1
|
Węgrzyk G, Grzęda D, Leszczyńska M, Nędza B, Bulanda K, Oleksy M, Ryszkowska J, Cabulis U. Viscoelastic Polyurethane Foam Biocomposites with Enhanced Flame Retardancy. Polymers (Basel) 2024; 16:3189. [PMID: 39599279 PMCID: PMC11598786 DOI: 10.3390/polym16223189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The growing demand for viscoelastic polyurethane foams creates a need for new sustainable raw materials that support cost-effective production while maintaining the desired material performance and fire safety standards. In this regard, our study aimed to develop viscoelastic polyurethane foam composites with reduced flammability and a high proportion of renewable raw materials. To achieve this, blackcurrant pomace, expandable graphite and a third-generation blowing agent were introduced to a viscoelastic polyurethane foam composition containing a reactive flame retardant in the formulation. The effects of the incorporated additives on the foaming process, flammability, chemical structure, cellular structure, thermal properties and physico-mechanical properties of the composites were determined. The results showed that the viscoelastic foam composite containing 30 php of blackcurrant pomace and 15 php of expandable graphite had a pHRRmax 52% lower than that of the reference material. The additional use of a blowing agent enhanced the flame-retardant effect of the materials, resulting in a 67% reduction in pHRRmax of the composite compared to the reference material. Moreover, the developed biocomposites exhibited promising limiting oxygen index values of 26-28%, compared to the 21% shown for the reference sample. Consequently, the best-performing biocomposites achieved the V-0 flammability rating according to the UL-94 standard. This study's results indicate the composites' high application potential due to their reduced flammability and the materials' desirable physical and mechanical properties.
Collapse
Affiliation(s)
- Grzegorz Węgrzyk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (G.W.); (D.G.); (B.N.); (J.R.)
| | - Dominik Grzęda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (G.W.); (D.G.); (B.N.); (J.R.)
| | - Milena Leszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (G.W.); (D.G.); (B.N.); (J.R.)
| | - Bartosz Nędza
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (G.W.); (D.G.); (B.N.); (J.R.)
| | - Katarzyna Bulanda
- Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6 Av., 35-959 Rzeszow, Poland; (K.B.); (M.O.)
| | - Mariusz Oleksy
- Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6 Av., 35-959 Rzeszow, Poland; (K.B.); (M.O.)
| | - Joanna Ryszkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (G.W.); (D.G.); (B.N.); (J.R.)
| | - Ugis Cabulis
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia;
| |
Collapse
|
2
|
Ma DX, Yin GZ, Ye W, Jiang Y, Wang N, Wang DY. Exploiting Waste towards More Sustainable Flame-Retardant Solutions for Polymers: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2266. [PMID: 38793331 PMCID: PMC11123196 DOI: 10.3390/ma17102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The development of sustainable flame retardants is gaining momentum due to their enhanced safety attributes and environmental compatibility. One effective strategy is to use waste materials as a primary source of chemical components, which can help mitigate environmental issues associated with traditional flame retardants. This paper reviews recent research in flame retardancy for waste flame retardants, categorizing them based on waste types like industrial, food, and plant waste. The paper focuses on recent advancements in this area, focusing on their impact on the thermal stability, flame retardancy, smoke suppression, and mechanical properties of polymeric materials. The study also provides a summary of functionalization methodologies used and key factors involved in modifying polymer systems. Finally, their major challenges and prospects for the future are identified.
Collapse
Affiliation(s)
- De-Xin Ma
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.-X.M.); (Y.J.); (N.W.)
| | - Guang-Zhong Yin
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Wen Ye
- Sino-Spanish Joint Research Center for Advanced Materials Technology, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China;
- Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| | - Yan Jiang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.-X.M.); (Y.J.); (N.W.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (D.-X.M.); (Y.J.); (N.W.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - De-Yi Wang
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain;
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| |
Collapse
|
3
|
Prociak A, Kucała M, Kurańska M, Barczewski M. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams. Polymers (Basel) 2023; 15:3660. [PMID: 37765513 PMCID: PMC10534957 DOI: 10.3390/polym15183660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of modified foams was evaluated. As oxirane ring-opening agents, 1-hexanol and 1.6-hexanediol were used to obtain bio-polyols with different functionality and hydroxyl numbers. Bio-polyols in different ratios were used to modify the polyurethane (PUR) composition, replacing 40 wt.% petrochemical polyol. The mass ratio of the used bio-polyols (1:0, 3:1, 1:1, 1:3, 0:1) affected the course of the foaming process of the PUR composition as well as the cellular structure and the physical and mechanical properties of the obtained foams. In general, the modification of the reference PUR system with the applied bio-polyols improved the cellular structure of the foam, reducing the size of the cells. Replacing the petrochemical polyol with the bio-polyols did not cause major differences in the apparent density (40-43 kg/m3), closed-cell content (87-89%), thermal conductivity (25-26 mW⋅(m⋅K)-1), brittleness (4.7-7.5%), or dimensional stability (<0.7%) of RPURFs. The compressive strength at 10% deformation was in the range of 190-260 and 120-190 kPa, respectively, for directions parallel and perpendicular to the direction of foam growth. DMA analysis confirmed that an increase in the bio-polyol of low functionality in the bio-polyol mixture reduced the compressive strength of the modified foams.
Collapse
Affiliation(s)
- Aleksander Prociak
- Department of Polymer Chemistry and Technology, Faculty of Chemical Engineering and Technology, Tadeusz Kosciuszko Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Michał Kucała
- Department of Polymer Chemistry and Technology, Faculty of Chemical Engineering and Technology, Tadeusz Kosciuszko Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Maria Kurańska
- Department of Polymer Chemistry and Technology, Faculty of Chemical Engineering and Technology, Tadeusz Kosciuszko Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| |
Collapse
|
4
|
Neves de Alencar L, Guedes Paiva FF, Okimoto FS, Bacarin GB, Dognani G, Salmazo LO, dos Santos RJ, Cabrera FC, Job AE. Natural rubber/wood composite foam: Thermal insulation and acoustic isolation materials for construction. CELLULAR POLYMERS 2023. [DOI: 10.1177/02624893231151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With the advances in the field of civil construction and the world population growth, the development of policies is necessary for the management and reuse of generated residue. Thus, the present work proposes the use of expanded natural rubber as a polymeric matrix incorporated with eucalyptus filler as a reinforcing filler for the production of composites. Thermal insulation capacity was determined by the transient plane source and acoustic method by impedance tube. NR/W40 foam showed enhanced the acoustic insulation capacity. The maximum absorption of NR/W40 was 0.83, at 3257 Hz, which is three times higher than natural rubber foam. Highly inhomogeneous cell structures were observed with large, interconnected pores, improving the acoustic performance. Sound absorption coefficient for natural rubber foam with 40% wood (0.83 ± 0.046) was similar to PU foam (0.97 ± 0.009) with 20 mm in thickness, a density of 47 kg/m3 and 98% open cell content it is a well-known acoustic absorbent in the building sector. The NR/W40 sample recorded the best acoustic performance among the NR foams analyzed in this work, maintaining good sound absorption above 1500 Hz, demonstrating a possibility of wood reuse as a filler in based-rubber foam for acustic insulation.
Collapse
Affiliation(s)
- Laura Neves de Alencar
- School of Technology and Sciences, São Paulo State University (FCT-UNESP), Presidente Prudente, Brazil
| | | | - Fernando Sérgio Okimoto
- School of Technology and Sciences, São Paulo State University (FCT-UNESP), Presidente Prudente, Brazil
| | | | - Guilherme Dognani
- School of Technology and Sciences, São Paulo State University (FCT-UNESP), Presidente Prudente, Brazil
| | | | | | | | - Aldo Eloizo Job
- School of Technology and Sciences, São Paulo State University (FCT-UNESP), Presidente Prudente, Brazil
| |
Collapse
|
5
|
Bartczak P, Stachowiak J, Szmitko M, Grząbka-Zasadzińska A, Borysiak S. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. MATERIALS (BASEL, SWITZERLAND) 2022; 16:278. [PMID: 36614616 PMCID: PMC9822441 DOI: 10.3390/ma16010278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Currently, the fundamental activity that will allow for the development of an economy with closed circulation is the management of food waste and production waste for the preparation of biocomposites. The use of waste materials of natural origin allows for the creation of innovative composites with improved physicochemical and functional properties. The present investigation concerns the use of coffee grounds (2.5-20 wt.%) and oak sawdust (2.5-20 wt.%) as effective fillers of rigid polyurethane foam. Innovative composite materials, previously indebted in the literature, were subjected to the necessary analyses to determine the application abilities: processing times, free density, water absorption, dimensional stability, mechanical properties (compressive strength), thermal conductivity, morphology, and flame resistance. The results with respect to the mechanical tests turned out to be the key. Increasing the number of coffee additives has a positive effect on the compressive strength. The addition of this filler in the range of 5-15 wt.% increased the compressive strength of the composites, 136-139 kPa, compared to the reference sample, 127 kPa. The key parameter analysed was thermal conductivity. The results obtained were in range of the requirements, that is, 0.022-0.024 W/m·K for all used amounts of fillers 2.5-20 wt.%. This is extremely important since these materials are used for insulation purposes. The results of the burning-behaviour test have confirmed that the addition of renewable materials does not negatively affect the fire resistance of the received foams; the results were obtained analogously to those obtained from the reference sample without the addition of fillers. The height of the flame did not exceed 17 cm, while the flame decay time was 17 s for the reference sample and the composite with coffee grounds and 18 s for the composite with oak sawdust. In this work, the practical application of bioorganic waste as an innovative filler for the insulation of flooded polyurethane foam is described for the first time. The introduction of fillers of natural origin into the polymer matrix is a promising method to improve the physicochemical and functional properties of rigid polyurethane foams. Composites modified with coffee grounds and sawdust are interesting from a technological, ecological, and economic point of view, significantly increasing the range of use of foam in various industries.
Collapse
|
6
|
Olszewski A, Kosmela P, Żukowska W, Wojtasz P, Szczepański M, Barczewski M, Zedler Ł, Formela K, Hejna A. Insights into Stoichiometry Adjustments Governing the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites. Polymers (Basel) 2022; 14:polym14183838. [PMID: 36145981 PMCID: PMC9503757 DOI: 10.3390/polym14183838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Polyurethanes (PU) are widely applied in the industry due to their tunable performance adjusted by changes in the isocyanate index—stoichiometric balance between isocyanate and hydroxyl groups. This balance is affected by the incorporation of modifiers of fillers into the PU matrix and is especially crucial for PU foams due to the additional role of isocyanates—foaming of the material. Despite the awareness of the issue underlined in research works, the contribution of additives into formulations is often omitted, adversely impacting foams’ performance. Herein, flexible foamed PU/ground tire rubber (GTR) composites containing 12 different types of modified GTR particles differing by hydroxyl value (LOH) (from 45.05 to 88.49 mg KOH/g) were prepared. The impact of GTR functionalities on the mechanical, thermomechanical, and thermal performance of composites prepared with and without considering the LOH of fillers was assessed. Formulation adjustments induced changes in tensile strength (92–218% of the initial value), elongation at break (78–100%), tensile toughness (100–185%), compressive strength (156–343%), and compressive toughness (166–310%) proportional to the shift of glass transition temperatures (3.4–12.3 °C) caused by the additional isocyanates’ reactions yielding structure stiffening. On the other hand, formulation adjustments reduced composites’ thermal degradation onset due to the inferior thermal stability of hard segments compared to soft segments. Generally, changes in the composites’ performance resulting from formulation adjustments were proportional to the hydroxyl values of GTR, justifying the applied approach.
Collapse
Affiliation(s)
- Adam Olszewski
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paulina Kosmela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Wiktoria Żukowska
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paweł Wojtasz
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mariusz Szczepański
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Łukasz Zedler
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Correspondence:
| |
Collapse
|
7
|
Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers (Basel) 2022; 14:polym14051050. [PMID: 35267873 PMCID: PMC8914771 DOI: 10.3390/polym14051050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Limited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and post-consumer wastes. Sustainable development of three groups of materials: wood polymer composites, polyurethane foams, and rubber recycling products were comprehensively described. Special attention was focused on examples of industrially applicable technologies developed in Poland over the last five years. Moreover, current trends and limitations in the future “green” development of waste-based polymer materials were also discussed.
Collapse
|
8
|
Highly Insulative PEG-Grafted Cellulose Polyurethane Foams-From Synthesis to Application Properties. MATERIALS 2021; 14:ma14216363. [PMID: 34771890 PMCID: PMC8585346 DOI: 10.3390/ma14216363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022]
Abstract
In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites—if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential.
Collapse
|
9
|
Bio-Based Rigid Polyurethane Foam Composites Reinforced with Bleached Curauá Fiber. Int J Mol Sci 2021; 22:ijms222011203. [PMID: 34681863 PMCID: PMC8538972 DOI: 10.3390/ijms222011203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
This study aims to evaluate the influence of using a bleached Curauá fiber (CF) as filler in a novel rigid polyurethane foam (RPUF) composite. The influence of 0.1, 0.5 and 1 wt.% of the reinforcements on the processing characteristics, cellular structure, mechanical, dynamic-mechanical, thermal, and flame behaviors were assessed and discussed for RPUF freely expanded. The results showed that the use of 0.5 wt.% of CF resulted in RPUF with smoother cell structure with low differences on the processing times and viscosity for the filled pre-polyol. These morphological features were responsible for the gains in mechanical properties, in both parallel and perpendicular rise directions, and better viscoelastic characteristics. Despite the gains, higher thermal conductivity and lower flammability were reported for the developed RPUF composites, related to the high content of cellulose and hemicellulose on the bleached CF chemical composition. This work shows the possibility of using a Brazilian vegetable fiber, with low exploration for the manufacturing of composite materials with improved properties. The developed RPUF presents high applicability as enhanced cores for the manufacturing of structural sandwich panels, mainly used in civil, aircraft, and marine industries.
Collapse
|
10
|
Uram K, Kurańska M, Andrzejewski J, Prociak A. Rigid Polyurethane Foams Modified with Biochar. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5616. [PMID: 34640011 PMCID: PMC8510147 DOI: 10.3390/ma14195616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
This paper presents results of research on the preparation of biochar-modified rigid polyurethane foams that could be successfully used as thermal insulation materials. The biochar was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells became elongated in the direction of foam growth and their cross-sectional areas decreased. The filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid polyurethane foams improved their dimensional and thermal stability.
Collapse
Affiliation(s)
- Katarzyna Uram
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.U.); (A.P.)
| | - Maria Kurańska
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.U.); (A.P.)
| | - Jacek Andrzejewski
- Polymer Processing Division, Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland;
| | - Aleksander Prociak
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.U.); (A.P.)
| |
Collapse
|
11
|
Maia LS, Zanini NC, Claro AM, Amaral NC, Barud HS, Mulinari DR. Eco‐friendly foams of castor oil based‐polyurethane with Artemisia residue fillers for discarded vegetable oil sorption. J Appl Polym Sci 2021. [DOI: 10.1002/app.51259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lana S. Maia
- Departmento de Mecânica e Energia Universidade do Estado do Rio de Janeiro (UERJ) Resende Brazil
| | - Noelle C. Zanini
- Departmento de Mecânica e Energia Universidade do Estado do Rio de Janeiro (UERJ) Resende Brazil
| | - Amanda Maria Claro
- Programa de Pós‐Graduação em Biotecnologia Universidade de Araraquara Araraquara (UNIARA) Brazil
| | | | - Hernane S. Barud
- Programa de Pós‐Graduação em Biotecnologia Universidade de Araraquara Araraquara (UNIARA) Brazil
| | - Daniella R. Mulinari
- Departmento de Mecânica e Energia Universidade do Estado do Rio de Janeiro (UERJ) Resende Brazil
| |
Collapse
|
12
|
Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones. Int J Mol Sci 2021; 22:ijms22094757. [PMID: 33946213 PMCID: PMC8124782 DOI: 10.3390/ijms22094757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.
Collapse
|
13
|
Oliwa R, Ryszkowska J, Oleksy M, Auguścik-Królikowska M, Gzik M, Bartoń J, Budzik G. Effects of Various Types of Expandable Graphite and Blackcurrant Pomace on the Properties of Viscoelastic Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1801. [PMID: 33917343 PMCID: PMC8038687 DOI: 10.3390/ma14071801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3-15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (-87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.
Collapse
Affiliation(s)
- Rafał Oliwa
- Department of Polymer Composites, Faculty of Chemistry, Rzeszow University of Technology, PL-35959 Rzeszow, Poland;
| | - Joanna Ryszkowska
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Mariusz Oleksy
- Department of Polymer Composites, Faculty of Chemistry, Rzeszow University of Technology, PL-35959 Rzeszow, Poland;
| | - Monika Auguścik-Królikowska
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Małgorzata Gzik
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Joanna Bartoń
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Grzegorz Budzik
- Department of Mechanical Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, PL-35959 Rzeszow, Poland;
| |
Collapse
|
14
|
Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Composites. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aramid (AF), glass (GF), carbon (CF), basalt (BF), and flax (FF) fibers in the form of fabrics were used to produce the composites by hand-lay up method. The use of fabrics of similar grammage for composites’ manufacturing allowed for a comprehensive comparison of the properties of the final products. The most important task was to prepare a complex setup of mechanical and thermomechanical properties, supplemented by fire behavior analysis, and discuss both characteristics in their application range. The mechanical properties were investigated using tensile and flexural tests, as well as impact strength measurement. The investigation was improved by assessing thermomechanical properties under dynamic deformation conditions (dynamic mechanical–thermal analysis (DMTA)). All products were subjected to a fire test carried out using a cone calorimeter (CC).
Collapse
|
15
|
Martins LS, Zanini NC, Maia LS, Souza AG, Barbosa RFS, Rosa DS, Mulinari DR. Crude oil and S500 diesel removal from seawater by polyurethane composites reinforced with palm fiber residues. CHEMOSPHERE 2021; 267:129288. [PMID: 33352367 DOI: 10.1016/j.chemosphere.2020.129288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
In this work, we prepared PU-composites with Australian palm residues (PR) in different contents (5, 10, 15, and 20 wt%) and granulometry (28 and 35 mesh) to improve the oil (crude oil and S500 Diesel) sorption capacity. The foams were characterized by life cycle assessment (LCA), scanning electron microscopy, oil sorption, desorption, and Langmuir, Freundlich, and Temkin sorption isotherms. LCA indicated that higher PR contents decreased the foam environmental impacts than the classical residue handling, indicating that 20 wt% PR is the better environmental option, independent of the residues granulometry. The PR incorporation into PU foams resulted in smaller pore sizes, with a higher number of homogeneous open-cells. The PU composites exhibited higher oil adsorption capacity than the pristine foam. The PU sample showed maximum absorption capability of 6.1 and 6.7 g g-1 for diesel S500 and crude oil, and the composites showed increased values of ∼18 g g-1 and ∼24 g g-1. The Langmuir model presented the best fit and predicted a maximum adsorption capacity of 30.39 and 25.57 g g-1 for PU-20% PR 28 and 35 mesh, respectively. The composites presented excellent reusability with PU-20% PR (28 mesh) and PU-20% PR (35 mesh), showing removal efficiency after 16 and 9 cycles, respectively. The results classify the developed foams as excellent materials to sorb spilled crude oil in marine accidents.
Collapse
Affiliation(s)
- Larissa S Martins
- Department of Chemistry and Energy, State University of Rio de Janeiro (UERJ), Resende, CEP 27537-000, Brazil
| | - Noelle C Zanini
- Department of Mechanic and Energy, State University of Rio de Janeiro (UERJ), Resende, CEP 27537-000, Brazil
| | - Lana S Maia
- Department of Chemistry and Energy, State University of Rio de Janeiro (UERJ), Resende, CEP 27537-000, Brazil
| | - Alana G Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rennan F S Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Daniella R Mulinari
- Department of Chemistry and Energy, State University of Rio de Janeiro (UERJ), Resende, CEP 27537-000, Brazil.
| |
Collapse
|
16
|
Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane Composites. MATERIALS 2021; 14:ma14051128. [PMID: 33673702 PMCID: PMC7957822 DOI: 10.3390/ma14051128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.
Collapse
|
17
|
Zanini NC, de Souza AG, Barbosa RFS, Rosa DS, Mulinari DR. Eco-friendly composites of polyurethane and sheath palm residues. J CELL PLAST 2021. [DOI: 10.1177/0021955x20987150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work prepared eco-friendly biocomposites of polyurethane (PU) and sheath palm residues, using castor oil as a polyol. PU composites filled with natural fibers were prepared at different loading rates: 0 to 20 wt.%. Results indicated that the sheath palm was hydrogen-bonded to PU chains and increased the foams' density. Pore size decreased with an increase in fiber content, from 256 to 116 µm. The fiber's addition improved the ductility of PU foams (compressive modulus from 4.74 to 0.26 MPa) and the foams' crystallinity index (from 5.4 to 15.4%). Compared to pristine PU, the composites showed high hydrophobicity (reaching 123° of contact angle for PU-15%) and thermal stability (Tonset from 96 to 96.3°), and high density (from 41 to 60 kg.m−3), making the developed composites an excellent option for environmental applications, such as oil removal and contaminant adsorption.
Collapse
Affiliation(s)
- Noelle C Zanini
- Department of Mechanical and Energy, Universidade do Estado do Rio de Janeiro, Resende, Brazil
| | - Alana G de Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rennan FS Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Daniella R Mulinari
- Department of Mechanical and Energy, Universidade do Estado do Rio de Janeiro, Resende, Brazil
| |
Collapse
|
18
|
Członka S, Kairytė A, Miedzińska K, Strąkowska A. Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2021; 14:415. [PMID: 33467655 PMCID: PMC7829896 DOI: 10.3390/ma14020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16-18%, flexural strength by ~9-12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| | - Karolina Miedzińska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| |
Collapse
|
19
|
Strąkowska A, Członka S, Kairytė A. Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. MATERIALS 2020; 13:ma13235493. [PMID: 33276537 PMCID: PMC7730523 DOI: 10.3390/ma13235493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.
Collapse
Affiliation(s)
- Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
- Correspondence:
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|
20
|
Barczewski M, Mysiukiewicz O, Lewandowski K, Nowak D, Matykiewicz D, Andrzejewski J, Skórczewska K, Piasecki A. Effect of Basalt Powder Surface Treatments on Mechanical and Processing Properties of Polylactide-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5436. [PMID: 33260378 PMCID: PMC7730719 DOI: 10.3390/ma13235436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
Legislative restrictions and the needs of consumers have created a demand for sustainable materials. Polylactide (PLA) is a biodegradable polyester with advantageous mechanical properties, however, due to its low crystallization rate, it also has low thermomechanical stability. Its range of application temperatures can be widened using nucleating agents and fillers including basalt powder (BP), a waste product from the mining industry. This study analyzed the possibility of enhancing the properties of a PLA-BP composite by chemically treating the filler. Basalt powder was subjected to silanization with 3-aminopropyltriethoxysilane or γ-glycidoxypropyltrimethoxysilane and mixed with PLA at 5-20 wt%. The nucleating effect of a potassium salt of 3,5-bis(methoxycarbonyl) (LAK-301) in the silanized composite was also evaluated. The properties of the materials with silanized BP were compared with the unmodified basalt powder. The miscibility of the filler and the polymer was assessed by oscillatory rheometry. The structure of the composites was studied using scanning electron microscopy and their thermomechanical properties were analyzed using dynamic mechanical thermal analysis. Mechanical properties such as tensile strength, hardness and impact strength, and heat deflection temperature of the materials were also determined. It was concluded that BP-filled nucleated PLA composites presented satisfactory thermomechanical stability without silanization, but chemical treatment could improve the matrix-filler interactions.
Collapse
Affiliation(s)
- Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (O.M.); (D.N.); (D.M.); (J.A.)
| | - Olga Mysiukiewicz
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (O.M.); (D.N.); (D.M.); (J.A.)
| | - Krzysztof Lewandowski
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (K.L.); (K.S.)
| | - Daniel Nowak
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (O.M.); (D.N.); (D.M.); (J.A.)
| | - Danuta Matykiewicz
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (O.M.); (D.N.); (D.M.); (J.A.)
| | - Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (O.M.); (D.N.); (D.M.); (J.A.)
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (K.L.); (K.S.)
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland;
| |
Collapse
|
21
|
Rigid Polyurethane Foams Based on Bio-Polyol and Additionally Reinforced with Silanized and Acetylated Walnut Shells for the Synthesis of Environmentally Friendly Insulating Materials. MATERIALS 2020; 13:ma13153245. [PMID: 32707810 PMCID: PMC7435791 DOI: 10.3390/ma13153245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Rigid polyurethane (PUR) foams produced from walnut shells-derived polyol (20 wt.%) were successfully reinforced with 2 wt.% of non-treated, acetylated, and silanized walnut shells (WS). The impact of non-treated and chemically-treated WS on the morphology, mechanical, and thermal characteristics of PUR composites was determined. The morphological analysis confirmed that the addition of WS fillers promoted a reduction in cell size, compared to pure PUR foams. Among all the modified PUR foams, the greatest improvement of mechanical characteristics was observed for PUR foams with the addition of silanized WS-the compressive, flexural, and impact strength were enhanced by 21, 16, and 13%, respectively. The addition of non-treated and chemically-treated WS improved the thermomechanical stability of PUR foams. The results of the dynamic mechanical analysis confirmed an increase in glass transition temperature and storage modulus of PUR foams after the incorporation of chemically-treated WS. The addition of non-treated and chemically-treated WS did not affect the insulating properties of PUR foams, and the thermal conductivity value did not show any significant improvement and deterioration due to the addition of WS fillers.
Collapse
|
22
|
Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Application in Polymer Composite (part II). MATERIALS 2020; 13:ma13132901. [PMID: 32605233 PMCID: PMC7372397 DOI: 10.3390/ma13132901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
The following article debates on the properties of cellulose-filled ethylene-norbornene copolymer (EN) composites. Natural fibers employed in this study have been modified via two different approaches: solvent-involving (S) and newly developed non-solvent (NS). The second type of the treatment is fully eco-friendly and was carried out in the planetary mill without incorporation of any additional, waste-generating substances. Composite samples have been investigated with the use of spectroscopic methods (FT-IR), differential scanning calorimetry (DSC), static mechanical analysis, and surface-free energy measurements. It has been proved that the possible filler-polymer matrix interaction changes may occur due to the performed modifications. The highest reinforcement was evidenced for the composite sample filled with cellulose treated via a NS approach—TS = (34 ± 2) MPa, Eb = (380 ± 20)%. Additionally, a surface free energy polar part exhibited a significant increase for the same type of modification. Consequently, this could indicate easier wetting of the material which may contribute to the degradation process enhancement. Successfully developed cellulose-filled ethylene-norbornene copolymer composite compromises the rules of green chemistry and sustainable development by taking an advantage of renewable natural resources. This bio-inspired material may become an eco-friendly alternative for commonly used polymer blends.
Collapse
|
23
|
Cichosz S, Masek A. Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Solution for Green Chemistry (Part I). MATERIALS 2020; 13:ma13112552. [PMID: 32503319 PMCID: PMC7321458 DOI: 10.3390/ma13112552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
In the following article, a new approach of cellulose modification, which does not incorporate any solvents (NS), is introduced. It is compared for the first time with the traditional solvent-involving (S) treatment. The analysed non-solvent modification process is carried out in a planetary mill. This provides the opportunity for cellulose mechanical degradation, decreasing its size, simultaneously with ongoing silane coupling agent grafting. Fourier-transform infrared spectroscopy (FT-IR) indicated the possibility of intense cleavage of the glucose rings in the cellulose chains during the mechano-chemical treatment. This effect was proved with dynamic light scattering (DLS) results—the size of the particles decreased. Moreover, according to differential scanning calorimetry (DSC) investigation, modified samples exhibited decreased moisture content and a drop in the adsorbed water evaporation temperature. The performed research proved the superiority of the mechano-chemical treatment over regular chemical modification. The one-pot bio-filler modification approach, as a solution fulfilling green chemistry requirements, as well as compromising the sustainable development rules, was presented. Furthermore, this research may contribute significantly to the elimination of toxic solvents from cellulose modification processes.
Collapse
|