1
|
Wu Y, Li J, Liu M, Gao R, Li H, Xie Y, Hu Q, Wei J, Zhao L, Li L. Deciphering the Pharmacological Potential of Kouqiangjie Formula for the Treatment of Diabetic Periodontitis Based on Network Pharmacology, Machine Learning, Molecular Dynamics, and Animal Experiments. Drug Des Devel Ther 2025; 19:2103-2129. [PMID: 40134952 PMCID: PMC11932940 DOI: 10.2147/dddt.s494066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Background Periodontitis (PD) and type 2 diabetes mellitus (T2DM) represent interlinked global health burdens, commonly causing significant clinical complications when coincident. Therefore, managing both conditions (T2DM with periodontitis, DP) simultaneously poses considerable challenges, necessitating novel therapeutic strategies. KQJF has been clinically proven to treat DP with good efficacy, but its pharmacological substances and targets are not clear and urgently need to be clarified. Aim To define the potential active components and targets of KQJF for the treatment of DP. Materials and Methods The investigation commenced with the application of UPLC-Q-TOF/MS analysis to delineate the active constituents of KQJF and their associated targets in addressing DP. Additionally, the research incorporated subsequent methodologies such as machine learning, network pharmacology, molecular docking, molecular dynamics simulations, and a DP rat model was established and validated by in vivo experiments using H&E staining, immunohistochemistry, quantitative real-time PCR, and Western blot. Results KQJF was found to contain 49 prototype compounds and 121 metabolites with potential activity against PD and T2DM. Network pharmacology revealed 66 overlapping genes between the pharmacological targets of KQJF and known targets of PD and T2DM. Further exploration through PPI network and enrichment analyses illuminated the involvement of multi-target and multi-pathway mechanisms. Molecular docking and dynamics simulations confirmed the robust interactions between key compounds within KQJF and proteins associated with the diseases. In vivo validation demonstrated that KQJF treatment ameliorated DP-associated histopathological changes and modulated the expression of crucial proteins (including ABCG2, CCND1, CDKN1B, HIF1A, and PIK3R1) in a DP rat model. Conclusion In summary, KQJF exhibits potential therapeutic benefits for DP through a multi-component and multi-target approach, potentially offering a novel integrative treatment strategy. This study underscores the importance of integrating traditional medicine with modern molecular techniques to explore novel therapeutic avenues for complex comorbid conditions, providing a blueprint for future pharmacological explorations.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Ranran Gao
- Department of Gynaecology, Henan Provincial People’s Hospital, Zhengzhou, 450000, People’s Republic of China
| | - Huijing Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Wei
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610072, People’s Republic of China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| |
Collapse
|
2
|
Zhao Y, Zhou W, Wang P, Li Y, Gu P, Gao J. Biotransformation of baicalin and glycyrrhizic acid using immobilized Fe 3O 4@Chitosan@β-glucuronidase. 3 Biotech 2025; 15:63. [PMID: 39963147 PMCID: PMC11829881 DOI: 10.1007/s13205-025-04220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/19/2025] [Indexed: 02/20/2025] Open
Abstract
β-Glucuronidase can hydrolyze β-glucuronic acid-containing glycosides, such as baicalin and glycyrrhizic acid. In this study, the β-glucuronidase gene from Lactobacillus rhamnosus was cloned and expressed in Escherichia coli. The resulting recombinant protein, designated LrhGUS, exhibited a molecular weight of approximately 72 kDa. The hydrolysis pathway of glycyrrhizic acid by recombinant LrhGUS proceeded as follows: glycyrrhizic acid → glycyrrhetinic acid monoglucuronide (GMAG) → glycyrrhetinic acid (GA), achieving a conversion rate of 90.38% with 2 mg/ml glycyrrhizic acid. Additionally, LrhGUS hydrolyzed baicalin into baicalein with a conversion rate of 94.64% using 20 mg/ml baicalin. Magnetic chitosan microspheres were utilized as carriers for immobilizing recombinant LrhGUS. Response surface methodology was employed to optimize immobilization conditions, which were determined to be a glutaraldehyde concentration of 1%, an enzyme loading of 0.8 mg/g bead, and a crosslinking temperature of 25 °C. The optimal temperature and pH for the immobilized enzyme were identical to those of the free enzyme; however, the immobilized enzyme demonstrated superior stability compared to the free enzyme. Notably, under acidic conditions, the pH stability of immobilized LrhGUS was significantly higher than that of the free enzyme. After incubation at 80 °C for 12 h, the thermal stability of the immobilized enzyme improved by approximately 50% relative to the free enzyme. Moreover, the immobilized LrhGUS exhibited excellent reusability, maintaining approximately 30% enzyme activity after seven cycles. Using the immobilized enzyme, baicalein was successfully prepared on a 1 g scale, while GAMG and GA were prepared on a 100 mg scale. These findings provide a robust foundation for the potential industrial application of β-glucuronidase. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04220-w.
Collapse
Affiliation(s)
- Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People’s Republic of China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd., Taian, 271400 People’s Republic of China
| | - Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People’s Republic of China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People’s Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People’s Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People’s Republic of China
| |
Collapse
|
3
|
Zhang Q, Liu H, Zhang J, Ouyang Y, Fu X, Xie C. The efficacy and safety of qiwei baizhu san in the treatment of type 2 diabetes mellitus: a systematic review and meta-analysis. Front Pharmacol 2025; 15:1501990. [PMID: 39845797 PMCID: PMC11752898 DOI: 10.3389/fphar.2024.1501990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, mostly resulting from impaired insulin production and diminished glucose metabolism regulation. Qiwei Baizhu San (QWBZS) is a classic formula used in traditional Chinese medicine for the treatment of T2DM. A comprehensive analysis of the efficacy and safety of QWBZS in the treatment of T2DM is essential. Methods This study's protocol was registered with PROSPERO (CRD42024576129). As of August 2024, we searched eight databases to screen and include randomized controlled trials of QWBZS for T2DM. Heterogeneity sources were examined via subgroup analyses, the robustness of the results was determined by sensitivity analyses, publication bias was evaluated using funnel plots and Egger's test, evidence quality was appraised with GRADEpro, and possible mechanisms of QWBZS for T2DM were categorized and summarized. Results This analysis encompassed 14 qualifying trials with a total of 1,169 subjects. The analytical results suggested that QWBZS, when combined with conventional treatment, was more effective than conventional treatment alone in improving FBG, 2hPG, HbA1c, HOMA-IR, TC, TG, LDL-C, and HDL-C. When QWBZS was used alone, it was more effective than conventional therapy in FBG, 2hPG, and HbA1c. And QWBZS could improve the overall effectiveness of clinical treatment in T2DM patients. The impact of QWBZS therapy alone on HOMA-IR and lipid metabolism remained unclear due to the limited number of trials included. Analysis of adverse events suggested that QWBZS was relatively safe. Conclusion This study suggested that QWBZS, when combined with conventional treatment, was more effective in improving glucose metabolism, insulin resistance, and lipid metabolism compared to conventional treatment alone in individuals with T2DM. QWBZS alone also contributed to the regulation of blood glucose levels. Meanwhile, QWBZS could improve the overall effective rate of clinical treatment with a relatively high safety profile. Nevertheless, owing to the inferior quality and significant heterogeneity of the existing evidence, additional high-quality studies are requisite to furnish more dependable evidence for the future clinical application of QWBZS. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=576129, identifier [CRD42024576129].
Collapse
Affiliation(s)
- Quan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahong Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Ouyang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Juengwatanatrakul T, Jitsaeng K, Kaewamatawong R. Evaluating the Hypoglycemic Efficacy and Quality Assurance of Ya That Opchoei Mixture. J Evid Based Integr Med 2025; 30:2515690X251324810. [PMID: 40012262 DOI: 10.1177/2515690x251324810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Diabetes mellitus, diagnosed as Madhumeho (sweet urine) in Thai traditional medicine, is believed to stem from imbalanced life elements. Ya That Opchoei mixture (YTO), a polyherbal mixture, is used to treat its symptoms. This study assessed the hypoglycemic potential of YTO and conducted qualitative and quantitative analyses of its bioactive constituents. YTO significantly inhibited α-glucosidase at IC50 0.05 ± 0.00 mg/mL and α-amylase activities at IC50 0.04±mg/mL. YTO at concentrations of 2.22 mg/mL significantly increased C-peptide secretion and stimulated glucose uptake. Liquid chromatography-mass spectrometry revealed constituents from Amomum testaceum, Cinnamomum bejolghota, C. burmanii, Syzygium aromaticum, and Glycyrrhiza glabra. High-performance liquid chromatography enabled quantification of bioactive compounds, including glycyrrhizic acid, eugenol, cinnamic acid, cinnamaldehyde, and coumarin. The coumarin content in 100 mL YTO was within the tolerable daily intake set by the European Food Safety Authority. This study confirms the hypoglycemic potential of YTO and presents its quality control process for safety assurance.
Collapse
Affiliation(s)
| | - Kusuma Jitsaeng
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, Thailand
| | - Rawiwun Kaewamatawong
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, Thailand
| |
Collapse
|
5
|
Hao Y, Ji H, Gao L, Qu Z, Zhao Y, Chen J, Wang X, Ma X, Zhang G, Zhang T. Self-assembled carrier-free formulations based on medicinal and food active ingredients. Biomater Sci 2024; 12:6253-6273. [PMID: 39523875 DOI: 10.1039/d4bm00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The popularity of medicinal plants, which have a unique system and are mostly used in compound form for the prevention and treatment of a wide range of diseases, is growing worldwide. In recent years, with advances in chemical separation and structural analysis techniques, many of the major bioactive molecules of medicinal plants have been identified. However, the active ingredients in medicinal plants often possess chemical characteristics, including poor water solubility, stability and bioavailability, which limit their therapeutic applications. To address this problem, self-assembly of small molecules from medicinal food sources provides a new strategy. Driven by various types of acting forces, medicinal small molecules with modifiable groups, multiple sites of action, hydrophobic side chains, and rigid backbones with self-assembly properties are able to form various supramolecular network hydrogels, nanoparticles, micelles, and other self-assemblies. This review first summarizes the forms of self-assemblies such as supramolecular network hydrogels, nanoparticles, and micelles at the level of the action site, and discusses the recent studies on the active ingredients in medicinal plants that can be used for self-assembly, in addition to summarizing the advantages of self-assemblies for a variety of disease applications, including wound healing, antitumor, anticancer, and diabetes mellitus. Finally, the problems of self-assemblers and the possible directions for future development are presented. We firmly believe that self-assemblers have the potential to develop effective compounds from drug-food homologous plants, providing valuable information for drug research and new strategies and perspectives for the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Yuan Hao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Li Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Zhican Qu
- Shanxi Nanolattix Health Technology Co., Ltd, Taiyuan 030051, Shanxi, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Jiahui Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xintao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xiaokai Ma
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Guangyu Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Taotao Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| |
Collapse
|
6
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024; 38:5270-5289. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Huang X, You D, An T, Zhao X, Jiang T, Huang Z. Glycyrrhizic acid attenuates the malignant biological properties of nonalcoholic fatty liver disease-related hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:4677-4688. [PMID: 38700384 DOI: 10.1002/tox.24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Glycyrrhizic acid (GA) has effects on anti-hepatic fibrosis, anti-tumor and prevention from hepatocellular carcinoma (HCC) progression. Yet, the capacity of GA to ameliorate the advance of HCC pertinent to nonalcoholic fatty liver disease (NAFLD) remains to be clarified. We used the CCK-8 method to detect the optimal treatment concentration and time for L-02 cells, palmitic acid (PA)-induced L-02 cells and HepG2 cells, and selected 40 μM and 48 h to treat PA-induced L-02 cells and 60 μM for 24 h to treat HepG2 cells. Moreover, functional associations of HepG2 cells were elucidated through various assays. The results showed that GA demonstrated enhances lipid deposition and alleviates the inflammatory response in L-02 cells induced by palmitic acid. Simultaneously, we found that GA inhibits the proliferation, migration, and invasion while promoting apoptosis in HepG2 cells. In pursuit of constructing of HCC model rats, a combination of high-fat diets and diethylnitrosamine was utilized. The results showed that GA significantly decreased the liver index, body weight, liver weight, and the number of nodules in HCC model rats. Moreover, GA mitigated infiltration and heightened apoptosis in these rats. Mechanistically, GA notably attenuated the KKβ/NF-κB pathway in both HepG2 cells and the HCC model rats. In conclusion, GA functions as an inhibitor in the progression of NAFLD-related HCC cells, which might be relevant to the KKβ/NF-κB pathway. Therefore, GA is a potential drug for NAFLD-related HCC treatment.
Collapse
Affiliation(s)
- Xueqing Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dengwei You
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianzhi An
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xuya Zhao
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Liu S, Hou H, Yang M, Zhang H, Sun C, Wei L, Xu S, Guo W. Hypoglycemic effect of orally administered resistant dextrins prepared with different acids on type 2 diabetes mice induced by high-fat diet and streptozotocin. Int J Biol Macromol 2024; 277:134085. [PMID: 39126981 DOI: 10.1016/j.ijbiomac.2024.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
A comparative study was performed to investigate the physicochemical properties and protective effects of hydrochloric acid-resistant dextrin (H-RD), citric acid-resistant dextrin (C-RD) and tartaric acid-resistant dextrin (T-RD) on the metabolic disorders and intestinal microbiota for type 2 diabetes mellitus (T2DM) mice. T-RD had the minimum molecular weight, with the highest short chain (DP 6-12) proportion and resistant starch content. After 4-week intervention with the three resistant dextrins, the body weight and fasting blood glucose of T2DM mice were improved significantly, accompanied by the reduction of serum indexes (TG, TC, LDL-C, ALT, AST, CRE, BUN, FINS, and GSP), but the serum HDL-C and liver glycogen levels increased. Among the three RDs intervention groups, T-RD showed the most significant improvement, followed by C-RD and finally H-RD. The 16 s rDNA results indicated that oral administration of resistant dextrins favored the proliferation of specific gut microbiota, including Faecalibaculum, Parabacteroides and Dubosiella, and reduced the ratio of Firmicutes/Bacteroidota, which is beneficial for reducing insulin resistance. Herein, the findings supported that the resistant dextrins exhibited a remission effect on T2DM, providing a basis for the development of functional food adjuvants for T2DM treatment.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meng Yang
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chunrui Sun
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Lili Wei
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Song Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weili Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
9
|
Chen RY, Shi JJ, Liu YJ, Yu J, Li CY, Tao F, Cao JF, Yang GJ, Chen J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024; 12:1155. [PMID: 38930536 PMCID: PMC11206003 DOI: 10.3390/microorganisms12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| |
Collapse
|
10
|
Stoleru OA, Burlec AF, Mircea C, Felea MG, Macovei I, Hăncianu M, Corciovă A. Multiple nanotechnological approaches using natural compounds for diabetes management. J Diabetes Metab Disord 2024; 23:267-287. [PMID: 38932892 PMCID: PMC11196251 DOI: 10.1007/s40200-023-01376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus (DM) is a long-standing and non-transmissible endocrine disease that generates significant clinical issues and currently affects approximately 400 million people worldwide. The aim of the present review was to analyze the most relevant and recent studies that focused on the potential application of plant extracts and phytocompounds in nanotechnology for the treatment of T2DM. Methods Various databases were examined, including Springer Link, Google Scholar, PubMed, Wiley Online Library, and Science Direct. The search focused on discovering the potential application of nanoparticulate technologies in enhancing drug delivery of phytocompounds for the mentioned condition. Results Several drug delivery systems have been considered, that aimed to reduce adverse effects, while enhancing the efficiency of oral antidiabetic medications. Plant-based nanoformulations have been highlighted as an innovative approach for DM treatment due to their eco-friendly and cost-effective synthesis methods. Their benefits include targeted action, enhanced availability, stability, and reduced dosage frequency. Conclusions Nanomedicine has opened new opportunities for the diagnosis, treatment, and prevention of DM. The use of nanomaterials has demonstrated improved outcomes for both T1DM and T2DM. Notably, flavonoids, including substances such as quercetin, naringenin and myricitrin, have been recognized for their enhanced efficacy when delivered through novel nanotechnologies in preventing T2DM onset and associated complications. The perspectives on the addressed subject point to the development of more nanostructured phytocompounds with improved bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Ozana Andreea Stoleru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maura Gabriela Felea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
11
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Ji X, Liu N, Huang S, Zhang C. A Comprehensive Review of Licorice: The Preparation, Chemical Composition, Bioactivities and Its Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:667-716. [PMID: 38716617 DOI: 10.1142/s0192415x24500289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Licorice (Glycyrrhiza) is a medicinal and food homologue of perennial plants derived from the dried roots and rhizomes of the genus Glycyrrhiza in the legume family. In recent years, the comprehensive utilization of licorice resources has attracted people's attention. It is widely utilized to treat diseases, health food products, food production, and other industrial applications. Furthermore, numerous bioactive components of licorice are found using advanced extraction processes, which mainly include polyphenols (flavonoids, dihydrostilbenes, benzofurans, and coumarin), triterpenoids, polysaccharides, alkaloids, and volatile oils, all of which have been reported to possess a variety of pharmacological characteristics, including anti-oxidant, anti-inflammatory, antibacterial, antiviral, anticancer, neuroprotective, antidepressive, antidiabetic, antiparasitic, antisex hormone, skin effects, anticariogenic, antitussive, and expectorant activities. Thereby, all of these compounds promote the development of novel and more effective licorice-derived products. This paper reviews the progress of research on extraction techniques, chemical composition, bioactivities, and applications of licorice to provide a reference for further development and application of licorice in different areas.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Ning Liu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| |
Collapse
|
13
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
14
|
Li D, Fan J, Du L, Ren G. Prenylated flavonoid fractions from Glycyrrhiza glabra alleviate insulin resistance in HepG2 cells by regulating the ERK/IRS-1 and PI3K/Akt signaling pathways. Arch Pharm Res 2024; 47:127-145. [PMID: 38267702 DOI: 10.1007/s12272-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Insulin resistance (IR) is a key factor in the pathogenesis of disrupted glucose metabolism. Although the extract of Glycyrrhiza glabra has shown significant hypoglycemic activity, its bioactive components remain to be identified, and their mechanisms of action, especially on hepatocyte glucose metabolism, are yet to be explored. In the present study, the primary compounds from Glycyrrhiza glabra [named prenylated flavonoid fractions (PFFs)] have been identified and their chemical structures have been elucidated. The therapeutic effects of PFFs extracted from G. glabra on glucose metabolism disorders and IR in high insulin-induced insulin-resistant HepG2 (IR-HepG2) cells have been determined. Glabridin (GLD) was used as a control. The results indicated that, similar to GLD, PFFs increased glucose consumption, glucose uptake, and translocation of glucose transporter 4 to the plasma membrane in IR-HepG2 cells. In addition, they enhanced the activities of glycogen synthase, glucokinase, and pyruvate kinase, while reducing the activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Furthermore, they activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway and suppressed the extracellular signal-regulated kinase/insulin receptor substrate-1 (ERK/IRS-1) pathway. These findings suggest that, similar to GLD, PFFs can alleviate impaired glucose metabolism and alleviate IR in IR-HepG2 cells.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their affiliations have been confirmed as correct.
Collapse
Affiliation(s)
- Defeng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinling Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Lin Du
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
15
|
Zhang Y, Li H, Liu X, Wang Q, Zhao D, Su M, Jia Z, Shen S. Integrating Metabolomics and Network Pharmacology to Decipher the Hepatoprotective Effect Mechanisms of Magnesium Isoglycyrrhizinate Injection. Curr Issues Mol Biol 2023; 46:279-298. [PMID: 38248321 PMCID: PMC10813909 DOI: 10.3390/cimb46010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the liver protective effects of a fourth-generation glycyrrhizic acid product (magnesium isoglycyrrhizinate injection, MII) in the treatment of mice with drug-induced liver injury-specifically, to determine its effects on plasma metabolites. Moreover, the possible mechanism of its intervention in lipid metabolism and amino acid metabolism through the liver protective effect was preliminarily explored, combined with network pharmacology. The liver injury model of mice was established using acetaminophen (APAP). The protective effect of MII on the mice model was evaluated using pathological tissue sections and biochemical indices such as alanine transaminase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD). Metabolomics analysis of plasma was performed using the UHPLC-QTOF/MS technique to screen for potential biomarkers and enriched metabolic pathways. The potential targets and pathways of MII were predicted by network pharmacology, and the mechanism was verified by Western blot analysis. MII significantly improved the pathological liver changes in mice with liver injury. The content of ALT and AST was decreased, and the activity of SOD was increased significantly (p < 0.05, 0.01). A total of 29 potential biomarkers were identified in the metabolomics analysis, mainly involving seven pathways, such as lipid metabolism and amino acid metabolism. A total of 44 intersection targets of MII in the treatment of liver injury were obtained by network pharmacology, involving lipid metabolism and other related pathways. Western blot analysis results showed that MII could significantly reduce the expression of JAK2 and STAT3. MII can effectively ameliorate liver injury in modeled mice through related pathways such as lipid metabolism and amino acid metabolism. This study could provide not only a scientific basis for the elucidation of the mechanism of action of MII in exerting a hepatoprotective effect, but also a reference for its rational clinical application.
Collapse
Affiliation(s)
- Yihua Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Hui Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Xueli Liu
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Qiang Wang
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Dong Zhao
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
| | - Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 102629, China;
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
| |
Collapse
|
16
|
Meng FD, Yuan L, Xu DJ, Che MY, Hou SZ, Lu DD, Liu WJ, Nan Y. Exploring the targets and molecular mechanism of glycyrrhetinic acid against diabetic nephropathy based on network pharmacology and molecular docking. World J Diabetes 2023; 14:1672-1692. [DOI: 10.4239/wjd.v14.i11.1672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) stands as the most prevalent chronic microvascular complication of diabetes mellitus. Approximately 50% of DN patients progress to end-stage renal disease, posing a substantial health burden.
AIM To employ network pharmacology and molecular docking methods to predict the mechanism by which glycyrrhetinic acid (GA) treats DN, subsequently validating these predictions through experimental means.
METHODS The study initially identified GA targets using Pharm Mapper and the TCMSP database. Targets relevant to DN were obtained from the Genecards, OMIM, and TTD databases. The Venny database facilitated the acquisition of intersecting targets between GA and DN. The String database was used to construct a protein interaction network, while DAVID database was used to conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. Molecular docking experiments were performed using Autodock software with selected proteins. Experimental validation was conducted using renal proximal tubular cells (HK-2) as the study subjects. A hyperglycemic environment was simulated using glucose solution, and the effect of GA on cell viability was assessed through the cell counting kit-8 method. Flow cytometry was employed to detect cell cycle and apoptosis, and protein immunoblot (western blot) was used to measure the expression of proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and insulin resistance pathway, including insulin receptor (INSR), PI3K, p-PI3K, AKT, p-AKT, and glycogen synthase kinase-3 (GSK3).
RESULTS A total of 186 intersecting targets between GA and DN were identified, which were associated with 144 KEGG-related enrichment pathways, 375 GO biological process entries, 45 GO cellular component entries, and 112 GO cellular function entries. Molecular docking demonstrated strong binding of GA to mitogen-activated protein kinase (MAPK)-1, SRC, PIK3R1, HSP90AA1, CASPASE9, HARS, KRAS, and MAPK14. In vitro experiments revealed that GA inhibited HK-2 cell viability, induced cell cycle arrest at the G2/M phase, and reduced apoptosis with increasing drug concentration. Western blot analysis showed that GA differentially up-regulated GSK3 protein expression, up-regulated AKT/p-AKT expression, down-regulated INSR, AKT, p-AKT, PI3K, and p-PI3K protein expression, and reduced p-PI3K/PI3K levels under high glucose conditions.
CONCLUSION GA may protect renal intrinsic cells by modulating the PI3K/AKT signaling pathway, thereby inhibiting HK-2 cell viability, reducing HK-2 cell apoptosis, and inducing cell cycle arrest at the G0/G1 phase.
Collapse
Affiliation(s)
- Fan-Di Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Duo-Jie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Meng-Ying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shao-Zhang Hou
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dou-Dou Lu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
17
|
Xu F, Huang X, Wu H, Wang X. Screening compounds for treating the diabetes and COVID-19 from Miao medicine by molecular docking and bioinformatics. ARAB J CHEM 2023; 16:105001. [PMID: 37228247 PMCID: PMC10191702 DOI: 10.1016/j.arabjc.2023.105001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Both diabetes and Corona Virus Disease 2019 (COVID-19) are seriously harmful to human health, and they are closely related. It is of great significance to find drugs that can simultaneously treat diabetes and COVID-19. Based on the theory of traditional Chinese medicine for treating COVID-19, this study first sorted out the compounds of Guizhou Miao medicine with "return to the lung channel" and "clear heat and detoxify" effects in China. The active components against COVID-19 were screened by molecular docking with SARS-CoV-2 PLpro and angiotensin-converting enzyme II as targets. Furthermore, the common target dipeptidyl peptidase 4 (DPP4) of diabetes and COVID-19 was used as a screening protein, and molecular docking was used to obtain potential components for the treatment of diabetes and COVID-19. Finally, the mechanism of potential ingredients in the treatment of diabetes and COVID-19 was explored with bioinformatics. More than 80 kinds of Miao medicine were obtained, and 584 compounds were obtained. Further, 110 compounds against COVID-19 were screened, and top 6 potential ingredients for the treatment of diabetes and COVID-19 were screened, including 3-O-β-D-Xylopyranosyl-(1-6)-β-D-glucopyranosyl-(1-6)-β-D-glucopyranosyl oleanolic acid 28-O-β-D-glucopyranosyl ester, Glycyrrhizic acid, Sequoiaflavone, 2-O-Caffeoyl maslinic acid, Pholidotin, and Ambewelamide A. Bioinformatics analysis found that their mechanism of action in treating diabetes and COVID-19 may be related to regulating the expression of DPP4, angiotensin II type 1 receptor, vitamin D receptor, plasminogen, chemokine C-C-motif receptor 6, and interleukin 2. We believe that Guizhou Miao medicine is rich in potential ingredients for the treatment of diabetes and COVID-19.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, PR China
| | - Xulong Huang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, PR China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, PR China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou Province, PR China
| |
Collapse
|
18
|
Álvarez-Almazán S, Solís-Domínguez LC, Duperou-Luna P, Fuerte-Gómez T, González-Andrade M, Aranda-Barradas ME, Palacios-Espinosa JF, Pérez-Villanueva J, Matadamas-Martínez F, Miranda-Castro SP, Mercado-Márquez C, Cortés-Benítez F. Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2023; 24:12812. [PMID: 37628991 PMCID: PMC10454726 DOI: 10.3390/ijms241612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Luz Cassandra Solís-Domínguez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Paulina Duperou-Luna
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Teresa Fuerte-Gómez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Martin González-Andrade
- Laboratory of Biosensors and Molecular Modelling, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María E. Aranda-Barradas
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Juan Francisco Palacios-Espinosa
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Jaime Pérez-Villanueva
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Félix Matadamas-Martínez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Susana Patricia Miranda-Castro
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Crisóforo Mercado-Márquez
- Isolation and Animal Facility Unit, Facultad de Estudios Superiores Cuautitlán 28, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Francisco Cortés-Benítez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| |
Collapse
|
19
|
Zhu Y, Chen T, Feng T, Zhang J, Meng Z, Zhang N, Luo G, Wang Z, Pang Y, Zhou Y. Fabrication and Biological Activities of All-in-One Composite Nanoemulsion Based on Blumea balsamifera Oil-Tea Tree Oil. Molecules 2023; 28:5889. [PMID: 37570859 PMCID: PMC10420664 DOI: 10.3390/molecules28155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 μg/mL, 2975 μg/mL, and 5950 μg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.
Collapse
Affiliation(s)
- Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tingting Feng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Zejing Meng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Ning Zhang
- School of Acupuncture-Moxibustion and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology, Key Laboratory of Environmental Pollution Monitoringand Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuxin Pang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| |
Collapse
|
20
|
Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals (Basel) 2023; 16:ph16030386. [PMID: 36986485 PMCID: PMC10055990 DOI: 10.3390/ph16030386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Saponins represent important natural derivatives of plant triterpenoids that are secondary plant metabolites. Saponins, also named glycoconjugates, are available both as natural and synthetic products. This review is focused on saponins of the oleanane, ursane, and lupane types of triterpenoids that include several plant triterpenoids displaying various important pharmacological effects. Additional convenient structural modifications of naturally-occurring plant products often result in enhancing the pharmacological effects of the parent natural structures. This is an important objective for all semisynthetic modifications of the reviewed plant products, and it is included in this review paper as well. The period covered by this review (2019–2022) is relatively short, mainly due to the existence of previously published review papers in recent years.
Collapse
|
21
|
Targeted enrichment of Glycyrrhiza glabra root extract and bioactive compound(s) quantification – A potential scaffold for Phytopharmaceutical Ingredient development. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
22
|
Shen C, Wang Y, Zhang H, Li W, Chen W, Kuang M, Song Y, Zhong Z. Exploring the active components and potential mechanisms of Rosa roxburghii Tratt in treating type 2 diabetes mellitus based on UPLC-Q-exactive Orbitrap/MS and network pharmacology. Chin Med 2023; 18:12. [PMID: 36747287 PMCID: PMC9903504 DOI: 10.1186/s13020-023-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a global disease with growing prevalence that is difficult to cure. Rosa roxburghii Tratt is an edible and medicinal plant, and modern pharmacological studies have shown that it has potential anti-diabetic activity. This is the first study to explore the active components and potential mechanisms of Rosa roxburghii Tratt fruit for treating T2DM based on UPLC-Q-Exactive Orbitrap/MS and network pharmacology. METHODS The active components of Rosa roxburghii Tratt fruit were obtained from UPLC-Q-Exactive Orbitrap/MS analysis and retrieval in the SciFinder, PubMed, Web of Science, and CNKI databases. The potential targets of the active components were obtained from the SwissTargetPrediction and PharmMapper databases. The disease targets for T2DM were obtained from GeneCards, OMIM, TTD, DisGENent, and GEO databases. The intersection of the two datasets was used to obtain the potential targets of Rosa roxburghii Tratt fruit against T2DM. The target protein interaction network was constructed using the String database and Cytoscape software. The R software ClusterProfiler package was used for target enrichment analysis and the Cytoscape CytoNCA plug-in was used to screen core targets. Molecular docking and result visualization were performed using PyMOL and Autodock Vina software. RESULTS We obtained 20 bioactive ingredients, including alphitolic acid, quercetin, and ellagic acid, as well as 13 core targets, such as AKT1, TNF, SRC, and VEGFA. All bioactive ingredients in Rosa roxburghii Tratt fruit were active against T2DM-related therapeutic targets. Rosa roxburghii Tratt fruit may play a therapeutic role in T2DM by regulating the PI3K/AKT, RAS, AGE-RAGE, and other signaling pathways. CONCLUSIONS This study explored the active components and potential mechanisms of Rosa roxburghii Tratt fruit in the treatment of T2DM, laying the foundation for a further experimental study based on pharmacodynamic substances and their mechanisms of action.
Collapse
Affiliation(s)
- Chenxiao Shen
- grid.437123.00000 0004 1794 8068Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078 China
| | - Yu Wang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Hui Zhang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Wei Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wenyue Chen
- grid.437123.00000 0004 1794 8068Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078 China
| | - Mingqing Kuang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078, China.
| |
Collapse
|