1
|
Matsumoto H, Wang TC, Taniguchi H, Nishioka Y, Hatakeyama M, Kinoshita T, Sawa M. Identification of small molecule activators targeting TYK2 pseudokinase domain. Bioorg Med Chem Lett 2025; 123:130233. [PMID: 40209917 DOI: 10.1016/j.bmcl.2025.130233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Tyrosine kinase 2 (TYK2) plays a crucial role in both adaptive and innate immune responses. The catalytic activity of the TYK2 JH1 kinase domain is controlled by the TYK2 JH2 pseudokinase domain and stabilized to maintain its inactive state until the upstream receptor activations. Here, we report the discovery of aminopyridine analogs as novel TYK2 activators through structural modification of a known JH2 binder. Compound 16b demonstrated a dose-dependent increase in TYK2 enzymatic activity.
Collapse
Affiliation(s)
| | | | | | - Yu Nishioka
- Carna Biosciences, Inc., Kobe 650-0047, Japan
| | | | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Metropolitan University, Osaka 599-8570, Japan
| | | |
Collapse
|
2
|
Sharma A, Jun SR, Bhattarai D, Panday S, Venugopal G, Panawan O, Washam C, Mackintosh S, Byrum S, Udaondo Z, Arthur JM, MacMillan-Crow LA, Parajuli N. Cold Storage Disrupts the Proteome and Phosphoproteome Landscape in Rat Kidney Transplants. Transplantation 2025; 109:806-822. [PMID: 39716351 DOI: 10.1097/tp.0000000000005310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
BACKGROUND Prolonged cold storage (CS) of kidneys results in poor long-term outcomes after transplantation (Tx). We reported previously that CS of rat kidneys for 18 h before transplant impaired proteasome function, disrupted protein homeostasis, and reduced graft function. The goal of the present study was to identify the renal proteins, including phosphoproteins, that are dysregulated by this CS injury. METHODS Isolated donor Lewis rat kidneys were subject to 18 h CS and transplanted into recipient Lewis rats (CS + Tx). Autotransplantation (transplant with 0 h CS) or Sham (right nephrectomy) surgeries served as controls. The proteome of kidney homogenates was analyzed with tandem mass-tag mass spectrometry to identify CS-induced abnormalities in kidney grafts. RESULTS CS injury disrupted the renal proteome/phosphoproteome landscape in kidney grafts and dysregulated numerous signaling pathways. We identified 3217 phosphopeptides (with 1398 novel phosphosites) that were significantly dysregulated in a CS-specific manner. In particular, proteins and pathways such as complement system and mitogen-activated protein kinases, including p38MAPK, were upregulated, whereas antioxidant/metabolic pathways, such as glutathione, were suppressed in CS + Tx groups compared with autotransplantation and sham controls. CONCLUSIONS This study provides deeper insight into the disruption of the renal proteome/phosphoproteome caused by CS injury and provides a novel set of pathways and molecules, including p38MAPK, that can be investigated to delineate their specific role in renal transplant outcomes, ultimately improving outcomes for patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Amod Sharma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Dinesh Bhattarai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sudip Panday
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Gopinath Venugopal
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Orasa Panawan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charity Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Samuel Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John M Arthur
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Nephrology, Central Arkansas Veterans Health System, Little Rock, AR
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
3
|
Kohnken R, Fossey S, Buck WR, Segreti J, Treadway J, Green J, Koshman YE, Zafiratos M, Mittelstadt S, Blomme E, Foley CM. ABBV-712-induced cardiac pathology in rats is related to off-target-driven acute vasodilation, tachycardia, and increased cardiac contractility. Toxicol Sci 2025; 205:233-244. [PMID: 40214157 DOI: 10.1093/toxsci/kfaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Following an observation of myocardial toxicity in rats with an experimental TYK2 inhibitor (ABBV-712), investigative studies were performed to identify the mechanism. Telemetry-instrumented rats were administered ABBV-712 with or without atenolol to investigate effects of co-dosing on hemodynamic parameters and cardiac pathology. In vitro studies included cytotoxicity assessment in human-induced pluripotent stem cell-derived cardiomyocytes and relaxation of isolated rat aorta. Off-target pharmacology was evaluated by binding and inhibition screening assays. Finally, TYK2 knockout mice were administered ABBV-712 to evaluate hemodynamics as compared with wild-type animals. ABBV-712 resulted in decreased mean arterial pressure and increased heart rate in rats that was prevented by pre-dosing atenolol. ABBV-712-induced myocardial necrosis was also prevented by atenolol, suggesting a mechanistic link between hemodynamic changes and cardiac pathology. The pathology was unrelated to direct cytotoxicity on cardiomyocytes as demonstrated in vitro and was shown to be a compound-related effect on vascular relaxation mediated by the endothelium. The toxicity was considered an off-target effect, as demonstrated by similar hemodynamic responses between TYK2 knockout and wild-type mice administered ABBV-712, as well as by the lack of hemodynamic alterations in the knockout mouse. Inhibition of identified off-targets was unlikely to be the cause of the hemodynamic changes. In conclusion. a novel TYK2 inhibitor was associated with decreased mean arterial pressure, increased heart rate, and secondary myocardial necrosis in rats. These effects were unrelated to TYK2 inhibition. This report is an example of a cross-functional mechanistic investigation into the pharmacologic cause of an identified cardiovascular toxicity.
Collapse
Affiliation(s)
- Rebecca Kohnken
- Safety Pharmacology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Stacey Fossey
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Wayne R Buck
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Jason Segreti
- Safety Pharmacology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Jessica Treadway
- Safety Pharmacology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Jonathon Green
- Safety Pharmacology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Yevgeniya E Koshman
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Mark Zafiratos
- Safety Pharmacology, AbbVie Inc., North Chicago, IL 60064, United States
| | - Scott Mittelstadt
- Preclinical Safety, AbbVie Inc., North Chicago, IL 60064, United States
| | - Eric Blomme
- Development Biologic Sciences, AbbVie Inc., North Chicago, IL 60064, United States
| | - Charles M Foley
- Safety Pharmacology, AbbVie Inc., North Chicago, IL 60064, United States
| |
Collapse
|
4
|
Sutanto H, Adytia GJ, Fetarayani D. Hyper IgE Syndrome: Bridging the Gap Between Immunodeficiency, Atopy, and Allergic Diseases. Curr Allergy Asthma Rep 2025; 25:17. [PMID: 40082265 DOI: 10.1007/s11882-025-01196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW It seeks to answer key questions about the molecular and cellular mechanisms underlying Hyper IgE Syndrome (HIES), the genetic mutations responsible, and their contributions to both immunodeficiency and allergic manifestations. Additionally, it aims to explore diagnostic strategies and therapeutic approaches that address these overlapping domains, thereby improving disease management. RECENT FINDINGS Recent research has identified several pivotal genetic mutations, including those in STAT3, DOCK8, and PGM3, which play critical roles in disrupting immune pathways such as Th17 differentiation and IgE regulation. These molecular defects have been linked to the hallmark features of HIES, including recurrent infections and elevated serum IgE levels, as well as its overlap with atopic conditions like eczema, asthma, and food allergies. Advances in diagnostic tools, such as biomarker identification and genetic testing, have improved the differentiation of HIES from more common atopic disorders. Therapeutic advancements, including the use of targeted biologics and interventions addressing both immunodeficiency and allergic symptoms, have shown promise in enhancing patient outcomes. This review highlights the role of specific genetic mutations in shaping the clinical and immunological phenotype of HIES. Key takeaways include the necessity of integrating molecular insights with clinical observations for accurate diagnosis and the potential of emerging targeted therapies to address both immunological and allergic aspects of the syndrome.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Galih Januar Adytia
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
5
|
Bang CH, Park CJ, Kim YS. The Expanding Therapeutic Potential of Deucravacitinib Beyond Psoriasis: A Narrative Review. J Clin Med 2025; 14:1745. [PMID: 40095888 PMCID: PMC11900575 DOI: 10.3390/jcm14051745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Deucravacitinib is an allosteric, selective tyrosine kinase 2 (TYK2) inhibitor that has demonstrated significant efficacy in the treatment of psoriasis. TYK2, a member of the Janus kinase (JAK) family, plays a critical role in intracellular signaling pathways for pro-inflammatory cytokines. Unlike traditional JAK inhibitors, which target active domains, deucravacitinib selectively binds to the pseudokinase domain of TYK2. This binding induces a conformational change that locks the enzyme in an inactive state, ensuring superior selectivity for TYK2 over JAK 1/2/3. This unique mechanism specifically inhibits key pro-inflammatory cytokines, including IL-12, IL-23, and type I interferons, critical in the pathogenesis of psoriasis and other immune-mediated diseases. As a result, deucravacitinib represents a promising option for targeted therapy in immune-mediated diseases and may reduce adverse events commonly associated with broader immunosuppressive treatments. Furthermore, its oral administration offers a convenient alternative to injectable biologics, potentially improving patient adherence and treatment satisfaction. This review highlights recent studies suggesting that deucravacitinib may also have therapeutic benefits in psoriatic arthritis, palmoplantar pustulosis, systemic lupus erythematosus, Sjogren's disease, and inflammatory bowel disease. Given its expanding therapeutic potential, deucravacitinib may provide a safer and more effective alternative to current therapies, offering a tailored approach to treatment.
Collapse
Affiliation(s)
- Chul-Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chul-Jong Park
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea
| | - Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea
| |
Collapse
|
6
|
Haggett MG, Lee S, Lai FYX. A systematic review of the efficacy of TYK2 inhibitors in patients with dermatological disease. Australas J Dermatol 2025; 66:1-13. [PMID: 39641243 DOI: 10.1111/ajd.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
This study systematically reviews existing data on the efficacy of Tyrosine Kinase 2 (TYK2) inhibitors in comparison to placebo or standard treatments for therapeutic benefit and improving quality of life in dermatological diseases. Seventeen records representing 13 clinical trials, one matching-adjusted indirect comparison, and one case study were included. Results indicate that Deucravacitinib is superior to placebo, Apremilast and Adalimumab in treating adult patients with moderate-to-severe plaque psoriasis and superior to placebo in the treatment of adults with systemic lupus erythematosus. Comparative investigations on Brepocitinib and Ropsacitinib were more limited. Oral Brepocitinib demonstrated superiority over placebo in managing alopecia areata, and hidradenitis suppurativa. Topical Brepocitinib exhibited superiority over placebo in treating atopic dermatitis, but not plaque psoriasis. Ropsacitinib demonstrated superiority over placebo in the management of plaque psoriasis. Brepocitinib and Ropsacitinib had more side effects than Deucravacitinib.
Collapse
Affiliation(s)
| | - Sangho Lee
- Department of Dermatology, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Francis Yi Xing Lai
- Department of Dermatology, Skin Health Institute, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Zhou M, Shen Q, Li B. JAK inhibitors: a new choice for diabetes mellitus? Diabetol Metab Syndr 2025; 17:33. [PMID: 39849637 PMCID: PMC11755809 DOI: 10.1186/s13098-025-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Altered tyrosine kinase signaling is associated with a variety of diseases. Tyrosine kinases can be classified into two groups: receptor type and nonreceptor type. Nonreceptor-type tyrosine kinases are subdivided into Janus kinases (JAKs), focal adhesion kinases (FAKs) and tec protein tyrosine kinases (TECs). The beneficial effects of receptor-type tyrosine kinase inhibitors (TKIs) for the treatment of diabetes mellitus (DM) and the mechanisms involved have been previously described. Recently, several clinical cases involving the reversal of type 1 diabetes mellitus (T1DM) during treatment with JAK inhibitors have been reported, and clinical studies have described the improvement of type 2 diabetes mellitus (T2DM) during treatment with JAK inhibitors. In vivo and in vitro experimental studies have elucidated some of the mechanisms behind this effect, which seem to be based mainly on the reduction in β-cell disruption and the improvement of insulin resistance. In this review, we briefly describe the beneficial effects of JAK inhibitors among nonreceptor tyrosine kinase inhibitors for the treatment of DM and attempt to analyze the mechanisms involved.
Collapse
Affiliation(s)
- Mengjun Zhou
- Department of Cardiology, Zibo Central Hospital, Binzhou Medical University, No. 10, South Shanghai Road, Zibo, People's Republic of China
| | - Qi Shen
- School of Clinical Medicine, Zibo Central Hospital, Shandong Second Medical University, No. 10, South Shanghai Road, Zibo, People's Republic of China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, People's Republic of China.
| |
Collapse
|
8
|
Yang B, Chu L, Feng F, Lu S, Xue C. Association of tyrosine kinase 2 polymorphisms with susceptibility to microscopic polyangiitis in a Guangxi population. PeerJ 2024; 12:e18735. [PMID: 39726748 PMCID: PMC11670758 DOI: 10.7717/peerj.18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Heredity and epigenetics affect the pathogenesis of microscopic polyangiitis (MPA). Tyrosine kinase 2 (TYK2) polymorphisms (rs2304256C > A, rs280519A > G, and rs12720270G > A) may be potential protective factors against anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Current research suggests that TYK2 is associated with various autoimmune diseases; however, no study has examined the relationship between TYK2 polymorphisms and AAV. This study assessed the effect of TYK2 polymorphisms on susceptibility to MPA. Methods Overall, 562 Chinese participants (265 patients with MPA and 297 healthy volunteers) were recruited. Polymerase chain reactions combined with high-throughput sequencing were used to analyze polymorphic loci, while logistic regression analysis was used to assess the relationship between polymorphism of the TYK2 gene and MPA susceptibility. Results In males, individuals with the CA genotype (rs2304256) in the overdominant model showed a significantly reduced risk of MPA (odds ratio (OR) = 0.52; 95% confidence interval (CI) [0.29-0.93]; p = 0.025). Regarding rs280519, male carriers of the AG genotype had a significantly lower risk of developing MPA in both the codominant (OR = 0.51; 95% CI [0.28-0.93]; p = 0.039) and overdominant (OR = 0.48; 95% CI [0.27-0.86]; p = 0.013) models. The GA genotype of rs12720270 was associated with low susceptibility to MPA in males (OR = 0.52; 95% CI [0.29-0.93]; p = 0.027). Conclusions This study indicates that mutations in the TYK2 gene (rs2304256, rs280519, and rs12720270) may be associated with a reduced risk of MPA in the male Chinese population in Guangxi. The A allele of single nucleotide polymorphism (SNP) rs2304256 may be a protective factor against MPA, while the G alleles of SNPs rs280519 and rs12720270 are protective factors against MPA.
Collapse
Affiliation(s)
- Binglan Yang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liepeng Chu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shurong Lu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Miranda S, Lassnig C, Schmidhofer K, Kjartansdottir H, Vogl C, Tangermann S, Tsymala I, Babl V, Müller M, Kuchler K, Strobl B. Lack of TYK2 signaling enhances host resistance to Candida albicans skin infection. Nat Commun 2024; 15:10493. [PMID: 39622833 PMCID: PMC11612186 DOI: 10.1038/s41467-024-54888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing diseases ranging from local to life-threating systemic infections. Tyrosine kinase 2 (TYK2), a crucial mediator in several cytokine signaling pathways, has been associated with protective functions in various microbial infections. However, its specific contribution in the immune response to fungal infections has remained elusive. In this study, we show that mice lacking TYK2 or its enzymatic activity exhibit enhanced resistance to C. albicans skin infections, limiting fungal spread and accelerating wound healing. Impaired TYK2-signaling prompted the formation of a distinctive layer of necrotic neutrophils around the fungal pathogens. Transcriptomic analysis revealed TYK2's pivotal role in regulating interferon-inducible genes in neutrophils, thereby impacting their antifungal capacity during infection. Furthermore, we show that TYK2-dependent interferon-gamma (IFNγ) production contributes to fungal dissemination from the skin to the kidneys. Our study uncovers a hitherto unrecognized detrimental role of TYK2 in cutaneous C. albicans infections.
Collapse
Affiliation(s)
- Sara Miranda
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Schmidhofer
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hrönn Kjartansdottir
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Centre of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Verena Babl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Ucpinar S, Kwan JK, Hoffman JD, Tilley MK, Douglas JA, Rubio RG, Lu R, Nunn PA, Langrish CL. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral allosteric TYK2 inhibitor ESK-001 using a randomized, double-blind, placebo-controlled study design. Clin Transl Sci 2024; 17:e70094. [PMID: 39604226 PMCID: PMC11602527 DOI: 10.1111/cts.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
ESK-001 is a highly selective allosteric inhibitor of tyrosine kinase 2 (TYK2), which plays an essential role in mediating cytokine signaling in multiple immune-mediated diseases. In 2 phase I studies, a first-in-human single ascending dose (SAD) and multiple ascending dose (MAD) study and a multiple-dose (MD) study, we evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of orally administered ESK-001 in healthy participants using a randomized, double-blind, placebo-controlled study design. ESK-001 was rapidly absorbed with systemic exposures generally increasing dose-proportionally across all cohorts. The mean terminal half-life ranged from 8 to 13 h with no to minimal accumulation of ESK-001 following q.d. doses and ~2-fold accumulation following Q12 doses. Less than 1% of unchanged ESK-001 was eliminated in urine. ESK-001 inhibited the downstream TYK2 pathway as shown by inhibition of pSTAT1 expression. Transcriptomic analysis of unstimulated whole blood samples confirmed dose-dependent inhibition of Type I IFN-induced genes and SIGLEC1, a novel TYK2-responsive biomarker. By correlating PK exposure data with PD readouts, a strong PK/PD relationship was demonstrated. There were no deaths, serious treatment-emergent adverse events (TEAEs), nor severe TEAEs, and most TEAEs were mild in severity. In conclusion, ESK-001 was generally safe and well-tolerated in healthy participants, showed linear dose-dependent PK characteristics, and maximally inhibited TYK2-dependent pathways with a predictable concentration-dependent PK/PD relationship. These findings were used to select the dose range of ESK-001 for the STRIDE phase II trial in plaque psoriasis and to support further clinical development of ESK-001 in other TYK2-mediated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruixiao Lu
- Alumis IncSouth San FranciscoCaliforniaUSA
| | | | | |
Collapse
|
11
|
Beard A, Trotter SC. JAK 1-3 inhibitors and TYK-2 inhibitors in dermatology: Practical pearls for the primary care physician. J Family Med Prim Care 2024; 13:4128-4134. [PMID: 39629448 PMCID: PMC11610805 DOI: 10.4103/jfmpc.jfmpc_112_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 12/07/2024] Open
Abstract
Guidelines for primary care clinicians on monitoring and safety guidelines regarding Janus kinase and tyrosine kinase 2 inhibitors in the treatment of inflammatory skin conditions are often unclear. This review aims to provide the primary care physician with a review of clinically relevant and updated information regarding the monitoring and overall profile of these medications. To do so, a systematic review was conducted using the PubMed database and relevant Food and Drug Administration (FDA) approved drug inserts from manufacturers. Janus kinase and tyrosine kinase 2 inhibitors have recently gained FDA approval for the treatment of several inflammatory skin conditions including atopic dermatitis, plaque psoriasis, alopecia areata, and vitiligo. There is a known box warning associated with the Janus kinase inhibitors that create the need for monitoring and close follow-up while patients are undergoing these treatments. Although these medications are often prescribed by specialists, as their use becomes more prevalent and therapies continue to gain approval for the treatment of these commonly encountered conditions, it is important for the primary physician to be updated and aware of the current monitoring guidelines and safety profile for this class of medication. Both Janus kinase inhibitors and tyrosine kinase 2 inhibitors display significant efficacy in the treatment of their approved conditions and research continues to move forward with the approval of more medications from these classes.
Collapse
Affiliation(s)
- Abigail Beard
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, Ohio, USA
| | - Shannon C. Trotter
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, Ohio, USA
- Dermatologists of Central States, Springfield, OH, USA
| |
Collapse
|
12
|
Fu H, Pickering H, Rubbi L, Ross TM, Zhou W, Reed EF, Pellegrini M. The response to influenza vaccination is associated with DNA methylation-driven regulation of T cell innate antiviral pathways. Clin Epigenetics 2024; 16:114. [PMID: 39169387 PMCID: PMC11340180 DOI: 10.1186/s13148-024-01730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell-type composition. RESULTS Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. CONCLUSIONS Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.
Collapse
Affiliation(s)
- Hongxiang Fu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ted M Ross
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Yilmaz O, Pinto JP, Torres T. New and emerging oral therapies for psoriasis. Drugs Context 2024; 13:2024-5-6. [PMID: 39131603 PMCID: PMC11313207 DOI: 10.7573/dic.2024-5-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the global population. Traditional systemic treatments, such as methotrexate, cyclosporine, acitretin and fumaric acid esters, have limited efficacy and are associated with significant adverse effects, necessitating regular monitoring and posing risks of long-term toxicity. Recent advancements have introduced biologic drugs that offer improved efficacy and safety profiles. However, their high cost and the inconvenience of parenteral administration limit their accessibility. Consequently, there is a growing interest in developing new, targeted oral therapies. Small molecules, such as phosphodiesterase 4 inhibitors (e.g. apremilast) and TYK2 inhibitor (e.g. deucravacitinib), have shown promising results with favourable safety profiles. Additionally, other novel oral agents targeting specific pathways, including IL-17, IL-23, TNF, S1PR1 and A3AR, are under investigation. These treatments aim to combine the efficacy of biologics with the convenience and accessibility of oral administration, addressing the limitations of current therapies. This narrative review synthesizes the emerging oral therapeutic agents for psoriasis, focusing on their mechanisms of action, stages of development and clinical trial results.
Collapse
Affiliation(s)
- Orhan Yilmaz
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan,
Canada
| | - João Pedro Pinto
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto,
Portugal
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto,
Portugal
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto,
Portugal
| |
Collapse
|
14
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
15
|
Yi RC, Moran SK, Gantz HY, Strowd LC, Feldman SR. Biologics and Small Molecule Targeted Therapies for Pediatric Alopecia Areata, Psoriasis, Atopic Dermatitis, and Hidradenitis Suppurativa in the US: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:892. [PMID: 39201826 PMCID: PMC11352834 DOI: 10.3390/children11080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND The management of pediatric dermatological conditions such as alopecia areata (AA), psoriasis, atopic dermatitis (AD), and hidradenitis suppurativa (HS) has significantly evolved with the introduction of biologics and small molecule targeted therapies. The advancement in understanding the immunopathogenesis of these chronic skin conditions has led to the development and approval of novel biologics and small molecule therapies. Initially approved by the United States Food and Drug Administration (FDA) for adults, most of these therapies are now being evaluated in clinical trials for safety and efficacy in adolescents and children, expanding new treatment options for pediatric patients. The role of the FDA in drug approval is multifaceted from drug inception, ensuring that research, data, and evidence show that the proposed drug is effective and safe for the intended use. OBJECTIVE The goal of this review article is to provide an overview of the recently FDA-approved and potential biologic and oral small molecule therapies in clinical trials for AA, psoriasis, AD, and HS in pediatric patients. METHODS The search for this review included keywords in ClinicalTrials.gov, PubMed, and Google Scholar for the latest research and clinical trials relevant to these conditions and treatments without the PRISMA methodology. RESULTS For pediatric AA, ritlecitinib is FDA-approved, while baricitinib and updacitinib are in phase 3 clinical trials for pediatric approval. The FDA-approved drugs for pediatric psoriasis include secukinumab, ustekinumab, ixekizumab, etanercept, and apremilast. Other phase 3 clinical trials for pediatric psoriasis include risankizumab, guselkumab, tildrakizumab, brodalumab, and deucravacitinib. For pediatric AD, the FDA-approved drugs are dupilumab, tralokinumab, abrocitinib, and upadacitinib, with many other drugs in phase 3 trials. Adalimumab is an FDA-approved biologic for pediatric HS, with various clinical trials ongoing for adults. The approved biologics and small molecule therapies had higher efficacy and improved safety profiles compared to traditional medications. CONCLUSIONS With numerous ongoing trials, the success of these clinical trials could lead to their inclusion in treatment guidelines for these chronic skin conditions. Biologics and small molecule therapies offer new avenues for effective disease management, enabling personalized therapeutic interventions and improving pediatric health outcomes.
Collapse
Affiliation(s)
- Robin C. Yi
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.K.M.); (H.Y.G.); (L.C.S.); (S.R.F.)
| | - Shannon K. Moran
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.K.M.); (H.Y.G.); (L.C.S.); (S.R.F.)
| | - Hannah Y. Gantz
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.K.M.); (H.Y.G.); (L.C.S.); (S.R.F.)
| | - Lindsay C. Strowd
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.K.M.); (H.Y.G.); (L.C.S.); (S.R.F.)
| | - Steven R. Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.K.M.); (H.Y.G.); (L.C.S.); (S.R.F.)
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
16
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
17
|
Dragotto M, D’Onghia M, Trovato E, Tognetti L, Rubegni P, Calabrese L. Therapeutic Potential of Targeting the JAK/STAT Pathway in Psoriasis: Focus on TYK2 Inhibition. J Clin Med 2024; 13:3091. [PMID: 38892802 PMCID: PMC11172692 DOI: 10.3390/jcm13113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis is an inflammatory skin disease with a chronic relapsing course and an often-detrimental impact on patients' quality of life. Thanks to incredible advances in research over the past few decades, the therapeutic armamentarium of psoriasis is now reasonably broad and structured, with several therapeutic agents that have demonstrated successful long-term control of this condition. However, there are still unfulfilled gaps resulting from the inherent limitations of existing therapies, which have paved the way for the identification of new therapeutic strategies or the improvement of existing ones. A great deal of attention has recently been paid to the JAK/STAT pathway, playing a crucial role in chronic inflammatory skin diseases, including psoriasis. Indeed, in a disease with such a complex pathogenesis, the possibility to antagonize multiple molecular pathways via JAK/STAT inhibition offers an undeniable therapeutic advantage. However, data from clinical trials evaluating the use of oral JAK inhibitors in immune-mediated disorders, such as RA, have arisen safety concerns, suggesting a potentially increased risk of class-specific AEs such as infections, venous thromboembolism, and malignancies. New molecules are currently under investigation for the treatment of psoriasis, such as deucravacitinib, an oral selective inhibitor that binds to the regulatory domain of TYK2, brepocitinib (PF-06700841) and PF-06826647 that bind to the active site in the catalytic domain. Due to the selective TYK2 blockade allowing the inhibition of key cytokine-mediated signals, such as those induced by IL-12 and IL-23, anti-TYK2 agents appear to be very promising as the safety profile seems to be superior compared with pan-JAK inhibitors. The aim of our review is to thoroughly explore the rationale behind the usage of JAK inhibitors in PsO, their efficacy and safety profiles, with a special focus on oral TYK2 inhibitors, as well as to provide a forward-looking update on novel therapeutic strategies targeting the TYK2 pathway in psoriasis.
Collapse
Affiliation(s)
- Martina Dragotto
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Martina D’Onghia
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Emanuele Trovato
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Linda Tognetti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
- Institute of Dermatology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
18
|
Fu H, Pickering H, Rubbi L, Ross TM, Zhou W, Reed EF, Pellegrini M. The response to influenza vaccination is associated with DNA methylation-driven regulation of T cell innate antiviral pathways. RESEARCH SQUARE 2024:rs.3.rs-4324518. [PMID: 38826189 PMCID: PMC11142309 DOI: 10.21203/rs.3.rs-4324518/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell type composition. Results Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. Conclusions Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.
Collapse
|
19
|
Shah JT, Shah KT, Femia AN, Lo Sicco KI, Merola JF, Weber B, Garshick MS. Cardiovascular Risk Management in Patients Treated With Janus Kinase Inhibitors. J Cardiovasc Pharmacol 2024; 83:392-402. [PMID: 37566808 PMCID: PMC10913172 DOI: 10.1097/fjc.0000000000001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
ABSTRACT The Janus kinase-signal transducer and activator of transcription pathway plays a critical role in the pathogenesis of many immune-mediated inflammatory diseases (IMIDs). Although Janus kinase inhibitors (JAKi) are an effective treatment for several IMIDs, they have come under scrutiny as a class because of a potential risk of venous thromboembolism and cardiovascular (CV) events, specifically noted with the oral JAKi, tofacitinib, as reported in the ORAL Surveillance Trial of a high CV risk rheumatoid arthritis population. This trial resulted in a black box warning from the Food and Drug Administration and European Medicines Agency regarding risk of venous thromboembolism and CV events that was extended across several types of JAKi (including topical ruxolitinib) when treating IMIDs, leading to considerable controversy. Included is an up-to-date review of the current and rapidly evolving literature on CV risk in patients with IMIDs on JAKi therapy, including identification of potential risk factors for future venous thromboembolism and CV events on JAKi therapy. We suggest a comprehensive, multimodal, and systematic approach for evaluation of CV risk in patients considering taking JAKi and emphasize that cardiologists play an important role in risk stratification and mitigation for patients with high CV risk factors or on long-term JAKi therapies.
Collapse
Affiliation(s)
- Jill T. Shah
- New York University Grossman School of Medicine, New York, NY
| | - Keya T. Shah
- Department of Medicine, NYU Langone Long Island Hospital, Mineola, NY
| | - Alisa N. Femia
- New York University Grossman School of Medicine, New York, NY
- The Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, NY
| | - Kristen I. Lo Sicco
- New York University Grossman School of Medicine, New York, NY
- The Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, NY
| | - Joseph F. Merola
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Brittany Weber
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Heart and Vascular Center, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Michael S. Garshick
- New York University Grossman School of Medicine, New York, NY
- The Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, NY
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Langone Health, New York, NY
| |
Collapse
|
20
|
Ding Y, Cao Q, Yang W, Xu J, Xiao P. Macrophage: Hidden Criminal in Therapy Resistance. J Innate Immun 2024; 16:188-202. [PMID: 38442696 PMCID: PMC10990480 DOI: 10.1159/000538212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Although substantial efforts have been made by researchers to develop drugs, a disappointing reality is that the emergence of drug resistance is an unavoidable reality for the majority of patients. In recent years, emerging evidence suggests a connection between drug resistance and immune dysregulation. SUMMARY As a ubiquitously distributed, versatile innate immune cell, macrophages play essential roles in maintaining tissue homeostasis in a steady state. Nevertheless, it is becoming aware that macrophages undermine the action of therapeutic drugs across various disease types. Reprogramming macrophage function has been proven to be effective in restoring patient responsiveness to treatment. Herein, we comprehensively reviewed how macrophages respond to drugs and the mechanisms by which they contribute to treatment unresponsiveness in cancer, inflammatory diseases, and metabolic diseases. In addition, future prospects in macrophage-based combination therapy were discussed. KEY MESSAGES Targeting macrophages is a promising strategy for overcoming drug resistance in immune disorders.
Collapse
Affiliation(s)
- Yimin Ding
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
21
|
Kargbo RB. Innovative Therapeutic Strategies in TYK2-Targeted Treatments: From Cancer to Autoimmune Disorders. ACS Med Chem Lett 2024; 15:174-176. [PMID: 38352839 PMCID: PMC10860186 DOI: 10.1021/acsmedchemlett.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Recent advancements in therapeutic approaches targeting tyrosine kinase 2 (TYK2) have shown promising results across various medical fields, including oncology and immunology. TYK2, a Janus kinase (JAK) family member, plays a significant role in cytokine signaling and immune regulation. This Patent Highlight explores the latest developments in TYK2 inhibitors, highlighting their potential in treating diverse conditions such as cancer, alopecia areata, and psoriatic arthritis.
Collapse
|
22
|
Uslu K, Ozcelik F, Zararsiz G, Eldem V, Cephe A, Sahin IO, Yuksel RC, Sipahioglu H, Ozer Simsek Z, Baspinar O, Akalin H, Simsek Y, Gundogan K, Tutar N, Karayol Akin A, Ozkul Y, Yildiz O, Dundar M. Deciphering the host genetic factors conferring susceptibility to severe COVID-19 using exome sequencing. Genes Immun 2024; 25:14-42. [PMID: 38123822 DOI: 10.1038/s41435-023-00232-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The COVID-19 pandemic remains a significant public health concern despite the new vaccines and therapeutics. The clinical course of acute SARS-CoV-2 infection is highly variable and influenced by several factors related to the virus and the host. Numerous genetic studies, including candidate gene, exome, and genome sequencing studies, genome-wide association studies, and other omics efforts, have proposed various Mendelian and non-Mendelian associations with COVID-19 course. In this study, we conducted whole-exome sequencing on 90 unvaccinated patients from Turkey with no known comorbidities associated with severe COVID-19. Of these patients, 30 had severe, 30 had moderate, and 30 had mild/asymptomatic disease. We identified rare variants in genes associated with SARS-CoV-2 susceptibility and pathogenesis, with an emphasis on genes related to the regulation of inflammation, and discussed these in the context of the clinical course of the patients. In addition, we compared the frequencies of common variants between each group. Even though no variant remained statistically significant after correction for multiple testing, we observed that certain previously associated genes and variants showed significant associations before correction. Our study contributes to the existing literature regarding the genetic susceptibility to SARS-CoV-2. Future studies would be beneficial characterizing the host genetic properties in different populations.
Collapse
Affiliation(s)
- Kubra Uslu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ahu Cephe
- Institutional Data Management and Analytics Units, Erciyes University Rectorate, Kayseri, Turkey
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Recep Civan Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioglu
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Zuhal Ozer Simsek
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Osman Baspinar
- Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yasin Simsek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuri Tutar
- Department of Chest Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Aynur Karayol Akin
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Orhan Yildiz
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
23
|
Salman HR, Alzubaidy AA, Abbas AH, Mohammad HA. Attenuated effects of topical vinpocetine in an imiquimod-induced mouse model of psoriasis. J Taibah Univ Med Sci 2024; 19:35-53. [PMID: 37868105 PMCID: PMC10585306 DOI: 10.1016/j.jtumed.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 10/24/2023] Open
Abstract
Psoriasis is an uncontrolled, long-lasting inflammatory dermatosis distinguished by thickened, erythematous, and flaky skin lesions. Massive amounts of inflammatory cytokines are produced when immune system imbalances are driven by genetic and environmental triggers. Vinpocetine (VNP), a man-made analogue of the compound vincamine found in the dwarf periwinkle herb, has robust anti-inflammatory, immunomodulatory, and anti-oxidative effects; alleviates the epidermal penetration of immune cells, such as eosinophils and neutrophils; and abolishes the generation of pro-inflammatory molecules. Objective This study was aimed at exploring the effects of long-term topical VNP, both alone and co-administered with clobetasol propionate, in an imiquimod-induced mouse model of psoriasiform dermatitis. Methods The study protocol consisted of 48 Swiss albino mice, randomly divided into six groups of eight mice each. In group I, petroleum jelly was administered daily for 8 days. In group II, imiquimod was administered topically at 62.5 mg daily for 8 days. In groups III, VI, V, and VI, 0.05% clobetasol propionate, 1% VNP, 3% VNP, and 3% VNP plus 0.05% clobetasol were administered topically for an additional 8 days after the induction, thus resulting in a total trial length of 16 days. Results Topical VNP at various doses alleviated the severity of imiquimod-induced psoriatic lesions-including erythema, silvery-white scaling, and thickening-and reversed the histopathological abnormalities. Moreover, imiquimod-exposed animals treated with VNP showed markedly diminished concentrations of inflammatory biomarkers, including tumour necrosis factor-α, interleukin (IL)-8, IL-17A, IL-23, IL-37, nuclear factor-kappa B (NF-κB), and transforming growth factor-β1. Conclusion This research provides new evidence that VNP, alone and in combination with clobetasol, may serve as a potential adjuvant for long-term management of autoimmune and autoinflammatory skin diseases, particularly psoriasis, by attenuating psoriatic lesion severity, suppressing cytokine generation, and limiting NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Hayder R. Salman
- Al-Mustaqbal University, College of Pharmacy, Department of Pharmacology, Hillah, Babylon, Iraq
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Adeeb A. Alzubaidy
- University of Warith Al-Anbiyaa, College of Medicine, Department of Pharmacology, Karbala, Iraq
| | - Alaa H. Abbas
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Hussein A. Mohammad
- University of Al-Qadisiyah, College of Pharmacy, Department of Pharmaceutics, Al Diwaniya, Al-Qadisiyah Province, Iraq
| |
Collapse
|
24
|
Drakos A, Torres T, Vender R. Emerging Oral Therapies for the Treatment of Psoriasis: A Review of Pipeline Agents. Pharmaceutics 2024; 16:111. [PMID: 38258121 PMCID: PMC10819460 DOI: 10.3390/pharmaceutics16010111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The introduction of biologic agents for the treatment of psoriasis has revolutionized the current treatment landscape, targeting cytokines in the interleukin (IL)-23/IL-17 pathway and demonstrating strong efficacy and safety profiles in clinical trials. These agents however are costly, are associated with a risk of immunogenicity, and require administration by intravenous or subcutaneous injection, limiting their use among patients. Oral therapies, specifically small molecule and microbiome therapeutics, have the potential to be more convenient and cost-effective agents for patients and have been a focus of development in recent years, with few targeted oral medications available for the disease. In this manuscript, we review pipeline oral therapies for psoriasis identified through a search of ClinicalTrials.gov (30 June 2022-1 October 2023). Available preclinical and clinical trial data on each therapeutic agent are discussed. Small molecules under development include tumor necrosis factor inhibitors, IL-23 inhibitors, IL-17 inhibitors, phosphodiesterase-4 inhibitors, Janus kinase inhibitors, A3 adenosine receptor agonists, and sphingosine-1-phosphate receptor 1 agonists, several of which are entering phase III trials. Oral microbials have also demonstrated success in early phase studies. As new oral therapies emerge for the treatment of psoriasis, real-world data and comparative trials are needed to better inform their use among patients.
Collapse
Affiliation(s)
- Anastasia Drakos
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
- Department of Dermatology, Centro Hospitalar de Santo António, 4099-001 Porto, Portugal
| | - Ronald Vender
- Dermatrials Research Inc. & Venderm Consulting, Hamilton, ON L8N 1Y2, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
25
|
Jiang M, Hao X, Jiang Y, Li S, Wang C, Cheng S. Genetic and observational associations of lung function with gastrointestinal tract diseases: pleiotropic and mendelian randomization analysis. Respir Res 2023; 24:315. [PMID: 38102678 PMCID: PMC10724909 DOI: 10.1186/s12931-023-02621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The two-way communications along the gut-lung axis influence the immune function in both gut and lung. However, the shared genetic characteristics of lung function with gastrointestinal tract (GIT) diseases remain to be investigated. METHODS We first investigated the genetic correlations between three lung function traits and four GIT diseases. Second, we illustrated the genetic overlap by genome-wide pleiotropic analysis (PLACO) and further pinpointed the relevant tissue and cell types by partitioning heritability. Furthermore, we proposed pleiotropic genes as potential drug targets by drug database mining. Finally, we evaluated the causal relationships by epidemiologic observational study and Mendelian randomization (MR) analysis. RESULTS We found lung function and GIT diseases were genetically correlated. We identified 258 pleiotropic loci, which were enriched in gut- and lung-specific regions marked by H3K4me1. Among these, 16 pleiotropic genes were targets of drugs, such as tofacitinib and baricitinib targeting TYK2 for the treatment of ulcer colitis and COVID-19, respectively. We identified a missense variant in TYK2, exhibiting a shared causal effect on FEV1/FVC and inflammatory bowel disease (rs12720356, PPLACO=1.38 × 10- 8). These findings suggested TYK2 as a promising drug target. Although the epidemiologic observational study suggested the protective role of lung function in the development of GIT diseases, no causalities were found by MR analysis. CONCLUSIONS Our study suggested the shared genetic characteristics between lung function and GIT diseases. The pleiotropic variants could exert their effects by modulating gene expression marked by histone modifications. Finally, we highlighted the potential of pleiotropic analyses in drug repurposing.
Collapse
Affiliation(s)
- Minghui Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanshan Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Ryguła I, Pikiewicz W, Kaminiów K. Novel Janus Kinase Inhibitors in the Treatment of Dermatologic Conditions. Molecules 2023; 28:8064. [PMID: 38138551 PMCID: PMC10745734 DOI: 10.3390/molecules28248064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Janus kinase inhibitors, also known as JAK inhibitors, JAKinibs or JAKi, are a new group of disease-modifying drugs. They work by inhibiting enzymes involved in the transmission of information from receptors located in the cell membrane to the cell interior, specifically to the cell nucleus, thus disrupting the JAK-STAT pathway. This pathway plays a role in key cellular processes such as the immune response and cell growth. This feature is used in the treatment of patients with rheumatological, gastroenterological and hematological diseases. Recently, it has been discovered that JAK-STAT pathway inhibitors also show therapeutic potential against dermatological diseases such as atopic dermatitis, psoriasis, alopecia areata and acquired vitiligo. Studies are underway to use them in the treatment of several other dermatoses. Janus kinase inhibitors represent a promising class of drugs for the treatment of skin diseases refractory to conventional therapy. The purpose of this review is to summarize the latest knowledge on the use of JAKi in dermatological treatment.
Collapse
Affiliation(s)
- Izabella Ryguła
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Wojciech Pikiewicz
- Department of Medical and Health Sciences, Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dąbrowa Górnicza, Poland;
| | - Konrad Kaminiów
- Department of Medical and Health Sciences, Collegium Medicum—Faculty of Medicine, WSB University, 41-300 Dąbrowa Górnicza, Poland;
| |
Collapse
|
27
|
Passeron T, King B, Seneschal J, Steinhoff M, Jabbari A, Ohyama M, Tobin DJ, Randhawa S, Winkler A, Telliez JB, Martin D, Lejeune A. Inhibition of T-cell activity in alopecia areata: recent developments and new directions. Front Immunol 2023; 14:1243556. [PMID: 38022501 PMCID: PMC10657858 DOI: 10.3389/fimmu.2023.1243556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.
Collapse
Affiliation(s)
- Thierry Passeron
- University Côte d’Azur, Centre Hospitalier Universitaire Nice, Department of Dermatology, Nice, France
- University Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Julien Seneschal
- Department of Dermatology and Paediatric Dermatology, National Reference Centre for Rare Skin Diseases, Saint-André Hospital, University of Bordeaux, Bordeaux, France
- Bordeaux University, Centre national de la recherche scientifique (CNRS), ImmunoConcept, UMR5164, Bordeaux, France
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Desmond J. Tobin
- Charles Institute of Dermatology, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
28
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
29
|
Kozak K, Pavlyshyn H, Kamyshnyi O, Shevchuk O, Korda M, Vari SG. The Relationship between COVID-19 Severity in Children and Immunoregulatory Gene Polymorphism. Viruses 2023; 15:2093. [PMID: 37896870 PMCID: PMC10612096 DOI: 10.3390/v15102093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease (COVID-19) and its outcomes remain one of the most challenging problems today. COVID-19 in children could be asymptomatic, but can result in a fatal outcome; therefore, predictions of the disease severity are important. The goal was to investigate the human genetic factors that could be associated with COVID-19 severity in children. Single-nucleotide polymorphisms of the following genes were studied: ACE2 (rs2074192), IFNAR2 (rs2236757), TYK2 (rs2304256), OAS1 (rs10774671), OAS3 (rs10735079), CD40 (rs4813003), FCGR2A (rs1801274) and CASP3 (rs113420705). In the case-control study were 30 children with mild or moderate course of the disease; 30 with severe COVID-19 symptoms and multisystem inflammatory syndrome in children (MIS-C) and 15 who were healthy, and who did not have SARS-CoV-2 (PCR negative, Ig G negative). The study revealed that ACE2 rs2074192 (allele T), IFNAR2 rs2236757 (allele A), OAS1 rs10774671 (allele A), CD40 rs4813003 (allele C), CASP3 rs113420705 (allele C) and male sex contribute to severe COVID-19 course and MIS-C in 85.6% of cases. The World Health Organization reported that new SARS-CoV-2 variants may cause previously unseen symptoms in children. Although the study has limitations due to cohort size, the findings can help provide a better understanding of SARS-CoV-2 infection and proactive pediatric patient management.
Collapse
Affiliation(s)
- Kateryna Kozak
- Department of Pediatrics No. 2, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Halyna Pavlyshyn
- Department of Pediatrics No. 2, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
30
|
Bons J, Hunter CL, Chupalov R, Causon J, Antonoplis A, Rose J, MacLean B, Schilling B. Localization and Quantification of Post-Translational Modifications of Proteins Using Electron Activated Dissociation Fragmentation on a Fast-Acquisition Time-of-Flight Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2199-2210. [PMID: 37694881 PMCID: PMC11157679 DOI: 10.1021/jasms.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein post-translational modifications (PTMs) are crucial and dynamic players in a large variety of cellular processes and signaling. Proteomic technologies have emerged as the method of choice to profile PTMs. However, these analyses remain challenging due to potential low PTM stoichiometry, the presence of multiple PTMs per proteolytic peptide, PTM site localization of isobaric peptides, and neutral losses. Collision-induced dissociation (CID) is commonly used to characterize PTMs, but the application of collision energy can lead to neutral losses and incomplete peptide sequencing for labile PTM groups. In this study, we assessed the performance of an alternative fragmentation, electron activated dissociation (EAD), to characterize, site localize, and quantify peptides with labile modifications in comparison to CID, both operated on a recently introduced fast-scanning quadrupole-time-of-flight (QqTOF) mass spectrometer. We analyzed biologically relevant phosphorylated, succinylated, malonylated, and acetylated synthetic peptides using targeted parallel reaction monitoring (PRM or MRMHR) assays. We report that electron-based fragmentation preserves the malonyl group from neutral losses. The novel tunable EAD kinetic energy maintained labile modification integrity and provided better peptide sequence coverage with strong PTM-site localization fragment ions. Activation of a novel trap-and-release technology significantly improves the duty cycle and provided significant MS/MS sensitivity gains by an average of 6-11-fold for EAD analyses. Evaluation of the quantitative EAD PRM workflows revealed high reproducibility with coefficients of variation of ∼2-7%, as well as very good linearity and quantification accuracy. This novel workflow combining EAD and trap-and-release technology provides high sensitivity, alternative fragmentation information to achieve confident PTM characterization and quantification.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, California 94947, United States
| | | | - Rita Chupalov
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | | | | | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California 94947, United States
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California 94947, United States
| |
Collapse
|
31
|
Xu Q, He L, Yin Y. Risk of herpes zoster associated with JAK inhibitors in immune-mediated inflammatory diseases: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1241954. [PMID: 37614317 PMCID: PMC10442487 DOI: 10.3389/fphar.2023.1241954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: Janus kinase (JAK) inhibitors are a novel class of drugs that have shown efficacy in treating immune-mediated inflammatory diseases (IMIDs). However, their safety profile in terms of herpes zoster infection remains unclear. We aimed to evaluate the risk of herpes zoster associated with JAK inhibitors in patients with IMIDs. Methods: A systematic search of electronic databases was conducted to identify randomized controlled trials (RCTs) that evaluated the safety of JAK inhibitors in patients with IMIDs including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), spondyloarthritis (SpA), psoriasis (PsO), and psoriatic arthritis (PsA). The primary outcome of interest was the incidence of herpes zoster infection. Network meta-analysis was performed to compare the risk of herpes zoster among different JAK inhibitors and placebo. Results: A network meta-analysis was conducted using data from 47 RCTs including 24,142 patients. In patients with IMIDs, peficitinib 100 mg QD was associated with the highest risk of herpes zoster infection in patients with IMIDs, followed by baricitinib 4 mg QD and upadacitinib 30 mg QD. No difference in herpes zoster risk was found for other JAK inhibitors compared with placebo. Subgroup analysis indicated that higher incidence of herpes zoster was found in patients treated by baricitinib 4 mg QD, peficitinib 100 mg QD, and upadacitinib 30 mg QD only in patients with RA. Conclusion: Our study suggests that some JAK inhibitors, particularly peficitinib, baricitinib, and tofacitinib, are associated with a higher risk of herpes zoster infection in patients with IMIDs.
Collapse
Affiliation(s)
- Qingling Xu
- Department of Gastroenterology, Wuxi Xinwu District Xinrui Hospital, Wuxi, Jiangsu, China
| | - Liyuan He
- Department of Gastroenterology, Wuxi Xinwu District Xinrui Hospital, Wuxi, Jiangsu, China
| | - Yufeng Yin
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Coscarella G, Malvaso D, Mannino M, Caldarola G, Fossati B, De Simone C, Chiricozzi A, Peris K. The preclinical discovery and development of deucravacitinib for the treatment of psoriasis. Expert Opin Drug Discov 2023; 18:1201-1208. [PMID: 37574849 DOI: 10.1080/17460441.2023.2246880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disease that most commonly presents as plaque psoriasis. The understanding of the pivotal pathogenetic role of the IL-23/IL-17 axis has dramatically changed the therapeutic approach to the disease. The identification of intracellular signaling pathways mediating IL-23 activity provided the rationale for targeting TYK2. AREAS COVERED This review assesses the underlying rationale that led to development of deucravacitinib, a novel oral TYK2 inhibitor, as a therapeutic option for the treatment of moderate-to-severe psoriasis, primarily focusing on pre-clinical and early phase clinical studies. EXPERT OPINION Innovative therapies used in patients with moderate-to-severe psoriasis include biologic agents and small molecules, which are associated with less adverse events than traditional systemic agents. Deucravacitinib, which selectively targets TYK2, has demonstrated to be effective in treating psoriasis, preserving a more favorable safety profile compared to other JAK inhibitors approved for the treatment of other immune diseases that block the ATP-binding site. Because of its oral administration, deucravacitinib represents an intriguing option in the therapeutic armamentarium of psoriasis, though the evaluation of long-term efficacy and safety is necessary to establish its place-in-therapy.
Collapse
Affiliation(s)
- Giulia Coscarella
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Dalma Malvaso
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Mannino
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Giacomo Caldarola
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Barbara Fossati
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Clara De Simone
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Andrea Chiricozzi
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| |
Collapse
|
33
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|