical data was analyzed by the one-way ANOVA (normal data distribution), while the Kruskal-Wallis test was used for non-parametric data (abnormal distribution), followed by appropriate post-hoc analysis. The categorical data was analyzed by the Chi-square or Fisher Exact tests. The significance level was established at a P value < 0.05. RESULTS This study involved the data of 208 adult cervical cancer patients and found no association between age, marital history, parity history, hormonal contraceptive use and cervical cancer stages. There were significant differences in the clinical laboratory test results based on the clinical stage of cervical cancer, including haemoglobin levels (P < 0.001), leucocytes (P < 0.001), neutrophils (P < 0.001), monocytes (P = 0.002), lymphocytes (P = 0.006), platelets (P < 0.001), neutrophil-lymphocyte ratio/NLR (P < 0.001), lymphocyte-monocyte ratio/LMR (P < 0.001), and platelet-lymphocyte ratio/PLR (P < 0.001). There were also significant differences in the systemic inflammatory index (SII) and systematic inflammatory response index (SIRI) between stage III + IV cervical cancer and stage II (SII P < 0.001; SIRI P = 0.001) and stage I (SII P < 0.001; SIRI P = 0.016), associated with the shifts in previously mentioned complete haematological values with cancer advancement. CONCLUSION The haematological parameters, inflammatory haematological ratios, and inflammatory indices exhibited significant differences between cervical cancer stages, therefore these tests can be utilized to evaluate cervical cancer progression.
Collapse
Affiliation(s)
- Phey Liana
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya-Dr. Mohammad Hoesin General Hospital, Palembang 30114, Sumatera Selatan, Indonesia
| | - Hanif Gusneri Syahbiran
- Department of Medicine Programme, Faculty of Medicine, Universitas Sriwijaya, Palembang 30114, Sumatera Selatan, Indonesia
| | - Nurmalia Purnama Sari
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya-Dr. Mohammad Hoesin General Hospital, Palembang 30114, Sumatera Selatan, Indonesia
| | - Kemas Yakub Rahadiyanto
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya, Palembang 30114, Sumatera Selatan, Indonesia
| | - Raissa Nurwany
- Department of Physiology and Medical Physics, Faculty of Medicine, Universitas Sriwijaya, Palembang 30114, Sumatera Selatan, Indonesia
| | - Wahyudi Nurhidayat
- Department of Radiotherapy, Dr. Mohammad Hoesin General Hospital, Palembang 30114, Sumatera Selatan, Indonesia
| | - Tungki Pratama Umar
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Everts PA, Podesta L, Lana JF, Shapiro G, Domingues RB, van Zundert A, Alexander RW. The Regenerative Marriage Between High-Density Platelet-Rich Plasma and Adipose Tissue. Int J Mol Sci 2025; 26:2154. [PMID: 40076775 PMCID: PMC11900530 DOI: 10.3390/ijms26052154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The use of autologous biological preparations (ABPs) and their combinations fills the void in healthcare treatment options that exists between surgical procedures, like plastic reconstructive, cosmetic, and orthopedic surgeries; non-surgical musculoskeletal biological procedures; and current pharmaceutical treatments. ABPs, including high-density platelet-rich plasma (HD-PRP), bone marrow aspirate concentrates (BMACs), and adipose tissue preparations, with their unique stromal vascular fractions (SVFs), can play important roles in tissue regeneration and repair processes. They can be easily and safely prepared at the point of care. Healthcare professionals can employ ABPs to mimic the classical wound healing cascade, initiate the angiogenesis cascade, and induce tissue regenerative pathways, aiming to restore the integrity and function of damaged tissues. In this review, we will address combining autologous HD-PRP with adipose tissue, in particular the tissue stromal vascular fraction (t-SVF), as we believe that this biocellular combination demonstrates a synergistic effect, where the HD-PRP constituents enhance the regenerative potential of t-SVF and its adipose-derived mesenchymal stem cells (AD-MSCs) and pericytes, leading to improved functional tissue repair, tissue regeneration, and wound healing in variety of clinical applications. We will address some relevant platelet bio-physiological aspects, since these properties contribute to the synergistic effects of combining HD-PRP with t-SVF, promoting overall better outcomes in chronic inflammatory conditions, soft tissue repair, and tissue rejuvenation.
Collapse
Affiliation(s)
- Peter A. Everts
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | - Luga Podesta
- Bluetail Medical Group and Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| | - José Fabio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - George Shapiro
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Rafael Barnabé Domingues
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - Andre van Zundert
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic and Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative Medicine and Wound Healing, Hamilton, MT 5998840, USA;
- Department of Surgery and Maxillofacial Surgery, University of Washington, Seattle, WA 988104, USA
| |
Collapse
|
4
|
Zhao Q, Yang P, Li JP, Du L, Wang W, Zhu SX, Wu S, Chen YF. Association between platelet/high-density lipoprotein cholesterol ratio and blood eosinophil counts in American adults with asthma: a population-based study. Lipids Health Dis 2025; 24:67. [PMID: 39984961 PMCID: PMC11846263 DOI: 10.1186/s12944-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE This study aims to evaluate the relationship between the platelet-to-high-density lipoprotein cholesterol ratio (PHR) and blood eosinophil counts (BEOC) in asthmatic patients, using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. METHODS This research explored the link between PHR and BEOC among adults with asthma, drawing on data from a representative U.S. population sample (n = 3034; NHANES 2011-2018). To assess this relationship, multivariable linear models were employed, alongside subgroup and interaction analyses to identify any potential variations across different groups. Additionally, generalized additive models, smooth curve fitting, and threshold effect analysis were employed to explore the relationships in greater detail. Sensitivity tests were performed to ensure the robustness of the findings. RESULTS The weighted multivariable linear regression analysis showed that after adjusting for all covariables, each one-unit rise in PHR was linked to an increase of 41.61 in BEOC (β: 41.61, 95% CI: 25.25-57.97). Subgroup analyses demonstrated consistency across various categories, reinforcing the significant positive association between PHR and BEOC. Interaction tests indicated that this positive association remained stable regardless of factors such as body mass index, smoking, hypertension, or diabetes, with all interaction P-values greater than 0.05. Additionally, the application of generalized additive models and two-piece linear regression models further confirmed the linear association between PHR and BEOC. CONCLUSIONS Our study indicates that a higher PHR may be associated with an increased risk of elevated BEOC in American adults with asthma. Thus, PHR might be considered a potential marker for predicting elevated BEOC levels in this population.
Collapse
Affiliation(s)
- Qian Zhao
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Peng Yang
- Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Jing-Pan Li
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Lei Du
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Wei Wang
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yun-Feng Chen
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Sánchez M, Mercader Ruiz J, Marijuán Pinel D, Sánchez P, Fiz N, Guadilla J, Azofra J, Beitia M, Delgado D. Increasing the concentration of plasma molecules improves the biological activity of platelet-rich plasma for tissue regeneration. Sci Rep 2025; 15:4523. [PMID: 39915642 PMCID: PMC11802898 DOI: 10.1038/s41598-025-88918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Platelet-rich plasma (PRP) has emerged as a promising therapy in a variety of medical fields. However, it is crucial to go beyond simple platelet concentration and examine the complex molecular composition both inside and outside platelets. The present work studies the effectiveness of a novel type of PRP named 'balanced protein-concentrate plasma' (BPCP). Different growth factor (GF) levels were measured using Enzyme Linked Immunosorbent Assay (ELISA), and in addition to the increase in intra-platelet GFs found in standard PRP (sPRP), BPCP also showed a higher concentration of plasmatic protein. Furthermore, extracellular vesicle (EV) concentration was significantly higher in BPCP. Cell proliferation was higher in cells incubated with lysates derived from BPCP compared to those cultured with sPRP. Regarding cell migration capacity, it was found that the process is platelet-dependent. Finally, the anti-inflammatory effect of BPCP was evaluated by inducing an inflammatory environment in M1-type macrophages. Cytokine levels were measured by ELISA following BPCP administration, showing a significant decrease in pro-inflammatory IL-1β, IL-6 and TNF-α. In summary, although further preclinical and clinical studies are needed in order to determine the therapeutic potential of BPCP, this PRP with unique characteristics demonstrates encouraging in vitro results that could potentially enhance tissue regeneration capacity.
Collapse
Affiliation(s)
- Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain.
| | - Jon Mercader Ruiz
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Daniel Marijuán Pinel
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Nicolás Fiz
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Jorge Guadilla
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Juan Azofra
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008, Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Ali U, Chopra M, Knight G. Trajectories of platelet indices and their association with mortality in the ICU-a longitudinal cohort study. Scand J Clin Lab Invest 2025; 85:1-10. [PMID: 39831566 DOI: 10.1080/00365513.2025.2453903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
While thrombocytopenia's link to mortality is known, the prognostic impact of longitudinal trajectories of platelet indices in combination with analysis of thrombocytopenia's mediating role remains unexplored. This is the first study that addresses this significant gap by investigating the association between seven platelet indices trajectory subphenotypes and ICU mortality, considering thrombocytopenia's mediating influence. Four hundred and twenty-one adult ICU patients were enrolled in this longitudinal cohort study. Three trajectories were identified for each platelet index, namely: descending, stable, and ascending, and using a regression, receiver-operating characteristic curve, and mediation analysis, their associations with 90-day mortality were evaluated with the mediating effect of thrombocytopenia. The findings were adjusted (prefixed 'a') for covariates. The heterogeneous trajectories significantly associated with 90-day mortality included: descending platelet count (PC) [aOR, 2.75 (CI, 1.56-4.85), p = 0.0005, aAUC, 0.783], descending plateletcrit (PCT) [aOR, 3.49 (CI, 1.88-6.46), p = 0.0001, aAUC, 0.802], ascending platelet distribution width (PDW) [aOR, 2.04 (CI, 1.13-3.71), p = 0.0188, aAUC, 0.776], and ascending percent-immature platelet fraction (%-IPF) [aOR, 2.25 (CI, 1.29-3.94), p = 0.0045, aAUC, 0.778], with 11.6% (p = 0.027), 12.0% (p = 0.019), 22.1% (p = 0.011), and 15.9% (p = 0.024) effects mediated by thrombocytopenia, respectively. In contrast, ascending mean platelet volume (MPV) was significantly and independently associated with mortality [aOR, 3.04 (CI, 1.45-6.39), p = 0.0033, aAUC, 0.781], without the effect mediated by thrombocytopenia (p = 0.056). The trajectories of platelet-large cell ratio (P-LCR) and absolute-immature platelet count (A-IPF) were not significantly associated with the risk of mortality (p > 0.05). This study demonstrated that descending PC and PCT and ascending PDW and %-IPF, mediated by thrombocytopenia, and ascending MPV, without mediation by thrombocytopenia, are useful longitudinal trajectories for predicting 90-day mortality in the ICU.
Collapse
Affiliation(s)
- Usman Ali
- Department of Haematology, The Royal London Hospital, London, UK
| | - Mridula Chopra
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Gavin Knight
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
7
|
Cicek V, Erdem A, Kilic S, Tay B, Kamil Yemis M, Taslicukur S, Oguz M, Oz A, Selcuk M, Cinar T, Bagci U. Predictive strength of inflammatory scores for in-hospital mortality in infective endocarditis. Herz 2025:10.1007/s00059-024-05292-9. [PMID: 39853409 DOI: 10.1007/s00059-024-05292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Inflammatory markers have been proposed as prognostic tools for predicting in-hospital mortality in infective endocarditis (IE). Nonetheless, it is unclear whether these markers provide additional prognostic value over established indicators. This study compared nine different inflammation scores to assess their effectiveness in enhancing the prediction of in-hospital mortality. METHODS Patients with IE diagnosed between 2017 and 2023 at two cardiology centers in Istanbul were included in this study. Pre-treatment inflammatory markers were obtained from the hospital electronic database system. In-hospital mortality prognostication was assessed using Cox proportional hazards models. RESULTS A total of 122 patients who were diagnosed with IE were included in the analysis. Overall, 38 patients died during the hospital stay. The patients were categorized into two groups based on their mortality status. The prognostic nutritional index (PNI), platelet-to-lymphocyte ratio (PLR), and modified Glasgow prognostic score (mGPS) were identified as statistically significant predictors of in-hospital mortality. Based on the results of Cox regression analysis, the PNI (hazard ratio [HR]: 0.921, 95% confidence interval [CI]: 0.853-0.994, p = 0.035) emerged as the only independent predictor of in-hospital mortality of IE patients. CONCLUSION Nine inflammatory scores were evaluated in this study. The PNI, PLR, and mGPS were statistically significant predictors of in-hospital mortality in patients with IE. The PNI was identified as the optimal score.
Collapse
Affiliation(s)
- Vedat Cicek
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, 737 N. Michigan Avenue Suite 1600, 60611, Chicago, IL, USA.
| | - Almina Erdem
- Sultan II. Abdülhamid Han Training and Research Hospital, Department of Cardiology, Health Sciences University, Istanbul, Turkey
| | - Sahhan Kilic
- Sultan II. Abdülhamid Han Training and Research Hospital, Department of Cardiology, Health Sciences University, Istanbul, Turkey
| | - Burak Tay
- Department of Cardiology, Sancaktepe Sehit Prof. Dr. İlhan Varank Training and Research Hospıtal, Istanbul, Turkey
| | - Mustafa Kamil Yemis
- Department of Cardiology, İstanbul Education and Research Hospital, Istanbul, Turkey
| | - Solen Taslicukur
- Department of Cardiology, İstanbul Education and Research Hospital, Istanbul, Turkey
| | - Mustafa Oguz
- Sultan II. Abdülhamid Han Training and Research Hospital, Department of Cardiology, Health Sciences University, Istanbul, Turkey
| | - Ahmet Oz
- Department of Cardiology, İstanbul Education and Research Hospital, Istanbul, Turkey
| | - Murat Selcuk
- Department of Cardiology, Sancaktepe Sehit Prof. Dr. İlhan Varank Training and Research Hospıtal, Istanbul, Turkey
| | - Tufan Cinar
- School of Medicine, Department of Medicine, University of Maryland, Baltimore, USA
| | - Ulas Bagci
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, 737 N. Michigan Avenue Suite 1600, 60611, Chicago, IL, USA
| |
Collapse
|
8
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024; 24:1381-1394. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
9
|
Blick-Nitko SK, Ture SK, Schafer XL, Munger JC, Livada AC, Li C, Maurya P, Rondina MT, Morrell CN. Platelet Ido1 expression is induced during Plasmodium yoelii infection, altering plasma tryptophan metabolites. Blood Adv 2024; 8:5814-5825. [PMID: 39133890 PMCID: PMC11609358 DOI: 10.1182/bloodadvances.2024013175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/11/2024] Open
Abstract
ABSTRACT Platelets are immune responsive in many diseases as noted by changes in platelet messenger RNA in conditions such as sepsis, atherosclerosis, COVID-19, and many other inflammatory and infectious etiologies. The malaria causing Plasmodium parasite is a persistent public health threat and significant evidence shows that platelets participate in host responses to infection. Using a mouse model of nonlethal/uncomplicated malaria, non-lethal Plasmodium yoelii strain XNL (PyNL)-infected but not control mouse platelets expressed Ido1, a rate limiting enzyme in tryptophan metabolism that increases kynurenine at the expense of serotonin. Interferon-γ (IFN-γ) is a potent inducer of Ido1 and mice treated with recombinant IFN-γ had increased platelet Ido1 and IDO1 activity. PyNL-infected mice treated with anti-IFN-γ antibody had similar platelet Ido1 and metabolic profiles to that of uninfected controls. PyNL-infected mice become thrombocytopenic by day 7 after infection and transfusion of platelets from IFN-γ-treated wild-type mice but not Ido1-/- mice increased the plasma kynurenine-to-tryptophan ratio, indicating that platelets are a source of postinfection IDO1 activity. We generated platelet-specific Ido1 knockout mice to assess the contribution of platelet Ido1 during PyNL infection. Platelet-specific Ido1-/- mice had increased death and evidence of lung thrombi, which were not present in infected wild-type mice. Platelet Ido1 may be a significant contributor to plasma kynurenine in IFN-γ-driven immune processes and the loss of platelets may limit total Ido1, leading to immune and vascular dysfunction.
Collapse
Affiliation(s)
- Sara K. Blick-Nitko
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sara K. Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Xenia L. Schafer
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Joshua C. Munger
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Alison C. Livada
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Li
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Preeti Maurya
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
10
|
Zhang M, Ye S, Li J, Zhang M, Tan L, Wang Y, Xie P, Peng H, Li S, Chen S, Wen Q, Chan KW, Tang SCW, Li B, Chen W. Association of systemic immune-inflammation index with all-cause and cardio-cerebrovascular mortality in individuals with diabetic kidney disease: evidence from NHANES 1999-2018. Front Endocrinol (Lausanne) 2024; 15:1399832. [PMID: 39659615 PMCID: PMC11628304 DOI: 10.3389/fendo.2024.1399832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Background Emerging evidence suggests a potential role of immune response and inflammation in the pathogenesis of diabetic kidney disease (DKD). The systemic immune-inflammation index (SII) offers a comprehensive measure of inflammation; however, its relationship with the prognosis of DKD patients remains unclear. Methods Using data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018, this cross-sectional study involved adults diagnosed with DKD. Cox proportional hazards models were utilized to assess the associations between SII and all-cause or cardio-cerebrovascular disease mortality. Additionally, restricted cubic spline, piecewise linear regression, and subgroup analyses were performed. Results Over a median follow-up duration of 6.16 years, 1338 all-cause deaths were recorded. After adjusting for covariates, elevated SII levels were significantly associated with increased risks of all-cause and cardio-cerebrovascular disease mortality. Specifically, per one-unit increment in natural log-transformed SII (lnSII), there was a 29% increased risk of all-cause mortality (P < 0.001) and a 23% increased risk of cardio-cerebrovascular disease mortality (P = 0.01) in the fully adjusted model. Similar results were observed when SII was analyzed as a categorical variable (quartiles). Moreover, nonlinear association was identified between SII and all-cause mortality (P < 0.001) through restricted cubic spline analysis, with threshold value of 5.82 for lnSII. The robustness of these findings was confirmed in subgroup analyses. Likewise, the statistically significant correlation between SII levels and cardio-cerebrovascular disease mortality persisted in individuals with DKD. Conclusion Increased SII levels, whether examined as continuous variables or categorized, demonstrate a significant association with elevated risks of all-cause and cardio-cerebrovascular disease mortality among DKD patients. These findings imply that maintaining SII within an optimal range could be crucial in reducing mortality risk.
Collapse
Affiliation(s)
- Manhuai Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Meng Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yiqin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Peichen Xie
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Huajing Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Suchun Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Qiong Wen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Kam Wa Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Health Commission (NHC) Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
11
|
Momi S, Gresele P. The Role of Platelets in Atherosclerosis: A Historical Review. Semin Thromb Hemost 2024. [PMID: 39561814 DOI: 10.1055/s-0044-1795097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet-leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Zhao X, Karaboyas A, Gan L, Hou FF, Liang X, Chen X, Chen Y, Ni Z, Pecoits-Filho R, Zuo L. Platelet count has a U-shaped association with mortality in hemodialysis patients. Sci Rep 2024; 14:26572. [PMID: 39496692 PMCID: PMC11535514 DOI: 10.1038/s41598-024-77718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Our previous manuscript showed that thrombocytopenia predicts all-cause mortality in Chinese hemodialysis (HD) patients. Based on the role of platelets in coagulation, clot formation, and systemic inflammation, we speculate that high platelets increase risk of thrombo-embolic events, hence the mortality. However, research evidence is currently lacking. Therefore, we utilized data from a very large international cohort study to explore the association of platelet counts with mortality and cardiovascular (CV) death in hemodialysis (HD) patients. International data from 396 facilities enrolled in the Dialysis Outcomes and Practice Patterns Study (DOPPS) phase 5 (2012-2015) were analyzed. Participants were divided into 3 groups according to their platelet counts (low: <100, normal: 100-300, high: >300*109). Associations between platelet counts and all-cause and CV mortality were analyzed using Cox regression, adjusted for confounders. There were 13,631 patients with median age of 65 years old. Males accounted for 61.2%. Mean platelet count was 205*109/L overall and ranged from 173 *109/L in China to 227 *109/L in Sweden. Overall, 2,348 (17.2%) patients died and 1017 (7.5%) died from CV disease. Both low (HR:1.48, 95% CI 1.21-1.80, p < 0.001) and high (HR:1.17, 95% CI 1.00- 1.35, p = 0.044) platelet counts were associated with higher all-cause mortality after adjustment for covariates; results for CV death were consistent. Platelet count has a U-shaped association with all-cause and CV mortality in HD patients, and thus may be used as an outcome predictor that is readily available among HD patients.
Collapse
Affiliation(s)
- Xinju Zhao
- Department of Nephrology, Peking University People's Hospital, Unit 10C in Ward Building, 11 Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Angelo Karaboyas
- DOPPS Program Area, Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, Unit 10C in Ward Building, 11 Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaonong Chen
- Division of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuqing Chen
- Renal Division, Peking University First Hospital, Beijing, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Roberto Pecoits-Filho
- DOPPS Program Area, Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Unit 10C in Ward Building, 11 Xizhimennan Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
13
|
Duttaroy AK. Functional Foods in Preventing Human Blood Platelet Hyperactivity-Mediated Diseases-An Updated Review. Nutrients 2024; 16:3717. [PMID: 39519549 PMCID: PMC11547462 DOI: 10.3390/nu16213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Backgrounds/Objectives: Abnormal platelet functions are associated with human morbidity and mortality. Platelets have emerged as critical regulators of numerous physiological and pathological processes beyond their established roles in hemostasis and thrombosis. Maintaining physiological platelet function is essential to hemostasis and preventing platelet-associated diseases such as cardiovascular disease, cancer metastasis, immune disorders, hypertension, diabetes, sickle cell disease, inflammatory bowel disease, sepsis, rheumatoid arthritis, myeloproliferative disease, and Alzheimer's disease. Platelets become hyperactive in obesity, diabetes, a sedentary lifestyle, hypertension, pollution, and smokers. Platelets, upon activation, can trawl leukocytes and progenitor cells to the vascular sites. Platelets release various proinflammatory, anti-inflammatory, and angiogenic factors and shed microparticles in the circulation, thus promoting pathological reactions. These platelet-released factors also maintain sustained activation, further impacting these disease processes. Although the mechanisms are unknown, multiple stimuli induce platelet hyperreactivity but involve the early pathways of platelet activation. The exact mechanisms of how hyperactive platelets contribute to these diseases are still unclear, and antiplatelet strategies are inevitable for preventing these diseases. Reducing platelet function during the early stages could significantly impact these diseases. However, while this is potentially a worthwhile intervention, using antiplatelet drugs to limit platelet function in apparently healthy individuals without cardiovascular disease is not recommended due to the increased risk of internal bleeding, resistance, and other side effects. The challenge for therapeutic intervention in these diseases is identifying factors that preferentially block specific targets involved in platelets' complex contribution to these diseases while leaving their hemostatic function at least partially intact. Since antiplatelet drugs such as aspirin are not recommended as primary preventives, it is essential to use alternative safe platelet inhibitors without side effects. METHODS A systematic search of the PUBMED database from 2000 to 2023 was conducted using the selected keywords: "functional foods", "polyphenols", "fatty acids", "herbs", fruits and vegetables", "cardioprotective agents", "plant", "platelet aggregation", "platelet activation", "clinical and non-clinical trial", "randomized", and "controlled". RESULTS Potent natural antiplatelet factors have been described, including omega-3 fatty acids, polyphenols, and other phytochemicals. Antiplatelet bioactive compounds in food that can prevent platelet hyperactivity and thus may prevent several platelet-mediated diseases, including cardiovascular disease. CONCLUSIONS This narrative review describes the work during 2000-2023 in developing functional foods from natural sources with antiplatelet effects.
Collapse
Affiliation(s)
- Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
14
|
Zhang M, Li YP, He N, Dang SS. Platelets in liver cancer. Shijie Huaren Xiaohua Zazhi 2024; 32:735-741. [DOI: 10.11569/wcjd.v32.i10.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Platelets are an important component of blood. In addition to the key role in the process of hemostasis and coagulation, platelets also have an important role in the occurrence and development of a variety of tumors. Primary liver cancer is one of the most common malignant tumors in the world. Because its development process usually follows the hepatitis-cirrhosis-liver cancer sequence, it is often accompanied by platelet changes. Research on platelets and the development of liver cancer has obtained much new evidence that activated platelets can promote the occurrence and development of liver cancer through direct contact or indirect contact. Therapeutic strategies targeting platelets have the potential to reduce the occurrence and progression of tumors. This article summarizes the research on platelets in liver cancer.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| | - Na He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| |
Collapse
|
15
|
Gorodilova AV, Kharisova CB, Osinnikova MN, Kitaeva KV, Filin IY, Mayasin YP, Solovyeva VV, Rizvanov AA. The Well-Forgotten Old: Platelet-Rich Plasma in Modern Anti-Aging Therapy. Cells 2024; 13:1755. [PMID: 39513862 PMCID: PMC11545519 DOI: 10.3390/cells13211755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Currently, approaches to personalized medicine are actively developing. For example, the use of platelet-rich plasma (PRP) is actively growing every year. As a result of activation, platelets release a wide range of growth factors, cytokines, chemokines, and angiogenic factors, after which these molecules regulate chemotaxis, inflammation, and vasomotor function and play a crucial role in restoring the integrity of damaged vascular walls, angiogenesis, and tissue regeneration. Due to these characteristics, PRP has a wide potential in regenerative medicine and gerontology. PRP products are actively used not only in esthetic medicine but also to stimulate tissue regeneration and relieve chronic inflammation. PRP therapy has a number of advantages, but the controversial results of clinical studies, a lack of standardization of the sample preparation of the material, and insufficient objective data on the evaluation of efficacy do not allow us to unambiguously look at the use of PRP for therapeutic purposes. In this review, we will examine the current clinical efficacy of PRP-based products and analyze the contribution of PRP in the therapy of diseases associated with aging.
Collapse
Affiliation(s)
- Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420008 Kazan, Russia
| |
Collapse
|
16
|
Anitua E, Zalduendo M, Prado R, Troya M, Tierno R, de la Fuente M, Alkhraisat MH. The Biological Effect of Enriching the Plasma Content in Platelet-Rich Plasma: An In Vitro Study. Biomolecules 2024; 14:1328. [PMID: 39456261 PMCID: PMC11506755 DOI: 10.3390/biom14101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) formulations have become valuable therapeutic tools in regenerative medicine. In addition, these blood derivates have been successfully included in cell therapy as fetal bovine serum substitutes, due to the real need to avoid the risk of host immunologic reactions and the animal disease transmission associated with reagents from animal origin. However, the protocols for obtaining them should be optimized to improve their biological potential. METHODS PRP-derived preparations with different concentrations of the platelet and plasma components were obtained from the blood of five donors by freeze-drying. Measurements of the pH, protein, and growth factor concentration were performed. Moreover, their biological effects on cell proliferation and migration and their angiogenic potential were assessed. RESULTS An increased plasma component concentration resulted in an augmented quantity of the total protein content, a significative variation in the hepatocyte growth factor concentration, and an experimental but clinically irrelevant alteration of the pH value. No significant changes were induced in their potential to enhance proliferative and migratory responses in epithelial cells, with the latter being reduced for dermal fibroblasts. The endothelial cell capacity for tube formation was significatively reduced. CONCLUSIONS An increased blood plasma content did not improve the biological potential of the formulations. However, they have emerged as a promising approach for regenerative therapies where neovascularization must be avoided.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Mar Zalduendo
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Roberto Prado
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - María Troya
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - María de la Fuente
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Mohammad H. Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| |
Collapse
|
17
|
Maksić M, Corović I, Stanisavljević I, Radojević D, Veljković T, Todorović Ž, Jovanović M, Zdravković N, Stojanović B, Marković BS, Jovanović I. Heyde Syndrome Unveiled: A Case Report with Current Literature Review and Molecular Insights. Int J Mol Sci 2024; 25:11041. [PMID: 39456826 PMCID: PMC11507012 DOI: 10.3390/ijms252011041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Heyde syndrome, marked by aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome, is often underreported. Shear stress from a narrowed aortic valve degrades von Willebrand factor multimers, leading to angiodysplasia formation and von Willebrand factor deficiency. This case report aims to raise clinician awareness of Heyde syndrome, its complexity, and the need for a multidisciplinary approach. We present a 75-year-old man with aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome type 2A. The patient was successfully treated with argon plasma coagulation and blood transfusions. He declined further treatment for aortic stenosis but was in good overall health with improved laboratory results during follow-up. Additionally, we provide a comprehensive review of the molecular mechanisms involved in the development of this syndrome, discuss current diagnostic and treatment approaches, and offer future perspectives for further research on this topic.
Collapse
Affiliation(s)
- Mladen Maksić
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Irfan Corović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Isidora Stanisavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Dušan Radojević
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Tijana Veljković
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Željko Todorović
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Marina Jovanović
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Nataša Zdravković
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Bojan Stojanović
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Ivan Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| |
Collapse
|
18
|
Kim MJ, Song YJ, Kwon TG, Lee JH, Chun SY, Oh SH. Platelet-Rich Plasma-Embedded Porous Polycaprolactone Film with a Large Surface Area for Effective Hemostasis. Tissue Eng Regen Med 2024; 21:995-1005. [PMID: 38896385 PMCID: PMC11416449 DOI: 10.1007/s13770-024-00656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Uncontrollable and widespread bleeding caused by surgery or sudden accidents can lead to death if not treated with appropriate hemostasis. To prevent excessive life-threatening bleeding, various hemostatic agents based on polymeric biomaterials with various additives for accelerated blood coagulation have been adopted in clinical fields. In particular, platelet-rich plasma (PRP), which contains many blood coagulation factors that can accelerate blood clot formation, is considered as one of the most effective hemostatic additives. METHODS We investigated a PRP-embedded porous film using discarded (expired) PRP and a film with a leaf-stacked structure (FLSS), as a hemostatic agent to induce rapid hemostasis. The film, which contained an LSS on one side (PCL-FLSS), was fabricated by a simple heating-cooling technique using tetraglycol and polycaprolactone (PCL) film. Activated PRP was obtained by the thawing of frozen PRP at the end of its expiration date (the platelet cell membrane is disrupted during the freezing and thawing of PRP, thus releasing various coagulation factors) and embedded in the PCL-FLSS (PRP-FLSS). RESULTS From in vitro and in vivo experiments using a rat hepatic bleeding model, it was recognized that PRP-FLSS is not only biocompatible but also significantly accelerates blood clotting and thus prevents rapid bleeding, probably due to a synergistic effect of the sufficient supply of various blood coagulants from activated PRP embedded in the LSS layer and the large surface area of the LSS itself. CONCLUSION The study suggests that PRP-FLSS, a combination of a porous polymer matrix with a unique morphology and discarded biofunctional resources, can be an advanced hemostatic agent as well as an upcycling platform to avoid the waste of biofunctional resources.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ye Jin Song
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Chilgok Kyungpook National University Hospital, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, 34054, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
19
|
Tarle M, Raguž M, Lukšić I. A Comparative Study of the Aggregate Index of Systemic Inflammation (AISI) and C-Reactive Protein (CRP) in Predicting Odontogenic Abscesses Severity: A Novel Approach to Assessing Immunoinflammatory Response. Diagnostics (Basel) 2024; 14:2163. [PMID: 39410567 PMCID: PMC11475933 DOI: 10.3390/diagnostics14192163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Odontogenic abscesses are a common cause of emergency visits to oral and maxillofacial surgery departments and can lead to life-threatening complications if they are not recognized and treated promptly. The aim of this study was to evaluate the prognostic value of the Aggregate Index of Systemic Inflammation (AISI) in comparison to other systemic inflammatory indices, including the Systemic Immune Inflammation Index (SII), the Neutrophil-to-Lymphocyte Ratio (NLR), the Platelet-to-Lymphocyte Ratio (PLR), and the Lymphocyte-to-Monocyte Ratio (LMR), in predicting the severity of odontogenic abscesses. Methods: This retrospective study included 221 patients hospitalized for odontogenic abscesses at Dubrava University Hospital between January 2019 and December 2023. Clinical and laboratory data, including AISI, SII, NLR, PLR, and LMR, were collected. The severity of the abscesses was assessed using the Symptom Severity (SS) Score and patients were categorized into less severe and severe groups based on their scores. An ROC curve analysis was used to assess the predictive accuracy of each inflammatory index. Results: The AISI was identified as the most effective predictor of abscess severity and had the highest sensitivity (SE = 82.93) and specificity (SP = 81.63) among the indices analyzed. It outperformed C-reactive protein (CRP) in predicting severe abscesses with an AUC of 0.90 compared to 0.74 for CRP. In addition, AISI showed significant correlations with length of hospital stay and the occurrence of systemic inflammatory response syndrome (SIRS). Conclusions: The AISI index is a better predictor of odontogenic abscess severity compared to other systemic inflammatory markers and CRP. Its integration into clinical practice could improve the early detection of high-risk patients, leading to better treatment outcomes and lower risks of complications.
Collapse
Affiliation(s)
- Marko Tarle
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
21
|
Martinez Bravo G, Annarapu G, Carmona E, Nawarskas J, Clark R, Novelli E, Mota Alvidrez RI. Platelets in Thrombosis and Atherosclerosis: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1608-1621. [PMID: 38885926 PMCID: PMC11373056 DOI: 10.1016/j.ajpath.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
This review focuses on the dual role of platelets in atherosclerosis and thrombosis, exploring their involvement in inflammation, angiogenesis, and plaque formation, as well as their hemostatic and prothrombotic functions. Beyond their thrombotic functions, platelets engage in complex interactions with diverse cell types, influencing disease resolution and progression. The contribution of platelet degranulation helps in the formation of atheromatous plaque, whereas the reciprocal interaction with monocytes adds complexity. Alterations in platelet membrane receptors and signaling cascades contribute to advanced atherosclerosis, culminating in atherothrombotic events. Understanding these multifaceted roles of platelets will lead to the development of targeted antiplatelet strategies for effective cardiovascular disease prevention and treatment. Understanding platelet functions in atherosclerosis and atherothrombosis at different stages of disease will be critical for designing targeted treatments and medications to prevent or cure the disease Through this understanding, platelets can be targeted at specific times in the atherosclerosis process, possibly preventing the development of atherothrombosis.
Collapse
Affiliation(s)
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emely Carmona
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Nawarskas
- Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Ross Clark
- Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico
| | - Enrico Novelli
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Roberto I Mota Alvidrez
- Biomedical Engineering Department, University of New Mexico, Albuquerque, New Mexico; Pharmaceutical Sciences-Pharmacy Practice, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico; Clinical and Translational Science Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
22
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Beyond Blood Clotting: The Many Roles of Platelet-Derived Extracellular Vesicles. Biomedicines 2024; 12:1850. [PMID: 39200314 PMCID: PMC11351396 DOI: 10.3390/biomedicines12081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Platelet-derived extracellular vesicles (pEVs) are emerging as pivotal players in numerous physiological and pathological processes, extending beyond their traditional roles in hemostasis and thrombosis. As one of the most abundant vesicle types in human blood, pEVs transport a diverse array of bioactive molecules, including growth factors, cytokines, and clotting factors, facilitating crucial intercellular communication, immune regulation, and tissue healing. The unique ability of pEVs to traverse tissue barriers and their biocompatibility position them as promising candidates for targeted drug delivery and regenerative medicine applications. Recent studies have underscored their involvement in cancer progression, viral infections, wound healing, osteoarthritis, sepsis, cardiovascular diseases, rheumatoid arthritis, and atherothrombosis. For instance, pEVs promote tumor progression and metastasis, enhance tissue repair, and contribute to thrombo-inflammation in diseases such as COVID-19. Despite their potential, challenges remain, including the need for standardized isolation techniques and a comprehensive understanding of their mechanisms of action. Current research efforts are focused on leveraging pEVs for innovative anti-cancer treatments, advanced drug delivery systems, regenerative therapies, and as biomarkers for disease diagnosis and monitoring. This review highlights the necessity of overcoming technical hurdles, refining isolation methods, and establishing standardized protocols to fully unlock the therapeutic potential of pEVs. By understanding the diverse functions and applications of pEVs, we can advance their use in clinical settings, ultimately revolutionizing treatment strategies across various medical fields and improving patient outcomes.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
23
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
24
|
Anestiadou E, Kotidis E, Abba Deka I, Tatsis D, Bekiari C, Loukousia A, Ioannidis O, Stamiris S, Zapsalis K, Xylas C, Siozos K, Chatzianestiadou C, Angelopoulos S, Papavramidis T, Cheva A. Platelet-Rich Therapies in Hernia Repair: A Comprehensive Review of the Impact of Platelet Concentrates on Mesh Integration in Hernia Management. Biomolecules 2024; 14:921. [PMID: 39199309 PMCID: PMC11352183 DOI: 10.3390/biom14080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Mesh-augmented hernia repair is the gold standard in abdominal wall and hiatal/diaphragmatic hernia management and ranks among the most common procedures performed by general surgeons. However, it is associated with a series of drawbacks, including recurrence, mesh infection, and adhesion formation. To address these weaknesses, numerous biomaterials have been investigated for mesh coating. Platelet-rich plasma (PRP) is an autologous agent that promotes tissue healing through numerous cytokines and growth factors. In addition, many reports highlight its contribution to better integration of different types of coated meshes, compared to conventional uncoated meshes. The use of PRP-coated meshes for hernia repair has been reported in the literature, but a review of technical aspects and outcomes is missing. The aim of this comprehensive review is to report the experimental studies investigating the synergistic use of PRP and mesh implants in hernia animal models. A comprehensive literature search was conducted across PubMed/Medline, Web of Science, and Scopus without chronological constraints. In total, fourteen experimental and three clinical studies have been included. Among experimental trials, synthetic, biologic, and composite meshes were used in four, nine, and one study, respectively. In synthetic meshes, PRP-coating leads to increased antioxidant levels and collaged deposition, reduced oxidative stress, and improved inflammatory response, while studies on biological meshes revealed increased neovascularization and tissue integration, reduced inflammation, adhesion severity, and mechanical failure rates. Finally, PRP-coating of composite meshes results in reduced adhesions and improved mechanical strength. Despite the abundance of preclinical data, there is a scarcity of clinical studies, mainly due to the absence of an established protocol regarding PRP preparation and application. To this point in time, PRP has been used as a coating agent for the repair of abdominal and diaphragmatic hernias, as well as for mesh fixation. Clinical application of conclusions drawn from experimental studies may lead to improved results in hernia repair.
Collapse
Affiliation(s)
- Elissavet Anestiadou
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Efstathios Kotidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Ioanna Abba Deka
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.A.D.); (A.L.); (A.C.)
| | - Dimitrios Tatsis
- Department of Oral and Maxillofacial Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece;
| | - Chryssa Bekiari
- Experimental and Research Center, Papageorgiou General Hospital of Thessaloniki, 56403 Thessaloniki, Greece;
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonia Loukousia
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.A.D.); (A.L.); (A.C.)
| | - Orestis Ioannidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Stavros Stamiris
- Orthopaedic Department, 424 General Military Hospital, Ring Road West, Nea Efkarpia, 56429 Thessaloniki, Greece;
| | - Konstantinos Zapsalis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Christos Xylas
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Konstantinos Siozos
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Christiana Chatzianestiadou
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Stamatios Angelopoulos
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Theodosios Papavramidis
- 1st Propaedeutic Department of Surgery, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Angeliki Cheva
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.A.D.); (A.L.); (A.C.)
| |
Collapse
|
25
|
Jang JH, Choi E, Kim T, Yeo HJ, Jeon D, Kim YS, Cho WH. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int J Mol Sci 2024; 25:7396. [PMID: 39000503 PMCID: PMC11242529 DOI: 10.3390/ijms25137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis poses a significant threat to human health due to its high morbidity and mortality rates worldwide. Traditional diagnostic methods for identifying sepsis or its causative organisms are time-consuming and contribute to a high mortality rate. Biomarkers have been developed to overcome these limitations and are currently used for sepsis diagnosis, prognosis prediction, and treatment response assessment. Over the past few decades, more than 250 biomarkers have been identified, a few of which have been used in clinical decision-making. Consistent with the limitations of diagnosing sepsis, there is currently no specific treatment for sepsis. Currently, the general treatment for sepsis is conservative and includes timely antibiotic use and hemodynamic support. When planning sepsis-specific treatment, it is important to select the most suitable patient, considering the heterogeneous nature of sepsis. This comprehensive review summarizes current and evolving biomarkers and therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Jin Ho Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eunjeong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Taehwa Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Doosoo Jeon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Seong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
26
|
Kumar Saini S, Singh D. Mitochondrial mechanisms in Cerebral Ischemia-Reperfusion Injury: Unravelling the intricacies. Mitochondrion 2024; 77:101883. [PMID: 38631511 DOI: 10.1016/j.mito.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Cerebral ischemic stroke is a major contributor to physical impairments and premature death worldwide. The available reperfusion therapies for stroke in the form of mechanical thrombectomy and intravenous thrombolysis increase the risk of cerebral ischemia-reperfusion (I-R) injury due to sudden restoration of blood supply to the ischemic region. The injury is manifested by hemorrhagic transformation, worsening of neurological impairments, cerebral edema, and progression to infarction in surviving patients. A complex network of multiple pathological processes has been known to be involved in the pathogenesis of I-R injury. Primarily, 3 major contributors namely oxidative stress, neuroinflammation, and mitochondrial failure have been well studied in I-R injury. A transcription factor, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial defensive role in resisting the deleterious effects of I-R injury and potentiating the cellular protective mechanisms. In this review, we delve into the critical function of mitochondria and Nrf2 in the context of cerebral I-R injury. We summarized how oxidative stress, neuroinflammation, and mitochondrial anomaly contribute to the pathophysiology of I-R injury and further elaborated the role of Nrf2 as a pivotal guardian of cellular integrity. The review further highlighted Nrf2 as a putative therapeutic target for mitochondrial dysfunction in cerebral I-R injury management.
Collapse
Affiliation(s)
- Shiv Kumar Saini
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
28
|
Yoon I, Han JH, Jeon HJ. Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules 2024; 14:714. [PMID: 38927117 PMCID: PMC11201885 DOI: 10.3390/biom14060714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The crucial role of platelets in hemostasis and their broad implications under various physiological conditions underscore the importance of accurate platelet-function testing. Platelets are key to clotting blood and healing wounds. Therefore, accurate diagnosis and management of platelet disorders are vital for patient care. This review outlines the significant advancements in platelet-function testing technologies, focusing on their working principles and the shift from traditional diagnostic methods to more innovative approaches. These improvements have deepened our understanding of platelet-related disorders and ushered in personalized treatment options. Despite challenges such as interpretation of complex data and the costs of new technologies, the potential for artificial-intelligence integration and the creation of wearable monitoring devices offers exciting future possibilities. This review underscores how these technological advances have enhanced the landscape of precision medicine and provided better diagnostic and treatment options for platelet-function disorders.
Collapse
Affiliation(s)
- Inkwon Yoon
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong Hyeok Han
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Jeon
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
29
|
Dave B, Patel M, Suresh S, Ginjupalli M, Surya A, Albdour M, Kooner KS. Wound Modulations in Glaucoma Surgery: A Systematic Review. Bioengineering (Basel) 2024; 11:446. [PMID: 38790314 PMCID: PMC11117829 DOI: 10.3390/bioengineering11050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there is a need to develop novel treatments which provide increased effectiveness and specificity. This review aims to provide insight into the pathophysiology behind wound healing in glaucoma surgery, as well as the current and promising future wound healing agents that are less toxic and may provide better IOP control.
Collapse
Affiliation(s)
- Bhoomi Dave
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Monica Patel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Sruthi Suresh
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Mahija Ginjupalli
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Arvind Surya
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Mohannad Albdour
- Department of Ophthalmology, King Hussein Medical Center Royal Medical Services, Amman 11180, Jordan;
| | - Karanjit S. Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
- Department of Ophthalmology, Veteran Affairs North Texas Health Care System Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
30
|
Kraj L, Chmiel P, Gryziak M, Grabowska-Derlatka L, Szymański Ł, Wysokińska E. Impact of Thrombocytopenia on Survival in Patients with Hepatocellular Carcinoma: Updated Meta-Analysis and Systematic Review. Cancers (Basel) 2024; 16:1293. [PMID: 38610973 PMCID: PMC11011012 DOI: 10.3390/cancers16071293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Platelets (PLT) have a role in the pathogenesis, progression, and prognosis of hepatocellular carcinoma (HCC) and could represent a readily measurable laboratory parameter to enhance the comprehensive evaluation of HCC patients. METHODS The PubMed, Web of Science, and Scopus databases were searched with a focus on survival as well as patient and tumor-specific characteristics in correlation to reported PLT counts. Survival outcomes were analyzed with both common-effect and random-effects models. The hazard ratio (HR) and its 95% confidence interval (CI) from analyzed trials were incorporated. Studies that did not provide survival data but focused on platelet count correlation with HCC characteristics were reviewed. RESULTS In total, 26 studies, including a total of 9403 patients, met our criteria. The results showed that thrombocytopenia in HCC patients was associated with poor overall survival (common-effect HR = 1.15, 95% CI: 1.06-1.25; random-effect HR = 1.30, 95% CI: 1.05-1.63). Moreover, three studies reveal significant correlations between PLT indices and tumor characteristics such as size, foci number, and etiology of HCC development. CONCLUSION Our meta-analysis confirmed that PLT count could act as a prognostic marker in HCC, especially with a PLT count cut off <100 × 103/mm3. Further prospective studies focusing on the role of PLT in clearly defined subgroups are necessary.
Collapse
Affiliation(s)
- Leszek Kraj
- Department of Oncology, University Clinical Centre, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, 01-447 Magdalenka, Poland;
| | - Paulina Chmiel
- University Clinical Centre, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Gryziak
- Department of Oncology, University Clinical Centre, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Laretta Grabowska-Derlatka
- 2nd Department of Clinical Radiology, University Clinical Centre, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, 01-447 Magdalenka, Poland;
| | - Ewa Wysokińska
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
31
|
Li L, Stegner D. Immunothrombosis versus thrombo-inflammation: platelets in cerebrovascular complications. Res Pract Thromb Haemost 2024; 8:102344. [PMID: 38433977 PMCID: PMC10907225 DOI: 10.1016/j.rpth.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
A State-of-the Art lecture titled "Thrombo-Neuroinflammatory Disease" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. First, we would like to advocate for discrimination between immunothrombosis and thrombo-inflammation, as immunothrombosis describes an overshooting inflammatory reaction that results in detrimental thrombotic activity. In contrast, thrombo-inflammation describes the interplay of platelets and coagulation with the immunovascular system, resulting in the recruitment of immune cells and loss of barrier function (hence, hallmarks of inflammation). Both processes can be observed in the brain, with cerebral venous thrombosis being a prime example of immunothrombosis, while infarct progression in response to ischemic stroke is a paradigmatic example of thrombo-inflammation. Here, we review the pathomechanisms underlying cerebral venous thrombosis and ischemic stroke from a platelet-centric perspective and discuss translational implications. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Lexiao Li
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - David Stegner
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| |
Collapse
|
32
|
Wang B, Chen J, Zhang C, Zhang Q, Zhu Z, Qiu L, Yan J, Li Z, Zhu X, Zhang Y, Jiang Y. Biomimetic nanoparticles of platelet membranes carrying bFGF and VEGFA genes promote deep burn wound healing. Int Immunopharmacol 2023; 125:111164. [PMID: 37925947 DOI: 10.1016/j.intimp.2023.111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The treatment of burn wounds, especially deep burn wounds, remains a major clinical challenge. Growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor A (VEGFA) show great potential in promoting the healing of damaged tissues. This study explored wound healing following targeted delivery of bFGF and VEGFA genes into deep burn wounds through a novel platelet membrane-coated nanoparticle (PM@gene-NP) complex delivery system. METHODS First, bFGF and VEGFA genes were inserted into plasmid (pEGFP-N1) vectors. Subsequently, the assembled plasmids were loaded onto nanoparticles to form gene-loaded nanoparticle complexes, which were then wrapped with extracted platelet membrane, fully simulating the characteristics of platelets, in order to actively target sites of inflammatory damage. After administration of PM@gene-NP complexes through the tail vein of rats, a series of experiments were conducted to evaluate wound healing. RESULTS The PM@gene-NP complexes effectively targeted the burn sites. After the administration of the PM@gene-NP complexes, the rats exhibited increased blood flow in the burn wounds, which also healed faster than control groups. Histological results showed fewer inflammatory cells in the burned skin tissue after treatment. After the wounds healed, the production of hair follicles, sebaceous glands and other skin accessories in the skin tissue increased. CONCLUSION Our results showed that the PM@gene-NP complexes can effectively deliver gene therapy to the injured area, and this delivery system should be considered as a potential method for treating deep burns.
Collapse
Affiliation(s)
- Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038 Chongqing, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhihan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Ling Qiu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Jun Yan
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Xinghua Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| | - Yun Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
33
|
Lekva T, Sundaram AYF, Roland MCP, Åsheim J, Michelsen AE, Norwitz ER, Aukrust P, Gilfillan GD, Ueland T. Platelet and mitochondrial RNA is decreased in plasma-derived extracellular vesicles in women with preeclampsia-an exploratory study. BMC Med 2023; 21:458. [PMID: 37996819 PMCID: PMC10666366 DOI: 10.1186/s12916-023-03178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) are increased in preeclampsia (PE) and are associated with severity and progression. We examined in this exploratory cohort study if the mRNAs and long noncoding RNAs (lncRNAs) in plasma-derived EVs were dysregulated in PE compared to normal pregnancy and display different temporal patterns during gestation. METHODS We isolated EVs from plasma at weeks 22-24 and 36-38 in women with and without PE (n=7 in each group) and performed RNA-seq, focusing on mRNAs and lncRNAs. We validated highly expressed mitochondrial and platelet-derived RNAs discovered from central pathways in 60 women with/without PE. We examined further one of the regulated RNAs, noncoding mitochondrially encoded tRNA alanine (MT-TA), in leukocytes and plasma to investigate its biomarker potential and association with clinical markers of PE. RESULTS We found abundant levels of platelet-derived and mitochondrial RNAs in EVs. Expression of these RNAs were decreased and lncRNAs increased in EVs from PE compared to without PE. These findings were further validated by qPCR for mitochondrial RNAs MT-TA, MT-ND2, MT-CYB and platelet-derived RNAs PPBP, PF4, CLU in EVs. Decreased expression of mitochondrial tRNA MT-TA in leukocytes at 22-24 weeks was strongly associated with the subsequent development of PE. CONCLUSIONS Platelet-derived and mitochondrial RNA were highly expressed in plasma EVs and were decreased in EVs isolated from women with PE compared to without PE. LncRNAs were mostly increased in PE. The MT-TA in leukocytes may be a useful biomarker for prediction and/or early detection of PE.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Arvind Y Fm Sundaram
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - June Åsheim
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Gregor D Gilfillan
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
34
|
Kawalec A, Stojanowski J, Mazurkiewicz P, Choma A, Gaik M, Pluta M, Szymański M, Bruciak A, Gołębiowski T, Musiał K. Systemic Immune Inflammation Index as a Key Predictor of Dialysis in Pediatric Chronic Kidney Disease with the Use of Random Forest Classifier. J Clin Med 2023; 12:6911. [PMID: 37959376 PMCID: PMC10647735 DOI: 10.3390/jcm12216911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Low-grade inflammation is a significant component of chronic kidney disease (CKD). Systemic immune inflammation index (SII), a newly defined ratio combining neutrophil, lymphocyte, and platelet counts, has not yet been evaluated in the pediatric CKD population nor in the context of CKD progression or dialysis. Thus, this study aimed to analyze the complete blood cell count (CBC)-driven parameters, including SII, in children with CKD and to assess their potential usefulness in the prediction of the need for chronic dialysis. METHODS A single-center, retrospective study was conducted on 27 predialysis children with CKD stages 4-5 and 39 children on chronic dialysis. The data were analyzed with the artificial intelligence tools. RESULTS The Random Forest Classifier (RFC) model with the input variables of neutrophil count, mean platelet volume (MPV), and SII turned out to be the best predictor of the progression of pediatric CKD into end-stage kidney disease (ESKD) requiring dialysis. Out of these variables, SII showed the largest share in the prediction of the need for renal replacement therapy. CONCLUSIONS Chronic inflammation plays a pivotal role in the progression of CKD into ESKD. Among CBC-driven ratios, SII seems to be the most useful predictor of the need for chronic dialysis in CKD children.
Collapse
Affiliation(s)
- Anna Kawalec
- Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Stojanowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Paulina Mazurkiewicz
- Clinic of Pediatric Nephrology, University Clinical Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Choma
- Students’ Scientific Association, Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Magdalena Gaik
- Students’ Scientific Association, Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Mateusz Pluta
- Students’ Scientific Association, Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Michał Szymański
- Students’ Scientific Association, Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Aleksandra Bruciak
- Students’ Scientific Association, Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Tomasz Gołębiowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Kinga Musiał
- Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
35
|
Szymańska P, Luzak B, Siarkiewicz P, Golański J. Platelets as Potential Non-Traditional Cardiovascular Risk Factor-Analysis Performed in Healthy Donors. Int J Mol Sci 2023; 24:14914. [PMID: 37834362 PMCID: PMC10573668 DOI: 10.3390/ijms241914914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Abnormal lipid profile, increased glucose level, and elevated body weight are traditional cardiometabolic risk factors; however, the role of platelets in the development of cardiovascular disease (CVD) is increasingly being highlighted. The aim of this study was to select platelet-related parameters (non-genetic molecular and routine laboratory measurements) that may be associated with increased cardiovascular risk among healthy populations. We evaluated the level of platelet indices, platelet-based inflammatory markers, platelet reactivity parameters, and platelet reactive oxygen species (ROS) generation in relation to selected cardiometabolic risk factors. We noted the association between total cholesterol and LDL cholesterol with platelet aggregation and platelet ROS generation. We found the relationship between triglycerides, glucose, and body mass index with the relatively new multi-inflammatory indices (MII-1 and MII-3). Moreover, we noticed that the mean platelet volume-to-lymphocyte ratio in healthy subjects is not a good source of information about platelets and inflammation. We also highlighted that platelet-to-HDL-cholesterol ratio may be a promising prognostic cardiometabolic indicator. The association between platelet-related (especially molecular) and cardiometabolic parameters requires further research. However, the goal of this study was to shed light on the consideration of platelets as a non-traditional cardiovascular risk factor and a crucial element in identifying individuals at high-risk of developing CVD in the future.
Collapse
Affiliation(s)
- Patrycja Szymańska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (B.L.)
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (B.L.)
| | - Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Jacek Golański
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (B.L.)
| |
Collapse
|
36
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
37
|
Chen J, Tu X, Huang M, Xie Y, Lin Y, Hu J. Prognostic value of platelet combined with serum procalcitonin in patients with sepsis. Medicine (Baltimore) 2023; 102:e34953. [PMID: 37653816 PMCID: PMC10470786 DOI: 10.1097/md.0000000000034953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Sepsis, a common and life-threatening condition in critically ill patients, is a leading cause of death in intensive care units. Over the past few decades, there has been significant improvement in the understanding and management of sepsis. However, the mortality rate remains unacceptably high, posing a prominent challenge in modern medicine and a significant global disease burden. A total of 295 patients with sepsis admitted to the hospital from January 2021 to December 2022 were collected and divided into survival group and death group according to their 28-day survival status. The differences in general clinical data and laboratory indicators between the 2 groups were compared. Receiver operating characteristic curve analysis was used to evaluate the predictive value of platelet (PLT) and procalcitonin (PCT) for the prognosis of sepsis patients within 28 days. A total of 295 patients were diagnosed with sepsis, and 79 died, with a mortality rate of 26.78%. The PLT level in the death group was lower than that in the survival group; the PCT level in the death group was higher than that in the survival group. The receiver operating characteristic curve showed that the area under the curve of PCT and PLT for evaluating the prognosis of sepsis patients were 0.808 and 0.804, respectively. Kaplan-Meier survival analysis showed that the 28-day survival rate of the low PLT level group was 19.0% and that of the high PLT level group was 93.1% at the node of 214.97 × 109/L, and the difference between the 2 groups was statistically significant (χ2 = 216.538, P < .001). The 28-day survival rate of the low PCT level group was 93.4% and that of the high PCT level group was 51.7% at the node of 2.85 ng/mL, and the difference between the 2 groups was statistically significant (χ2 = 63.437, P < .001). There was a negative correlation between PCT level and PLT level (r = -0.412, P < .001). Platelet combined with serum procalcitonin detection has high predictive value for judging the 28-day prognosis of sepsis, and it can be used as an index for evaluating the patient's condition and prognosis, and is worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Xiaoyan Tu
- Department of Critical Care Medicine, Union Hospital Affiliated to Fujian Medical University, Fuzhou City, Fujian Province, China
| | - Minghuan Huang
- Department of Nephrology, Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Ying Xie
- School of Mechanical, Electrical and Information Engineering, Putian University, Putian City, China
| | - Yanya Lin
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Jianxiong Hu
- The School of Clinical Medicine, Fujian Medical University, Fujian, China
| |
Collapse
|
38
|
Tong H, Li K, Zhou M, Wu R, Yang H, Peng Z, Zhao Q, Luo KQ. Coculture of cancer cells with platelets increases their survival and metastasis by activating the TGFβ/Smad/PAI-1 and PI3K/AKT pathways. Int J Biol Sci 2023; 19:4259-4277. [PMID: 37705745 PMCID: PMC10496510 DOI: 10.7150/ijbs.85986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
When cancer cells enter the bloodstream, they can interact with platelets to acquire stronger survival and metastatic abilities. To elucidate the underlying mechanisms, we cocultured metastatic melanoma and triple-negative breast cancer cells with species-homologous platelets. We found that cocultured cancer cells displayed higher viabilities in circulation, stronger capacities for cell migration, invasion, and colony formation in vitro, and more tumorigenesis and metastasis in mice. RNA sequencing analysis revealed that the level of serpin family E member 1 (SERPINE1) was significantly upregulated in cocultured cancer cells. Knockdown of SERPINE1 reversed the coculture-elevated survival and metastatic phenotypes of cancer cells. Mechanistic studies indicated that coculture with platelets activated the TGFβ/Smad pathway to induce SERPINE1 expression in cancer cells, which encodes plasminogen activator inhibitor 1 (PAI-1). PAI-1 then activated PI3K to increase the phosphorylation of AKTThr308 and Bad to elevate Bcl-2, which enhanced cell survival in circulation. Moreover, higher levels of PAI-1 were detected in metastatic tumors from melanoma and triple-negative breast cancer patients than in normal tissues, and high levels of PAI-1 were associated with a shorter overall survival time and worse disease progression in breast cancer. PAI-1 may act as a potential biomarker for detecting and treating metastatic tumor cells.
Collapse
Affiliation(s)
- Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Koukou Li
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Muya Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Renfei Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hongmei Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zheng Peng
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau
| |
Collapse
|
39
|
Szymańska P, Luzak B, Miłowska K, Golański J. The Anti-Aggregative Potential of Resolvin E1 on Human Platelets. Molecules 2023; 28:5323. [PMID: 37513197 PMCID: PMC10385542 DOI: 10.3390/molecules28145323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Resolvin E1 is a metabolite of eicosapentaenoic acid (EPA) which is one of the omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The antiplatelet properties of omega-3 PUFAs are well known, but the effect of resolvin E1 on platelets via the collagen receptors is extremely poorly reported. We investigated the effect of resolvin E1 on collagen-induced platelet aggregation, activation, and reactivity, and also platelet membrane fluidity. The ultimate and statistically significant results showed that resolvin E1 may inhibit platelet reactivity due to the reduction of collagen-induced platelet aggregation in platelet-rich plasma and isolated platelets, but not in whole blood. Also, resolvin E1 significantly reduced P-selectin exposure on collagen-stimulated platelets. Moreover, we demonstrated that resolvin E1 can maintain platelet membrane structure (without increasing membrane fluidity). The association between platelet reactivity and membrane fluidity, including resolvin E1 and collagen receptors requires further research. However, the goal of this study was to shed light on the molecular mechanisms behind the anti-aggregative effects of resolvin E1 on platelets, which are still not fully clarified. We also indicate an innovative research direction focused on further analysis and then use of omega-3 PUFAs metabolites as antiplatelet compounds for future applications in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Patrycja Szymańska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jacek Golański
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
40
|
Ravera S, Signorello MG, Panfoli I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023; 12:1802. [PMID: 37443836 PMCID: PMC10340290 DOI: 10.3390/cells12131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are cellular elements that are physiologically involved in hemostasis, inflammation, thrombotic events, and various human diseases. There is a link between the activation of platelets and their metabolism. Platelets possess considerable metabolic versatility. Although the role of platelets in hemostasis and inflammation is known, our current understanding of platelet metabolism in terms of substrate preference is limited. Platelet activation triggers an oxidative metabolism increase to sustain energy requirements better than aerobic glycolysis alone. In addition, platelets possess extra-mitochondrial oxidative phosphorylation, which could be one of the sources of chemical energy required for platelet activation. This review aims to provide an overview of flexible platelet metabolism, focusing on the role of metabolic compartmentalization in substrate preference, since the metabolic flexibility of stimulated platelets could depend on subcellular localization and functional timing. Thus, developing a detailed understanding of the link between platelet activation and metabolic changes is crucial for improving human health.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | | | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
41
|
Fiore M, Giraudet JS, Alessi MC, Falaise C, Desprez D, d'Oiron R, Voisin S, Hurtaud MF, Boutroux H, Saultier P, Lavenu-Bombled C, Bagou G, Dubucs X, Chauvin A, Leroy C, Meckert F, Kerbaul F, Giraud N, Pühler A, Rath A. Emergency management of patients with Glanzmann thrombasthenia: consensus recommendations from the French reference center for inherited platelet disorders. Orphanet J Rare Dis 2023; 18:171. [PMID: 37386449 DOI: 10.1186/s13023-023-02787-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023] Open
Abstract
Glanzmann thrombasthenia (GT) is a genetic bleeding disorder characterised by severely reduced/absent platelet aggregation in response to multiple physiological agonists. The severity of bleeding in GT varies markedly, as does the emergency situations and complications encountered in patients. A number of emergency situations may occur in the context of GT, including spontaneous or provoked bleeding, such as surgery or childbirth. While general management principles apply in each of these settings, specific considerations are essential for the management of GT to avoid escalating minor bleeding events. These recommendations have been developed from a literature review and consensus from experts of the French Network for Inherited Platelet Disorders, the French Society of Emergency Medicine, representatives of patients' associations, and Orphanet to aid decision making and optimise clinical care by non-GT expert health professionals who encounter emergency situations in patients with GT.
Collapse
Affiliation(s)
- Mathieu Fiore
- Laboratoire d'hématologie, Centre de Référence des Pathologies Plaquettaires, CHU de Bordeaux, Hôpital Cardiologique, Inserm U1034 - Biologie des Maladies Cardio-Vasculaires, Pessac, France.
- Centre de Référence des Pathologies Plaquettaires, Pessac, France.
| | | | - Marie-Christine Alessi
- Laboratory of Hematology, Aix Marseille Univ, APHM, INSERM, INRAe, C2VN, La Timone Hospital, Marseille, France
- Reference Center of Platelet Disorders, APHM, Marseille, France
| | - Céline Falaise
- Department of Pediatric Hematology, Immunology and Oncology, La Timone Children's Hospital, Marseille, France
- Reference Center of Platelet Disorders, APHM, Marseille, France
| | - Dominique Desprez
- Centre de Ressources et de Compétences des Maladies Hémorragiques Constitutionnelles, CHU de Strasbourg, Strasbourg, France
| | - Roseline d'Oiron
- Centre de Ressources et de Compétences des Maladies Hémorragiques Constitutionnelles, CHU du Kremlin-Bicêtre, Le-Kremlin-Bicêtre, France
| | - Sophie Voisin
- Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, CHU de Toulouse, Toulouse, France
| | | | - Hélène Boutroux
- Laboratoire d'Hématologie, Centre de Référence des pathologies Plaquettaires, CHU Armand Trousseau, Paris, France
| | - Paul Saultier
- Department of pediatric hematology, immunology and oncology, Aix Marseille Univ, APHM, INSERM, INRAe, C2VN, La Timone Children's Hospital, Marseille, France
- Reference Center of Platelet Disorders, APHM, Marseille, France
| | - Cécile Lavenu-Bombled
- Service Hématologie Biologique, Centre de ressources et compétences MHEMO, CHU Bicêtre, Assistance Publique-Hôpitaux de Paris, Faculté de médecine Paris Saclay, Le Kremlin-Bicetre, France
| | - Gilles Bagou
- Anesthésiste-Réanimateur Urgentiste - SAMU-SMUR de Lyon - Hôpital Edouard-Herriot, 69437, Lyon Cedex 03, France
| | - Xavier Dubucs
- Pôle Médecine-Urgences, CHU de Toulouse, Toulouse, France
| | - Anthony Chauvin
- Président de la Commission des Référentiels de la SFMU (CREF), Chef de Service Adjoint - Service d'Accueil des Urgences/SMUR, CHU Lariboisière, Université de Paris, Paris, France
| | - Christophe Leroy
- Médecin Urgentiste - Service de Gestion des Crises Sanitaires - Département Qualité Gestion des Risques, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francine Meckert
- Direction Opérationnelle du Prélèvement et de la Greffe de l'Agence de la Biomédecine (ABM), Saint Denis, France
| | - François Kerbaul
- Direction Opérationnelle du Prélèvement et de la Greffe de l'Agence de la Biomédecine (ABM), Saint Denis, France
| | | | - Ambra Pühler
- ORPHANET, INSERM US14, Plateforme Maladies Rares, 96 Rue Didot, 75014, Paris, France
| | - Ana Rath
- ORPHANET, INSERM US14, Plateforme Maladies Rares, 96 Rue Didot, 75014, Paris, France
| |
Collapse
|
42
|
Hernández-García S, Flores-García M, Maldonado-Vega M, Hernández G, Meneses-Melo F, López-Vanegas NC, Calderón-Salinas JV. Adaptive changes in redox response and decreased platelet aggregation in lead-exposed workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104134. [PMID: 37116628 DOI: 10.1016/j.etap.2023.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Chronic lead exposure can generate pro-oxidative and pro-inflammatory conditions in the blood, related to high platelet activation and aggregation, altering cell functions. We studied ADP-stimulated aggregation and the oxidant/antioxidant system of platelets from chronically lead-exposed workers and non-exposed workers. Platelet aggregation was low in lead-exposed workers (62 vs. 97%), who had normal platelet counts and showed no clinical manifestations of hemostatic failure. ADP-activated platelets from lead-exposed workers failed to increase superoxide release (3.3 vs. 6.6 µmol/g protein), had low NADPH concentration (60 vs. 92 nmol/mg protein), high concentration of hydrogen peroxide (224 vs. 129 nmol/mg protein) and high plasma PGE2 concentration (287 vs. 79 pg/mL). Altogether, those conditions, on the one hand, could account for the low platelet aggregation and, on the other, indicate an adaptive mechanism for the oxidative status of platelets and anti-aggregating molecules to prevent thrombotic problems in the pro-oxidant and pro-inflammatory environment of chronic lead exposure.
Collapse
Affiliation(s)
- Sandra Hernández-García
- Biochemistry Department, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | - Mirthala Flores-García
- Molecular Biology Department, Instituto Nacional de Cardiología "Dr. Ignacio Chávez", Mexico City, Mexico
| | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, Mexico
| | - Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | | | | | | |
Collapse
|
43
|
Ng SL, Azhar NA, Budin SB, Ibrahim N, Abdul Ghani NA, Abd Ghafar N, Law JX. Effects of Platelet Lysate Gels Derived from Different Blood Sources on Oral Mucosal Wound Healing: An In Vitro Study. Gels 2023; 9:gels9040343. [PMID: 37102955 PMCID: PMC10137921 DOI: 10.3390/gels9040343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The rapid healing of oral ulcers is important to prevent secondary infection, especially for chronic oral ulcers. Platelet lysate (PL) is rich in growth factors for cell growth and promotes tissue regeneration. Hence, this study was performed to compare the effects of PL originating from umbilical cord blood (CB) and peripheral blood (PB) on oral mucosal wound healing. The PLs were molded into gel form in the culture insert with the addition of calcium chloride and conditioned medium for sustained release of growth factors. The CB-PL and PB-PL gels were found to degrade slowly in culture and their degradation percentages by weight were 5.28 ± 0.72% and 9.55 ± 1.82% respectively. The results from the scratch assay and Alamar blue assay showed that the CB-PL and PB-PL gels increased the proliferation (148 ± 3% and 149 ± 3%) and wound closure (94.17 ± 1.77% and 92.75 ± 1.80%) of oral mucosal fibroblasts compared to the control with no statistical differences between the two gels, respectively. Quantitative RT-PCR showed that mRNA expressions of collagen-I, collagen-III, fibronectin, and elastin genes in cells treated with CB-PL (11-, 7-, 2-, and 7-fold) and PB-PL (17-, 14-, 3-, and 7-fold) decreased compared with the control, respectively. The concentration of platelet-derived growth factor of PB-PL gel (1303.10 ± 343.96 pg/mL) showed a higher trend than CB-PL gel did (905.48 ± 69.65 pg/mL) from ELISA measurement. In summary, CB-PL gel is as effective as PB-PL gel in supporting oral mucosal wound healing, making it a potential new source of PL for regenerative treatment.
Collapse
Affiliation(s)
- Sook-Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Ain Azhar
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia-Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
44
|
Landsem A, Emblem Å, Lau C, Christiansen D, Gerogianni A, Karlsen BO, Mollnes TE, Nilsson PH, Brekke OL. Complement C3b contributes to Escherichia coli-induced platelet aggregation in human whole blood. Front Immunol 2022; 13:1020712. [PMID: 36591264 PMCID: PMC9797026 DOI: 10.3389/fimmu.2022.1020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Platelets have essential functions as first responders in the immune response to pathogens. Activation and aggregation of platelets in bacterial infections can lead to life-threatening conditions such as arterial thromboembolism or sepsis-associated coagulopathy. Methods In this study, we investigated the role of complement in Escherichia coli (E. coli)-induced platelet aggregation in human whole blood, using Multiplate® aggregometry, flow cytometry, and confocal microscopy. Results and Discussion We found that compstatin, which inhibits the cleavage of complement component C3 to its components C3a and C3b, reduced the E. coli-induced platelet aggregation by 42%-76% (p = 0.0417). This C3-dependent aggregation was not C3a-mediated as neither inhibition of C3a using a blocking antibody or a C3a receptor antagonist, nor the addition of purified C3a had any effects. In contrast, a C3b-blocking antibody significantly reduced the E. coli-induced platelet aggregation by 67% (p = 0.0133). We could not detect opsonized C3b on platelets, indicating that the effect of C3 was not dependent on C3b-fragment deposition on platelets. Indeed, inhibition of glycoprotein IIb/IIIa (GPIIb/IIIa) and complement receptor 1 (CR1) showed that these receptors were involved in platelet aggregation. Furthermore, aggregation was more pronounced in hirudin whole blood than in hirudin platelet-rich plasma, indicating that E. coli-induced platelet aggregation involved other blood cells. In conclusion, the E. coli-induced platelet aggregation in human whole blood is partly C3b-dependent, and GPIIb/IIIa and CR1 are also involved in this process.
Collapse
Affiliation(s)
- Anne Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,*Correspondence: Anne Landsem,
| | - Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Corinna Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Dorte Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|