1
|
Zhong Y, Chang X, Zhao Z, Zheng L, Kuang G, Li P, Liu C, Fan Y, Liang Z, Zhuang K, Xie Q, Liu Y. Bacteroides fragilis capsular polysaccharide A ameliorates ulcerative colitis in rat by recovering intestinal barrier integrity and restoring gut microbiota. Front Pharmacol 2024; 15:1402465. [PMID: 39776580 PMCID: PMC11703662 DOI: 10.3389/fphar.2024.1402465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bacteroides fragilis (B. fragilis) is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of B. fragilis is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the B. fragilis strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2. In this study, we explored the impact of TP2 on colonic inflammation and delved into its potential mechanisms. Initially, we used 2,4,6-trinitrobenzenesulfonic acid (TNBS) to induce colitis in rats and found that TP2 treatment significantly ameliorated TNBS-induced weight loss, increased clinical scores, extensive ulcers, and intestinal epithelial damage in UC rats. Further analysis revealed that TP2 effectively restored the intestinal barrier integrity in UC rats by regulating the expression of Muc-2, tight junction proteins (ZO-1, occludin, claudin-1, and claudin-2), as well as apoptosis-related proteins Bcl-2, BAX, and Cleaved-Caspase-3. Additionally, TP2 suppressed the expression of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL23, while promoting the secretion of anti-inflammatory cytokines IL-10 and IL-22, thereby inhibiting the occurrence of inflammation. TP2 also downregulated the phosphorylation levels of AKT and PI3K, effectively inhibiting the abnormal activation of the PI3K/AKT signaling pathway. More interestingly, 16S rRNA sequencing results showed that TP2 restored the ecological imbalance of the rat intestinal microbiota, with an increase in beneficial bacteria such as Lactobacillus and Limosilactobacillus observed in the treatment group. In conclusion, TP2 through the regulation of intestinal barrier-related cells and proteins, inhibition of apoptosis, modulation of inflammation-related cytokine levels, and control of abnormal activation of the PI3K/AKT signaling pathway, restores intestinal barrier integrity. Additionally, by reshaping the ecological imbalance of the gut microbiota, TP2 ultimately alleviates ulcerative colitis in rats.
Collapse
Affiliation(s)
- Yijia Zhong
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiujuan Chang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Zihan Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijun Zheng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gaobo Kuang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Ping Li
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | | | - Yuqin Fan
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhixuan Liang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ke Zhuang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| |
Collapse
|
2
|
Arunachalam K, Matchado MS, Damazo AS, Cardoso CAL, Castro TLAD, Baranoski A, Neves SCD, Martins DTDO, Nascimento VAD, Oliveira RJ. Casearia sylvestris var. lingua (Càmbess.) Eichler leaves aqueous extract improves colon inflammation through mucogenic, antioxidant and anti-inflammatory actions in TNBS- induced IBD rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118393. [PMID: 38801913 DOI: 10.1016/j.jep.2024.118393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Casearia sylvestris var. lingua (Cambess.) Eichler, a member of the Salicaceae family, holds a prominent place in traditional medicine across various cultures due to its versatile therapeutic properties. Historically, indigenous communities have utilized different parts of the plant, including leaves, bark, and roots, to address a wide array of health conditions. Traditional uses of C. sylvestris var. lingua encompasses the treatment of gastrointestinal disorders, respiratory infections, wound healing, inflammation, and stomach ulcers. Pharmacological studies have demonstrated the plant's antimicrobial, anti-inflammatory, antioxidant, analgesic, gastroprotective, and immunomodulatory effects. This signifies the first scientific validation report for C. sylvestris var. lingua regarding its effectiveness against ulcerative colitis. The report aims to affirm the traditional use of this plant through pre-clinical experiments. AIM OF THE RESEARCH This work uses an aqueous extract from C. sylvestris var. lingua leaves (AECs) to evaluate the acute anti-ulcerative colitis efficacy in rat and HT-29 (human colorectal cancer cell line) models. METHODS To determine the secondary metabolites of AECs, liquid chromatography with a diode array detector (LC-DAD) study was carried out. 2,4,6-trinitrobenzenesulfonic acid (TNBS, 30 mg/0.25 mL EtOH 30% v/v) was used as an enema to cause acute colitis. Three days were spent giving the C. sylvestris var. lingua extract orally by gavage at dosages of 3, 30, and 300 mg/kg. The same route was used to deliver distilled water to the vehicle and naïve groups. After the animals were sacrificed on the fourth day, intestinal tissues were taken for histological examination and evaluation of biochemical tests such as those measuring superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), nitrite/nitrate, myeloperoxidase (MPO) activity. Additionally, interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin 10 (IL-10), were conducted on the intestinal tissues. Additionally, an MTT assay was used to evaluate the effect of AECs on the viability of HT-29 cells. Additionally, a molecular docking study was carried out to compare some potential target proteins with identified chemicals found in AECs. RESULTS LC-DAD analysis identified five compounds (caffeic acid, ellagic acid, ferulic acid, gallic acid, and quercetin) in AECs. Pre-administration of AECs (3; 30; 300 mg/kg) and mesalazine (500 mg/kg) reduced macroscopic scores (55%, 47%, 45%, and 52%, p < 0.001) and ulcerated areas (70.3%, 70.5%, 57%, and 56%, p < 0.001), respectively. It also increased SOD, GSH, and CAT activities (p < 0.01), while decreasing MDA (p < 0.001), nitrite/nitrate (p < 0.05), and MPO (p < 0.001) activities compared to the colitis group. Concerning inflammatory markers, significant modulations were observed: AECs (3, 30, and 300 mg/kg) lowered levels of IL-1β and TNF-α (p < 0.001) and increased IL-10 levels (p < 0.001) compared to the colitis groups. The viability of HT-29 cells was suppressed by AECs with an IC50 of 195.90 ± 0.01 μg/mL (48 h). During the molecular docking analysis, quercetin, gallic acid, ferulic acid, caffeic acid, and ellagic acid demonstrated consistent binding affinities, forming stable interactions with the 3w3l (TLR8) and the 3ds6 (MAPK14) complexes. CONCLUSION These results imply that the intestinal mucogenic, anti-inflammatory, and antioxidant properties of the C. sylvestris var. lingua leaf extract may be involved in its therapeutic actions for ulcerative colitis. The results of the in silico study point to the possibility of quercetin and ellagic acid interacting with P38 and TLR8, respectively, in a beneficial way.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Postgraduate Program in Health and Development of the Midwest Region, School of Medicine (FAMED), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Monica Steffi Matchado
- Ganga Orthopaedic Research & Education Foundation (GOREF), Coimbatore, Tamil Nadu, India.
| | - Amilcar Sabino Damazo
- Histology Laboratory, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Claudia Andrea Lima Cardoso
- Postgraduate Program in Natural Resources, State University of Mato Grosso Do Sul, Cidade Universitária de Dourados, Rodovia Itahum, Km 12, Dourados, MS, 79804-970, Brazil.
| | - Thiago Luis Aguayo de Castro
- Postgraduate Program in Natural Resources, State University of Mato Grosso Do Sul, Cidade Universitária de Dourados, Rodovia Itahum, Km 12, Dourados, MS, 79804-970, Brazil.
| | - Adrivanio Baranoski
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Silvia Cordeiro das Neves
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | | | - Valter Aragão do Nascimento
- Postgraduate Program in Health and Development of the Midwest Region, School of Medicine (FAMED), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Rodrigo Juliano Oliveira
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Postgraduate Program in Health and Development of the Midwest Region, School of Medicine (FAMED), Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| |
Collapse
|
3
|
Alemdar MB, Şirinyıldız F, Coşkun A, Meteoğlu İ, Taşkıran İ, Kandemir A, Hadi Yaşa M. Investigation of Possible Positive Effects of Arbutin Application in Experimental Colitis Model. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:523-531. [PMID: 39128087 PMCID: PMC11363374 DOI: 10.5152/tjg.2024.23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/10/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS This study aimed to investigate the possible positive effects of arbutin in a trinitrobenzene sulfonic acid (TNBS)- induced experimental colitis model, to compare it with mesalazine, which is used in treating inflammatory bowel disease and to observe the effect of its concomitant use. MATERIALS AND METHODS Forty Wistar albino species male rats were randomized into 5 groups as control, colitis, colitis+arbutin (Arb), colitis+mesalazine (Mes), and colitis+mesalazine+arbutin (M+A). Proinflammatory cytokines [interleukin (IL)-6, IL-1β, tumor necrosis factor alpha (TNF-α)] and oxidant/antioxidant parameters [malondialdehyde (MDA), superoxide dismutase inhibition (SOD) inhibition, myeloperoxidase (MPO), and catalase, glutathione peroxidase (GPx)] were processed from the samples. Histopathological evaluation evaluated goblet cell reduction, cellular infiltration, and mucosal loss. RESULTS When the treatment groups and the TNBS group were compared, statistical significance was achieved in MDA, MPO, SOD inhibition, GPx values, IL-6, IL-1β and TNF-α levels. Histopathological evaluation revealed a statistically significant decrease in the mucosal loss value in the group where mesalazine and arbutin were used together compared to the TNBS group. CONCLUSION Our study's results elaborated that using arbutin alone or in combination with mesalazine produced positive effects in colitis-induced rats.
Collapse
Affiliation(s)
- Merve Bıyıklı Alemdar
- Department of Internal Medicine, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Ferhat Şirinyıldız
- Department of Gastroenterology, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Adil Coşkun
- Department of Internal Medicine, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - İbrahim Meteoğlu
- Department of Physiology, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - İsmail Taşkıran
- Department of Internal Medicine, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Altay Kandemir
- Department of Internal Medicine, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Mehmet Hadi Yaşa
- Department of Internal Medicine, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| |
Collapse
|
4
|
Da Silva VC, Guerra GCB, Araújo DFDS, De Araújo ER, De Araújo AA, Dantas-Medeiros R, Zanatta AC, Da Silva ILG, De Araújo Júnior RF, Esposito D, Moncada M, Zucolotto SM. Chemopreventive and immunomodulatory effects of phenolic-rich extract of Commiphora leptophloeos against inflammatory bowel disease: Preclinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118025. [PMID: 38458342 DOI: 10.1016/j.jep.2024.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Commiphora leptophloeos (Mart.) J.B. Gillet (Burseraceae) is a medicinal plant native to Brazil, popularly known as "imburana". Homemade leaf decoction and maceration were used to treat general inflammatory problems in the Brazilian Northeast population. Our previous research confirmed the anti-inflammatory activity of the C. leptophloeos hydroalcoholic leaf extract. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal treatment to maintain the remissive status. This work aimed to characterize the phytochemical composition and physicochemical properties of the C. leptophloeos hydroalcoholic leaf extract and its efficacy in chemopreventive and immunomodulatory responses in inflammatory bowel disease in non-clinical models. MATERIALS AND METHODS Mass spectrometry and physicochemical tests determined the phytochemical profile and physicochemical characteristics of the Commiphora leptophloeos (CL) extract. The chemopreventive and immunomodulatory effects of CL extract (50 and 125 μg/mL) were evaluated in vitro in the RAW 264.7 lipopolysaccharide (LPS) induced cell assay and in vivo in the model of intestinal inflammation induced by 2,4-Dinitrobenzenesulfonic acid (DNBS) in mice when they were treated with CL extract by intragastric gavage (i.g.) at doses of 300, 400 and 500 mg/kg. RESULTS Phytochemical annotation of CL extract showed a complex phenolic composition, characterized as phenolic acids and flavonoids, and satisfactory physicochemical characteristics. In addition, CL extract maintained the viability of RAW macrophages, reduced ROS and NO production, and negatively regulated COX-2, iNOS, TNF-α, IL-1β, IL-6, and IL-17 (p < 0.05). In the intestinal inflammation model, CL extract was able to downregulate NF-κB p65/COX-2, mTOR, iNOS, IL-17, decrease levels of malondialdehyde and myeloperoxidase and cytokines TNF-α, IL-1β and IL-6 (p < 0.05). CONCLUSION Based on these findings, CL extract reduced inflammatory responses by down-regulating pro-inflammatory markers in macrophages induced by LPS and DNBS-induced colitis in mice through NF-κB p65/COX-2 signaling. CL leaf extract requires further investigation as a candidate for treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Valéria Costa Da Silva
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | | | - Edilane Rodrigues De Araújo
- Health Sciences Center, Research Group on Bioactive Natural Products, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Renato Dantas-Medeiros
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Ana Caroline Zanatta
- Research Center for Natural and Synthetic Products, São Paulo University, Ribeirão Preto, SP, Brazil.
| | - Isadora Luisa Gomes Da Silva
- Biosciences Center, Cancer and Inflammation Research Laboratory, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Silvana Maria Zucolotto
- Health Sciences Center, Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Health Sciences Center, Research Group on Bioactive Natural Products, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
6
|
Ocampo YC, Castro JP, Pájaro IB, Caro D, Talero E, Motilva V, Franco LA. Protective effect of sucrose esters from cape gooseberry (Physalis peruviana L.) in TNBS-induced colitis. PLoS One 2024; 19:e0299687. [PMID: 38512973 PMCID: PMC10957089 DOI: 10.1371/journal.pone.0299687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1β, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.
Collapse
Affiliation(s)
- Yanet C. Ocampo
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| | - Jenny P. Castro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Indira B. Pájaro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Daneiva Caro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| | - Elena Talero
- Department of Pharmacology, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Virginia Motilva
- Department of Pharmacology, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Luis A. Franco
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
7
|
Boles JS, Krueger ME, Jernigan JE, Cole CL, Neighbarger NK, Uriarte Huarte O, Tansey MG. A leaky gut dysregulates gene networks in the brain associated with immune activation, oxidative stress, and myelination in a mouse model of colitis. Brain Behav Immun 2024; 117:473-492. [PMID: 38341052 DOI: 10.1016/j.bbi.2024.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E Jernigan
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cassandra L Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Vidal-Gallardo A, Méndez Benítez JE, Flores Rios L, Ochoa Meza LF, Mata Pérez RA, Martínez Romero E, Vargas Beltran AM, Beltran Hernandez JL, Banegas D, Perez B, Martinez Ramirez M. The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases. Cureus 2024; 16:e54569. [PMID: 38516478 PMCID: PMC10957260 DOI: 10.7759/cureus.54569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic condition characterized by inflammation of the gastrointestinal tract. Its exact cause is unknown, but it's thought to result from a dysregulated immune response influenced by various factors, including changes in the intestinal microbiota, diet, lifestyle, and genetics. The gut microbiome, consisting of diverse microorganisms, plays a crucial role in maintaining physiological balance, with its disruption leading to inflammatory responses typical of IBD. Treatments primarily aim at symptom control, employing immunomodulators, corticosteroids, and newer approaches like probiotics, prebiotics, fecal transplants, and dietary modifications, all focusing on leveraging the microbiota's potential in disease management. These strategies aim to restore the delicate balance of the gut microbiome, typically altered in IBD, marked by a decrease in beneficial bacteria and an increase in harmful pathogens. This review underscores the importance of the gut microbiome in the pathogenesis and treatment of IBD, highlighting the shift towards personalized medicine and the necessity for further research in understanding the complex interactions between the gut microbiota, immune system, and genetics in IBD. It points to the potential of emerging treatments and the importance of a multifaceted approach in managing this complex and challenging disease.
Collapse
Affiliation(s)
| | | | | | - Luis F Ochoa Meza
- General Surgery, Hospital General ISSSTE Presidente General Lázaro Cárdenas, Chihuahua, MEX
| | - Rodrigo A Mata Pérez
- General Practice, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, MEX
| | | | | | | | - Douglas Banegas
- General Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Brenda Perez
- Nutrition, Universidad ICEL, Ciudad de México, MEX
| | | |
Collapse
|
9
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
10
|
Jiang XS, Fu BL, Yang XX, Qin HY. TNF-α Mediated the Disruption of Hepatic Tight Junction Expression in Blood-Biliary Barrier of Colitis via Downregulating PI3K/AKT Signaling Pathway. Biol Pharm Bull 2023; 46:1769-1777. [PMID: 37899248 DOI: 10.1248/bpb.b23-00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Hepatocyte tight junctions (TJ) constituted blood-biliary barrier is the most important hepatic barrier for separating bile from the bloodstream, disruption or dysfunction of TJ barrier is involved in hepatobiliary manifestations of colitis, but the underlying mechanism is still not clear. This study aims to investigate the effect and underlying mechanism of tumor necrosis factor alpha (TNF-α) on hepatic TJ protein expression in blood-biliary barrier and identify its role in the pathogenesis of acute colitis-related cholestasis. Acute colitis rat model was induced by trinitrobenzene sulfonic acid (TNBS) intra-colonic administration. TJs expression of blood-biliary barrier was tested in colitis rats, the serum TNF-α level was also determined in order to elucidate the correlation of TNF-α and TJs. HepaRG cells were used to investigate the effect of TNF-α on TJs, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway were also evaluated in rats and TNF-α treated HepaRG cells. Acute colitis was induced in rats at 5 d post TNBS, which is accompanied with cholestasis-like alteration. Serum TNF-α level was increased in colitis rats and positively correlated with the alteration of total bile acids and bilirubin, marked decrease in TJs was found in TNF-α treated HepaRG cells and the rats, down-regulated PI3K/AKT signaling pathway were also identified in TNF-α treated HepaRG cells and the rats. The study concluded that serum TNF-α mediated the down-regulation of PI3K/AKT signaling pathway, which contributed to the reduction of TJ protein expression in acute colitis-related intrahepatic cholestasis. These findings suggest that TNF-α plays an important role in the pathogenesis of intrahepatic cholestasis of colitis.
Collapse
Affiliation(s)
| | - Bi-le Fu
- The First Clinical Medical College, Lanzhou University
- College of Pharmacy, Lanzhou University
| | - Xin-Xin Yang
- The First Clinical Medical College, Lanzhou University
| | - Hong-Yan Qin
- Department of Pharmacy, First Hospital of Lanzhou University
| |
Collapse
|
11
|
Spalinger M, Schwarzfischer M, Niechcial A, Atrott K, Laimbacher A, Jirkof P, Scharl M. Evaluation of the effect of tramadol, paracetamol and metamizole on the severity of experimental colitis. Lab Anim 2023; 57:529-540. [PMID: 36960681 DOI: 10.1177/00236772231163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Application of dextran sodium sulfate (DSS) is often used to induce experimental colitis. Current state of the art is to refrain from the use of analgesics due to their possible interaction with the model. However, the use of analgesics would be beneficial to reduce the overall constraint imposed on the animals. Here, we analyzed the effect of the analgesics Dafalgan (paracetamol), Tramal (tramadol) and Novalgin (metamizole) on DSS-induced colitis. To study the effect of those analgesics in colitis mouse models, acute and chronic colitis was induced in female C57BL6 mice by DSS administration in the drinking water. Analgesics were added to the drinking water on days four to seven (acute colitis) or on days six to nine of each DSS cycle (chronic colitis). Tramadol and paracetamol had minor effects on colitis severity. Tramadol reduced water uptake and activity levels slightly, while mice receiving paracetamol presented with a better overall appearance. Metamizole, however, significantly reduced water uptake, resulting in pronounced weight loss. In conclusion, our experiments show that tramadol and paracetamol are viable options for the use in DSS-induced colitis models. However, paracetamol seems to be slightly more favorable since it promoted the overall wellbeing of the animals upon DSS administration without interfering with typical readouts of colitis severity.
Collapse
Affiliation(s)
- Marianne Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrea Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Paulin Jirkof
- Institute of Animal Welfare and 3R, University of Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
12
|
Wu J, Tian Z, Zhuang X, Chen Y, Fan T, Li J, Wang X. Dynamic alterations in metabolomics and transcriptomics associated with intestinal fibrosis in a 2,4,6-trinitrobenzene sulfonic acid-induced murine model. J Transl Med 2023; 21:554. [PMID: 37592304 PMCID: PMC10436422 DOI: 10.1186/s12967-023-04392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND & AIMS Intestinal fibrosis is a common and severe complication of inflammatory bowel disease without clear pathogenesis. Abnormal expression of host genes and metabolic perturbations might associate with the onset of intestinal fibrosis. In this study, we aimed to investigate the relationship between the development of intestinal fibrosis and the dynamic alterations in both fecal metabolites and host gene expression. METHODS We induced intestinal fibrosis in a murine model using 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS-treated or control mice were sacrificed after 4 and 6 weeks of intervention; alterations in colonic genes and fecal metabolites were determined by transcriptomics and metabolomics, respectively. Differential, tendency, enrichment, and correlation analyses were performed to assess the relationship between host genes and fecal metabolites. RESULTS RNA-sequencing analysis revealed that 679 differential genes with enduring changes were mainly enriched in immune response-related signaling pathways and metabolism-related biological processes. Among them, 15 lipid metabolism-related genes were closely related to the development of intestinal fibrosis. Moreover, the fecal metabolic profile was significantly altered during intestinal fibrosis development, especially the lipid metabolites. Particularly, dynamic perturbations in lipids were strongly associated with alterations in lipid metabolism-related genes expression. Additionally, six dynamically altered metabolites might serve as biomarkers to identify colitis-related intestinal fibrosis in the murine model. CONCLUSIONS Intestinal fibrosis in colitis mice might be related to dynamic changes in gene expression and metabolites. These findings could provide new insights into the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- Jinzhen Wu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Zhenyi Tian
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xiaoduan Zhuang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yiru Chen
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Tingting Fan
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Jiayun Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510000, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
14
|
Mendoza-Arroyo B, Rosales-Hernández MC, Pacheco-Yépez J, Rivera-Antonio AM, Márquez-Flores YK, Cárdenas-Jaramillo LM, Reséndiz-Albor AA, Arciniega-Martínez IM, Cruz-Hernández TR, Abarca-Rojano E. LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS. Metabolites 2023; 13:843. [PMID: 37512550 PMCID: PMC10384056 DOI: 10.3390/metabo13070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Although the aetiology of inflammatory bowel diseases (IBDs) is still unknown, one of their main characteristics is that the immune system chronically affects the permeability of the intestinal lamina propria, in turn altering the composition of the microbiota. In this study, the TNBS rat model of colitis was used because it contains a complex inflammatory milieu of polymorphonuclear cells (PMN) and lymphocytes infiltrating the lamina propria. The aim of the present study was to investigate six dehydrogenases and their respective adaptations in the tissue microenvironment by quantifying enzymatic activities measured under substrate saturation conditions in epithelial cells and leukocytes from the lamina propria of rats exposed to TNBS. Our results show that in the TNBS group, an increased DAI score was observed due to the presence of haemorrhagic and necrotic areas in the colon. In addition, the activities of G6PDH and GADH enzymes were significantly decreased in the epithelium in contrast to the increased activity of these enzymes and increased lactate mediated by the LDH-A enzyme in leukocytes in the lamina propria of the colon. Over the past years, evidence has emerged illustrating how metabolism supports aspect of cellular function and how a metabolic reprogramming can drive cell differentiation and fate. Our findings show a metabolic reprogramming in colonic lamina propria leukocytes that could be supported by increased superoxide anion.
Collapse
Affiliation(s)
- Belen Mendoza-Arroyo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Astrid Mayleth Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Ciudad de México 07738, Mexico
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Teresita Rocío Cruz-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| |
Collapse
|
15
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
16
|
Zhang Z, Wang A, Wang Y, Sun W, Zhou X, Xu Q, Mao L, Zhang J. Canthin-6-Ones: Potential Drugs for Chronic Inflammatory Diseases by Targeting Multiple Inflammatory Mediators. Molecules 2023; 28:3381. [PMID: 37110614 PMCID: PMC10141368 DOI: 10.3390/molecules28083381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic inflammatory disease (CID) is a category of medical conditions that causes recurrent inflammatory attacks in multiple tissues. The occurrence of CID is related to inappropriate immune responses to normal tissue substances and invading microbes due to many factors, such as defects in the immune system and imbalanced regulation of commensal microbes. Thus, effectively keeping the immune-associated cells and their products in check and inhibiting aberrant activation of the immune system is a key strategy for the management of CID. Canthin-6-ones are a subclass of β-carboline alkaloids isolated from a wide range of species. Several emerging studies based on in vitro and in vivo experiments reveal that canthin-6-ones may have potential therapeutic effects on many inflammatory diseases. However, no study has yet summarized the anti-inflammatory functions and the underlying mechanisms of this class of compounds. This review provides an overview of these studies, focusing on the disease entities and the inflammatory mediators that have been shown to be affected by canthin-6-ones. In particular, the major signaling pathways affected by canthin-6-ones, such as the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the NF-κB signaling pathway, and their roles in several CIDs are discussed. Moreover, we discuss the limitations in studies of canthin-6-ones and provide possible solutions. In addition, a perspective that may suggest possible future research directions is provided. This work may be helpful for further mechanistic studies and possible therapeutic applications of canthin-6-ones in the treatment of CID.
Collapse
Affiliation(s)
- Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Anqi Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
17
|
Colon-specific delivery of methotrexate using hyaluronic acid modified pH-responsive nanocarrier for the therapy of colitis in mice. Int J Pharm 2023; 635:122741. [PMID: 36804523 DOI: 10.1016/j.ijpharm.2023.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Oral immunosuppressant methotrexate (MTX) is an effective method for the treatment of inflammatory bowel disease (IBD). To overcome the defects of clinical application of MTX, poly (lactic-co-glycolic acid) (PLGA), Eudragits® S100 (ES100), chitosan (CS) and hyaluronic acid (HA) were used to structure the MTX-loaded HA-CS/ES100/PLGA nanoparticles (MTX@hCEP). MTX@hCEP had a hydrodynamic particle size of approximately 202.5 nm, narrow size distribution, negative zeta potential (-18.7 mV), and smooth surface morphology. In vitro drug release experiments under simulated gastrointestinal conditions indicated that MTX@hCEP exhibited colonic pH-sensitive drug release properties. The cellular uptake capacity of hCEP nanoparticles was significantly enhanced in RAW 264.7 macrophages. Moreover, we further found that the MTX@hCEP also inhibited the proliferation and the secretion of pro-inflammatory cytokines in the LPS-stimulated macrophages. In vivo imaging results not only demonstrated that the accumulated in the colon of colitis mice, but also indicated the extended retention time of MTX in the colon. Additionally, MTX@hCEP alleviated inflammatory symptoms via decreasing the activities of myeloperoxidase and pro-inflammatory factors, promoting mucosal repair in vivo. Collectively, these results clearly demonstrated that MTX@hCEP with properties of colon-specific and macrophages targeting can be exploited as an efficient nanotherapeutic for IBD therapy.
Collapse
|
18
|
Zhou Y, Ji G, Yang X, Chen Z, Zhou L. Behavioral abnormalities in C57BL/6 mice with chronic ulcerative colitis induced by DSS. BMC Gastroenterol 2023; 23:84. [PMID: 36959628 PMCID: PMC10037843 DOI: 10.1186/s12876-023-02718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Clinical epidemiological studies have found that some patients with ulcerative colitis (UC) are prone to mental disorders. DSS-induced acute and chronic UC models are often used to evaluate the efficacy of anti-UC drugs. However, whether DSS has an effect on mouse behavior has not been reported. METHODS Acute and chronic UC models were induced by 3% DSS and 1.5% DSS, respectively. The bloody stool, the changes in the colon length, and histopathological changes in the colon were used to evaluate the success of the animal model. The behavior of mice was evaluated by open field experiment, tail suspension experiment and Sucrose preference test. RESULTS The weight of mice in 3% DSS group decreased significantly, the DAI score increased significantly, the colon length of mice was significantly shortened, and the structure of colonic crypts was abnormal, which showed inflammatory cell infiltration and shrinkage of crypts. Compared with the control group, the immobility time of 3%DSS group mice in the tail suspension test and forced swimming test had no effect, the number of running and grooming times was significantly reduced, and there was no significant difference in the number of standing times. No abnormality was observed in HE staining of the hippocampus. However, in 1.5% DSS-induced chronic UC model, behavioral and hippocampal abnormalities were observed not only UC symptoms. CONCLUSIONS The acute UC model induced by 3% DSS has certain influence on the behavior of mice, but the mental state of mice is normal, which may be the abnormal behavior caused by UC symptoms; However, the chronic UC model induced by 1.5% DSS has a significant effect on the behavior of mice, and the mice have mental disorders, which are caused by mental disorders.
Collapse
Affiliation(s)
- Yuxin Zhou
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Gang Ji
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Xiaoyi Yang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Zhenhua Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
| | - Liangliang Zhou
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
| |
Collapse
|
19
|
Sakamoto E, Katahira Y, Mizoguchi I, Watanabe A, Furusaka Y, Sekine A, Yamagishi M, Sonoda J, Miyakawa S, Inoue S, Hasegawa H, Yo K, Yamaji F, Toyoda A, Yoshimoto T. Chemical- and Drug-Induced Allergic, Inflammatory, and Autoimmune Diseases Via Haptenation. BIOLOGY 2023; 12:biology12010123. [PMID: 36671815 PMCID: PMC9855847 DOI: 10.3390/biology12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Haptens are small molecules that only elicit an immune response when bound to proteins. Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent interactions between CD86 and CD28 on T cells are critically important for properly activating naive T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in the development of various autoimmune-like diseases such as allergic, inflammatory, and autoimmune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the development of in vitro testing alternatives to evaluate in advance whether a substance might lead to the development of these diseases is highly desirable. This review summarizes and discusses recent advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to evaluate in advance whether a substance might cause the development of these diseases.
Collapse
Affiliation(s)
- Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kazuyuki Yo
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Fumiya Yamaji
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Akemi Toyoda
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Correspondence: ; Tel.: +81-3-3351-6141
| |
Collapse
|
20
|
Wang D, Zhang X, Du H. Inflammatory bowel disease: A potential pathogenic factor of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110610. [PMID: 35908596 DOI: 10.1016/j.pnpbp.2022.110610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a central nervous system disease characterised by degenerative cognitive dysfunction and memory loss. In a society where the global population is gradually ageing, the health threats and financial burdens caused by AD are becoming increasingly severe since AD often occurs in old age. With the in-depth study of AD, many new pathogenic mechanisms have been proposed, among which bidirectional communication between intestinal microbes and the brain has attracted widespread attention. The aetiology of inflammatory bowel disease (IBD) is related to the imbalance of the gut microbiota. Epidemiological investigations have shown that patients with IBD are more likely to suffer from AD. Targeting IBD as a potential AD treatment target has attracted considerable interest. Here, we reviewed the link between chronic intestinal inflammation and central nervous system inflammation and found that IBD patients had a higher risk of AD than non-IBD patients. Preclinical models based on AD also showed that IBD aggravated the condition of AD. We discussed possible biological links between AD and IBD, including the gut-brain axis, autoimmunity, and the gut microbiota. In addition, IBD-induced changes in intestinal microbial metabolites, such as short-chain fatty acids, bile acids, and tryptophan, which aggravate the development of AD, were also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
21
|
Efficacy and safety of erythropoietin in a chronic model of Inflammatory Bowel Disease. Biomed Pharmacother 2022; 156:113944. [DOI: 10.1016/j.biopha.2022.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
22
|
Song S, Jeong A, Lim J, Kim B, Park D, Oh S. Lactiplantibacillus plantarum
L67
probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
- Agricultural Convergence Technology Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
| | - Anna Jeong
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| | - Jina Lim
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
- Department of Animal Biotechnology and Environment Animal Genomics and Bioinformatics National Institute of Animal Science 1500 Kongjwipatjwi‐ro Jellabuk‐do 55365 South Korea
| | - Bum‐Keun Kim
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Dong‐June Park
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Sejong Oh
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| |
Collapse
|
23
|
Yang M, Zhang Q, Taha R, Abdelmotalab MI, Wen Q, Yuan Y, Zhao Y, Li Q, Liao C, Huang X, Jiang Z, Chu C, Jiao C, Sun L. Polysaccharide from Atractylodes macrocephala Koidz. ameliorates DSS-induced colitis in mice by regulating the Th17/Treg cell balance. Front Immunol 2022; 13:1021695. [PMID: 36341374 PMCID: PMC9630481 DOI: 10.3389/fimmu.2022.1021695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Atractylodes macrocephala Koidz. is one of the most frequently used traditional Chinese medicines for the treatment of ulcerative colitis (UC). The beneficial effect of polysaccharide from Atractylodes macrocephala Koidz. (PAMK) on UC has been reported, while the underlying mechanism and target remain unclear. In this study, we systematically investigated the therapeutic effect and the underlying mechanism of PAMK in UC based on a mouse model of dextran sodium sulfate (DSS)-induced colitis. PAMK treatment (100 mg/kg, 200 mg/kg and 400 mg/kg) significantly ameliorated DSS-induced colitis, manifested as a reduction in weight loss, disease activity index (DAI), colon shortening, spleen index and histological score. Moreover, PAMK treatment inhibited inflammation and improved the integrity of the intestinal barrier in colitis mice. Mechanistically, microarray analysis determined the critical role of the immunoregulatory effect of PAMK in alleviating UC. Flow cytometry analysis further demonstrated that PAMK treatment regulated the balance between T helper (Th) 17 and regulatory T (Treg) cells in the mesenteric lymph nodes (MLN) and spleen in mice with colitis. In addition, PAMK treatment downregulated the expression of IL-6 and suppressed the phosphorylation of STAT3. Together, these data revealed that PAMK treatment alleviated DSS-induced colitis by regulating the Th17/Treg cell balance, which may be dependent on the inhibition of the IL-6/STAT3 signaling pathway. Our study is the first to elucidate that the underlying mechanism by which PAMK treatment alleviates DSS-induced colitis is associated with an improved the Th17/Treg cell balance. Collectively, the study provides evidence for the potential of PAMK to treat UC.
Collapse
|
24
|
Roy S, Dhaneshwar S, Mahmood T, Kumar S, Saxena SK. Pre-clinical Investigation of Protective Effect of Nutraceutical D-Glucosamine on TNBS-induced Colitis. Immunopharmacol Immunotoxicol 2022; 45:172-184. [PMID: 36154797 DOI: 10.1080/08923973.2022.2128370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The level of precursors involved in the biosynthesis of glycosaminoglycan (GAG), glucosamine synthase, and N-acetyl glucosamine (NAG), are significantly reduced in inflammatory bowel disease (IBD). This results in deficient GAG content in mucosa, which eventually disrupts the gut wall integrity, provoking abnormal immunological responses. This is characterized by colossal liberation of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukins (IL), and reactive oxygen species provoking colonic inflammation. D-glucosamine (D-GLU) is reported to suppress oxidative stress, and pro-inflammatory cytokines and acts as a starting material for biosynthesis of NAG. The potential of D-GLU and its combination with mesalamine (5-ASA) was investigated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-instigated IBD in Wistar rats. Standard and test drugs were given orally for five days to separate groups of rats. Colonic inflammation was evaluated by disease activity score rate (DASR), colon/body weight ratio, colon length, diameter, colon pH, histological injury and score. Inflammatory biomarkers IL-1β, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. Combination of D-GLU +5-ASA significantly ameliorated severity of colonic inflammation by lowering DASR (P < 0.001) and colon/body weight ratio (P < 0.001), restored the colonic architecture and suppressed the histopathological score (P < 0.001), along with the absence of major adverse reactions. The combination suppressed the levels of inflammatory markers (P < 0.001) and MDA (P < 0.001) while enhancing GSH level (P < 0.001). In comparison to individual 5-ASA and D-GLU, combination of drugs significantly diminished colitis severity through their combined anti-inflammatory and antioxidant effects by acting on multiple targets simultaneously. The combination holds remarkable potential in the management of IBD.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, 226026, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, 226003, India
| |
Collapse
|
25
|
Feng J, Wang Y, Lv Y, Fang S, Ren M, Yao M, Lan M, Zhao Y, Gao F. XA pH-Responsive and Colitis-Targeted Nanoparticle Loaded with Shikonin for the Oral Treatment of Inflammatory Bowel Disease in Mice. Mol Pharm 2022; 19:4157-4170. [DOI: 10.1021/acs.molpharmaceut.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juewen Feng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbing Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yingni Lv
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Siqi Fang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengjiao Ren
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Targeting Lineage-Specific Transcription Factors and Cytokines of the Th17/Treg Axis by Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4-d]pyridazinone Attenuates TNBS-Induced Experimental Colitis. Int J Mol Sci 2022; 23:ijms23179897. [PMID: 36077306 PMCID: PMC9456461 DOI: 10.3390/ijms23179897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
The pharmacotherapy of inflammatory bowel disease (IBD) is still not fully effective and safe. Attempts to search for new IBD drugs remain an incessant research aim. One of the novel approaches is targeting the developmental pathway molecules and effector cytokines of Th17/Treg axis. This study aimed to elucidate the impact of new pyrrolo[3,4-d]pyridazinone derivatives, compounds 7b, 10b, or 13b, on the course of experimental colitis in rats and to assess whether these new compounds may influence Th17/Treg axis. Rats were pretreated with studied compounds intragastrically before intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid used for colitis induction. Body weight loss, disease activity index, colon index, and colon tissue damage were analyzed to evaluate the severity of colitis. The colonic levels of RORγt, STAT3, CCR6, Foxp3, IL-6, IL-10, IL-17, TNF-α, IL-23, and PGE2 were assessed. Pretreatment with compounds 7b and 13b alleviated the severity of colitis and concomitantly counteracted the increased levels of RORγt, STAT3, CCR6, IL-6, IL-17, IL-23, TNF-α, and PGE2. The beneficial effect of compounds 7b and 13b may be due to the decrease in the levels of Th17-specific transcription factors and cytokines. The studied compounds might therefore constitute a promising therapeutic strategy in Th17/Treg imbalance-driven inflammatory conditions such as IBD.
Collapse
|
27
|
Silva I, Correia R, Pinto R, Mateus V. Hemin Ameliorates the Inflammatory Activity in the Inflammatory Bowel Disease: A Non-Clinical Study in Rodents. Biomedicines 2022; 10:2025. [PMID: 36009572 PMCID: PMC9405605 DOI: 10.3390/biomedicines10082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract. Currently, there is no cure, and pharmacological treatment aims to induce and maintain remission in patients, so it is essential to investigate new possible treatments. Hemin is a heme-oxygenase inducer which can confer anti-inflammatory, cytoprotective, and antiapoptotic effects; therefore, it can be considered an asset for different gastrointestinal pathologies, namely for IBD. AIM This experiment aims to evaluate the efficacy and safety of hemin, in a chronic 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis model in rodents. METHODS The induction of chronic colitis consisted of five weekly intrarectal administrations of 1% TNBS. Then, the mice were treated daily with 5 mg/kg/day or 10 mg/kg/day of hemin, through intraperitoneal injections, for 14 days. RESULTS Hemin demonstrated an anti-inflammatory effect through the reduction in tumor necrosis factor (TNF)-α levels, fecal calprotectin, and fecal hemoglobin. It was also found to be safe in terms of extraintestinal manifestations, since hemin did not promote renal and/or hepatic changes. CONCLUSIONS Hemin could become an interesting tool for new possible pharmacological approaches in the management of IBD.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal
| | - Rita Correia
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal
- Joaquim Chaves Saúde, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal
| |
Collapse
|
28
|
Hu XF, Zhang H, Yu LL, Ge WQ, Zhan-mu OY, Li YZ, Chen C, Hou TF, Xiang HC, Li YH, Su YS, Jing XH, Cao J, Pan HL, He W, Li M. Electroacupuncture Reduces Anxiety Associated With Inflammatory Bowel Disease By Acting on Cannabinoid CB1 Receptors in the Ventral Hippocampus in Mice. Front Pharmacol 2022; 13:919553. [PMID: 35873560 PMCID: PMC9305710 DOI: 10.3389/fphar.2022.919553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The therapeutic effects of electroacupuncture (EA) on the comorbidity of visceral pain and anxiety in patients with inflammatory bowel disease (IBD) is well known. It has been known that the ventral hippocampus (vHPC) and the cannabinoid type 1 receptors (CB1R) are involved in regulating anxiety and pain. Therefore, in this study, we determined whether EA reduces visceral pain and IBD-induced anxiety via CB1R in the vHPC. We found that EA alleviated visceral hyperalgesia and anxiety in TNBS-treated IBD mice. EA reversed over-expression of CB1R in IBD mice and decreased the percentage of CB1R-expressed GABAergic neurons in the vHPC. Ablating CB1R of GABAergic neurons in the vHPC alleviated anxiety in TNBS-treated mice and mimicked the anxiolytic effect of EA. While ablating CB1R in glutamatergic neurons in the vHPC induced severe anxiety in wild type mice and inhibited the anxiolytic effect of EA. However, ablating CB1R in either GABAergic or glutamatergic neurons in the vHPC did not alter visceral pain. In conclusion, we found CB1R in both GABAergic neurons and glutamatergic neurons are involved in the inhibitory effect of EA on anxiety but not visceral pain in IBD mice. EA may exert anxiolytic effect via downregulating CB1R in GABAergic neurons and activating CB1R in glutamatergic neurons in the vHPC, thus reducing the release of glutamate and inhibiting the anxiety circuit related to vHPC. Thus, our study provides new information about the cellular and molecular mechanisms of the therapeutic effect of EA on anxiety induced by IBD.
Collapse
Affiliation(s)
- Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Ling Yu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Qiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ou-Yang Zhan-mu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chao Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Teng-Fei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Heng Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Shuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
- *Correspondence: Wei He, ; Man Li,
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wei He, ; Man Li,
| |
Collapse
|
29
|
Wan Y, Dong Z, Li H, Yang L, Li W, Zhu K, Jiang S, Qian D, Duan J. Comparative pharmacokinetics of the main active components in normal and ulcerative colitis rats after oral administration of Zingiberis Rhizoma-Ginseng Radix et Rhizoma herb pair and its single herb extracts by LC-MS/MS. J Sep Sci 2022; 45:2228-2238. [PMID: 35474281 DOI: 10.1002/jssc.202101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
Zingiberis Rhizoma and Ginseng Radix et Rhizoma are usually used together for the treatment of ulcerative colitis in clinical practices. However, their compatibility mechanism remains unclear. In this study, a rapid and sensitive liquid chromatography with tandem mass spectrometry method was developed for simultaneous quantification of ginsenoside Re, ginsenoside Rg1, ginsenoside Rb1, and 6-gingerol in rat plasma after oral administration of Zingiberis Rhizoma-Ginseng Radix et Rhizoma herb pair and its single herb extracts. The calibration curves exhibited good linearity, with correlation coefficients of more than 0.993. The precision deviations of intra- and interday analysis were within 10.66%, and accuracy error ranged from -12.74 to 11.56%. The average recoveries of analytes were higher than 76.60% and the matrix effects were minimal. Thus, the validated method was successfully applied to a pharmacokinetic study of four ingredients in normal and ulcerative colitis rat plasma. The results indicated that the pharmacokinetic parameters of four analytes in normal and model groups showed significant differences. The larger exposure (the mean AUC0-t of ginsenoside Re, ginsenoside Rg1, ginsenoside Rb1, and 6-gingerol were increased by 50.93, 141.90, 3.68, and 37.25%, respectively) and slower elimination (the CLz/F of ginsenoside Re, ginsenoside Rg1, and 6-gingerol were decreased by 52.94, 83.64, and 32.18%, respectively) were observed in ulcerative colitis rats. Furthermore, compared with single herbs, the analytes in rat plasma after oral administration of combined extracts presented relatively high systemic exposure levels with AUC0-t > 2000 h·ng/mL and Cmax > 200 ng/mL. Collectively, the differences of pharmacokinetic characteristics revealed the synergistic effect of Zingiberis Rhizoma-Ginseng Radix et Rhizoma herb pair, which provided a valuable and reliable basis for its clinical application in the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Zhiling Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Huifang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ke Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
30
|
Chemically Induced Colitis-Associated Cancer Models in Rodents for Pharmacological Modulation: A Systematic Review. J Clin Med 2022; 11:jcm11102739. [PMID: 35628865 PMCID: PMC9146029 DOI: 10.3390/jcm11102739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Animal models for colitis-associated colorectal cancer (CACC) represent an important tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis and CACC. Although several original articles have been published describing the CACC model in rodents, there is no consensus about the induction method. This review aims to identify, summarize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA methodology. METHODS We searched MEDLINE via the Pubmed platform for studies published through March 2021, using a highly sensitive search expression. The inclusion criteria were only original articles, articles where a chemically-induced animal model of CACC is described, preclinical studies in vivo with rodents, and articles published in English. RESULTS Chemically inducible models typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The strains mostly used are C57BL/6 and Balb/c with 5-6 weeks. To characterize the preclinical model, the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation. CONCLUSION The AOM administration seems to be important to the CACC induction method, since the carcinogenic effect is achieved with just one administration. DSS has been the more used inflammatory agent; however, the TNBS contribution should be more studied, since it allows a reliable, robust, and a highly reproducible animal model of intestinal inflammation.
Collapse
|
31
|
Chronic Experimental Model of TNBS-Induced Colitis to Study Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23094739. [PMID: 35563130 PMCID: PMC9105049 DOI: 10.3390/ijms23094739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a world healthcare problem. In order to evaluate the effect of new pharmacological approaches for IBD, we aim to develop and validate chronic trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Methods: Experimental colitis was induced by the rectal administration of multiple doses of TNBS in female CD-1 mice. The protocol was performed with six experimental groups, depending on the TNBS administration frequency, and two control groups (sham and ethanol groups). Results: The survival rate was 73.3% in the first three weeks and, from week 4 until the end of the experimental protocol, the mice’s survival remained unaltered at 70.9%. Fecal hemoglobin presented a progressive increase until week 4 (5.8 ± 0.3 µmol Hg/g feces, p < 0.0001) compared with the ethanol group, with no statistical differences to week 6. The highest level of tumor necrosis factor-α was observed on week 3; however, after week 4, a slight decrease in tumor necrosis factor-α concentration was verified, and the level was maintained until week 6 (71.3 ± 3.3 pg/mL and 72.7 ± 3.6 pg/mL, respectively). Conclusions: These findings allowed the verification of a stable pattern of clinical and inflammation signs after week 4, suggesting that the chronic model of TNBS-induced colitis develops in 4 weeks.
Collapse
|
32
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|
33
|
Wang L, Han R, Zang K, Yuan P, Qin H. Deficiency in glutathione synthesis and reduction contributes to the pathogenesis of colitis-related liver injury. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:271-279. [PMID: 35545319 PMCID: PMC10930062 DOI: 10.11817/j.issn.1672-7347.2022.210391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Liver disease is the most common extra-intestinal manifestation of ulcerative colitis (UC), but the underlying pathogenesis is still not clarified. It is well accepted that the occurrence of UC-related liver disease has close correlation with immune activation, intestinal bacterial liver translocation, inflammatory cytokine storm, and the disturbance of bile acid circulation. The occurrence of UC-related liver disease makes the therapy difficult, therefor study on the pathogenesis of UC-related liver injury is of great significance for its prevention and treatment. Glutathione (GSH) shows multiple physiological activities, such as free radical scavenging, detoxification metabolism and immune defense. The synthesis and the oxidation-reduction all contribute to GSH antioxidant function. It is reported that the deficiency in hepatic GSH antioxidant function participates in multiple liver diseases, but whether it participates in the pathogenesis of UC-related liver injury is still not clear. This study aims to investigate the feature and underlying mechanism of GSH synthesis and oxidation-reduction function during the development of UC, which will provide useful information for the pathogenesis study on UC-related liver injury. METHODS UC model was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS)-ethanol solution (5 mg/0.8 mL per rat, 50% ethanol) via intra-colonic administration in rats, and the samples of serum, liver, and colon tissue of rats were collected at the 3rd, 5th, and 7th days post TNBS. The severity degree of colitis was evaluated by measuring the disease activity index, colonic myeloperoxidase activity, and histopathological score, and the degree of liver injury was evaluated by histopathological score and the serum content of alanine aminotransferase. Spearman correlation analysis was also conducted between the degree of colonic lesions and index of hepatic histopathological score as well as serum aspartate aminotransferase level to clarify the correlation between liver injury and colitis. To evaluate the hepatic antioxidant function of GSH in UC rats, hepatic GSH content, enzyme activity of GSH peroxidase (GSH-Px), and GSH reductase (GR) were determined in rats at the 3rd, 5th, and 7th days post TNBS, and the protein expressions of glutamine cysteine ligase (GCL), GSH synthase, GSH-Px, and GR in the liver of UC rats were also examined by Western blotting. RESULTS Compared with the control, the disease activity index, colonic myeloperoxidase activity, and histopathological score were all significantly increased at the 3rd, 5th, and 7th days post TNBS (all P<0.01), the serum aspartate aminotransferase level and hepatic histopathologic score were also obviously elevated at the 7th day post TNBS (all P<0.05). There was a significant positive correlation between the degree of liver injury and the severity of colonic lesions (P=0.000 1). Moreover, compared with the control, hepatic GSH content and the activity of GSH-Px and GR were all significantly decreased at the 3rd and 5th days post TNBS (P<0.05 or P<0.01), and the protein expressions of GCL, GSH-Px, and GR were all obviously down-regulated at the 3rd, 5th, and 7th days post TNBS (P<0.05 or P<0.01). CONCLUSIONS There is a significant positive correlation between the degree of liver injury and the severity of colonic lesions, and the occurrence of reduced hepatic GSH synthesis and decreased GSH reduction function is obviously earlier than that of the liver injury in UC rats. The reduced hepatic expression of enzymes that responsible for GSH synthesis and reduction may contribute to the deficiency of GSH synthesis and oxidation-reduction function, indicating that the deficiency in GSH antioxidant function may participate in the pathogenesis of UC related liver injury.
Collapse
Affiliation(s)
- Liangliang Wang
- First Clinical Medicine College, Lanzhou University, Lanzhou 730000.
| | - Ruyue Han
- First Clinical Medicine College, Lanzhou University, Lanzhou 730000
| | - Kaihong Zang
- Department of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000
| | - Pei Yuan
- First Clinical Medicine College, Lanzhou University, Lanzhou 730000
| | - Hongyan Qin
- Department of Pharmacy, First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
34
|
Targeting the endo-lysosomal autophagy pathway to treat inflammatory bowel diseases. J Autoimmun 2022; 128:102814. [PMID: 35298976 DOI: 10.1016/j.jaut.2022.102814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/18/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious public health problem in Western society with a continuing increase in incidence worldwide. Safe, targeted medicines for IBD are not yet available. Autophagy, a vital process implicated in normal cell homeostasis, provides a potential point of entry for the treatment of IBDs, as several autophagy-related genes are associated with IBD risk. We conducted a series of experiments in three distinct mouse models of colitis to test the effectiveness of therapeutic P140, a phosphopeptide that corrects autophagy dysfunctions in other autoimmune and inflammatory diseases. Colitis was experimentally induced in mice by administering dextran sodium sulfate and 2,4,6 trinitrobenzene sulfonic acid. Transgenic mice lacking both il-10 and iRhom2 - involved in tumor necrosis factor α secretion - were also used. In the three models investigated, P140 treatment attenuated the clinical and histological severity of colitis. Post-treatment, altered expression of several macroautophagy and chaperone-mediated autophagy markers, and of pro-inflammatory mediators was corrected. Our results demonstrate that therapeutic intervention with an autophagy modulator improves colitis in animal models. These findings highlight the potential of therapeutic peptide P140 for use in the treatment of IBD.
Collapse
|
35
|
The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa. Int J Mol Sci 2022; 23:ijms23062964. [PMID: 35328382 PMCID: PMC8955215 DOI: 10.3390/ijms23062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.
Collapse
|
36
|
Shaikh-Omar A, Murad HA, Alotaibi NM. Rectal roflumilast improves trinitrobenzenesulfonic acid-induced chronic colitis in rats. Braz J Med Biol Res 2022; 55:e11877. [PMID: 35239781 PMCID: PMC8905672 DOI: 10.1590/1414-431x2021e11877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Roflumilast, a highly selective oral phosphodiesterase IV inhibitor, exerts anti-inflammatory and anti-fibrotic effects. Oral roflumilast causes gastrointestinal side effects, especially vomiting, which could be reduced by administering roflumilast via off-label routes. Inhaled roflumilast reportedly improved inflammatory and histopathological changes in asthmatic mice. The current study investigated the effects of oral and rectal roflumilast on trinitrobenzenesulfonic acid (TNBS)-induced chronic colitis in rats, an experimental model resembling human Crohn's disease. Five groups of rats (n=8) were used: normal control, TNBS-induced colitis, and three TNBS-treated colitic groups, which received oral sulfasalazine (500 mg·kg-1·day-1), oral roflumilast (5 mg·kg-1·day-1), or rectal roflumilast (5 mg·kg-1·day-1) for 15 days after colitis induction. Then, the following were assessed: the colitis activity score, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and IL-6 serum levels, colonic length, and myeloperoxidase, malonaldehyde, and glutathione levels. Histological examinations employed H&E, Masson trichrome, and PAS stains in addition to immunostaining for KI-67 and TNF-α. The TNBS-induced colitis rats showed significant increases in disease activity scores, serum TNF-α, IL-2, and IL-6 levels, and colonic myeloperoxidase and malonaldehyde content. They also showed significant decreases in colonic length and glutathione levels in addition to histopathological and immunohistochemical changes. All the treatments significantly improved all these changes. Sulfasalazine provided the greatest improvement, followed by oral roflumilast, and then rectal roflumilast. In conclusion, both oral and rectal roflumilast partially improved TNBS-induced chronic colitis, suggesting the potential of roflumilast as an additional treatment for Crohn's disease.
Collapse
Affiliation(s)
- A Shaikh-Omar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H A Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N M Alotaibi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Rahmaisyah D, Wasityastuti W, Astarini FD, Widasari DI. Protective effects of yacon syrup powder on colonic interleukin-23 and leukocyte infiltration profile in TNBS-induced colitis mouse model. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Inflammatory Bowel Disease (IBD) causes gastrointestinal tract dysregulation and triggers inflammation. Severe inflammatory events often lead to leukocyte infiltration. Yacon is known to have anti-inflammatory properties, making it a potential alternative treatment for colitis. AIMS: To investigate colonic Interleukin-23 (IL-23) level and leukocyte infiltration profile in 2,4,6-Trinitrobenzene Sulfonic Acid (TNBS)-induced colitis mouse model treated with yacon syrup powder. METHODS: Thirty male BALB/c mice (5 weeks old, body weight: 30.02±1.28 g) were randomly divided into 6 groups (K1-K6). Intra-rectal administration of TNBS was performed to K2-K6 to make the colitis model. K4-K6 were given yacon syrup powder daily for 14 days with the dose of 0.165, 0.331, and 0.662 g/30 g body weight (BW) respectively. IL-23 levels of colonic tissue were measured using ELISA. Leukocyte infiltration profile was calculated through microscopic observation of histology slides and presented in percentage and degree. RESULTS: Significantly different IL-23 levels were observed among the groups (P < 0.001). The percentage and degree of leukocyte infiltration in yacon-treated groups showed a significant decrease compared to colitis groups (P < 0.001). CONCLUSION: Yacon syrup powder provides beneficial effects on colitis mice by lowering the IL-23 level and number of leukocytes at the inflammation site.
Collapse
Affiliation(s)
- Dwi Rahmaisyah
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, UniversitasGadjah Mada, North Sekip, Yogyakarta, Indonesia
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, North Sekip, Yogyakarta, Indonesia
| | - Fajar Dwi Astarini
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, UniversitasGadjah Mada, North Sekip, Yogyakarta, Indonesia
| | - Dewiyani Indah Widasari
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, UniversitasGadjah Mada, North Sekip, Yogyakarta, Indonesia
- Department of Anatomical Pathology, Dr.Sardjito Hospital, Sekip, Yogyakarta, Indonesia
| |
Collapse
|
38
|
Hu Y, Ye Z, Wu M, She Y, Li L, Xu Y, Qin K, Hu Z, Yang M, Lu F, Ye Q. The Communication Between Intestinal Microbiota and Ulcerative Colitis: An Exploration of Pathogenesis, Animal Models, and Potential Therapeutic Strategies. Front Med (Lausanne) 2021; 8:766126. [PMID: 34966755 PMCID: PMC8710685 DOI: 10.3389/fmed.2021.766126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory bowel disease. The prolonged course of UC and the lack of effective treatment management make it difficult to cure, affecting the health and life safety of patients. Although UC has received more attention, the etiology and pathogenesis of UC are still unclear. Therefore, it is urgent to establish an updated and comprehensive understanding of UC and explore effective treatment strategies. Notably, sufficient evidence shows that the intestinal microbiota plays an important role in the pathogenesis of UC, and the treating method aimed at improving the balance of the intestinal microbiota exhibits a therapeutic potential for UC. This article reviews the relationship between the genetic, immunological and microbial risk factors with UC. At the same time, the UC animal models related to intestinal microbiota dysbiosis induced by chemical drugs were evaluated. Finally, the potential value of the therapeutic strategies for restoring intestinal microbial homeostasis and treating UC were also investigated. Comprehensively, this study may help to carry out preclinical research, treatment theory and methods, and health management strategy of UC, and provide some theoretical basis for TCM in the treatment of UC.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linzhen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Zhu F, Ke Y, Luo Y, Wu J, Wu P, Ma F, Liu Y. Effects of Different Treatment of Fecal Microbiota Transplantation Techniques on Treatment of Ulcerative Colitis in Rats. Front Microbiol 2021; 12:683234. [PMID: 34335508 PMCID: PMC8317227 DOI: 10.3389/fmicb.2021.683234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with abdominal pain, mucus, pus and blood in the stool as the main clinical manifestations. The pathogenesis of UC is still not completely clear, and multiple factors, such as genetic susceptibility, immune response, intestinal microecological changes and environmental factors, together lead to the onset of UC. In recent years, the role of intestinal microbiota disturbances on the pathogenesis of UC has received widespread attention. Therefore, fecal microbiota transplantation (FMT), which changes the intestinal microecological environment of UC patients by transplantation of normal fecal bacteria, has attracted increasing attention from researchers. However, there are no guidelines to recommend fresh FMT or frozen FMT in the treatment of UC, and there are few studies on this. Therefore, the purpose of this study was to explore the effects of fresh and frozen FMT methods on the treatment of experimental UC models in rats. Results: Compared with the model control group, all FMT groups achieved better efficacy, mainly manifested as weight gain by the rats, improvements in fecal characteristics and blood stools, reduced inflammatory factors and normal bacterial microbiota. The efficacy of the frozen FMT group was better than that of the fresh FMT group in terms of behavior and colon length. Conclusion: FMT method supplements the gut microbiota with beneficial bacteria, such as short-chain fatty acid-producing bacteria. These bacteria can regulate intestinal function, protect the mucosal barrier and reduce harmful bacteria, thus mitigating the damage to the intestinal barrier and the associated inflammatory response, resulting in UC remission. FMT is a feasible method for treating UC, with frozen FMT having a superior therapeutic effect than that of fresh FMT.
Collapse
Affiliation(s)
- Fangyuan Zhu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifan Ke
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiting Luo
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqian Wu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pei Wu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangxiao Ma
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
41
|
Calcium imaging in population of dorsal root ganglion neurons unravels novel mechanisms of visceral pain sensitization and referred somatic hypersensitivity. Pain 2021; 162:1068-1081. [PMID: 33021564 DOI: 10.1097/j.pain.0000000000002096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Mechanisms of visceral pain sensitization and referred somatic hypersensitivity remain unclear. We conducted calcium imaging in Pirt-GCaMP6s mice to gauge responses of dorsal root ganglion (DRG) neurons to visceral and somatic stimulation in vivo. Intracolonic instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced colonic inflammation and increased the percentage of L6 DRG neurons that responded to colorectal distension above that of controls at day 7. Colorectal distension did not activate L4 DRG neurons. TNBS-treated mice exhibited more Evans blue extravasation than did control mice and developed mechanical hypersensitivity in low-back skin and hind paws, which are innervated by L6 and L4 DRG neurons, respectively, suggesting that colonic inflammation induced mechanical hypersensitivity in both homosegmental and heterosegmental somatic regions. Importantly, the percentage of L4 DRG neurons activated by hind paw pinch and brush stimulation and calcium responses of L6 DRG neurons to low-back brush stimulation were higher at day 7 after TNBS than those in control mice. Visceral irritation from intracolonic capsaicin instillation also increased Evans blue extravasation in hind paws and low-back skin and acutely increased the percentage of L4 DRG neurons responding to hind paw pinch and the response of L6 DRG neurons to low-back brush stimulation. These findings suggest that TNBS-induced colitis and capsaicin-induced visceral irritation may sensitize L6 DRG neurons to colorectal and somatic inputs and also increase the excitability of L4 DRG neurons that do not receive colorectal inputs. These changes may represent a potential peripheral neuronal mechanism for visceral pain sensitization and referred somatic hypersensitivity.
Collapse
|
42
|
Cordeiro BF, Alves JL, Belo GA, Oliveira ER, Braga MP, da Silva SH, Lemos L, Guimarães JT, Silva R, Rocha RS, Jan G, Le Loir Y, Silva MC, Freitas MQ, Esmerino EA, Gala-García A, Ferreira E, Faria AMC, Cruz AG, Azevedo V, do Carmo FLR. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front Microbiol 2021; 12:623920. [PMID: 33737918 PMCID: PMC7960676 DOI: 10.3389/fmicb.2021.623920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) constitute disturbances of gastrointestinal tract that cause irreversible changes in the structure and function of tissues. Ulcerative colitis (UC), the most frequent IBD in the population, is characterized by prominent inflammation of the human colon. Functional foods containing probiotic bacteria have been studied as adjuvants to the treatment or prevention of IBDs. The selected probiotic strain Lactococcus lactis NCDO 2118 (L. lactis NCDO 2118) exhibits immunomodulatory effects, with promising results in UC mouse model induced by dextran sodium sulfate (DSS). Additionally, cheese is a dairy food that presents high nutritional value, besides being a good delivery system that can be used to improve survival and enhance the therapeutic effects of probiotic bacteria in the host. Therefore, this work investigated the probiotic therapeutic effects of an experimental Minas Frescal cheese containing L. lactis NCDO 2118 in DSS-induced colitis in mice. During colitis induction, mice that consumed the probiotic cheese exhibited reduced in the severity of colitis, with attenuated weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score. Moreover, probiotic cheese administration increased gene expression of tight junctions’ proteins zo-1, zo-2, ocln, and cln-1 in the colon and increase IL-10 release in the spleen and lymph nodes. In this way, this work demonstrates that consumption of probiotic Minas Frescal cheese, containing L. lactis NCDO 2118, prevents the inflammatory process during DSS-induced colitis in mice, opening perspectives for the development of new probiotic functional foods for personalized nutrition in the context of IBD.
Collapse
Affiliation(s)
- Bárbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana L Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna A Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina P Braga
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Jonas T Guimarães
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon Silva
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Marcia Cristina Silva
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Mônica Q Freitas
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Erick A Esmerino
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Alfonso Gala-García
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Maria C Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriano G Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| |
Collapse
|
43
|
Walentiny DM, Komla E, Moisa LT, Mustafa MA, Poklis JL, Akbarali HI, Beardsley PM. Methylnaltrexone crosses the blood-brain barrier and attenuates centrally-mediated behavioral effects of morphine and oxycodone in mice. Neuropharmacology 2021; 185:108437. [PMID: 33316279 PMCID: PMC7887091 DOI: 10.1016/j.neuropharm.2020.108437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Antagonism of peripheral opioid receptors by methylnaltrexone (MNTX) was recently proposed as a potential mechanism to attenuate the development of opioid analgesic tolerance based on experiments conducted in mice. However, reports indicate that MNTX is demethylated to naltrexone (NTX) in mice, and NTX may subsequently cross the blood-brain barrier to antagonize centrally-mediated opioid effects. The goal of this study was to determine whether MNTX alters centrally-mediated behaviors elicited by the opioid analgesics, morphine and oxycodone, and to quantify concentrations of MNTX and NTX in blood and brain following their administration in mice. METHODS Combinations of MNTX and morphine were tested under acute and chronic conditions in thermal nociceptive assays. Effects of MNTX and NTX pretreatment were assessed in an oxycodone discrimination operant procedure. Blood and brain concentrations of these antagonists were quantified after their administration using liquid chromatography-mass spectrometry. RESULTS MNTX dose-dependently attenuated acute and chronic morphine antinociception. MNTX and NTX dose-dependently antagonized the discriminative stimulus effects of oxycodone. MNTX and NTX were detected in both blood and brain after administration of MNTX, confirming its demethylation and demonstrating that MNTX itself can cross the blood-brain barrier. CONCLUSIONS These results provide converging behavioral and analytical evidence that MNTX administration in mice attenuates centrally-mediated effects produced by opioid analgesics and results in functional concentrations of MNTX and NTX in blood and brain. Collectively, these findings indicate that MNTX cannot be administered systemically in mice for making inferences that its effects are peripherally restricted.
Collapse
Affiliation(s)
- D Matthew Walentiny
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA.
| | - Essie Komla
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA
| | - Léa T Moisa
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA
| | - Mohammed A Mustafa
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA
| | - Hamid I Akbarali
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1217 E. Marshall Street, Richmond, VA, 23298-0613, USA; Institute for Drug and Alcohol Studies & Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| |
Collapse
|
44
|
Rogler G, Scharl M, Spalinger M, Yilmaz B, Zaugg M, Hersberger M, Schreiner P, Biedermann L, Herfarth H. Diet and Inflammatory Bowel Disease: What Quality Standards Should Be Applied in Clinical and Laboratory Studies? Mol Nutr Food Res 2021; 65:e2000514. [PMID: 33433954 DOI: 10.1002/mnfr.202000514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Many patients suffering from inflammatory bowel disease (IBD) follow restrictive diets, as many respective recommendations circulate. Efforts are made to evaluate and summarize the published information, for example, in a recent consensus manuscript by the International Organization for the Study of IBD (IOIBD). However, the standards that should be applied to make claims about dietary effects are poorly defined. In this manuscript, the scientific basis of recommendations for nutritional interventions in IBD is analyzed. Epidemiological evidence on diet in IBD is always biased by numerous factors, and the number of robust dietary intervention studies is limited due to methodological difficulties. Therefore, animal models are used to test hypotheses with respect to dietary factors and intestinal inflammation. Naturally, animal models have limitations, and knowledge of key characteristics of colitis animal models is crucial to understand their advantages and disadvantages. In recent years the important role of the microbiota for IBD and dietary factors has been discovered. Microbiota data are added to many publications on IBD and nutrition. The quality of those data varies largely. Subsequently, quality standards for microbiota analyses also are discussed. Finally, quality requirements to be applied on recommendations for dietary changes in patients with IBD are suggested.
Collapse
Affiliation(s)
- Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Marianne Spalinger
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University Clinic of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, 3010, Switzerland
| | - Michael Zaugg
- Department of Pharmacology and Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Hans Herfarth
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, 27599-7080, USA
| |
Collapse
|
45
|
Xu N, Bai X, Liu Y, Yang Y, Tang B, Shi HN, Vallee I, Boireau P, Liu X, Liu M. The Anti-Inflammatory Immune Response in Early Trichinella spiralis Intestinal Infection Depends on Serine Protease Inhibitor-Mediated Alternative Activation of Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 206:963-977. [PMID: 33495238 DOI: 10.4049/jimmunol.2000290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
Trichinella spiralis is recognized for its ability to regulate host immune responses via excretory/secretory (ES) products. Serine protease inhibitors (serpins) play an important role in ES product-mediated immunoregulatory effects during T. spiralis infection. In this study, the immunoregulatory properties of a serpin derived from T. spiralis (Ts-serpin) were explored in BALB/c mice. The results showed that naturally occurring Ts-serpin was detected in the stichosomes of muscle larvae and adult worms. Moreover, enhancing (by injection of a soluble-expressed recombinant Ts-serpin [rTs-serpin]) or blocking (by passive immunization with anti-rTs-serpin serum) the effects of Ts-serpin changed the levels of cytokines related to inflammation induced by T. spiralis infection in the serum, mesenteric lymph nodes, and peritoneal cavity, which then led to a change in the adult worm burden in early T. spiralis infection. Moreover, the phenotypic changes in peritoneal macrophages were found to be related to Ts-serpin-mediated immunoregulation. Furthermore, a STAT6 activation mechanism independent of IL-4Rα has been found to regulate protein-mediated alternative activation of bone marrow-derived macrophages and mimic the immunoregulatory role of Ts-serpin in T. spiralis infection. Finally, the anti-inflammatory properties of rTs-serpin and bone marrow-derived macrophage alternative activation by rTs-serpin were demonstrated using a trinitrobenzene sulfonic acid-induced inflammatory bowel disease model. In summary, a protein-triggered anti-inflammatory mechanism was found to favor the survival of T. spiralis in the early stage of infection and help to elucidate the immunoregulatory effects of T. spiralis on the host immune response.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Pu'er City, Yunnan 665000, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129; and
| | - Isabelle Vallee
- UMR de Biologie Moléculaire et d'Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, École Nationale Vétérinaire d'Alfort, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Est, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Pascal Boireau
- UMR de Biologie Moléculaire et d'Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, École Nationale Vétérinaire d'Alfort, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Est, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| |
Collapse
|
46
|
Rouchota M, Adamiano A, Iafisco M, Fragogeorgi E, Pilatis I, Doumont G, Boutry S, Catalucci D, Zacharioudaki A, Kagadis GC. Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System. Mol Imaging 2021; 2021:6677847. [PMID: 33746630 PMCID: PMC7953590 DOI: 10.1155/2021/6677847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon γ-emitting imaging agent [99mTc]TcMDP. Administration of the radioactive NPs was performed via the following four delivery methods: (1) standard intravenous (iv) tail vein, (2) iv retro-orbital injection, (3) intratracheal (it) instillation, and (4) intrarectal installation (pr). Real-time, live, fast dynamic screening studies were performed on a dedicated bench top, mouse-sized, planar SPECT system from t = 0 to 1 hour postinjection (p.i.), and consequently, tomographic SPECT/CT imaging was performed, for up to 24 hours p.i. The administration routes that have been studied provide a wide range of possible target tissues, for various diseases. Studies can be optimized following this workflow, as it is possible to quickly assess more parameters in a small number of animals (injection route, dosage, and fasting conditions). Thus, such an imaging protocol combines the strengths of both dynamic planar and tomographic imaging, and by using iron-based NPs of high biocompatibility along with the appropriate administration route, a potential diagnostic or therapeutic effect could be attained.
Collapse
Affiliation(s)
- Maritina Rouchota
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Eirini Fragogeorgi
- Institute of Nuclear & Radiological Sciences, Technology, Energy & Safety, NCSR “Demokritos”, Greece
| | - Irineos Pilatis
- Department of Biomedical Engineering, University of West Attica, Greece
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), Italy
| | | | - George C. Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| |
Collapse
|
47
|
da Cunha VP, Preisser TM, Santana MP, Machado DCC, Pereira VB, Miyoshi A. Mycobacterial Hsp65 antigen delivered by invasive Lactococcus lactis reduces intestinal inflammation and fibrosis in TNBS-induced chronic colitis model. Sci Rep 2020; 10:20123. [PMID: 33208841 PMCID: PMC7674425 DOI: 10.1038/s41598-020-77276-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis associated with Crohn's disease (CD), which a common and serious complication of inflammatory bowel diseases. In this context, heat shock proteins (HSPs) might serve as an alternative treatment because these antigens play important roles in the regulation of effector T cells. We thus evaluated the anti-inflammatory and antifibrotic capacities of an invasive and Hsp65-producing strain-Lactococcus lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65)-in chronic intestinal inflammation to assess its potential as an alternative therapeutic strategy against fibrotic CD. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in BALB/c mice, and the mice were treated orally with L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) via intragastric gavage. The oral administration of this strain significantly attenuated the severity of inflammation and intestinal fibrosis in mice (p < 0.05). These results are mainly justified by reductions in the levels of the pro-fibrotic cytokines IL-13 and TGF-β and increases in the concentration of the regulatory cytokine IL-10. The L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain contributed to reductions in the severity of inflammatory damage in chronic experimental CD, and these findings confirm the effectiveness of this new antifibrotic strategy based on the delivery of therapeutic proteins to inside cells of the host intestinal mucosa.
Collapse
Affiliation(s)
- Vanessa Pecini da Cunha
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Tatiane Melo Preisser
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Passos Santana
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Carmona Cara Machado
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Bastos Pereira
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Miyoshi
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
48
|
Essential role of Ca v3.2 T-type calcium channels in butyrate-induced colonic pain and nociceptor hypersensitivity in mice. Eur J Pharmacol 2020; 887:173576. [PMID: 32949597 DOI: 10.1016/j.ejphar.2020.173576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 02/01/2023]
Abstract
Given the role of Cav3.2 isoform among T-type Ca2+ channels (T-channels) in somatic and visceral nociceptive processing, we analyzed the contribution of Cav3.2 to butyrate-induced colonic pain and nociceptor hypersensitivity in mice, to evaluate whether Cav3.2 could serve as a target for treatment of visceral pain in irritable bowel syndrome (IBS) patients. Mice of ddY strain, and wild-type and Cav3.2-knockout mice of a C57BL/6J background received intracolonic administration of butyrate twice a day for 3 days. Referred hyperalgesia in the lower abdomen was assessed by von Frey test, and colonic hypersensitivity to distension by a volume load or chemicals was evaluated by counting nociceptive behaviors. Spinal phosphorylated ERK was detected by immunohistochemistry. Cav3.2 knockdown was accomplished by intrathecal injection of antisense oligodeoxynucleotides. Butyrate treatment caused referred hyperalgesia and colonic hypersensitivity to distension in ddY mice, which was abolished by T-channel blockers and/or Cav3.2 knockdown. Butyrate also increased the number of spinal phosphorylated ERK-positive neurons following colonic distension in the anesthetized ddY mice. The butyrate-treated ddY mice also exhibited T-channel-dependent colonic hypersensitivity to intracolonic Na2S, known to enhance Cav3.2 activity, and TRPV1, TRPA1 or proteinase-activated receptor 2 (PAR2) agonists. Wild-type, but not Cav3.2-knockout, mice of a C57BL/6J background, after treated with butyrate, mimicked the T-channel-dependent referred hyperalgesia and colonic hypersensitivity in butyrate-treated ddY mice. Our study provides definitive evidence for an essential role of Cav3.2 in the butyrate-induced colonic pain and nociceptor hypersensitivity, which might serve as a target for treatment of visceral pain in IBS patients.
Collapse
|
49
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|