1
|
Long J, Li X, Gao Y, Ye Z, Chen L, Qiu C, Zhou X, Jin Z, Lu C. Re-Engineered β-Agarase for Efficient Agarose Oligosaccharide Preparation with Enhanced Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12834-12844. [PMID: 40378394 DOI: 10.1021/acs.jafc.4c12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Agarases are enzymes that serve as valuable catalysts in producing bioactive agar oligosaccharides. The thermostability of agarase is crucial for its industrial application since the sol-gel transition of the agar substrate is temperature-dependent. An exo-β-agarase, Aga50D, from Saccharophagus degradans 2-40 was re-engineered based on a single mutation near the interface. The A86D mutant exhibited a melting temperature increase of 23.3 °C with more than a 7-fold improvement in catalytic performance for agarose hydrolysis at 50 °C for 1 h. Small-angle X-ray scattering (SAXS), differential fluorimetry scanning (DFS), and size exclusion chromatography (SEC) analyses provided convincing evidence that the mutation significantly promoted the dimerization. Molecular dynamics simulations of the enzyme further supported our findings, demonstrating that the single mutation near the interface induced the rearrangement of the intrachain salt bridges between the loops and strengthened the interchain salt-bridge interaction at the interface, which were identified as critical mechanisms for improving its thermostability. Meanwhile, the stable interface interaction may play an important role in the dimerization of A86D. These results highlight the design of intersubunit interactions to obtain high-stability enzymes via targeted mutations near the subunit interface. The robust A86D mutant shows great potential in industrial agar oligosaccharide production.
Collapse
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yi Gao
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ziying Ye
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Lakshmana Senthil S. A comprehensive review to assess the potential, health benefits and complications of fucoidan for developing as functional ingredient and nutraceutical. Int J Biol Macromol 2024; 277:134226. [PMID: 39074709 DOI: 10.1016/j.ijbiomac.2024.134226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polysaccharides from seaweeds or macroalgae are garnering significant interest from pharmaceutical and food industries due to their bioactivities and promising therapeutic effects. Among the diverse agal polysaccharides, fucoidan is a well-documented and stands out as a well-researched sulphated heteropolysaccharide found in brown seaweeds. It primarily consists of l-fucose and sulfate ester groups, along with other monosaccharides like xylose, mannose, uronic acid, rhamnose, arabinose, and galactose. Recent scientific investigations have unveiled the formidable inhibitory prowess of fucoidan against SARS-CoV-2, offering a promising avenue for therapeutic intervention in our current landscape. Moreover, fucoidan has demonstrated remarkable abilities in safeguarding the gastrointestinal tract, regulating angiogenesis, mitigating metabolic syndrome, and fortifying bone health. Despite the abundance of studies underscoring fucoidan's potential as a vital component sourced from nature, its exploitation remains constrained by inherent limitations. Thus, the primary objective of this article is to furnish a comprehensive discourse on the structural attributes, health-enhancing properties, safety parameters, and potential toxicity associated with fucoidan. Furthermore, the discourse extends to elucidating the practical applications and developmental prospects of fucoidan as a cornerstone in the realm of functional foods and nutraceuticals.
Collapse
|
3
|
Wang B, Geng L, Wang J, Wei Y, Yan C, Wu N, Yue Y, Zhang Q. Optimization of the Preparation Process of Glucuronomannan Oligosaccharides and Their Effects on the Gut Microbiota in MPTP-Induced PD Model Mice. Mar Drugs 2024; 22:193. [PMID: 38786584 PMCID: PMC11123026 DOI: 10.3390/md22050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.
Collapse
Affiliation(s)
- Baoxiang Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
| | - Changhui Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Zhu K, Wang X, Weng Y, Mao G, Bao Y, Lou J, Wu S, Jin W, Tang L. Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway. Cardiovasc Drugs Ther 2024; 38:69-78. [PMID: 36194354 DOI: 10.1007/s10557-022-07383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Xihao Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Shaoze Wu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China.
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
5
|
Wang L, Oh JY, Yang HW, Hyun J, Ahn G, Fu X, Xu J, Gao X, Cha SH, Jeon YJ. Protective Effect of Sargassum fusiforme Fucoidan against Ethanol-Induced Oxidative Damage in In Vitro and In Vivo Models. Polymers (Basel) 2023; 15:polym15081912. [PMID: 37112059 PMCID: PMC10145573 DOI: 10.3390/polym15081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Our previous studies have evaluated the bioactivities of a fucoidan isolated from Sargassum fusiforme (SF-F). To further investigate the health benefit of SF-F, in the present study, the protective effect of SF-F against ethanol (EtOH)-induced oxidative damage has been evaluated in in vitro and in vivo models. SF-F effectively improved the viability of EtOH-treated Chang liver cells by suppressing apoptosis. In addition, the in vivo test results indicate that SF-F significantly and dose-dependently increased the survival rate of zebrafish treated with EtOH. Further research results show that this action works through decreasing cell death via reduced lipid peroxidation by scavenging intracellular reactive oxygen species in EtOH-stimulated zebrafish. These results indicate that SF-F effectively protected Chang liver cells and zebrafish against EtOH-induced oxidative damage and suggest the potential of SF-F to be used as an ingredient in the functional food industry.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
6
|
He X, Chen F, Lu C, Wang S, Mao G, Jin W, Zhong W. Comparison of anti-tumor activities and underlying mechanisms of glucuronomannan oligosaccharides and its sulfated derivatives on the hepatocarcinoma Huh7.5 cells. Biochem Biophys Res Commun 2023; 652:103-111. [PMID: 36841097 DOI: 10.1016/j.bbrc.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor triggered by various factors such as virus infection and alcohol abuse. Glucuronomannan polysaccharide (Gx) is a subtype of fucoidans that possesses many bioactivities, but its anti-tumor activities in HCC have not been reported. In this paper, the anti-tumor effects of glucuronomannan oligosaccharides (Gx) and its sulfated derivatives (GxSy) on hepatocarcinoma Huh7.5 cells were investigated. The anti-proliferation, anti-metastasis activities, and underlying mechanism of Gx and GxSy on Huh7.5 cells were analyzed and compared by MTT, wound healing, transwell, and western blotting assays, respectively. Results showed that the best anti-proliferation effects were G4S1 and G4S2 among 13 drugs, which were 38.67% and 30.14%, respectively. The cell migration rates were significantly inhibited by G2S1, G4S2, G6S2, and unsulfated Gn. In addition, cell invasion effects treated with G4S1, G4S2, and G6S1 decreased to 48.62%, 36.26%, and 42.86%, respectively. Furthermore, sulfated G4 regulated the expression of (p-) FAK and MAPK pathway, and sulfated G6 down-regulated the MAPK signaling pathway while activating the PI3K/AKT pathway. On the contrary, sulfated G2 and unsulfated Gx had no inhibited effects on the FAK-mTOR pathway. These results indicated that sulfated Gx derivatives have better anti-tumor activities than unsulfated Gx in cell proliferation and metastasis process in vitro, and those properties depend on the sulfation group levels. Moreover, degrees of polymerization of Gx also played a vital role in mechanisms and bioactivities. This finding shows the structure-activity relationship for developing and applying the marine oligosaccharide candidates.
Collapse
Affiliation(s)
- Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenghui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
7
|
Sulfated fuco-manno-glucuronogalactan alleviates pancreatic beta cell senescence via PI3K/AKT/FoxO1 pathway. Int J Biol Macromol 2023; 236:123846. [PMID: 36863675 DOI: 10.1016/j.ijbiomac.2023.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing 1, 3-linked β-D-GlcpA residues, 1, 4-linked α-D-Galp residues, and alternating 1, 2-linked α-D-Manp residues and 1, 4-linked β-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro and in vivo, including cell cycle, senescence-associated β-galactosidase, DNA damage and senescence-associated secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be used for beta cell senescence treatment and alleviation of the progression of T2D.
Collapse
|
8
|
Wang M, Veeraperumal S, Zhong S, Cheong KL. Fucoidan-Derived Functional Oligosaccharides: Recent Developments, Preparation, and Potential Applications. Foods 2023; 12:foods12040878. [PMID: 36832953 PMCID: PMC9956988 DOI: 10.3390/foods12040878] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new interest has emerged in fucoidan, partially hydrolysed into fuco-oligosaccharides (FOSs) or low-molecular weight fucoidan, owing to their superior solubility and biological activities compared with fucoidan. There is considerable interest in their development for use in the functional food, cosmetic, and pharmaceutical industries. Therefore, this review summarises and discusses the preparation of FOSs from fucoidan using mild acid hydrolysis, enzymatic depolymerisation, and radical degradation methods, and discusses the advantages and disadvantages of hydrolysis methods. Several purification steps performed to obtain FOSs (according to the latest reports) are also reviewed. Moreover, the biological activities of FOS that are beneficial to human health are summarised based on evidence from in vitro and in vivo studies, and the possible mechanisms for the prevention or treatment of various diseases are discussed.
Collapse
Affiliation(s)
- Min Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Postgraduate College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (K.-L.C.)
| | - Kit-Leong Cheong
- Department of Biology, Shantou University, Shantou 515063, China
- Correspondence: (S.Z.); (K.-L.C.)
| |
Collapse
|
9
|
Jin W, Chen F, Fang Q, Mao G, Bao Y. Oligosaccharides from Sargassum thunbergii inhibit osteoclast differentiation via regulation of IRF-8 signaling. Exp Gerontol 2023; 172:112057. [PMID: 36513214 DOI: 10.1016/j.exger.2022.112057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is a systemic bone degenerative disease characterized by low bone mass and deteriorated microarchitecture of bone tissue, causing high morbidity and mortality rates. Bone resorption by overactivated osteoclasts (OCs) is the main cause of osteoporosis. Glucuronomannan and its oligomers (Gs) and their sulfated derivatives (SGs) were previously prepared. The anti-osteoporosis activities of these glycans were evaluated. Firstly, we determined the viability of RAW264.7 by CCK-8 test. Nextly, we investigated the inhibitory effects of Gs and SGs on the differentiation of RAW264.7 cells into OCs using tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, qualitative reverse-transcription polymerase chain reaction(qRT-PCR) and western blotting. TRAP staining revealed that Gs significantly blocked RANKL-induced OC generation while SGs did not exhibit this ability. F-actin staining assays demonstrated that Gs inhibits RANKL-induced actin ring formation. qRT-PCR analyses indicated that Gs dose-dependently inhibited the expression of OCs marker genes including Trap, NFATc1, c-Fos, DC-Stamp and ATP60 during the differentiation process, while SGs did not suppress. Regarding the mechanism of Gs, it was found that Gs suppressed osteoclastogenesis via inhibiting the degradation of IRF-8 and interfering with NF-κB pathway activation. Together, these results suggest that Gs have the ability to inhibit osteoclastogenesis by modulating IRF-8 signaling.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| |
Collapse
|
10
|
Insight into the relationships of structure and anti-tumor effects of Glucuronomannan oligosaccharides (Gx) and its derivatives on the A549 lung adenocarcinoma cells. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Long J, Ye Z, Li X, Tian Y, Bai Y, Chen L, Qiu C, Xie Z, Jin Z, Svensson B. Enzymatic preparation and potential applications of agar oligosaccharides: a review. Crit Rev Food Sci Nutr 2022; 64:5818-5834. [PMID: 36547517 DOI: 10.1080/10408398.2022.2158452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligosaccharides derived from agar, that is, agarooligosaccharides and neoagarooligosaccharides, have demonstrated various kinds of bioactivities which have been utilized in a variety of fields. Enzymatic hydrolysis is a feasible approach that principally allows for obtaining specific agar oligosaccharides in a sustainable way at an industrial scale. This review summarizes recent technologies employed to improve the properties of agarase. Additionally, the relationship between the degree of polymerization, bioactivities, and potential applications of agar-derived oligosaccharides for pharmaceutical, food, cosmetic, and agricultural industries are discussed. Engineered agarase exhibited general improvement of enzymatic performance, which is mostly achieved by truncation. Rational and semi-rational design assisted by computational methods present the latest strategy for agarase improvement with greatest potential to satisfy future industrial needs. Agarase immobilized on magnetic Fe3O4 nanoparticles via covalent bond formation showed characteristics well suited for industry. Additionally, albeit with the relationship between the degree of polymerization and versatile bioactivities like anti-oxidants, anti-inflammatory, anti-microbial agents, prebiotics and in skin care of agar-derived oligosaccharides are discussed here, further researches are still needed to unravel the complicated relationship between bioactivity and structure of the different oligosaccharides.
Collapse
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ziying Ye
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Bi D, Huang J, Cao J, Yao L, Guo W, Zhang Z, Wu Y, Xu H, Hu Z, Xu X. Preparation, characterization and immunomodulatory effects of unsaturated sulfated oligoguluronic acid. Carbohydr Polym 2022; 301:120370. [DOI: 10.1016/j.carbpol.2022.120370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
|
13
|
Zhang W, Jin W, Pomin VH, Zhang F, Linhardt RJ. Interactions of marine sulfated glycans with antithrombin and platelet factor 4. Front Mol Biosci 2022; 9:954752. [PMID: 36200072 PMCID: PMC9527323 DOI: 10.3389/fmolb.2022.954752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 01/28/2023] Open
Abstract
The molecular interactions of sulfated glycans, such as heparin, with antithrombin (AT) and platelet factor 4 (PF4) are essential for certain biological events such as anticoagulation and heparin induced thrombocytopenia (HIT). In this study, a library including 84 sulfated glycans (polymers and oligomers) extracted from marine algae along with several animal-originated polysaccharides were subjected to a structure-activity relationship (SAR) study regarding their specific molecular interactions with AT and PF4 using surface plasmon resonance. In this SAR study, multiple characteristics were considered including different algal species, different methods of extraction, molecular weight, monosaccharide composition, sulfate content and pattern and branching vs. linear chains. These factors were found to influence the binding affinity of the studied glycans with AT. Many polysaccharides showed stronger binding than the low molecular weight heparin (e.g., enoxaparin). Fourteen polysaccharides with strong AT-binding affinities were selected to further investigate their binding affinity with PF4. Eleven of these polysaccharides showed strong binding to PF4. It was observed that the types of monosaccharides, molecular weight and branching are not very essential particularly when these polysaccharides are oversulfated. The sulfation levels and sulfation patterns are, on the other hand, the primary contribution to strong AT and PF4 interaction.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Jin
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Weihua Jin, ; Fuming Zhang, ; Robert J. Linhardt,
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,*Correspondence: Weihua Jin, ; Fuming Zhang, ; Robert J. Linhardt,
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,Departments of Biological Science, Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,*Correspondence: Weihua Jin, ; Fuming Zhang, ; Robert J. Linhardt,
| |
Collapse
|
14
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Wang S, Xu X, Sun C, Zhang J, He X, Zhang Z, Huang H, Yan J, Jin W, Mao G. Sulphated glucuronomannan tetramer and hexamer from Sargassum thunbergii exhibit anti-human cytomegalovirus activity by blocking viral entry. Carbohydr Polym 2021; 273:118510. [PMID: 34560939 DOI: 10.1016/j.carbpol.2021.118510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden worldwide. The anti-HCMV activity of glucuronomannan oligosaccharides (Gs) and sulphated glucuronomannan oligosaccharides (SGs) was investigated. Among these Gs and SGs, G4S1 and G6S1 (higher sulphated glucuronomannan tetramer and hexamer) showed satisfactory anti-HCMV activity starting at 50 μg/mL and 10 μg/mL, respectively. The results of the morphology, western blotting, qPCR and TCID50 assay showed that they prevented lytic cytopathic changes, inhibited the expression of IE1/2 and UL44, and reduced the UL123 copy number and virus titre significantly. It was interesting to note that degree of sulphation and polymerization was more important for anti-HCMV activity. Moreover, the anti-HCMV activities of G4S1 and G6S1 were stable when stored at 4 °C, -20 °C, and -80 °C for at least three months and mainly occurred in the early stage of HCMV infection through the negative charge of the sulphate groups and the interaction between SGs and the host cells.
Collapse
Affiliation(s)
- Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, PR China
| | - Hong Huang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Yan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| |
Collapse
|
16
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
17
|
Cai M, Chen Y, Wang Y, Fang Q, He X, Wu W, Bao Y, Mao G, Jin W, Zhong W. Sulfated glucuronomannan hexasaccharide G6S1 enhanced lipolysis and lipophagy via PPARα pathway. Int J Biochem Cell Biol 2021; 139:106067. [PMID: 34425199 DOI: 10.1016/j.biocel.2021.106067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, ranging from benign steatosis to severe non-alcoholic steatohepatitis. Recently, it has been found that lipophagy plays a pivotal role in lipid turnover, which can alleviate NAFLD in hepatocytes. In this study, we found that a highly sulfated glucuronomannan hexamer G6S1 has the ability to enhance lipophagy. When treated with G6S1, the number and the size of lipid droplet (LD) decreased significantly on hepatocytes AML12 cells. Western blot results showed that the expressions of the lipolysis-related proteins increased, while the expressions of proteins that is responsible for lipid transportation and synthesis exhibited no significant change. Immunofluorescence assay and electron microscopy results showed an increase of autophagy related protein expression level and lysosome number in hepatocytes treated with G6S1, suggesting that G6S1 could also promote lipophagy. A significant increase of peroxisome proliferator-activated receptor alpha (PPARα) expression level was detected in G6S1 treated cells, suggesting that G6S1 may promote autophagy via enhancing the expression of PPARα. In addition, these effects could be inhibited after treatment with autophagy inhibitor 3-methyladenine (3-MA) and PPARα inhibitor MK-886. These findings indicate that G6S1 can promote lipophagy via enhanced PPARα expression and can result in a slowdown of lipids accumulation.
Collapse
Affiliation(s)
- Min Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ying Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yuzhi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wanli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, PR China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
18
|
Inhibition of SARS-CoV-2 Virus Entry by the Crude Polysaccharides of Seaweeds and Abalone Viscera In Vitro. Mar Drugs 2021; 19:md19040219. [PMID: 33921174 PMCID: PMC8071526 DOI: 10.3390/md19040219] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra tenera) and Haliotis discus hannai (abalone viscera), were screened for their inhibitory activity against SARS-CoV-2 virus entry. Most of them showed significant antiviral activities at an IC50 of 12~289 μg/mL against SARS-CoV-2 pseudovirus in HEK293/ACE2, except for P. tenera (IC50 > 1000 μg/mL). The crude polysaccharide of S. horneri showed the strongest antiviral activity, with an IC50 of 12 μg/mL, to prevent COVID-19 entry, and abalone viscera and H. fusiforme could also inhibit SARS-CoV-2 infection with an IC50 of 33 μg/mL and 47 μg/mL, respectively. The common properties of these crude polysaccharides, which have strong antiviral activity, are high molecular weight (>800 kDa), high total carbohydrate (62.7~99.1%), high fucose content (37.3~66.2%), and highly branched polysaccharides. These results indicated that the crude polysaccharides from seaweeds and abalone viscera can effectively inhibit SARS-CoV-2 entry.
Collapse
|
19
|
Liu M, Cai M, Ding P. Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:577-608. [PMID: 33730992 DOI: 10.1142/s0192415x21500269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure-activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng, Lycium barbarum and Astragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
20
|
Vieira TF, Corrêa RCG, Peralta RA, Peralta-Muniz-Moreira RF, Bracht A, Peralta RM. An Overview of Structural Aspects and Health Beneficial Effects of Antioxidant Oligosaccharides. Curr Pharm Des 2020; 26:1759-1777. [PMID: 32039673 DOI: 10.2174/1381612824666180517120642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. METHODS The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. RESULTS The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. CONCLUSION A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.
Collapse
Affiliation(s)
- Tatiane F Vieira
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil
| | - Rúbia C G Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.,Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation (ICETI), Centro Universitário de Maringá, Maringá, Paraná, Brazil
| | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, SC, Brazil
| | | | - Adelar Bracht
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Rosane M Peralta
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
21
|
Jin W, Zhang W, Mitra D, McCandless MG, Sharma P, Tandon R, Zhang F, Linhardt RJ. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 2020; 163:1649-1658. [PMID: 32979436 PMCID: PMC7513770 DOI: 10.1016/j.ijbiomac.2020.09.184] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 spike glycoproteins (SGPs) and human angiotensin converting enzyme 2 (ACE2) are the two key targets for the prevention and treatment of COVID-19. Host cell surface heparan sulfate (HS) is believed to interact with SARS-CoV-2 SGPs to facilitate host cell entry. In the current study, a series of polysaccharides from Saccharina japonica were prepared to investigate the structure-activity relationship on the binding abilities of polysaccharides (oligosaccharides) to pseudotype particles, including SARS-CoV-2 SGPs, and ACE2 using surface plasmon resonance. Sulfated galactofucan (SJ-D-S-H) and glucuronomannan (Gn) displayed strongly inhibited interaction between SARS-CoV-2 SGPs and heparin while showing negligible inhibition of the interaction between SARS-CoV-2 SGPs and ACE2. The IC50 values of SJ-D-S-H and Gn in blocking heparin SGP binding were 27 and 231 nM, respectively. NMR analysis showed that the structure of SJ-D-S-H featured with a backbone of 1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked β-D-galacto-biose; Gn had a backbone of alternating 1, 4-linked β-D-GlcAp residues and 1, 2-linked α-D-Manp residues. The sulfated galactofucan and glucuronomannan showed strong binding ability to SARS-CoV-2 SGPs, suggesting that these polysaccharides might be good candidates for preventing and/or treating SARS-CoV-2.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Dipanwita Mitra
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Martin G McCandless
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Departments of Biological Science, Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
22
|
Jin W, Jiang D, Zhang W, Wang C, Xia K, Zhang F, Linhardt RJ. Interactions of fibroblast growth factors with sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 2020; 160:26-34. [PMID: 32464202 PMCID: PMC10466213 DOI: 10.1016/j.ijbiomac.2020.05.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
A total 68 types of marine algae oligosaccharides and polysaccharides were prepared and used to study the structure-activity relationship of oligosaccharides and polysaccharides in their interactions with fibroblast growth factors (FGF) 1 and 2. Factors considered include different types of algae, extraction methods, molecular weight, sulfate content and fractions. In the case of low molecular weight polysaccharide (SJ-D) from Saccharina japonica and its fractions eluting from anion exchange column, both 1.0 M NaCl fraction (SJ-D-I) and 2.0 M NaCl fraction (SJ-D-S) had stronger binding affinity than the parent SJ-D, suggesting that sulfated galactofucans represented the major tight binding component. Nuclear magnetic resonance showed that SJ-D-I was a typical sulfated galactofucan, composed of four units: 1, 3-linked 4-sulfated α-L-fucose (Fuc); 1, 3-linked 2, 4-disulfated α-L-Fuc; 1, 6-linked 4-sulfated β-D-Gal and/or 1, 6-linked 3, 4-sulfated β-D-Gal. Modification by autohydrolysis to oligosaccharides and desulfation decreased the FGF binding affinity while oversulfation increased the affinity. The solution-based affinities of SJ-D-I to FGF1 and FGF2 were 69 nM and 3.9 nM, suggesting that SJ-D-I showed better preferentially binding to FGF1 than a natural ligand, heparin, suggesting that sulfated galactofucan might represent a good regulator of FGF1.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunyu Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
23
|
Preparation and Neuroprotective Activity of Glucuronomannan Oligosaccharides in an MPTP-Induced Parkinson's Model. Mar Drugs 2020; 18:md18090438. [PMID: 32842556 PMCID: PMC7551172 DOI: 10.3390/md18090438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra and dopamine depletion in the striatum, affects up to 1% of the global population over 50 years of age. Our previous study found that a heteropolysaccharide from Saccharina japonica exhibits neuroprotective effects through antioxidative stress. In view of its high molecular weight and complex structure, we degraded the polysaccharide and subsequently obtained four oligosaccharides. In this study, we aimed to further detect the neuroprotective mechanism of the oligosaccharides. We applied MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to induce PD, and glucuronomannan oligosaccharides (GMn) was subsequently administered. Results showed that GMn ameliorated behavioral deficits in Parkinsonism mice. Furthermore, we observed that glucuronomannan oligosaccharides contributed to down-regulating the apoptotic signaling pathway through enhancing the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. These results suggest that glucuronomannan oligosaccharides protect dopaminergic neurons from apoptosis in PD mice.
Collapse
|
24
|
Inhibition of glucuronomannan hexamer on the proliferation of lung cancer through binding with immunoglobulin G. Carbohydr Polym 2020; 248:116785. [PMID: 32919573 DOI: 10.1016/j.carbpol.2020.116785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
The anti-lung cancer activity of oligosaccharides derived from glucuronomannan was investigated. The inhibition of A549 cell proliferation by glucuronomannan (Gn) and its oligomers (dimer (G2), tetramer (G4) and hexamer (G6)) were concentration dependent. In vivo activities on the A549-derived tumor xenografts showed the tumor inhibition of G2, G4 and G6 were 17 %, 40 % and 46 %, respectively. Organ coefficients in nude mice showed an increase in the kidney with G4, the brain with G6, and the spleen with G6. An advanced tandem mass tag labeled proteomics approach was performed. A significant differential expression was found in 59 out of the 4371 proteins, which involved the immune system. Surface plasmon resonance (SPR) studies revealed G6 was strongly bound to immunoglobulin G. This suggests that glucuronomannan hexamer inhibits the proliferation of lung cancer through its binding to immunoglobulin.
Collapse
|
25
|
Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs 2019; 17:E183. [PMID: 30897733 PMCID: PMC6471298 DOI: 10.3390/md17030183] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
The marine acid polysaccharide fucoidan has attracted attention from both the food and pharmaceutical industries due to its promising therapeutic effects. Fucoidan is a polysaccharide that mainly consists of L-fucose and sulphate groups. Its excellent biological function is attributed to its unique biological structure. Classical activities include antitumor, antioxidant, anticoagulant, antithrombotic, immunoregulatory, antiviral and anti-inflammatory effects. More recently, fucoidan has been shown to alleviate metabolic syndrome, protect the gastrointestinal tract, benefit angiogenesis and bone health. This review focuses on the progress in our understanding of the biological activities of fucoidan, highlighting its benefits for the treatment of human disease. We hope that this review can provide some theoretical basis and inspiration for the product development of fucoidan.
Collapse
Affiliation(s)
- Yu Wang
- Marine College, Shandong University, Weihai 264209, China.
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|