1
|
Yang Q, Chu S, Li M, Zhou Z, Su Q, Xue X, Han Y, Li H. In-situ synthesized multifunctional petal-like geopolymer/Mo₂S₃ composite membrane for water purification and recovery. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137564. [PMID: 39938379 DOI: 10.1016/j.jhazmat.2025.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
In this paper, a multi-functional petal-like geopolymer/Mo₂S₃ composite membrane (PG/Mo₂S₃CM) was synthesized in situ through the hydrothermal method, with a porous geopolymer membrane (PGM), thiourea, and sodium molybdate as the raw materials. When the contents of thiourea and sodium molybdate were 4.14 g and 4.38 g respectively, the PG/Mo₂S₃CM demonstrated optimal performance in water treatment. The high degradation rate of Rhodamine B (RB) and the significant removal rate of Ni(Ⅱ) exceeded 99 % and 92 % respectively. The PG/Mo₂S₃CM exhibits excellent continuous use performance, reusability performance, and environmental tolerance. Under one sun irradiation, the evaporation rate of the PG/Mo₂S₃CM reached 1.53 kg·m⁻²·h⁻¹ . The experimental results confirm the enhancing mechanisms of RB and Ni(Ⅱ) removal. The increase in •OH, sulfur vacancies, and the synergistic effect between PGM and Mo₂S₃ are the reasons for the high performance of PG/Mo₂S₃CM. The enhancing mechanisms of solar-driven evaporation on PG/Mo₂S₃CM involve the synergistic effect of the good water transfer rate of PGM and the excellent photothermal effect of molybdenum sulfide. This work offers a novel strategy for the development of a multifunctional geopolymer composite material for use in the field of water purification and recovery.
Collapse
Affiliation(s)
- Qianyi Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Shiliang Chu
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China.
| | - Mingxing Li
- School of Chemistry and Chemical Engineering & School of Civil Engineering and Architecture, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zhicheng Zhou
- China Southern Power Grid Guangxi Power Grid Co Lt, Power Dispatching & Control Ctr, Nanning, Guangxi 530023, PR China
| | - Qiaoqiao Su
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China; School of Chemistry and Chemical Engineering & School of Civil Engineering and Architecture, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; China Southern Power Grid Guangxi Power Grid Co Lt, Power Dispatching & Control Ctr, Nanning, Guangxi 530023, PR China.
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China; School of Chemistry and Chemical Engineering & School of Civil Engineering and Architecture, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; China Southern Power Grid Guangxi Power Grid Co Lt, Power Dispatching & Control Ctr, Nanning, Guangxi 530023, PR China.
| | - Yaocong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Heping Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| |
Collapse
|
2
|
Gao S, Sui Y, Qi J, Abliz S, Chai L. Characterisation and exceptional adsorption properties of an ion - imprinted polymer for the selective removal of Ni(II) from aqueous solution. Talanta 2025; 294:128181. [PMID: 40273717 DOI: 10.1016/j.talanta.2025.128181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
In this study, a nickel ion imprinted polymer (Ni(II)-IIP) was successfully prepared by thermally induced polymerization using adipic dihydrazide (ADH) as ligand and methacrylic acid (MAA) as functional monomer. The polymer was found to be capable of rapidly and efficiently removing nickel ions from aqueous solutions. During the course of the study, the effects of different preparation conditions on the adsorption properties of Ni(II)-IIP were investigated for the purpose of optimizing its properties. The physicochemical properties of Ni(II)-IIP were investigated by means of various characterization techniques. Furthermore, the adsorption isotherms, adsorption kinetics, selectivity, and adsorption mechanism of Ni(II)-IIP on Ni(II) under different adsorption conditions were investigated. Furthermore, molecular modelling of functional monomers and ligands was conducted, and their electrostatic surface potentials (ESP) and surface electrostatic potential minima were calculated and plotted. This was undertaken to analyze the complexation mechanism of monomers with target ions and to deepen the understanding of the adsorption mechanism. The batch adsorption experiments yielded the following results: the maximum adsorption of Ni(II)-IIP on Ni(II) prepared by Ni(II)-IIP was 47.16 mg g-1, and the adsorption equilibrium could be reached within 105 min. Furthermore, Ni(II)-IIP exhibited both good selectivity and cyclic stability for the capture of Ni(II). The present study demonstrates that Ni(II)-IIP is a promising material for the removal of Ni(II) from water.
Collapse
Affiliation(s)
- Shuaibing Gao
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Yixin Sui
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Jiaxiang Qi
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Shawket Abliz
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China.
| | - Linlin Chai
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
3
|
Sharma M, Khan FH, Mahmood R. Esculin mitigates nickel chloride-induced generation of ROS, hemoglobin oxidation, and alterations in redox status in human red blood cells. J Trace Elem Med Biol 2025; 88:127626. [PMID: 40037000 DOI: 10.1016/j.jtemb.2025.127626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/20/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Nickel (Ni) is a heavy metal and an environmental pollutant that is harmful to humans because of its carcinogenicity and toxic effects on several tissues and organs. Due to their widespread use concerns have been raised about the potential adverse effects of Ni and its compounds on human health. Ni compounds induce oxidative stress in cells by modifying the redox equilibrium. This work studied the protective role of the plant antioxidant esculin (ES) against nickel chloride (NiCl2)-induced oxidative damage and cytotoxicity in isolated human red blood cells (RBC). METHODS Human RBC were first incubated with varying concentrations of ES (0.25-1.0 mM) for 2 h at 37 °C, followed by addition of 0.5 mM NiCl2 and further incubation for 24 h at 37 °C. RESULTS Treatment of RBC with NiCl2 alone increased the production of reactive oxygen species and significantly enhanced methemoglobin level, heme degradation, free iron release and hydrogen peroxide content. It also led to oxidation of cellular thiol groups, proteins and lipids. The glutathione content, total sulfhydryl groups, nitric oxide level and free amino groups were decreased. The activities of antioxidant, metabolic and plasma membrane enzymes were inhibited and the antioxidant capacity of RBC was lowered. However, pre-incubation of RBC with ES greatly mitigated the NiCl2-induced alterations in these parameters in an ES concentration-dependent manner. In all cases ES alone did not exhibit any significant toxic effect. This was confirmed by electron microscopic analysis of RBC. Treatment with NiCl2 alone resulted in the conversion of biconcave discoidal RBC to echinocytes but this change in cell morphology was greatly prevented in the presence of ES. The ES alone treated RBC did not show altered cell morphology. CONCLUSION These results suggest that ES can be potentially used as a cytoprotectant against Ni-induced toxicity.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India.
| |
Collapse
|
4
|
Arain MB, Soylak M. Activated carbon cloth with MnCoAl layer double hydroxide nanocomposite for the separation and preconcentration of Pb(II) and Ni(II) from food samples. Food Chem 2025; 468:142440. [PMID: 39700790 DOI: 10.1016/j.foodchem.2024.142440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
A novel dispersive solid phase microextraction (dSP-ME) technique using activated carbon cloth (ACC) and layered double hydroxide (LDH) has been developed for enriching and extracting Pb(II) and Ni(II). The ACC@MnCoAl-LDH nanosorbent, has proven with high surface area, superior extraction dynamics and efficiency, compared to traditional sorbents. Structural features of the new ACC@MnCoAl-LDH sorbent were also characterized. Analytical parameters such as pH, adsorbent quantity, sample volume, eluent volume, adsorption/desorption time, and concentration were optimized, using 7.5 mg of adsorbent. Limit of detection (LOD), limit of quantification (LOQ), and preconcentration factor (PF) were determined at 0.71 μgL -1, 2.35 μgL -1 and 25 for Pb(II) and 0.07 μgL -1, 0.22 μgL -1 and 30 for Ni(II). Validation tests also performed using certified reference materials (CRMs). The % RSD was calculated at 2.5-7.8 for Pb(II) and 3.5-8.2 for Ni(II). The method was applied to determine Pb(II) and Ni(II) levels in packet juices, noodles, and water samples.
Collapse
Affiliation(s)
- Muhammad Balal Arain
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Department of Chemistry, University of Karachi, 75270 Karachi, Pakistan.
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Türkiye.
| |
Collapse
|
5
|
Furman J, Ćwieląg-Drabek M. The content of metallic trace elements in rice-containing products used in the diet of infants and young children - Health risks for consumers. Food Chem Toxicol 2025; 197:115310. [PMID: 39914621 DOI: 10.1016/j.fct.2025.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Infants and young children are a group that is particularly sensitive to harmful substances. Therefore, products intended for consumption by infants and young children are subject to the requirements of food law and must meet high quality, microbiological, and chemical requirements. The study aimed to determine the content and assessment of exposure to selected metallic trace elements: arsenic, chromium, and nickel, in products marketed in Poland intended for consumption by infants (after 4 months) and small children (after 12 months). The research material consisted of 55 samples of products from 14 brands. The content of arsenic (<0.19-5.03 mg/kg), chromium (<0.08-0.88 mg/kg), and nickel (<0.41-3.24 mg/kg) was determined in the mineralized samples using the electrothermal atomic absorption spectrometry (ET-AAS) method. The obtained values of element concentrations were used to estimate the non-cancer and cancer health risk of infants (6-11 months) and young children (1-2 years). Food for infants and young children does not pose a significant threat resulting from the chromium and nickel content in these products. Daily consumption of rice-based products by children carries the possibility of non-cancer and cancer risk, which is a consequence of the arsenic content in these products.
Collapse
Affiliation(s)
- Joanna Furman
- Department of Environmental Health Risk Factors, Department of Environmental Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Poland.
| | - Małgorzata Ćwieląg-Drabek
- Department of Environmental Health Risk Factors, Department of Environmental Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Poland.
| |
Collapse
|
6
|
Chien M, Chen S, Huang K, Moja TN, Hwang S. Cell Morphology, Material Property and Ni(II) Adsorption of Microcellular Injection-Molded Polystyrene Reinforced with Graphene Nanoparticles. Polymers (Basel) 2025; 17:189. [PMID: 39861262 PMCID: PMC11768097 DOI: 10.3390/polym17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Graphene's incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses. Key factors, including initial ion concentration, pH, temperature, and sorbent dosage, were examined. Results showed optimal nickel removal at specific pH levels with removal efficiency decreasing from 91 to 80% as Ni (II) concentrations increased from 10 to 100 mg/L. The adsorption capacity improved from 11 to 130 mg/g. Equilibrium data aligned with Langmuir and Freundlich isotherm models, while adsorption kinetics followed a second-order kinetic model. These findings highlight the potential of PS/GP nanocomposites for nickel ion removal, offering a promising solution for small-scale industrial applications.
Collapse
Affiliation(s)
- Minyuan Chien
- Department of Vehicle Engineering, Chien-hsin University of Science and Technology, Taoyuan 320678, Taiwan;
| | - Shiachung Chen
- R&D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
- Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
| | - Kuanyi Huang
- Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
| | - Tlou Nathaniel Moja
- Institute for Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Shyhshin Hwang
- Department of Mechanical Engineering, Chien-hsin University of Science and Technology, Taoyuan 320678, Taiwan
| |
Collapse
|
7
|
Górka A, Baran D, Słowik-Borowiec M. Assessment of heavy metals, PAHs, and pesticide levels in yerba mate on the European market. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:603-616. [PMID: 39695037 DOI: 10.1007/s11356-024-35716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Although yerba mate has been known and used for hundreds of years, not all of its properties have been fully understood yet. Yerba mate is a source of many desirable substances, but it may also contain toxic metals and other substances that are harmful to health. Fifteen samples of yerba mate tea from three South American countries were analyzed. The content of Cr, Ni, and Cd was determined using the AAS technique, while the PHA's content was determined with the gas chromatography method. Our studies show that some of the analyzed substances present in Ilex paraguariensis may exceed their acceptable levels specified in European standards established for the given substances. All analyzed samples contained the determined metals, where the concentrations of individual elements ranged from 1.92 ± 0.38 to 0.12 ± 0.05 µg/g (for Cr), from 4.86 ± 0.28 to 1.72 ± 0.14 µg/g (for Ni), and from 0.0008 ± 0.000 to 0.0695 ± 0.0745 µg/g (for Cd). The total PAH content ranged from 0.064 to 0.585 mg/kg. Yerba mate samples from Brazil were characterized by a lower PAH content (0.064-0.254 mg/kg), compared with mate from Argentina and Paraguay (0.084-0.374 and 0.197-0.585 mg/kg, respectively). Pesticide residues were found only in samples from Argentina and Paraguay, while samples from Brazil did not contain those compounds. Only four active substances belonging to the group of herbicides, fungicides, and insecticides were detected, two of them not approved for use in the EU: chlorpyrifos and fenbuconazole. The most frequently detected compounds in yerba mate samples were pendimethalin (in four samples), fluazifop-p-butyl and fenbuconazole (detected in two samples), and chlorpyrifos (in one sample).
Collapse
Affiliation(s)
- Anna Górka
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow, Pigonia St. 1, 35-310, Rzeszów, Poland.
| | - Dawid Baran
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow, Pigonia St. 1, 35-310, Rzeszów, Poland
| | - Magdalena Słowik-Borowiec
- Department of Biotechnology, Institute of Biotechnology, University of Rzeszow, Pigonia St. 1, 35-310, Rzeszów, Poland
| |
Collapse
|
8
|
Odubo TC, Izah SC. Safety Considerations of Trace Metals in Locally Produced Nutritive Food-Drinks Consumed in Yenagoa Metropolis, Nigeria. Biol Trace Elem Res 2024:10.1007/s12011-024-04488-8. [PMID: 39729242 DOI: 10.1007/s12011-024-04488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
This study assessed the safety of trace metal concentrations in locally produced nutritive food-drinks consumed in Yenagoa metropolis, Bayelsa State, Nigeria. Three different drink types (viz, tiger nut juice, a mixture of tiger nut and soya bean juice and soya bean juice) were purchased from various locations in Yenagoa metropolis, Bayelsa State, Nigeria, between January and February 2024. Thirty samples were analyzed for trace metals using atomic absorption spectrophotometry. Detected metal concentrations ranged from 0.077 to 0.458 mg/L for iron, 0.159 to 1.251 mg/L for copper, 0.000 to 0.070 mg/L for zinc, 0.000 to 0.080 mg/L for cadmium, and 0.000 to 0.068 mg/L for manganese. Three (zinc, manganese, and copper) of the five detected metals had concentrations below the World Health Organization (WHO) and/or Standard Organization of Nigeria (SON) permissible limits using drinking water guidelines. Pearson correlation analysis indicated diverse metal sources, while principal component analysis (PCA) revealed significant variance driven by essential and trace metals. At the same time, crucial metals like zinc and iron dominate, and the presence of cadmium raises health concerns. The results suggest that while iron, zinc, and manganese generally pose minimal health risks, elevated copper and cadmium levels present potential non-carcinogenic risks in some samples. Hazard Index (HI) values (0.673-5.349) highlight the need for regulatory attention due to the cumulative effects of multiple trace metals. Although the calculated cancer risk (CR) values suggest no significant carcinogenic threat, continuous monitoring and mitigation are crucial, particularly for vulnerable populations who may experience prolonged exposure.
Collapse
Affiliation(s)
| | - Sylvester Chibueze Izah
- Department of Microbiology, Faculty of Science, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria.
- Department of Community Medicine, Faculty of Clinical Sciences, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria.
| |
Collapse
|
9
|
Oladimeji T, Oyedemi M, Emetere M, Agboola O, Adeoye J, Odunlami O. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024; 10:e40370. [PMID: 39654720 PMCID: PMC11625160 DOI: 10.1016/j.heliyon.2024.e40370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The incidence of water pollution in developing countries is high due to the lack of regulatory policies and laws that protect water bodies from anthropogenic activities and industrial wastewater. Industrial wastewater contains significant amounts of heavy metals that are detrimental to human health, aquatic organisms, and the ecosystem. The focus of this review was to evaluate the sources and treatment methods of wastewater, with an emphasis on technologies, advantages, disadvantages, and innovation. It was observed that conventional methods of wastewater treatment (such as flotation, coagulation/flocculation, and adsorption) had shown promising results but posed certain limitations, such as the generation of high volumes of sludge, relatively low removal rates, inefficiency in treating low metal concentrations, and sensitivity to varying pH. Recent technologies like nanotechnology, photocatalysis, and electrochemical coagulation have significant advantages over conventional methods for removing heavy metals, including higher removal rates, improved energy efficiency, and greater selectivity for specific contaminants. However, the high costs associated with these advanced methods remain a major drawback. Therefore, we recommend that future developments in wastewater treatment technology focus on reducing both costs and waste generation.
Collapse
Affiliation(s)
- T.E. Oladimeji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M. Oyedemi
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M.E. Emetere
- Department of Physics, Bowen University, Osun State, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, South Africa
| | - O. Agboola
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - J.B. Adeoye
- Department of Chemical and Energy Engineering, Curtin University, Malaysia
| | - O.A. Odunlami
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| |
Collapse
|
10
|
Levická J, Orliková M. The Toxic Legacy of Nickel Production and Its Impact on Environmental Health: A Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1641. [PMID: 39767480 PMCID: PMC11675565 DOI: 10.3390/ijerph21121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Nickel is a chemical element that occurs naturally in soil, water, air, plants, and therefore also in food and other living organisms. However, anthropogenic activities related to the production and processing of nickel can cause its increased concentration in the environment, which is a risk to wildlife and thus to human health. Nickel and its compounds are currently considered immunotoxic and carcinogenic agents that cause a number of health problems. The study examines this problem in the context of the environmental paradigm, which emphasizes the importance of political-economic and socio-economic factors that can seriously affect environmental health. The aim of the study is to draw attention to the economic-political implications of not addressing the environmental burden caused by nickel production and landfilling of waste from this production in Slovakia. The uniqueness of the study is that it reflects the negative impacts of nickel on health in a human-legal context that is characteristic of social work. The study proposes a conceptual model, the verification of which requires further research.
Collapse
Affiliation(s)
| | - Monika Orliková
- Institute of Social Work and Social Policy, Faculty of Social Sciences, University of St. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia;
| |
Collapse
|
11
|
Alkufi AA, Oleiwi MH, Abojassim AA. Comparison of Heavy Metals in Urine Samples of Smoker and Non-smoker Persons. Biol Trace Elem Res 2024; 202:5349-5355. [PMID: 38386229 DOI: 10.1007/s12011-024-04097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
In this study, the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), and lead (Pb) in the two groups of cigarette smokers and non-smokers in five age range groups were measured. Heavy metal concentrations were collected in participants' urine samples and analyzed using atomic absorption spectrophotometry (AAS). The results showed that the concentrations of these metals in the urine of smokers were higher than in non-smoker subjects. The mean concentration of Cd, Cr, and Pb for smokers were 1.188 ± 0.931, 1.929 ± 0.940, and 0.069 ± 0.023, respectively, while the mean concentration of Cd, Cr, and Pb for non-smokers were 0.151 ± 0.165, 0.203 ± 0.218, and 0.037 ± 0.030, respectively. The results revealed statistically significant differences when comparing the samples of smokers to the control group in all heavy metals in the present study. Also, the results revealed statistically significant differences in Cd, Cr, and Pb when comparing the samples of smokers to age groups. The trend of metals in urine samples in two groups (smokers and non-smokers) is as follows: Cd > Cr > Pb. The concentration of Cd, Cr, and Pb in all samples of the present study was higher than the biological limit, according to ACGIH. Therefore, Cd, Cr, and Pb were the most critical metals accumulated in the urine of cigarette smokers.
Collapse
Affiliation(s)
- Abdulhussein A Alkufi
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
- Education Directorate of Najaf, Ministry of Education, Al-Najaf, Iraq
| | - Mohanad H Oleiwi
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
| | - Ali Abid Abojassim
- Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Iraq.
| |
Collapse
|
12
|
Karim BA, Mahmood G, Hasija M, Meena B, Sheikh S. Assessment of heavy metal contamination in groundwater and its implications for dental and public health. CHEMOSPHERE 2024; 367:143609. [PMID: 39461441 DOI: 10.1016/j.chemosphere.2024.143609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Groundwater contamination with heavy metals is a critical environmental issue, especially in regions heavily reliant on groundwater for drinking purpose. These metals can seep into groundwater from soil and rock weathering or through improper disposal of industrial waste and effluents. Access to safe drinking water is essential for maintaining public health. This study aimed to assess heavy metal contamination in groundwater and its implications for dental and public health. The objective of the study was to measure the concentration of the heavy metals in the dentine of extracted tooth of the study population. The study concurrently measured heavy metal concentrations in groundwater and tooth dentine samples, analyzing demographic profiles, heavy metal correlations, and underlying structures using Principal Component Analysis (PCA). The average level of heavy metals in the groundwater samples varied from 9.763 ± 3.362 μg/L for Cd to 3426.204 ± 875.264 μg/L for Fe. The mean concentrations (μg/g) in teeth dentine showed significant variations, with iron (Fe) ranging from 0.149 ± 0.03 μg/g in water purifiers to 4.62 ± 0.578 μg/g in local water sources. Similar variations were observed for other heavy metals across different water sources. Principal component analysis (PCA) revealed seven principal components, with the first two components explaining 96.1% of the total variance. The findings revealed varied concentrations of heavy metals across all water sources. Statistical analyses underscored the complex relationship between water sources and heavy metal contamination levels, highlighting the need for targeted interventions to improve water quality and mitigate health risks. The study highlights the urgent need for monitoring and mitigation efforts to ensure safe drinking water and mitigate health risks associated with heavy metal contamination.
Collapse
Affiliation(s)
- Bushra Ahmed Karim
- Department of Public Health Dentistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Gauhar Mahmood
- Department of Civil Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, India
| | - Mukesh Hasija
- Department of Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Babita Meena
- Department of Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Salim Sheikh
- Department of Pharmacology, Baba Saheb Ambedkar Medical College and Hospital, New Delhi, India.
| |
Collapse
|
13
|
Zhao H, Zhang X, Feng M, Zhang J, Yu H, Chi H, Li X, Yan L, Yu P, Ye T, Wang G, Li S, Guo Y, Lu P. Associations between blood nickel and lung function in young Chinese: An observational study combining epidemiology and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116963. [PMID: 39232299 DOI: 10.1016/j.ecoenv.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Prior research has explored the relationship between occupational exposure to nickel and lung function. Nonetheless, there is limited research examining the correlation between blood nickel levels and lung function among young adults in the general population. The metabolomic changes associated with nickel exposure have not been well elucidated. On August 23, 2019, we enrolled 257 undergraduate participants from the Chinese Undergraduates Cohort to undergo measurements of blood nickel levels and lung function. The follow-up study was conducted in May 2021. A linear mixed-effects model was employed to assess the relationship between blood nickel levels and lung function. We also conducted stratified analyses by home address. In addition, in order to explore the biological mechanism of lung function damage caused by nickel exposure, we performed metabolomic analyses of baseline serum samples (N = 251). Both analysis of variance and mixed linear effect models were utilized to assess the impact of blood nickel exposure on metabolism. Our findings from cross-sectional and cohort analyses revealed a significant association between blood nickel levels and decreased forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) among young adults in the general population. Furthermore, we found stronger associations in urban areas. In metabolomics analysis, a total of nine metabolites were significantly changed under blood nickel exposure. The changed metabolites were mainly enriched in six pathways including carbohydrate, amino acid, and cofactor vitamin metabolism. These metabolic pathways involve inflammation and oxidative stress, indicating that high concentrations of nickel exposure can cause inflammation and oxidative stress by disrupting the above metabolism of the body.
Collapse
Affiliation(s)
- Huijuan Zhao
- Binzhou Medical University, Yantai, Shandong, China
| | | | - Mingyu Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Jia Zhang
- Binzhou Medical University, Yantai, Shandong, China
| | - Haochen Yu
- Case Western Reserve University, Cleveland, United States
| | - Hanwei Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xinyuan Li
- Binzhou Medical University, Yantai, Shandong, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Pei Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
14
|
Zhang J, Gao Y, Li Y, Liu D, Sun W, Liu C, Zhao X. Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. BIOLOGY 2024; 13:655. [PMID: 39336083 PMCID: PMC11429462 DOI: 10.3390/biology13090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
Although the human body needs nickel as a trace element, too much nickel exposure can be hazardous. The effects of nickel on cells include inducing oxidative stress, interfering with DNA damage repair, and altering epigenetic modifications. Glucose metabolism and lipid metabolism are closely related to oxidative stress; however, their role in nickel-induced damage needs further study. In Institute of Cancer Research (ICR) mice, our findings indicated that nickel stress increased the levels of blood lipid indicators (triglycerides, high-density lipoprotein, and cholesterol) by about 50%, blood glucose by more than two-fold, and glycated serum protein by nearly 20%. At the same time, nickel stress increased oxidative stress (malondialdehyde) and inflammation (Interleukin 6) by about 30% in the kidney. Based on next-generation sequencing technology, we detected and analyzed differentially expressed genes in the kidney caused by nickel stress. Bioinformatics analysis and experimental verification showed that nickel inhibited the expression of genes related to lipid metabolism and the AMPK and PPAR signaling pathways. The finding that nickel induces kidney injury and inhibits key genes involved in lipid metabolism and the AMPK and PPAR signaling pathways provides a theoretical basis for a deeper understanding of the mechanism of nickel-induced kidney injury.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yahong Gao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yuewen Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
| | - Dongdong Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Wenpeng Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Xiujuan Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
15
|
Boreiko CJ. Modeling of local and systemic exposure to metals and metalloids after inhalation exposure: Recommended update to the USEPA metals framework. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:952-964. [PMID: 38084064 DOI: 10.1002/ieam.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The USEPA issued the "Framework for Metal Risk Assessment" in 2007, recognizing that human and environmental exposure to metals and metalloids (MMEs) poses challenges risk assessment. Inhalation of aerosols containing MMEs is a primary pathway for exposure in the occupational setting, for consumer exposure, and to general population exposure associated with point-source emissions or ambient sources. The impacts of inhalation can be at the point of deposition (local exposure) or may manifest after uptake into the body (systemic exposure). Both local and systemic exposure can vary with factors that determine the regional deposition of MME-containing aerosols. Aerosol characteristics such as particle size combine with species-specific characteristics of airway morphology and lung function to modulate the deposition and clearance of MME particulates. In contrast to oral exposure, often monitored by measuring MME levels in blood or urine, inhalation exposure can produce local pulmonary impacts in the absence of significant systemic distribution. Exposure assessment for nutritionally essential MMEs can be further complicated by homeostatic controls that regulate systemic MME levels. Predictions of local exposure can be facilitated by computer models that estimate regional patterns of aerosol deposition, permitting calculation of exposure intensity in different regions of the respiratory tract. The utility of deposition modeling has been demonstrated in assessments of nutritionally essential MMEs regulated by homeostatic controls and in the comparison of results from inhalation studies in experimental animals. This facilitates extrapolation from animal data to humans and comparisons of exposures possessing mechanistic linkages to pulmonary toxicity and carcinogenesis. Pulmonary deposition models have significantly advanced and have been applied by USEPA in evaluations of particulate matter. However, regional deposition modeling has yet to be incorporated into the general guidance offered by the agency for evaluating inhalation exposure. Integr Environ Assess Manag 2024;20:952-964. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
|
16
|
Rizwan M, Usman K, Alsafran M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. CHEMOSPHERE 2024; 357:142028. [PMID: 38621494 DOI: 10.1016/j.chemosphere.2024.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
17
|
Fidan EB, Bali EB, Apaydin FG. Comparative study of nickel oxide and nickel oxide nanoparticles on oxidative damage, apoptosis and histopathological alterations in rat lung tissues. J Trace Elem Med Biol 2024; 83:127379. [PMID: 38171038 DOI: 10.1016/j.jtemb.2023.127379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Nickel oxide nanoparticles (NiONPs) are used as industrial photoelectric and recording materials, catalysts, and sensors. It has been increasingly used in many industrial sectors. Lungs are the important biological barrier that comes into contact with nanomaterials in the inhaled air. This study aimed to compare the effects of nickel oxide (NiO) microparticles and NiONPs on rat lung tissues in different dose administrations, such as oral, intraperitoneal, and intravenous. METHODS The mature male Wistar rats (n = 42) were divided into seven groups with six animals: Group I (control), Group II NiO gavage (150 mg/kg), Group III NiO intraperitoneally (20 mg/kg), Group IV NiO intravenously (1 mg/kg), Group V NiONP gavage (150 mg/kg), Group VI NiONP intraperitoneal (20 mg/kg), and Group VII NiONP intravenous (1 mg/kg) for 21 days. Oxidative stress (MDA, CAT, SOD, GPx, and GST), apoptotic marker (p53) gene expression, and histopathological changes were determined comparatively. RESULTS Our data showed that NiO and NiONPs caused an exposure-related increase in the incidence of alveolar/bronchiolar pathological changes, oxidative damage, and p53 gene expression in male rats. Intravenous exposure to NiONPs produces statistically (p < 0.05) more oxidative damage and histopathological changes than exposure to NİO. It also induces higher upregulation of the pro-apoptotic p53 gene. CONCLUSION NiO and NiONPs induce oxidative damage, histopathological alterations and p53 gene expression in rat lungs. Thus, exposure to NiO and NiONPs, especially intravenously, may indicate more toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Elif Büşra Fidan
- Gazi University, Graduate School of Natural and Applied Sciences, Department of Biology, Ankara, Türkiye
| | - Elif Burcu Bali
- Gazi University, Vocational School of Health Services, Department of Medical Services and Techniques, Ankara, Türkiye.
| | | |
Collapse
|
18
|
Solorio-Rodriguez SA, Wu D, Boyadzhiev A, Christ C, Williams A, Halappanavar S. A Systematic Genotoxicity Assessment of a Suite of Metal Oxide Nanoparticles Reveals Their DNA Damaging and Clastogenic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:743. [PMID: 38727337 PMCID: PMC11085103 DOI: 10.3390/nano14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Metal oxide nanoparticles (MONP/s) induce DNA damage, which is influenced by their physicochemical properties. In this study, the high-throughput CometChip and micronucleus (MicroFlow) assays were used to investigate DNA and chromosomal damage in mouse lung epithelial cells induced by nano and bulk sizes of zinc oxide, copper oxide, manganese oxide, nickel oxide, aluminum oxide, cerium oxide, titanium dioxide, and iron oxide. Ionic forms of MONPs were also included. The study evaluated the impact of solubility, surface coating, and particle size on response. Correlation analysis showed that solubility in the cell culture medium was positively associated with response in both assays, with the nano form showing the same or higher response than larger particles. A subtle reduction in DNA damage response was observed post-exposure to some surface-coated MONPs. The observed difference in genotoxicity highlighted the mechanistic differences in the MONP-induced response, possibly influenced by both particle stability and chemical composition. The results highlight that combinations of properties influence response to MONPs and that solubility alone, while playing an important role, is not enough to explain the observed toxicity. The results have implications on the potential application of read-across strategies in support of human health risk assessment of MONPs.
Collapse
Affiliation(s)
- Silvia Aidee Solorio-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Callum Christ
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
19
|
Apiamu A, Avwioroko OJ, Evuen UF, Kadiri HE, Kpomah ED, Anigboro AA, Ugbebor G, Asagba SO. Exposure to Nickel-Cadmium Contamination of Drinking Water Culminates in Liver Cirrhosis, Renal Azotemia, and Metabolic Stress in Rats. Biol Trace Elem Res 2024; 202:1628-1643. [PMID: 37468716 DOI: 10.1007/s12011-023-03777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Drinking water polluted by heavy metals has the potential to expose delicate biological systems to a range of health issues. This study embraced the health risks that may arise from subchronic exposure of thirty-four male Wistar rats to nickel (Ni)-cadmium (Cd)-contaminated water. It was done by using the Box-Behnken design (BBD) with three treatment factors (Ni and Cd doses at 50-150 mg/L and exposure at 14-21-28 days) at a single alpha level, resulting in seventeen experimental combinations. Responses such as serum creatinine (CREA) level, blood urea nitrogen (BUN) level, BUN/CREA ratio (BCR), aspartate and alanine aminotransferases (AST and ALT) activities, and the De Ritis ratio (DRR), as well as malondialdehyde (MDA) level, catalase (CAT), and superoxide dismutase (SOD) activities, were evaluated. The results revealed that these pollutants jointly caused hepatocellular damage by raising AST and ALT activities and renal dysfunction by increasing CREA and BUN levels in Wistar rats' sera (p < 0.05). These outcomes were further supported by BCR and DRR values beyond 1. In rats' hepatocytes and renal tissues, synergistic interactions of these metals resulted in higher MDA levels and significant impairments of CAT and SOD activities (p < 0.05). In order to accurately forecast the effects on the responses, the study generated seven acceptable regression models (p < 0.05) with r-squared values of > 80% at no discernible lack of fit (p > 0.05). The findings hereby demonstrated that Wistar rats exposed to these pollutants at varied doses had increased risks of developing liver cirrhosis and azotemia marked by metabolic stress.
Collapse
Affiliation(s)
- Augustine Apiamu
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Uduenevwo F Evuen
- Department of Biochemistry, College of Natural and Applied Sciences, Western Delta University, Oghara, Delta State, Nigeria
| | - Helen E Kadiri
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Enyohwo D Kpomah
- Department of Biochemistry, Federal University, Otuoke, Bayelsa State, Nigeria
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Gilbert Ugbebor
- Department of Chemical Science, Faculty of Science, University of Delta, Agbor, Delta State, Nigeria
| | - Samuel O Asagba
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
20
|
Barathi S, Lee J, Venkatesan R, Vetcher AA. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3816. [PMID: 38005713 PMCID: PMC10675783 DOI: 10.3390/plants12223816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Rising waste construction, agricultural actions, and manufacturing sewages all contribute to heavy metal accumulation in water resources. Humans consume heavy metals-contaminated substances to make sustenance, which equally ends up in the food circle. Cleaning of these vital properties, along with the prevention of new pollution, has long been required to evade negative strength consequences. Most wastewater treatment techniques are widely acknowledged to be costly and out of the grasp of governments and small pollution mitigation businesses. Utilizing hyper-accumulator plants that are extremely resilient to heavy metals in the environment/soil, phytoremediation is a practical and promising method for eliminating heavy metals from contaminated environments. This method extracts, degrades, or detoxifies harmful metals using green plants. The three phytoremediation techniques of phytostabilization, phytoextraction, and phytovolatilization have been used extensively for soil remediation. Regarding their ability to be used on a wide scale, conventional phytoremediation methods have significant limitations. Hence, biotechnological attempts to change plants for heavy metal phytoremediation methods are extensively investigated in order to increase plant effectiveness and possible use of improved phytoremediation approaches in the country of India. This review focuses on the advances and significance of phytoremediation accompanied by the removal of various harmful heavy metal contaminants. Similarly, sources, heavy metals status in India, impacts on nature and human health, and variables influencing the phytoremediation of heavy metals have all been covered.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
21
|
Pandolfi P, Notardonato I, Passarella S, Sammartino MP, Visco G, Ceci P, De Giorgi L, Stillittano V, Monci D, Avino P. Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6559. [PMID: 37623145 PMCID: PMC10454322 DOI: 10.3390/ijerph20166559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Air pollution and the increasing production of greenhouse gases has prompted greater use of renewable energy sources; the EU has set a target that the use of green energy should be at 32 percent by 2030. With this in mind, in the last 10 years, the demand for pellets in Italy has more than doubled, making Italy the second largest consumer in Europe. The quality of the pellets burned in stoves is crucial to indoor and outdoor pollution. Among other parameters, moisture and ash are used to classify pellets according to EN ISO 17225:2014. This work involved the analysis of the organic and inorganic fraction of both some finished products on the Italian market and some raw materials (e.g., wood chips) sampled according to the technical standard EN 14778:2011. The analytical results showed the presence of some substances potentially harmful to human health such as formaldehyde, acetone, toluene and styrene for the organic fraction and nickel, lead and vanadium for the inorganic fraction. The chemometric approach showed that it is the inorganic fraction which is most responsible for the diversification of the samples under study. The detection of some substances may be a warning bell about the impact of such materials, both for the environment and for human health.
Collapse
Affiliation(s)
- Pietro Pandolfi
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, 00155 Rome, Italy;
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (I.N.); (S.P.); (D.M.)
| | - Sergio Passarella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (I.N.); (S.P.); (D.M.)
| | - Maria Pia Sammartino
- Department of Chemistry, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.P.S.); (G.V.)
| | - Giovanni Visco
- Department of Chemistry, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.P.S.); (G.V.)
| | - Paolo Ceci
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, 00147 Rome, Italy; (P.C.); (L.D.G.)
| | - Loretta De Giorgi
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, 00147 Rome, Italy; (P.C.); (L.D.G.)
| | - Virgilio Stillittano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy;
| | - Domenico Monci
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (I.N.); (S.P.); (D.M.)
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (I.N.); (S.P.); (D.M.)
- Institute of Atmospheric Pollution Research (IIA), National Research Council (CNR), Rome Research Area-Montelibretti, 00015 Monterotondo, Italy
| |
Collapse
|
22
|
Benvindo-Souza M, Sotero DF, Dos Santos CGA, de Assis RA, Borges RE, de Souza Santos LR, de Melo E Silva D. Genotoxic, mutagenic, and cytotoxic analysis in bats in mining area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92095-92106. [PMID: 37480534 DOI: 10.1007/s11356-023-28861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Pollution generated by the mining industry can cause harm to wildlife. This study aimed to evaluate the cytotoxicity, genotoxicity and mutagenicity in bats environmentally exposed to open pit mining. Thus, 62 bats of the following species, Carollia perspicillata, Glossophaga soricina, Phyllostomus hastatus, and Desmodus rotundus exposed to mining activities (ferronickel) were used in the analysis. The animals were obtained in samplings in July and November of 2021, totaling 8 days of sampling in the field. The results indicated that species differ in the frequency of genotoxic damage between sampling points within the mining landscape. Cytotoxicity was observed by scoring of karyorrhexis, pyknosis and karyolysis. The most captured species, C. perspicillata, showed differences in DNA damage between exposed and unexposed populations, but no differences were observed between males (n = 14) and females (n = 20). G. soricina was also a sensitive species for indicating a high frequency of DNA damages compared to the omnivore P. hastatus. Elements such as Mn, Cr, Pb, and Zn observed in water samples were at high levels in the mining area. We conclude that bats in mining areas are susceptible to increased DNA damage as already identified for other species.
Collapse
Affiliation(s)
- Marcelino Benvindo-Souza
- Laboratory of Mutagenesis, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, CEP 74.690-900, Brazil.
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil.
- Postgraduate Program in Natural Resources of the Cerrado at the State University of Goiás, Anápolis, CEP 75132-903, Brazil.
| | - Daiany Folador Sotero
- Laboratory of Mutagenesis, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, CEP 74.690-900, Brazil
| | - Cirley Gomes Araújo Dos Santos
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil
- Department of Biology, Universidade Estadual Paulista, Júlio de Mesquita Filho, São José do Rio Preto, São Paulo, CEP 15.054-000, Brazil
| | - Rhayane Alves de Assis
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil
- Department of Biology, Universidade Estadual Paulista, Júlio de Mesquita Filho, São José do Rio Preto, São Paulo, CEP 15.054-000, Brazil
| | - Rinneu Elias Borges
- Laboratory of Zoology - Universidade de Rio Verde - UniRV, Fazenda Fontes do Saber, Rio Verde, Goiás, CEP 75901-970, Brazil
| | - Lia Raquel de Souza Santos
- Laboratory of Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, Goiás, CEP 75.901-970, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Samambaia Campus, Goiânia, Goiás, CEP 74.690-900, Brazil
| |
Collapse
|
23
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
24
|
He J, Wang C, Schlekat CE, Wu F, Middleton E, Garman E, Peters A. Validation of Nickel Bioavailability Models for Algae, Invertebrates, and Fish in Chinese Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1257-1265. [PMID: 36920027 DOI: 10.1002/etc.5595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 02/22/2023] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is used primarily in the production of alloys like stainless steel and is increasingly being used in the production of batteries for the electric vehicle market. Exposure of Ni to ecosystems is of concern because Ni can be toxic to aquatic organisms. The influence of water chemistry constituents (e.g., hardness, pH, dissolved organic carbon) on the toxicity of Ni has prompted the development and use of bioavailability models, such as biotic ligand models (BLMs), which have been demonstrated to accurately predict Ni toxicity in broadly different ecosystems, including Europe, North America, and Australia. China, a leading producer of Ni, is considering bioavailability-based approaches for regulating Ni emissions. Adoption of bioavailability-based approaches in China requires information to demonstrate the validity of bioavailability models for the local water chemistry conditions. The present study investigates the toxicity of Ni to three standard test species (Daphnia magna, Pseudokirchneriella subcapitata, and Danio rerio) in field-collected natural waters that are broadly representative of the range of water chemistries and bioavailabilities encountered in Chinese lakes and rivers. All experimental data are within a factor of 3 of the BLM predicted values for all tests with all species. For D. magna, six of seven waters were predicted within a factor of 2 of the experimental result. Comparison of experimental data against BLM predictions shows that the existing Ni bioavailability models are able to explain the differences in toxicity that result from water chemistry conditions in China. Validation of bioavailability models to water chemistries and bioavailability ranges within China provides technical support for the derivation of site-specific Ni water quality criteria in China. Environ Toxicol Chem 2023;42:1257-1265. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Cheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | | | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | | | | | | |
Collapse
|
25
|
Hussein ZA. Assessment of heavy radionuclides in blood samples for workers of a cement factory by X-ray fluorescence. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
26
|
Pipoyan D, Stepanyan S, Beglaryan M, Mantovani A. Risk Characterization of the Armenian Population to Nickel: Application of Deterministic and Probabilistic Approaches to a Total Diet Study in Yerevan City. Biol Trace Elem Res 2023; 201:2721-2732. [PMID: 35908143 DOI: 10.1007/s12011-022-03371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Nickel (Ni) is a widespread metal that occurs in food and drinking water from both natural and anthropogenic sources. Oral exposure to Ni can induce a variety of adverse effects; the European Food Safety Authority established a tolerable daily intake (TDI) of 13 μg/kg bw and a lowest-observed-adverse-effect level (LOAEL) of 4.3 μg/kg bw to assess the risk of allergic reactions upon acute exposure. This study, the first conducted in Armenia, aimed to assess the dietary exposure of the adult Yerevan population (1272 subjects of both sexes) to Ni in a total diet study (TDS). Detection of Ni was carried out using atomic absorption spectrometry. To determine food consumption values, a 24-h recall survey was used. Following the K-means clustering test, two clusters were determined for food product intake. For the risk characterization of acute oral exposure, the margin of exposure (MOE) was calculated using both deterministic and probabilistic (Monte Carlo method) approaches. The average total exposure was 4.396 μg/kg bw, with limited influence by age and gender. The main contributors were "fruits and vegetables" followed by "bread and flour-based products": the total intake would be 5.11 μg/kg bw for a woman with high consumption of fruits and vegetables. Hence, the estimated chronic dietary exposure was below the TDI, irrespective of age and gender groups, and including high consumers. However, acute oral exposure estimates led to MOE values of less than 30 for most food products, indicating potential health concerns for Ni-sensitized individuals. The Monte Carlo approach indicated that the probability of occurrence of MOE lower than 30 was very high in the case of beef/veal, pork and chicken meat, eggs, and fish, alongside vegetable sources such as buckwheat, tomato, watermelon/melon, and potatoes. The findings prompt an investigation of Ni sources in the target foods in the Caucasus area.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Yerevan, Armenia
| | - Seda Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Yerevan, Armenia
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Yerevan, Armenia.
| | | |
Collapse
|
27
|
Yap CK, Al-Mutairi KA. Lower Health Risks of Potentially Toxic Metals after Transplantation of Aquacultural Farmed Mussels from a Polluted Site to Unpolluted Sites: A Biomonitoring Study in the Straits of Johore. Foods 2023; 12:foods12101964. [PMID: 37238781 DOI: 10.3390/foods12101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The present field-based study aimed to determine the levels of six potentially toxic metals (PTM)s (Cd, Cu, Fe, Ni, Pb, and Zn determined using a flame atomic-absorption spectrophotometer) using transplanted green-lipped mussel Perna viridis from a polluted site at Kampung Pasir Puteh (KPP) to unpolluted sites at Kampung Sungai Melayu (KSM) and Sungai Belungkor (SB) in the Johore Straits (SOJ), and to estimate the human health risks of the PTMs after the depuration periods. Interestingly, after 10 weeks of depuration in the two unpolluted sites, there were 55.6-88.4% and 51.3-91.7% reductions of the six PTMs after transplantation from KPP to SB and KSM, respectively. Lower risks of health assessments were recorded and judged on the present findings of significantly (p < 0.05) lower levels of safety guidelines, significantly (p < 0.05) lower values of target hazard quotient, and significantly (p < 0.05) lower values of estimated weekly intake, of all the six PTMs after 10 weeks of depuration of the transplanted polluted mussels to the two unpolluted sites in the SOJ. Thus, further reducing the noncarcinogenic risks of the PTMs to the consumers. From an aquacultural point of view, this depuration technique can be recommended to reduce the health risks of PTMs to mussel consumers.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | | |
Collapse
|
28
|
Yap CK, Al-Mutairi KA. Biomonitoring-Health Risk Nexus of Potentially Toxic Metals on Cerithidea obtusa: A Biomonitoring Study from Peninsular Malaysia. Foods 2023; 12:foods12081575. [PMID: 37107369 PMCID: PMC10138110 DOI: 10.3390/foods12081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to assess the human health risks of six potentially toxic metals (PTMs) (Cd, Cu, Fe, Ni, Pb and Zn) in 21 populations of popular mangrove snails, Cerithidea obtusa, collected from Malaysia. In general, the concentrations (mg/kg wet weight) of Cd (0.03-2.32), Cu (11.4-35.2), Fe (40.9-759), Ni (0.40-6.14), Pb (0.90-13.4) and Zn (3.11-129) found in the snails in all populations were lower than the prescribed maximum permissible limits (MPL)s for Cd, Cu, Ni, Pb and Zn. However, in the investigated snail populations, Cd (14%), Pb (62%), Cu (19%), and Zn (10%) were found in exceedance of the MPL of the respective metal. The target hazard quotient (THQ) values in all populations for Cu, Ni, Fe and Zn were all found to be below 1.00. However, for the THQ values of Cd and Pb, two populations exceeded 1.00, while others were below the threshold level. The estimated weekly intake (EWI) of all six metals for all populations was only 0.03-4.65% of the provisional tolerable weekly intake. This conclusively indicates that, based on the EWI, there are no health risks of the six PTMs in the consumption of snails from Malaysia since the assessments are dependent on the consumers' body weight and consumption rate. Nonetheless, the present results indicate that the amounts of snails consumed should be limited to minimize the potential health risks of PTMs to consumers. The relatively low and weak but positive correlations of Cu, Ni, Pb and Zn between C. obtusa and their habitat sediments indicate that C. obtusa can be a potential biomonitor for Cu, Ni, Pb and Zn. This is important for effective mangrove management from the perspective of the sustainable resources from the intertidal mangrove environment. Hence, the biomonitoring-health risk nexus of PTMs in mangrove snails is proposed in the present study.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk P.O. Box 741, Saudi Arabia
| |
Collapse
|
29
|
A Molecular Mechanism to Explain the Nickel-Induced Changes in Protamine-like Proteins and Their DNA Binding Affecting Sperm Chromatin in Mytilus galloprovincialis: An In Vitro Study. Biomolecules 2023; 13:biom13030520. [PMID: 36979455 PMCID: PMC10046793 DOI: 10.3390/biom13030520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nickel is associated with reproductive toxicity, but little is known about the molecular mechanisms of nickel-induced effects on sperm chromatin and protamine-like proteins (PLs). In the present work, we analyzed PLs from Mytilus galloprovincialis by urea-acetic acid polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and assessed their binding to DNA by Electrophoretic Mobility Shift Assay (EMSA) after exposing mussels to 5, 15, and 35 µM NiCl2 for 24 h. In addition, a time course of digestion with MNase and release of PLs from sperm nuclei by the NaCl gradient was performed. For all exposure doses, in AU-PAGE, there was an additional migrating band between PL-III and PL-IV, corresponding to a fraction of PLs in the form of peptides detected by SDS-PAGE. Alterations in DNA binding of PLs were observed by EMSA after exposure to 5 and 15 µM NiCl2, while, at all NiCl2 doses, increased accessibility of MNase to sperm chromatin was found. The latter was particularly relevant at 15 µM NiCl2, a dose at which increased release of PLII and PLIII from sperm nuclei and the highest value of nickel accumulated in the gonads were also found. Finally, at all exposure doses, there was also an increase in PARP expression, but especially at 5 µM NiCl2. A possible molecular mechanism for the toxic reproductive effects of nickel in Mytilus galloprovincialis is discussed.
Collapse
|
30
|
Silva JVDS, Baligar VC, Ahrnet D, de Almeida AAF. Transcriptomic, osmoregulatory and translocation changes modulates Ni toxicity in Theobroma cacao. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:624-633. [PMID: 36791534 DOI: 10.1016/j.plaphy.2023.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Nickel is one of the most released trace elements in the environment and in the case of bioaccumulation in foods and beverages derived from cocoa beans can cause risk to human health. It is very important to understand how plants respond to toxic metals and which are the defense strategies they adopt to mitigate their effects. In the present study we used young plants of T. cacao, submitted to increasing Ni doses (0, 100, 200, 300, 400 and 500 mg Ni kg-1 soil) and evaluated them for a period of 30 days. Doses of Ni, from 300 mg of Ni kg-1 onwards in the soil, promoted changes in photosynthetic, antioxidant, osmoregulatory, transcriptomic and translocation levels, evidenced by the increase in the activity of antioxidant enzymes, proline, glycine betaine, upregulation of the metallothionein 2B gene (Mt2b), and lipid peroxidation of the cell membranes. Foliar gas exchange was severely affected at higher doses of Ni. In addition, reduced levels of stomatal conductivity and transpiration rate were observed from 300 mg Ni kg-1 dose onwards in the soil, which consequently affected CO2 assimilation. Phytostabilization and exclusion mechanisms control the translocation of Ni from the root to the shoot and reduce harmful effects on plant metabolism. Our results highlighted the toxicity of Ni, a trace element often underestimated in T. cacao. In particular, it was noted that doses of 100 and 200 Ni kg-1 soil, although high, do not induce toxicity in T. cacao plants. But Ni toxicity is observed from 300 mg Ni kg-1 soil onwards. This study contributed to the understanding of the harmful effects of higher doses of Ni in cacao plants and the biochemical processes the plant uses to mitigate the effects of this metal.
Collapse
Affiliation(s)
- José Victor Dos Santos Silva
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain; State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Dário Ahrnet
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| |
Collapse
|
31
|
Rzetala MA, Machowski R, Solarski M, Bakota D, Płomiński A, Rzetala M. Toxic Metals, Non-Metals and Metalloids in Bottom Sediments as a Geoecological Indicator of a Water Body's Suitability for Recreational Use. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4334. [PMID: 36901343 PMCID: PMC10002218 DOI: 10.3390/ijerph20054334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The study of bottom sediments was conducted within the basins of water bodies used for recreational purposes (e.g., bathing, fishing and diving) in the Silesian Upland and its periphery in southern Poland. Various concentrations of trace elements were found in bottom sediments, reflected by the following levels: Pb (30-3020 mg/kg), Zn (142-35,300 mg/kg), Cd (0.7-286 mg/kg), Ni (10-115 mg/kg), Cu (11-298 mg/kg), Co (3-40 mg/kg), Cr (22-203 mg/kg), As (8-178 mg/kg), Ba (263-19,300 mg/kg), Sb (0.9-52.5 mg/kg), Br (1-31 mg/kg), Sr (63-510 mg/kg) and S (0.001-4.590%). These trace elements are present in amounts that usually exceed those found in other bodies of water or are sometimes even unprecedented among bodies of water in the world (e.g., cadmium-286 mg/kg, zinc-35,300 mg/kg, lead-3020 mg/kg, arsenic-178 mg/kg). It was found that bottom sediments were contaminated to varying degrees with toxic metals, metalloids and non-metals, as evidenced by the values of geoecological indicators, i.e., the geoaccumulation index (-6.31 < Igeo < 10.90), the sediment contamination factor (0.0 ≤ Cfi < 286.0), the sediment contamination degree (4.6 < Cd < 513.1) and the ratios of the concentrations found to the regional geochemical background (0.5 < IRE < 196.9). It was concluded that the presence of toxic elements (e.g., lead, zinc, cadmium, chromium, strontium and arsenic) in bottom sediments should be taken into account when classifying water bodies as suitable for recreational use. A maximum ratio of the concentrations found to the regional geochemical background of IRE ≤ 5.0 was proposed as the threshold for the permissibility of recreational use of water bodies. The water bodies used for recreational purposes in the Silesian Upland and its periphery do not meet the geoecological conditions for safe use in terms of recreation and leisure activities. Forms of their recreational use that directly affect the participants' health (e.g., fishing and the consumption of fish and other aquatic organisms) should be abandoned.
Collapse
Affiliation(s)
- Martyna A. Rzetala
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
| | - Robert Machowski
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
| | - Maksymilian Solarski
- Institute of Social and Economic Geography and Spatial Management, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
| | - Daniel Bakota
- Faculty of Social Sciences, Jan Długosz University in Częstochowa, Waszyngtona 4/8, 42-200 Częstochowa, Poland
| | - Arkadiusz Płomiński
- Faculty of Social Sciences, Jan Długosz University in Częstochowa, Waszyngtona 4/8, 42-200 Częstochowa, Poland
| | - Mariusz Rzetala
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
| |
Collapse
|
32
|
Giove A, El Ouardi Y, Sala A, Ibrahim F, Hietala S, Sievänen E, Branger C, Laatikainen K. Highly selective recovery of Ni(II) in neutral and acidic media using a novel Ni(II)-ion imprinted polymer. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130453. [PMID: 36435044 DOI: 10.1016/j.jhazmat.2022.130453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In this work, an original ion-imprinted polymer (IIP) was synthetized for the highly selective removal of Ni(II) ions in neutral and acidic media. First a novel functional monomer (AMP-MMA) was synthetized through the amidation of 2-(aminomethyl)pyridine (AMP) with methacryloylchloride. Following Ni(II)/AMP-MMA complex formation study, the Ni(II)-IIP was produced via inverse suspension polymerization (DMSO in mineral oil) and characterized with solid state 13C CPMAS NMR, FT-IR, SEM and nitrogen adsorption/desorption experiments. The Ni(II)-IIP was then used in solid-phase extraction of Ni(II) exploring a wide range of pH (from neutral to strongly acidic solution), several initial concentrations of Ni(II) (from 0.02 to 1 g/L), and the presence of competitive ions (Co(II), Cu(II), Cd(II), Mn(II), and Mg(II)). The maximum Ni(II) adsorption capacity at pH 2 and pH 7 reached values of 138.9 mg/g and 169.5 mg/g, that are among the best reported in literature. The selectivity coefficients toward Cd(II), Mn(II), Co(II), Mg(II) and Cu(II) are also very high, with values up to 38.6, 32.9, 25.2, 23.1 and 15.0, respectively. The Ni(II)-IIP showed good reusability of up to 5 cycles both with acidic and basic Ni(II) eluents.
Collapse
Affiliation(s)
- A Giove
- Lappeenranta-Lahti University of Technology LUT, School of Engineering Science, Department of Separation Science, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland; Université de Toulon, MAPIEM, Toulon, France.
| | - Y El Ouardi
- Lappeenranta-Lahti University of Technology LUT, School of Engineering Science, Department of Separation Science, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland
| | - A Sala
- Université de Toulon, MAPIEM, Toulon, France
| | - F Ibrahim
- Université de Toulon, MAPIEM, Toulon, France
| | - S Hietala
- University of Helsinki, Department of Chemistry, PB 55, FIN-00014 Helsinki, Finland
| | - E Sievänen
- University of Jyväskylä, Department of Chemistry, P.O. Box 35, FIN-40014, Finland
| | - C Branger
- Université de Toulon, MAPIEM, Toulon, France.
| | - K Laatikainen
- Lappeenranta-Lahti University of Technology LUT, School of Engineering Science, Department of Separation Science, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland; Finnish Defence Research Agency, Paroistentie 20, FIN-34100 Lakiala, Finland
| |
Collapse
|
33
|
Awadh SM, Yaseen ZM, Al-Suwaiyan MS. The role of environmental trace element toxicants on autism: A medical biogeochemistry perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114561. [PMID: 36696851 DOI: 10.1016/j.ecoenv.2023.114561] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Since genetic factors alone cannot explain most cases of Autism, the environmental factors are worth investigating as they play an essential role in the development of some cases of Autism. This research is a review paper that aims to clarify the role of the macro elements (MEs), Trace elements (TEs) and ultra-trace elements (UTEs) on human health if they are greater or less than the normal range. Aluminium (Al), cadmium Cd), lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), nickel (Ni), arsenic (As), mercury (Hg), manganese (Mn), and iron (Fe) have been reviewed. Exposure to toxicants has a chemical effect that may ultimately lead to autism spectrum disorder (ASD). The Cr, As and Al are found in high concentrations in the blood of an autistic child when compared to normal child reference values. The toxic metals, particularly aluminium, are primarily responsible for difficulties in socialization and language skills disabilities. Zinc and copper are important elements in regulating the gene expression of metallothioneins (MTs), and zinc deficiency may be a risk factor for ASD pathogenesis. Autistics frequently have zinc deficiency combined with copper excess; as part of the treatment protocol, it is critical to monitor zinc and copper levels in autistic people, particularly those with zinc deficiency. Zinc deficiency is linked to epileptic seizures, which are common in autistic patients. Higher serum manganese and copper significantly characterize people who have ASD. Autistic children have significantly decreased lead and cadmium in urine, whereas they have significantly higher urine Cr. A higher level of As and Hg was found in the ASD individual's blood.
Collapse
Affiliation(s)
- Salih Muhammad Awadh
- Department of Geology, College of Science, University of Baghdad, Baghdad, Iraq.
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Mohammad Saleh Al-Suwaiyan
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
34
|
Bąk J, Sofińska-Chmiel W, Gajewska M, Malinowska P, Kołodyńska D. Determination of the Ni(II) Ions Sorption Mechanism on Dowex PSR2 and Dowex PSR3 Ion Exchangers Based on Spectroscopic Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:644. [PMID: 36676380 PMCID: PMC9866840 DOI: 10.3390/ma16020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This paper estimates the suitability of the strongly basic anion exchangers, Dowex PSR2 and Dowex PSR3, as sorbents of nickel ions in aqueous solutions. These actions are aimed at searching for new solutions due to the growing discharge of nickel into wastewaters, primarily due to its addition to steel. The nickel sorption experiments were conducted under static conditions and resulted in the optimization of pH, phase contact time, initial solution concentration, and temperature. The next step was to calculate the kinetic, isothermal, and thermodynamic parameters. Moreover, the ion exchangers were characterized by means of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and CHN elemental analysis. It was found that the sorption process was most effective at pH 6 after 240 min and at the temperature of 293 K. The values of the thermodynamic parameters revealed that the adsorption was exothermic and spontaneous. The physicochemical analyses combined with the experimental research enabled determination of the sorption mechanism of Ni(II) ions.
Collapse
Affiliation(s)
- Justyna Bąk
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Maria Gajewska
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Paulina Malinowska
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
| |
Collapse
|
35
|
Lyons-Darden T, Blum JL, Schooley MW, Ellis M, Durando J, Merrill D, Oller AR. An Assessment of the Oral and Inhalation Acute Toxicity of Nickel Oxide Nanoparticles in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:261. [PMID: 36678015 PMCID: PMC9860552 DOI: 10.3390/nano13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nickel oxide nanoparticles (NiO NPs) have been the focus of many toxicity studies. However, acute toxicity studies that identify toxicological dose descriptors, such as an LC50 or LD50, are lacking. In this paper, the acute toxicity of NiO NPs was evaluated in albino-derived Sprague-Dawley rats through OECD guideline studies conducted by both the oral and inhalation routes of exposure. The animals were assessed for mortality, body weight, behavioral observations, and gross necropsy. Results from previously conducted (unpublished) acute inhalation studies with larger NiO microparticles (MPs) are also included for comparison. Mortality, the primary endpoint in acute toxicity studies, was not observed for rats exposed to NiO NPs via either the oral or inhalation exposure routes, with a determined LD50 of >5000 mg/kg and an LC50 > 5.42 mg/L, respectively. Our results suggest that these NiO NPs do not exhibit serious acute toxicity in rats or warrant an acute toxicity classification under the current GHS classification criteria. This aligns with similar results for NiO MPs from this and previously published studies.
Collapse
Affiliation(s)
| | - Jason L. Blum
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ 08810, USA
| | | | - Melissa Ellis
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ 08810, USA
| | | | - Daniel Merrill
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ 08810, USA
| | | |
Collapse
|
36
|
Nan Y, Yang J, Ma L, Jin L, Bai Y. Associations of nickel exposure and kidney function in U.S. adults, NHANES 2017-2018. J Trace Elem Med Biol 2022; 74:127065. [PMID: 36108461 DOI: 10.1016/j.jtemb.2022.127065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUNDS Nickel (Ni) is a ubiquitous heavy metal, but epidemiological studies on the association between Ni and kidney function are limited and controversial. AIM We aimed to explore the relationship between urinary Ni concentrations and kidney function in U.S. adults. METHODS This was a cross-sectional study based on the 2017-2018 National Health and Nutrition Examination Survey (NHANES) (n = 1588). Multiple linear regression models, logistic regression models, and restricted cubic spline models (RCS) were fitted to explore the associations between urinary Ni and estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), and the odds of impaired kidney function, which was defined as an eGFR ≤ 60 mL/min per 1.73 m2, or UACR ≥ 30.0 mg/g. Bayesian kernel machine regression (BKMR) was used to account for joint-metal effects. RESULTS Compared with the lowest quartile, urinary Ni at the third quartile was associated with increased eGFR (β = 2.42, 95 % CI: 0.23-4.19); the highest quartile of urinary Ni was correlated with increased UACR (β = 0.10, 95 % CI: 0.02-0.18), as well as higher odds of impaired kidney function (OR=1.65, 95 % CI:1.08-2.54). Urinary Ni had a nonlinear inverted U-shape relationship with eGFR (Pnonlinear = 0.007), and linear J-shape associations with UACR (Pnonlinear = 0.063) and impaired kidney function (Pnonlinear= 0.215). Metal interaction of urinary Ni with cadmium (Cd) on eGFR was observed. CONCLUSIONS Our findings provided evidence that Ni exposure linked with declined kidney function and might interact with Cd exposure. Considering the cross-sectional design of the NHANES study, further prospective studies are necessary.
Collapse
Affiliation(s)
- Yaxing Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Limei Jin
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
37
|
Syurin S, Vinnikov D. Occupational disease predictors in the nickel pyrometallurgical production: a prospective cohort observation. J Occup Med Toxicol 2022; 17:21. [PMID: 36335380 PMCID: PMC9636620 DOI: 10.1186/s12995-022-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background Pyrometallurgical nickel production exposes workers to a wide range of occupational risk factors, including nickel aerosol, occupational noise and heat, but occupational (compensation) claims do not get enough attention in the literature. We, therefore, aimed to identify and analyze new occupational disease predictors in order to tailor prevention measures in the nickel pyrometallurgical production workers. Methods In a prospective observational study, a cohort of workers grouped in 16 occupations (N = 1424, 88% males, median age 39 (interquartile range (IQR) 31–47 years)), was fixed in 2007 at a large nickel production plant in the Russian High North. We then followed the cohort until 2021 and analyzed the association of selected predictors, including exposure to nickel and occupational group, with the risk of an occupational (compensation) claim in a Cox regression analysis. Results With 18,843 person-years of observation, occupational disease claims were confirmed in 129 workers (9% of the initial cohort, N = 108 men (84%)). Top three diagnoses were chronic bronchitis (3.81 cases/1000 workers/year), sensorineural deafness (2.36 cases/1000 workers /year) and musculoskeletal disorders (1.90 cases/1000 workers/year). Smoking was significantly associated with each diagnosis (adjusted hazard ratio (HR) ranged from 2.56 (95% confidence interval (CI) 1.17–5.57) for bronchitis to 6.69 (95% CI 1.46–30.64) for chronic obstructive pulmonary disease (COPD)). High nickel exposure was associated with occupational bronchitis and occupational asthma, whereas associations of occupational groups were also identified for COPD, asthma and musculoskeletal disorders. Conclusion Smoking, high exposure to nickel and specific exposure in the occupational groups increase the risk of occupational disease claims and should be prioritized directions for targeted intervention.
Collapse
|
38
|
Environmental Exposure to Metals, Parameters of Oxidative Stress in Blood and Prostate Cancer: Results from Two Cohorts. Antioxidants (Basel) 2022; 11:antiox11102044. [PMID: 36290767 PMCID: PMC9598453 DOI: 10.3390/antiox11102044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
We studied the potential role of exposure to various metal(oid)s (As, Cd, Cr, Hg, Ni, and Pb) in prostate cancer. Two cohorts were established: the Croatian cohort, consisting of 62 cases and 30 controls, and the Serbian cohort, consisting of 41 cases and 61 controls. Blood/serum samples were collected. Levels of investigated metal(oid)s, various parameters of oxidative stress, and prostate-specific antigen (PSA) were determined in collected samples. A comparison of the measured parameters between 103 prostate cancer patients and 91 control men from both Croatian and Serbian cohorts showed significantly higher blood Hg, SOD, and GPx levels and significantly lower serum SH levels in prostate cancer patients than in controls. Correlation analyses revealed the significant relationship between certain parameters of oxidative stress and the concentrations of the measured metal(loid)s, pointing to the possible role of metal(oid)-induced oxidative stress imbalance. Furthermore, a significant inverse relationship was found between the blood Pb and the serum PSA in prostate cancer patients, but when the model was adjusted for the impacts of remaining parameters, no significant association between the serum PSA and the measured parameters was found. The results of the overall study indicate a substantial contribution of the measured metal(loid)s to the imbalance of the oxidant/antioxidant system. Although somewhat conflicting, the results of the present study point to the possible role of investigated metal(oid)s in prostate cancer, especially for Hg, since the obtained relationship was observed for both cohorts, followed by the disturbances in oxidative stress status, which were found to be correlated with Hg levels. Nevertheless, further studies in larger cohorts are warranted to explain and confirm the obtained results.
Collapse
|
39
|
Zorena K, Jaskulak M, Michalska M, Mrugacz M, Vandenbulcke F. Air Pollution, Oxidative Stress, and the Risk of Development of Type 1 Diabetes. Antioxidants (Basel) 2022; 11:1908. [PMID: 36290631 PMCID: PMC9598917 DOI: 10.3390/antiox11101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Despite multiple studies focusing on environmental factors conducive to the development of type 1 diabetes mellitus (T1DM), knowledge about the involvement of long-term exposure to air pollution seems insufficient. The main focus of epidemiological studies is placed on the relationship between exposure to various concentrations of particulate matter (PM): PM1, PM2.5, PM10, and sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (O3), versus the risk of T1DM development. Although the specific molecular mechanism(s) behind the link between increased air pollution exposure and a higher risk of diabetes and metabolic dysfunction is yet unknown, available data indicate air pollution-induced inflammation and oxidative stress as a significant pathway. The purpose of this paper is to assess recent research examining the association between inhalation exposure to PM and associated metals and the increasing rates of T1DM worldwide. The development of modern and more adequate methods for air quality monitoring is also introduced. A particular emphasis on microsensors, mobile and autonomous measuring platforms, satellites, and innovative approaches of IoT, 5G connections, and Block chain technologies are also presented. Reputable databases, including PubMed, Scopus, and Web of Science, were used to search for relevant literature. Eligibility criteria involved recent publication years, particularly publications within the last five years (except for papers presenting a certain novelty or mechanism for the first time). Population, toxicological and epidemiological studies that focused particularly on fine and ultra-fine PM and associated ambient metals, were preferred, as well as full-text publications.
Collapse
Affiliation(s)
- Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Marta Jaskulak
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Małgorzata Michalska
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland
| | - Franck Vandenbulcke
- Laboratoire de Génie Civil et Géo-Environnement, Univ. Lille, IMT Lille Douai, University Artois, YncreaHauts-de-France, ULR4515-LGCgE, F-59000 Lille, France
| |
Collapse
|
40
|
Tzima CS, Banti CN, Hadjikakou SK. Assessment of the biological effect of metal ions and their complexes using Allium cepa and Artemia salina assays: a possible environmental implementation of biological inorganic chemistry. J Biol Inorg Chem 2022; 27:611-629. [PMID: 36149503 PMCID: PMC9569305 DOI: 10.1007/s00775-022-01963-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022]
Abstract
The pollution of aquatic ecosystems due to the elevated concentration of a variety of contaminants, such as metal ions, poses a threat to humankind, as these ecosystems are in high relevance with human activities and survivability. The exposure in heavy metal ions is responsible for many severe chronic and pathogenic diseases and some types of cancer as well. Metal ions of the groups 11 (Cu, Ag, Au), 12 (Zn, Cd, Hg), 14 (Sn, Pb) and 15 (Sb, Bi) highly interfere with proteins leading to DNA damage and oxidative stress. While, the detection of these contaminants is mainly based on physicochemical analysis, the chemical determination, however, is deemed ineffective in some cases because of their complex nature. The development of biological models for the evaluation of the presence of metal ions is an attractive solution, which provides more insights regarding their effects. The present work critically reviews the reports published regarding the toxicity assessment of heavy metal ions through Allium cepa and Artemia salina assays. The in vivo toxicity of the agents is not only dose depended, but it is also strongly affected by their ligand type. However, there is no comprehensive study which compares the biological effect of chemical agents against Allium cepa and Artemia salina. Reports that include metal ions and complexes interaction with either Allium cepa or Artemia salina bio-indicators are included in the review.
Collapse
Affiliation(s)
- Chrysoula S Tzima
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Christina N Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| | - Sotiris K Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece. .,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece.
| |
Collapse
|
41
|
Faisal M, Wu Z, Wang H, Hussain Z, Azam MI, Muzammil M. Assessment and source apportionment of water-soluble heavy metals in road dust of Zhengzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68857-68869. [PMID: 35554804 DOI: 10.1007/s11356-022-20666-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The water-soluble concentration of heavy metals in road dust poses a considerable hazard to public health. The primary goals of the study were estimation of water-soluble contents of heavy metal, estimation of pollution indices, and source apportionment of water-soluble contents of heavy metals using UNMIX model from the road dust of Zhengzhou city. To accomplish this, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine concentrations of eight heavy metals (Cr, Cu, Ni, Zn, Cd, As, Pb, and Hg), and it has been observed that Cu and Zn were the metals with the highest concentration, while Hg, Cd, and Pb were in the lowest concentration range of metals. Pollution indices, geo-accumulation index (Igeo), contamination factor (CF), and Nemerow synthetic pollution index (PIN) were calculated to assess the contamination level of water-soluble contents of these hazardous heavy metals. Igeo classified the contamination risk into a spectrum of categories ranging from unpolluted (Cr and Pb) to high polluted (Cu and Cd). For the CF results, the concentration of Cr and Pb was found to be low, similar to Igeo, while the concentrations of three heavy metals, Cu, Cd, and Hg, were found to be extremely high or excessive. The results of the PIN assessment indicated that there was an enormous risk of Hg contamination in the city and that Cu, Cd, and Zn were all within a few percent of the Hg pollution level and hence fell into the high pollution group. The UNMIX model was used for source apportionment of dissolved heavy metals and showed: Source 1 (natural sources, 10%), Source 2 (copper mine tailing contamination, 19%), and Source 3 (agricultural activities22%). Source 4 accounted for (air pollution, 15%) of the total and Source 5 accounted for (industrial activity, 34%). It is imperative that immediate and comprehensive pollution control and preventive measures be implemented in the city due to the presence of metal in the dust.
Collapse
Affiliation(s)
- Muhammad Faisal
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zening Wu
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huiliang Wang
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Zafar Hussain
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
- Water Resources Section, Ministry of Planning, Development & Special Initiatives, Islamabad, Pakistan
| | | | - Muhammad Muzammil
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Bio Systems, Land Use and Nutrition (IFZ), Justus Liebig University, 35392, Giessen, Germany
| |
Collapse
|
42
|
Khan RA, Khan NA, El Morabet R, Alsubih M, Qadir A, Bokhari A, Mubashir M, Asif S, Cheah WY, Manickam S, Klemeš JJ, Khoo KS. Geospatial distribution and health risk assessment of groundwater contaminated within the industrial areas: an environmental sustainability perspective. CHEMOSPHERE 2022; 303:134749. [PMID: 35490754 DOI: 10.1016/j.chemosphere.2022.134749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Groundwater is the second largest water source for daily consumption, only next to surface water resources. Groundwater has been extensively investigated for its pollution level in urban areas. The groundwater quality assessments in industrial areas associated with every urban landscape are still lacking. This study was carried out in two industrial areas including Okhla and Mohan cooperative in New Delhi, India. The six groundwater samples were obtained for water quality assessment for 2015 and 2018. The heavy metals investigated in water samples were Cu, As, Pb, Mn, Ni, Zn, Fe, Cr, and Mn. The water quality was assessed in the heavy metals index (MI) and heavy metal pollution index (HPI). From indexing approach, it was observed that pollution levels have increased in year 2018 as compared to the year 2015. MI < 1 for Cu in 2015 and 2018 in both industrial areas. In the case of remaining metals, MI ranged from 2.5 to 8.4. When the HPI indexing approach was adopted, water was unfit for drinking in both industrial areas in 2015 and 2018, with an HPI value > 100. Non-carcinogenic risk assessment (HI) ranged from 1.7 to 1.9 in 2015, increasing from 17.41 to 217 in 2018, indicating high risk in both years. Carcinogenic risk (CR) was within the acceptable range for 48% of each heavy metal analysed sample. When the Carcinogenic risk index was considered (CRI), all samples were beyond the acceptable range, and every person was prone to carcinogenic risk in 2015.
Collapse
Affiliation(s)
- Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Nadeem A Khan
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi-110025, India
| | - Rachida El Morabet
- Department of Geography, LADES, FLSH-M, Hassan II University of Casablanca, Mohammedia, 28810, Morocco
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Abdul Qadir
- Environmental Remote Sensing, School of Physics, Universiti Sains Malaysia (USM) Penang Island, 11800, Malaysia
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00 Brno, Czech Republic
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00 Brno, Czech Republic
| | - Wai Yan Cheah
- Research Centre for Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00 Brno, Czech Republic
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
43
|
Taxell P, Huuskonen P. Toxicity assessment and health hazard classification of stainless steels. Regul Toxicol Pharmacol 2022; 133:105227. [PMID: 35817207 DOI: 10.1016/j.yrtph.2022.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Stainless steels are widely used iron-based alloys that contain chromium and, typically, other alloying elements. The chromium(III)-rich surface oxide of stainless steels efficiently limits the release (bioaccessibility) of their metal constituents in most physiological environments, influencing the toxicity of the alloy. Of the constituents and impurities of stainless steels, nickel and cobalt are of particular interest, primarily due to skin sensitization and repeated-dose inhalation toxicity of nickel, and (inhalation) carcinogenicity of cobalt. A review of the available toxicological data on stainless steels, and the toxicological, mechanistic, and bioaccessibility data on their constituent metals supports the low toxicity and non-carcinogenicity of stainless steels. The comparative metal release, rather than the bulk composition of stainless steels, needs to be considered when assessing their health hazard classification according to the UN Globally Harmonized System, and the corresponding EU CLP regulation. As an illustrative example, a 28-day inhalation toxicity study on stainless steel powder showed no signs of lung toxicity at exposure levels at which significant toxicity would have been expected on the basis of its bulk nickel content. This finding is associated with the low bioaccessibility of nickel from the alloy in the lungs.
Collapse
Affiliation(s)
- Piia Taxell
- Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Finland.
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032, Työterveyslaitos, Finland
| |
Collapse
|
44
|
Kalefetoğlu Macar T, Macar O, Çavuşoğlu K, Yalçin E, Yapar K. Turmeric (Curcuma longa L.) tends to reduce the toxic effects of nickel (II) chloride in Allium cepa L. roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60508-60518. [PMID: 35420336 DOI: 10.1007/s11356-022-20171-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The immense protection potential of plant-derived products against heavy metal toxicity has become a considerable field of research. The goal of the present study was to evaluate the mitigative ability of turmeric against nickel (II) chloride (NiCl2)-related toxicity in the roots of Allium cepa L. For this purpose, one control (treated with tap water) and five treatment groups (treated with 440 mg/L turmeric, 880 mg/L turmeric, 1 mg/L NiCI2, 1 mg/L NiCI2 + 440 mg/L turmeric, and 1 mg/L NiCI2 + 880 mg/L turmeric, respectively) of Allium bulbs were established. Experimental conditions were maintained at room temperature for 3 days. Physiological, biochemical, cytogenetic, and meristematic integrity parameters were analyzed in all groups. NiCl2 reduced germination percentage, root elongation, and weight gain. Following NiCl2 application, the frequency of aberrant chromosomes and micronuclei increased, while mitotic index decreased. NiCl2 caused an increase in oxidative stress, which was evident by increased malondialdehyde level and catalytic activities of superoxide dismutase and catalase. Epidermal and cortex cell injuries as well as deformed cell nuclei and indistinct transmission tissue were observed as a result of NiCl2 treatment. When applied alone, turmeric, which did not cause any negative effects, led to an improvement in all parameters depending on the dose when applied together with NiCl2. Data from the study suggests that turmeric has remarkable protection potential against NiCl2 in Allium cepa.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey.
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Turkey
| | - Kürşad Yapar
- Department of Pharmacology, Faculty of Medicine, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
45
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Vo DVN, Kushwaha OS. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review. CHEMOSPHERE 2022; 301:134635. [PMID: 35447212 DOI: 10.1016/j.chemosphere.2022.134635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, P.O. Box 75169-13817, Bushehr, Iran; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
46
|
Sharifian S, Mortazavi MS, Nozar SLM. Health risk assessment of commercial fish and shrimp from the North Persian Gulf. J Trace Elem Med Biol 2022; 72:127000. [PMID: 35605439 DOI: 10.1016/j.jtemb.2022.127000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bioaccumulation of trace metals in the food web demands continuous monitoring of seafood safety. Here, the food safety of commercial fish bluespot mullet Crenimugil seheli, deep flounder Pseudorhombus elevates, and Jinga shrimp Metapenaeus affinis was assessed from commercial and industrial region of the West Bandar Abbas, the North Persian Gulf, for the first time. METHODS For this purpose, concentrations of trace metals Ni, Zn, Cu, Cr, Cd, and Pb, and their health risks were investigated. RESULTS Results showed the average concentration of all trace metals in all species was below concentrations proposed by WHO/FAO/USEPA. The finding on risk assessment of three species indicated three species are safe for daily consumption. Long-term consumption of three species would not pose potential non-carcinogenic health risk. However, it would result in carcinogenic effects from the ingestion of trace metals Ni, Cr, and Cd. CONCLUSIONS The data emphasizes the need for the continuous monitoring in this industrial region in the future to manage and control pollutant sources and to ensure the quality of seafood.
Collapse
Affiliation(s)
- Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
47
|
Assessing the Health Risk and the Metal Content of Thirty-Four Plant Essential Oils Using the ICP-MS Technique. Nutrients 2022; 14:nu14122363. [PMID: 35745094 PMCID: PMC9229550 DOI: 10.3390/nu14122363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
Natural ecosystems are polluted with various contaminants, and among these heavy metals raise concerns due to their side effects on both environment and human health. An investigation was conducted on essential oil samples, comparing similar products between seven producers, and the results indicated a wide variation of metal content. The recommended limits imposed by European Union regulations for medicinal plants are exceeded only in Mentha × pipperita (Adams, 0.61 mg/kg). Except for Thymus vulgaris, the multivariate analysis showed a strong correlation between toxic and microelements (p < 0.001). We verified plant species−specific bioaccumulation patterns with non-metric multidimensional scaling analysis. The model showed that Adams, Doterra, Hypericum, and Steaua Divina essential oils originated from plants containing high micro and macroelement (Cu, Mn, Mg, Na) levels. We noted that the cancer risk values for Ni were the highest (2.02 × 10−9−7.89 × 10−7). Based on the target hazard quotient, three groups of elements were associated with a possible risk to human health, including As, Hg, and Cd in the first group, Cr, Mn, Ni, and Co in the second, and Zn and Al in the third. Additionally, the challenge of coupling inter-element relationships through a network plot analysis shows a considerable probability of associating toxic metals with micronutrients, which can address cumulative risks for human consumers.
Collapse
|
48
|
You DJ, Lee HY, Taylor-Just AJ, Bonner JC. Synergistic induction of IL-6 production in human bronchial epithelial cells in vitro by nickel nanoparticles and lipopolysaccharide is mediated by STAT3 and C/EBPβ. Toxicol In Vitro 2022; 83:105394. [PMID: 35623502 DOI: 10.1016/j.tiv.2022.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
We previously reported that delivery of nickel nanoparticles (NiNPs) and bacterial lipopolysaccharide (LPS) into the lungs of mice synergistically increased IL-6 production and inflammation, and male mice were more susceptible than female mice. The primary goal of this study was to utilize an in vitro human lung epithelial cell model (BEAS-2B) to investigate the intracellular signaling mechanisms that mediate IL-6 production by LPS and NiNPs. We also investigated the effect of sex hormones on NiNP and LPS-induced IL-6 production in vitro. LPS and NiNPs synergistically induced IL-6 mRNA and protein in BEAS-2B cells. TPCA-1, a dual inhibitor of IKK-2 and STAT3, blocked the synergistic increase in IL-6 caused by LPS and NiNPs, abolished STAT3 activation, and reduced C/EBPβ. Conversely, SC144, an inhibitor of the gp130 component of the IL-6 receptor, enhanced IL-6 production induced by LPS and NiNPs. Treatment of BEAS-2B cells with sex hormones (17β-estradiol, progesterone, or testosterone) or the anti-oxidant NAC, had no effect on IL-6 induction by LPS and NiNPs. These data suggest that LPS and NiNPs induce IL-6 via STAT3 and C/EBPβ in BEAS-2B cells. While BEAS-2B cells are a suitable model to study mechanisms of IL-6 production, they do not appear to be suitable for studying the effect of sex hormones.
Collapse
Affiliation(s)
- Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, United States of America.
| |
Collapse
|
49
|
Syurin S, Vinnikov D. Occupational disease claims and non-occupational morbidity in a prospective cohort observation of nickel electrolysis workers. Sci Rep 2022; 12:7092. [PMID: 35490161 PMCID: PMC9056510 DOI: 10.1038/s41598-022-11241-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
Exposure to nickel aerosol in the nickel production is associated with greater occupational risk, yet little is known how many workers will develop an occupational disease and claim compensation. The aim of this analysis was to prospectively observe a cohort of nickel electrolysis workers and quantitatively assess confirmed occupational disease claims. We observed a cohort of nickel electrolysis workers (N = 1397, median age 39, 68% males) from 2008 till 2020 in one of the largest nickel producers in the Russian High North. Cumulative incidence of confirmed occupational disease claims in seven occupational groups, including electrolysis operators, hydrometallurgists, crane operators, final product cleaners, metalworkers, electricians and 'other' was analyzed and supplemented with Cox proportional hazards regression, yielding hazard ratios (HR) with their 95% confidence intervals (CI) of occupational disease claims for each group. N patients with occupational disease claims varied from 1 in 2016 to 22 in 2009, and in total 87 patients developed one or more occupational diseases (cumulative incidence 6.2%, p < 0.001 between seven groups). Accounting for 35,527 person-years of observation in total, cleaners exhibited the greatest risk (HR 2.58 (95% CI 1.43-4.64)), also adjusted for smoking, number of non-occupational diseases and group 2 (hydrometallurgists). Smoking was independently associated with having an occupational disease claim in all groups (p < 0.001), as was the number of non-work-related diseases in six groups of seven. Despite consistent improvement in the exposure control measures in nickel production, occupational morbidity persists. More effort is needed to reduce exposure in final product cleaners.
Collapse
Affiliation(s)
- Sergei Syurin
- Northwest Public Health Research Center, Saint Petersburg, Russian Federation
| | - Denis Vinnikov
- Al-Farabi Kazakh National University, Al-Farabi Kazakh National University, 71 al-Farabi Avenue, Almaty, 050040, Kazakhstan. .,Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation.
| |
Collapse
|
50
|
Begum W, Rai S, Banerjee S, Bhattacharjee S, Mondal MH, Bhattarai A, Saha B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv 2022; 12:9139-9153. [PMID: 35424851 PMCID: PMC8985085 DOI: 10.1039/d2ra00378c] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022] Open
Abstract
This review contains up-to-date knowledge and recent advancements on the essentiality, sources, and toxicological profile of nickel and its different compounds. Nickel is a recognized essential element for several important biological processes like the healthy growth of plants, animals, and soil/water microbes; though an excess amount of nickel intoxicates flora and fauna. Nickel is found to affect the photosynthetic function of higher plants; it can severely degrade soil fertility and causes many chronic diseases in humans. Due to the huge growth in the nickel industry and consumption of nickel-containing products, environmental pollution has become inevitable by the element nickel and also varieties of its by-products through all the phases of making, utilization and dumping. We have focused on the importance of agenda 2030 (UN 17 SDGs) during the preparation of the write-up and have highlighted goals 3, 6, 8, 9, 11, 12, 13, 14, and 15 by elaborately discussing associated points. The plausible molecular mechanism of nickel toxicity is presented in simple diagrams. The article elaborates on possible methods for remediation of nickel toxicity and the treatment of nickel dermatitis and nickel cancer. Recent advancements in the understanding of the dual aspects of nickel as beneficial and a carcinogen are the key subject of this article. This review contains up-to-date knowledge and recent advancements on the essentiality, sources, and toxicological profile of nickel and its different compounds.![]()
Collapse
Affiliation(s)
- Wasefa Begum
- Department of Chemistry, The University of Burdwan Burdwan-713104 WB India +91-342-2530452 +919476341691 +91-342-2533913
| | - Summi Rai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar Nepal
| | - Soujanya Banerjee
- Department of Chemistry, The University of Burdwan Burdwan-713104 WB India +91-342-2530452 +919476341691 +91-342-2533913
| | - Sudip Bhattacharjee
- Chemical Sciences Laboratory, Government General Degree College Singur Hooghly 712409 WB India +919475337890 +91-33-2630-0126
| | - Monohar Hossain Mondal
- Chemical Sciences Laboratory, Government General Degree College Singur Hooghly 712409 WB India +919475337890 +91-33-2630-0126
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar Nepal
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Burdwan-713104 WB India +91-342-2530452 +919476341691 +91-342-2533913
| |
Collapse
|