1
|
Koçyiğit E, Gövez NE, Arslan S, Ağagündüz D. A narrative review on dietary components and patterns and age-related macular degeneration. Nutr Res Rev 2025; 38:143-170. [PMID: 38221852 DOI: 10.1017/s0954422424000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most prevalent eye diseases among the ageing population worldwide. It is a leading cause of blindness in individuals over 55, particularly in industrialised Western countries. The prevalence of AMD increases with age, and genetic factors and environmental influences are believed to contribute to its development. Among the environmental factors, diet plays a significant role in AMD. This review explores the association between dietary components, dietary patterns and AMD. Various nutrients, non-nutrient substances and dietary models that have the potential to counteract oxidative stress and inflammation, which are underlying mechanisms of AMD, are discussed. Consuming fruits, vegetables, fish and seafood, whole grains, olive oil, nuts and low-glycaemic-index foods has been highlighted as beneficial for reducing the risk of AMD. Adhering to the Mediterranean diet, which encompasses these elements, can be recommended as a dietary pattern for AMD. Furthermore, the modulation of the gut microbiota through dietary interventions and probiotics has shown promise in managing AMD.
Collapse
Affiliation(s)
- Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Ordu, Türkiye
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Nađ T, Kolobarić N, Mihaljević Z, Drenjančević I, Šušnjara P, Stupin A, Kardum D, Kralik Z, Kralik G, Košević M, Jukić I. Effect of n-3 Polyunsaturated Fatty Acids Enriched Chicken Meat Consumption in Relation to Oxidative Stress Marker Levels in Young Healthy Individuals: A Randomized Double-Blind Study. Antioxidants (Basel) 2025; 14:204. [PMID: 40002390 PMCID: PMC11852193 DOI: 10.3390/antiox14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress and inflammation are considered important risk contributors for various diseases. Over the last few decades, increasing attention has been focused on the role of n-3 polyunsaturated fatty acids (n-3 PUFAs) in human health and disease. We aimed to evaluate the effect of n-3 PUFA-enriched chicken meat consumption (~1500 mg of n-3 PUFAs intake per day) for three weeks on oxidative status and antioxidative capacity in young healthy individuals. This was a randomized, double-blinded, controlled trial, in which thirty-nine young healthy people were randomly allocated to eating 500 g/day of regular chicken meat (Control group) or n-3 PUFA-enriched chicken meat (n-3 PUFAs group) over 3 weeks. Subjects' biochemical parameters, including serum lipids level, liver enzymes, serum activities of antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD)), serum oxidative stress markers (thiobarbituric acid reactive substances (TBARS) and ferric-reducing ability (FRAP)), as well as intracellular production of reactive oxygen species (ROS) in peripheral blood mononuclear cells, were assessed before and after completing the three-week dietary protocol. N-3-enriched chicken meat consumption significantly reduced high-sensitivity C reactive protein (hsCRP) serum level and increased the level of the antioxidant defense marker, FRAP. Furthermore, GPx and SOD enzyme activities significantly increased in the n-3 PUFAs group compared to baseline, which was accompanied by significantly decreased ROS production. In healthy young individuals, the 3-week dietary intake of n-3 PUFA-enriched chicken meat significantly increased the serum total antioxidant and anti-inflammatory potential, indicating that n-3 PUFAs may be protective in resting health condition without inflammatory processes.
Collapse
Affiliation(s)
- Tihana Nađ
- Clinic of Pediatrics, University Hospital Centre Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Department of Pediatrics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Petar Šušnjara
- Faculty of Kinesiology, Josip Juraj Strossmayer University of Osijek, Drinska 16a, HR-31000 Osijek, Croatia;
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Darjan Kardum
- Department of Pediatrics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Department of Neonatology, Zadar General Hospital, B. Peričića 5, HR-23000 Zadar, Croatia
| | - Zlata Kralik
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Manuela Košević
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| |
Collapse
|
3
|
Gupta SK, Gupta A, Choudhary JS, Foysal MJ, Gupta R, Sarkar B, Krishnani KK. Dietary Chia (Salvia hispanica L.) seeds oil supplementation augments growth performance and gut microbial composition in Labeo rohita fingerlings. Sci Rep 2025; 15:1866. [PMID: 39805931 PMCID: PMC11730598 DOI: 10.1038/s41598-024-83102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The present study investigates the supplemental effects of chia seed oil (CSO) on the growth performance and modulation of intestinal microbiota in Labeo rohita fingerlings. Four diets were formulated with graded levels of CSO: 1.0%, 2.0%, and 3.0% represented as CSO (1), CSO (2), and, CSO (3) groups alongside a control group without CSO. L. rohita fingerlings (n = 180) (mean weight = 19.74 ± 0.33 g) were randomly distributed in triplicates for 60 days to these treatment groups. The results depicted significant improvements (p < 0.05) in weight gain (WG) %, specific growth rate (SGR), feed conversion ratio (FCR), and feed conversion efficiency (FCE) in the group supplemented with the lowest level of CSO. Gut microbial analysis evidenced the ability of CSO at 1.0% to augment the relative abundance of bacterial phyla such as Verrucomicrobiota, Actinobacteria, Bacteroidota, Fusobacteria and Firmicutes, as well as genera Luteolibacter and Cetobacterium, indicating higher alpha diversity compared to the control. Principle coordinate analysis (PCoA) demonstrated a distinct composition of microbial communities in CSO-supplemented groups relative to the control (p < 0.001). Correlation analysis further revealed a significant (p < 0.05) association of specific microbial taxa with growth performance parameters. The predictions of metabolic pathways suggested the involvement of carbohydrate and amino acid metabolic pathways in the CSO (1) group, indicating improved nutrient transport and metabolism. Overall, the findings highlight the beneficial effects of 1.0% CSO supplementation on growth performance and modulation of gut microbiota in L. rohita fingerlings.
Collapse
Affiliation(s)
- Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India.
- School of Molecular Diagnostics, Prophylactics and Nanobiotechnology (SMDPN), ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India.
| | - Akruti Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India
- Department of Biotechnology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Plandu, Ranchi, Jharkhand, 834010, India
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Rajan Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India
| | - K K Krishnani
- ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India
| |
Collapse
|
4
|
Lei S, Liu Y. Identifying the Involvement of Gut Microbiota in Retinal Vein Occlusion by Mendelian Randomization and Genetic Correlation Analysis. Transl Vis Sci Technol 2025; 14:5. [PMID: 39786739 PMCID: PMC11725986 DOI: 10.1167/tvst.14.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO). Methods This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis. Genome-wide association study (GWAS) data associated with 196 GM taxa was obtained from the MiBioGen consortium, involving a large number of European-ancestry participants. GWAS data of RVO was obtained from the FinnGen consortium and another study that also involved European-ancestry participants. Inverse-variance weighted was used as the primary approach for MR estimation. Moreover, LDSC and polygenic overlap analyses were performed to evaluate the genetic correlation between GM taxa and RVO. Results The MR results identified the association of six GM taxa, including class Bacilli, order Lactobacillales, family Streptococcaceae, genus Clostridium innocuum group, genus Family XIII AD3011 group, and genus Subdoligranulum with the development of RVO. In addition, the polygenic overlap analysis supported the genetic association between GM and RVO. Conclusions Our findings confirmed the association between six GM taxa and the development of RVO, thereby highlighting the effects of GM on retinal vascular health. Translational Relevance The results may provide the rationale for developing GM-based strategies for preventing the onset of RVO.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Ebrahimi R, Farsi Y, Nejadghaderi SA. Fecal microbiota transplantation for glaucoma; a potential emerging treatment strategy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100314. [PMID: 39726974 PMCID: PMC11670420 DOI: 10.1016/j.crmicr.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Glaucoma is the primary cause of irreversible blindness globally. Different glaucoma subtypes are identified by their underlying mechanisms, and treatment options differ by its pathogenesis. Current management includes topical medications to lower intraocular pressure and surgical procedures like trabeculoplasty and glaucoma drainage implants. Fecal microbiota transplantation (FMT) is an almost effective and safe treatment option for recurrent Clostridium difficile infection. The relationship between bacterial populations, metabolites, and inflammatory pathways in retinal diseases indicates possible therapeutic strategies. Thus, incorporating host microbiota-based therapies could offer an additional treatment option for glaucoma patients. Here, we propose that combining FMT with standard glaucoma treatments may benefit those affected by this condition. Also, the potential safety, efficacy, cost-effectiveness and clinical applications are discussed.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Peng D, Wang Y, Yao Y, Yang Z, Wu S, Zeng K, Hu X, Zhao Y. Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Mol Cell Biochem 2024; 479:2895-2906. [PMID: 38217838 DOI: 10.1007/s11010-023-04904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The metabolism of long-chain polyunsaturated fatty acids (LCPUFAs) is closely associated with the risk and progression of colorectal cancer (CRC). This paper aims to investigate the role of LCPUFA in the crosstalk between intestinal microflora and macrophages, as well as the effects of these three parties on the progression of CRC. The metabolism and function of LCPUFA play important roles in regulating the composition of the human gut microflora and participating in the regulation of inflammation, ultimately affecting macrophage function and polarization, which is crucial in the tumor microenvironment. The effects of LCPUFA on cellular interactions between the two species can ultimately influence the progression of CRC. In this review, we explore the molecular mechanisms and clinical applications of LCPUFA in the interactions between intestinal microflora and intestinal macrophages, as well as its significance for CRC progression. Furthermore, we reveal the role of LCPUFA in the construction of the CRC microenvironment and explore the key nodes of the interactions between intestinal flora and intestinal macrophages in the environment. It provides potential targets for the metabolic diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Duo Peng
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yan Wang
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Zisha Yang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Wu
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Kaijing Zeng
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
7
|
Zhang J, Liu Y, Shan S, Xu C, An L, Yang G, Wang L, Li H. Variation in the gut microbiota during the early developmental stages of common carp (Cyprinus carpio L.) and its correlation with feed and pond water microflora. BMC Vet Res 2024; 20:464. [PMID: 39394135 PMCID: PMC11468302 DOI: 10.1186/s12917-024-04321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Fish gut microbiota undergo dynamic changes under the influence of many factors and play an important role in the nutrition, immunity and development in fish. Although common carp (Cyprinus carpio L.) is an economically important freshwater fish, there are few reports on its gut microbiota changes at different early developmental stages. In the present study, the gut microbiota of common carp during the early developmental stages and its correlation with the feed and pond water flora were studied using the Illumina MiSeq sequencing platform. RESULTS The results showed that the gut microbiota of common carp underwent continuous and mild changes over the development process, and the pond water environment might provide bacterial resources and have a certain influence on the changes in the gut microbiota of common carp. However, host selection pressure played a more important role in shaping the gut microbiota. Although the gut microbiota was affected by many factors, the presence of core microbiota indicated that some bacterial species adapt to the gut microenvironment of common carp and played a role in its growth process. CONCLUSIONS The dynamic changes of gut microbiota of carp in early development stage were related to the feed, water environment and host selection. The results of this study provide a theoretical basis for healthy farming and disease prevention of common carp.
Collapse
Affiliation(s)
- Jiahui Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yu Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Cong Xu
- College of Pharmacy, Binzhou Medical University, No. 1 Yucai Road, Yantai, 264003, PR China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
8
|
Aune SK, Helseth R, Kalstad AA, Laake K, Åkra S, Arnesen H, Solheim S, Seljeflot I. Links Between Adipose Tissue Gene Expression of Gut Leakage Markers, Circulating Levels, Anthropometrics, and Diet in Patients with Coronary Artery Disease. Diabetes Metab Syndr Obes 2024; 17:2177-2190. [PMID: 38827167 PMCID: PMC11144434 DOI: 10.2147/dmso.s438818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Recent studies suggest gut-derived lipopolysaccharide (LPS)-translocation to play a role in both systemic inflammation and in inflammatory adipose tissue. We aimed to investigate whether circulating LPS-related inflammatory markers and corresponding genetic expression in adipose tissue were associated with obesity, cardiometabolic risk factors, and dietary habits in patients with coronary artery disease. Methods Patients (n=382) suffering a myocardial infarction 2-8 weeks prior to inclusion were enrolled in this cross-sectional study. Subcutaneous adipose tissue (SAT), taken from the gluteal region, and fasting blood samples were collected at inclusion for determination of genetic expression of LPS-binding protein (LBP), CD14, toll-like receptor 2 (TLR2), and TLR4 in SAT, and LPS, LBP, and soluble cluster of differentiation 14 (sCD14) in the circulation. All patients filled out a dietary registration form. Results Patients (median age 74 years, 25% women), had a median body mass index (BMI) of 25.9 kg/m2. Circulating levels of LBP correlated to BMI (p=0.02), were significantly higher in overweight or obese (BMI≥25 kg/m2) compared to normal- or underweight patients (BMI<25 kg/m2), and were significantly elevated in patients with T2DM, hypertension, and MetS, compared to patients without (p≤0.04, all). In SAT, gene expression of CD14 and LBP correlated significantly to BMI (p≤0.001, both), and CD14 and TLR2 expressions were significantly higher in patients with T2DM and MetS compared to patients without (p≤0.001, both). Circulating and genetically expressed CD14 associated with use of n-3 PUFAs (p=0.008 and p=0.003, respectively). No other significant associations were found between the measured markers and dietary habits. Conclusion In patients with established CAD, circulating levels of LBP and gene expression of CD14 and TLR2 in SAT were related to obesity, MetS, T2DM, and hypertension. This suggests that the LPS-LBP-CD14 inflammatory axis is activated in the chronic low-grade inflammation associated with cardiometabolic abnormalities, whereas no significant associations with dietary habits were observed.
Collapse
Affiliation(s)
- Susanne Kristine Aune
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild Helseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Are A Kalstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kristian Laake
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
9
|
Ma L, Zhu Y, Zhu La ALT, Lourenco JM, Callaway TR, Bu D. Schizochytrium sp. and lactoferrin supplementation alleviates Escherichia coli K99-induced diarrhea in preweaning dairy calves. J Dairy Sci 2024; 107:1603-1619. [PMID: 37769949 DOI: 10.3168/jds.2023-23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1β, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingkun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, China.
| |
Collapse
|
10
|
Patjas A, Martelius A, Ollgren J, Kantele A. International travel increases risk of urinary tract infection caused by extended-spectrum beta-lactamase-producing Enterobacterales-three-arm case-control study. J Travel Med 2024; 31:taad155. [PMID: 38123504 DOI: 10.1093/jtm/taad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) have worldwide become increasingly prevalent as pathogens causing urinary tract infections (UTIs), posing challenges in their treatment. Of particular concern are travellers to low- and middle-income countries (LMICs), a substantial proportion of whom become colonized by ESBL-PE, with UTIs as the most common clinical manifestation. Seeking tools for preventing ESBL-PE UTI, we explored factors associated with (i) any UTI (versus control), (ii) ESBL-PE UTI (versus control) and (iii) ESBL-PE versus non-ESBL-PE UTI. METHODS During 2015-20, we recruited patients with recent ESBL-PE or non-ESBL-PE UTIs, and controls with no UTI to fill in questionnaires covering potential (ESBL-PE-)UTI risk factors. RESULTS Of our 430 participants, 130 had ESBL-PE UTI and 187 non-ESBL-PE UTI; 113 were controls. Our three comparisons showed several risk factors as exemplified for any UTI versus controls by female sex, lower education, age, diabetes, antibiotic use, diarrhoea; for ESBL-PE UTI versus controls by travel to LMICs, antibiotic use, swimming; and ESBL-PE versus non-ESBL-PE UTI by male sex, higher education, LMIC travel (participant/household member), pets and antibiotic use. Weekly fish meals appeared protective against both UTI and ESBL-PE UTI. CONCLUSIONS Of the numerous factors predisposing to UTI and/or ESBL-PE UTI, our study highlights antibiotic use and LMIC travel. Household members' LMIC travel appears to pose a risk of ESBL-PE UTI, pointing to household transmission of travel-acquired uropathogens. As predisposing factors to multidrug-resistant UTI, international travel and antibiotic use constitute practical targets for prevention efforts.
Collapse
Affiliation(s)
- Anu Patjas
- Meilahti Vaccine Research Centre, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Unit, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Antimicrobial Resistance Research, FIMAR, Helsinki, Finland
| | - Antti Martelius
- Meilahti Vaccine Research Centre, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Unit, University of Helsinki, Helsinki, Finland
| | - Jukka Ollgren
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anu Kantele
- Meilahti Vaccine Research Centre, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Unit, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Antimicrobial Resistance Research, FIMAR, Helsinki, Finland
- Travel Clinic, Aava Medical Centre, Helsinki, Finland
| |
Collapse
|
11
|
Di Benedetto MG, Landi P, Mencacci C, Cattaneo A. Depression in Women: Potential Biological and Sociocultural Factors Driving the Sex Effect. Neuropsychobiology 2024; 83:2-16. [PMID: 38272005 PMCID: PMC10871691 DOI: 10.1159/000531588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/24/2023] [Indexed: 01/27/2024]
Abstract
Important sex-related differences have been observed in the onset, prevalence, and clinical phenotype of depression, based on several epidemiological studies. Social, behavioural, and educational factors have a great role in underlying this bias; however, also several biological factors are extensively involved. Indeed, sexually dimorphic biological systems might represent the underlying ground for these disparities, including cerebral structures and neural correlates, reproductive hormones, stress response pathways, the immune system and inflammatory reaction, metabolism, and fat distribution. Furthermore, in this perspective, it is also important to consider and focus the attention on specific ages and life stages of individuals: indeed, women experience during their life specific periods of reproductive transitional phases, which are not found in men, that represent windows of particular psychological vulnerability. In addition to these, other biologically related risk factors, including the occurrence of sleep disturbances and the exposure to childhood trauma, which are found to differentially affect men and women, are also putative underlying mechanisms of the clinical bias of depression. Overall, by taking into account major differences which characterize men and women it might be possible to improve the diagnostic process, as well as treat more efficiently depressed individuals, based on a more personalized medicine and research.
Collapse
Affiliation(s)
- Maria Grazia Di Benedetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy,
| | - Paola Landi
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Claudio Mencacci
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
12
|
Andreazzoli F, Levy Yurkovski I, Ben-Arye E, Bonucci M. Conceptualizing an Integrative Multiple Myeloma Care: The Role of Nutrition, Supplements, and Complementary Modalities. Nutrients 2024; 16:237. [PMID: 38257130 PMCID: PMC10818534 DOI: 10.3390/nu16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple Myeloma (MM) is the second most prevalent hematologic malignancy, and its incidence has been increasing enormously in recent years. The prognosis of MM has changed radically with the introduction of new drugs that have improved life expectancy; recurrences are a common occurrence during the course of the disease and are characterized by an increase in refractory to treatment. Moreover, MM patients are challenged by quality of life-related concerns while limited conventional therapy may be offered. This includes bone pain and dialysis due to the complications of acute renal failure. We, therefore, believe that it is very important to add new treatment modalities, including supplements, nutritional modifications, acupuncture, and mind-body therapies, with the goal of improving treatment tolerance, effectiveness, and patients' quality of life. Moreover, many patients use some of these supplements on their own, in the hope of reducing the side effects, so it is even more important to know their action and potential. The purpose of this review is to illustrate all these strategies potentially available to enrich our approach to this, to date, incurable disease.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
| | - Ilana Levy Yurkovski
- Hematology Unit, Bnai Zion Medical Center, Haifa 3339419, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Complementary and Integrative Medicine Service, Bnai Zion Medical Center, Haifa 3339419, Israel
| | - Eran Ben-Arye
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Integrative Oncology Program, The Oncology Service, Lin Carmel, and Zebulun Medical Centers, Clalit Health Services, Haifa 3535152, Israel
| | - Massimo Bonucci
- Artoi Foundation, Via Ludovico Micara, 73, 00165 Rome, Italy;
| |
Collapse
|
13
|
Parolini C. The Role of Marine n-3 Polyunsaturated Fatty Acids in Inflammatory-Based Disease: The Case of Rheumatoid Arthritis. Mar Drugs 2023; 22:17. [PMID: 38248642 PMCID: PMC10817514 DOI: 10.3390/md22010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a conserved process that involves the activation of immune and non-immune cells aimed at protecting the host from bacteria, viruses, toxins and injury. However, unresolved inflammation and the permanent release of pro-inflammatory mediators are responsible for the promotion of a condition called "low-grade systemic chronic inflammation", which is characterized by tissue and organ damage, metabolic changes and an increased susceptibility to non-communicable diseases. Several studies have demonstrated that different dietary components may influence modifiable risk factors for diverse chronic human pathologies. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are well-recognized anti-inflammatory and immunomodulatory agents that are able to influence many aspects of the inflammatory process. The aim of this article is to review the recent literature that relates to the modulation of human disease, such as rheumatoid arthritis, by n-3 PUFAs.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
14
|
Chen J, Chen DF, Cho KS. The Role of Gut Microbiota in Glaucoma Progression and Other Retinal Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1662-1668. [PMID: 37490970 PMCID: PMC10616709 DOI: 10.1016/j.ajpath.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
As a rapidly growing field, microbiota research offers novel approaches to promoting ocular health and treating major retinal diseases, such as glaucoma. Gut microbiota changes throughout life; however, certain patterns of population changes have been increasingly associated with specific diseases. It has been well established that a disrupted microbiome contributes to central nervous system diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, and glioma, suggesting a prominent role of microbiome in neurodegenerative diseases. This review summarizes the progress in identifying significant changes in the microbial composition of patients with glaucoma by compiling studies on the association between microbiota and disease progression. Of interest is the relationship between increased Firmicutes/Bacteroidetes ratio in patients with primary open-angle glaucoma, increased taurocholic acid, decreased glutathione, and a reduction in retinal ganglion cell survival. Connecting these microbes to specific metabolites sheds light on the pathogenic mechanism and novel treatment strategies. In summary, the current review synthesizes the findings of several studies investigating the effects of shifting bacterial population in retinal diseases, particularly glaucoma, with the aim to identify the current direction of treatment and help direct future endeavors.
Collapse
Affiliation(s)
- Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Luo W, Skondra D. Elucidating the Role of the Microbiome in Ocular Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1622-1626. [PMID: 37683929 DOI: 10.1016/j.ajpath.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Wendy Luo
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|
16
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Arjomand Fard N, Bording-Jorgensen M, Wine E. A Potential Role for Gut Microbes in Mediating Effects of Omega-3 Fatty Acids in Inflammatory Bowel Diseases: A Comprehensive Review. Curr Microbiol 2023; 80:363. [PMID: 37807005 DOI: 10.1007/s00284-023-03482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with several inflammatory conditions, including inflammatory bowel diseases (IBDs), and found to have an impact on gut microbiota. In fact, some randomized controlled studies suggest benefits to IBD patients, but others do not. Our aim was to review recent evidence on the effects of omega-3 on IBD and establish the contribution of the gut microbiome. Omega-3 mediate anti-inflammatory effects in IBD through various mechanisms, including suppression of NLR family pyrin domain-containing 3 (NLRP3) inflammasome, Toll-like receptor-4 (TLR4), and nucleotide-binding oligomerization domain 2 (NOD2) signaling; this results in the repression of the nuclear factor-kappa B (Nf-kB) pathway and the secretion of pro-inflammatory cytokines. Omega-3 can also affect gut microbiota and revert the bacterial community to patterns associated with healthy status by increasing short-chain fatty acid (SCFA)-producing bacteria and enhancing the mucosal gut barrier, thus promoting homeostasis. The combination of these immunoregulatory effects and anti-inflammation properties with the promotion of a balanced gut microbiome environment could suggest that omega-3 might benefit IBD patients. Considering the microbiota of IBD patients while using omega-3 might predict and improve omega-3 effectiveness. Combining omega-3 with bacteria-altering therapy, such as probiotics and fecal microbiota transplantation, may further enhance its efficacy; however, further studies are required to elucidate mechanisms and potential preventive or treatment roles of omega-3 in IBD.
Collapse
Affiliation(s)
- Nazanin Arjomand Fard
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Michael Bording-Jorgensen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada
- Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87Th Ave, Edmonton, AB, T6G 1C9, Canada
| | - Eytan Wine
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
- Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87Th Ave, Edmonton, AB, T6G 1C9, Canada.
| |
Collapse
|
18
|
Liu S, Kuang X, Song X, Li H, Shao X, Gao T, Guo X, Li S, Liu R, Li K, Li D. Effects of lipid extract from blue mussel (Mytilus edulis) on gut microbiota, and its relationship with glycemic traits in type 2 diabetes mellitus patients: a double-blind randomized controlled trial. Food Funct 2023; 14:8922-8932. [PMID: 37721038 DOI: 10.1039/d3fo01491f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Studies have shown that blue mussel lipid extract (BMLE) can improve the glycemic traits, inflammatory cytokines, and lipid profile of patients with type 2 diabetes mellitus (T2DM) in China. Gut microbiota is closely related to T2DM. This study aims to explore whether BMLE can improve the glycemic status of T2DM patients by regulating gut microbiota in a 60-day double-blind randomized controlled trial. A total of 133 T2DM subjects were randomized into BMLE (n = 44), fish oil (FO) (n = 44), and corn oil (CO) (n = 45) groups. The participants were asked to take two corresponding oil capsules (0.8 g per capsule each) every day. The faecal microbiota, glycemic traits, and other cardiometabolic factors were analyzed at baseline and endpoint. The α diversity estimators of Ace and Chao1 decreased significantly in all three groups, but there was no significant difference between the groups. Eight bacteria decreased significantly in the BMLE group but not in the FO and CO groups: unclassified_Clostridia_UCG_014, unclassified_Bacteroidia, Erysipelotrichaceae, and uncultured_Ruminococcaceae_bacterium at the family level and unclassified_Bacteroidia, uncultured_Ruminococcaceae_bacterium, unclassified_Clostridia_UCG_014, and Turicibacter at genus level. In the BMLE group, the change in the relative abundance of Erysipelotrichaceae was positively correlated with the changes in the homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.454, p < 0.01) and fasting insulin (r = 0.414, p < 0.01). The change in the relative abundance of Turicibacter was positively correlated with the changes in HOMA-IR (r = 0.431, p < 0.01), fasting insulin (r = 0.414, p < 0.01), total cholesterol (TC) (r = 0.358, p < 0.05), and triacylglycerol (TG) (r = 0.393 p = 0.013). In conclusion, BMLE might improve glycemic traits by modulating gut microbiota in T2DM patients.
Collapse
Affiliation(s)
- Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, China
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| |
Collapse
|
19
|
Abreu Nascimento MD, Matta Alvarez Pimenta ND, Aiceles de Medeiros Pinto Polastri V, Cardoso Chamon R, Sarto Figueiredo M. Immunonutrients and intestinal microbiota: a gap in the literature. Crit Rev Food Sci Nutr 2023; 64:13058-13071. [PMID: 37751225 DOI: 10.1080/10408398.2023.2260468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The human intestinal microbiota is composed of a wide variety of microorganisms that play an important role in intestinal permeability, digestion, and especially, in the maturation of host's immune system. At the same time, effectiveness of immunomodulatory nutrients is known, especially in situations of stress and in strengthening body's defenses. However, the influence of the use of immunonutrients on microbiota's composition and variability is still poorly investigated. Studies indicate that the use of immunomodulators such as omega 3, glutamine, and arginine, can play a role in its modulation, through the immunological enhancement of the hosts. Therefore, this article sought to concentrate the latest evidence on the influence of the use of the main immunonutrients used in clinical practice on human gut microbiota, and their potential benefits.
Collapse
Affiliation(s)
| | - Nina da Matta Alvarez Pimenta
- Graduate Program in Nutrition Science, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil, Niterói, Brazil
| | | | - Raiane Cardoso Chamon
- Graduate Program in Pathology, Department of Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | | |
Collapse
|
20
|
Yousof SM, Alghamdi BS, Alqurashi T, Alam MZ, Tash R, Tanvir I, Kaddam LA. Modulation of Gut Microbiome Community Mitigates Multiple Sclerosis in a Mouse Model: The Promising Role of Palmaria palmata Alga as a Prebiotic. Pharmaceuticals (Basel) 2023; 16:1355. [PMID: 37895826 PMCID: PMC10610500 DOI: 10.3390/ph16101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Red marine algae have shown the potential to reduce inflammation, influence microbiota, and provide neuroprotection. OBJECTIVE To examine the prebiotic properties of Palmaria palmata aqueous extract (Palmaria p.) and its potential as a neuroprotective agent in multiple sclerosis (MS). METHODS eighty-eight adult Swiss mice were divided into four male and four female groups, including a control group (distilled water), Palmaria p.-treated group (600 mg/kg b.w.), cuprizone (CPZ)-treated group (mixed chow 0.2%), and a group treated with both CPZ and Palmaria p. The experiment continued for seven weeks. CPZ treatment terminated at the end of the 5th week, with half of the mice sacrificed to assess the demyelination stage. To examine the spontaneous recovery, the rest of the mice continued until the end of week seven. Behavioral (grip strength (GS) and open field tests (OFT)), microbiome, and histological assessments for general morphology of corpus callous (CC) were all conducted at the end of week five and week 7. RESULTS Palmaria p. can potentially protect against CPZ-induced MS with variable degrees in male and female Swiss mice. This protection was demonstrated through three key findings: (1) increased F/B ratio and expansion of the beneficial Lactobacillus, Proteobacteria, and Bactriodia communities. (2) Protection against the decline in GS induced by CPZ and prevented CPZ-induced anxiety in OFT. (3) Preservation of structural integrity. CONCLUSIONS Because of its propensity to promote microbiota alterations, its antioxidant activity, and its content of -3 fatty acids, Palmaria p. could be a promising option for MS patients and could be beneficial as a potential probiotic for the at-risk groups as a preventive measure against MS.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Preclinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer Alqurashi
- Faculty of Medicine in Rabigh, Pharmacology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reham Tash
- Department of Anatomy, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 3753450, Egypt
| | - Imrana Tanvir
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Lamis AbdelGadir Kaddam
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Physiology Department Faculty of Medicine, Alneelain University, Khartoum 11211, Sudan
| |
Collapse
|
21
|
Krusinski L, Maciel ICF, van Vliet S, Ahsin M, Lu G, Rowntree JE, Fenton JI. Measuring the Phytochemical Richness of Meat: Effects of Grass/Grain Finishing Systems and Grapeseed Extract Supplementation on the Fatty Acid and Phytochemical Content of Beef. Foods 2023; 12:3547. [PMID: 37835200 PMCID: PMC10572853 DOI: 10.3390/foods12193547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Grass-finished beef (GFB) can provide beneficial bioactive compounds to healthy diets, including omega-3 polyunsaturated fatty acids (n-3 PUFAs), conjugated linoleic acid (CLA), and secondary bioactive compounds, such as phytochemicals. The objective of this study was to compare fatty acids (FAs), micronutrients, and phytochemicals of beef fed a biodiverse pasture (GRASS), a total mixed ration (GRAIN), or a total mixed ration with 5% grapeseed extract (GRAPE). This was a two-year study involving fifty-four Red Angus steers (n = 54). GFB contained higher levels of n-3 PUFAs, vitamin E, iron, zinc, stachydrine, hippuric acid, citric acid, and succinic acid than beef from GRAIN and GRAPE (p < 0.001 for all). No differences were observed in quantified phytochemicals between beef from GRAIN and GRAPE (p > 0.05). Random forest analysis indicated that phytochemical and FA composition of meat can predict cattle diets with a degree of certainty, especially for GFB (5.6% class error). In conclusion, these results indicate that GFB contains higher levels of potentially beneficial bioactive compounds, such as n-3 PUFAs, micronutrients, and phytochemicals, compared to grain-finished beef. Additionally, the n-6:n-3 ratio was the most crucial factor capable of separating beef based on finishing diets.
Collapse
Affiliation(s)
- Lucas Krusinski
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Isabella C. F. Maciel
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; (I.C.F.M.); (J.E.R.)
| | - Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA; (S.v.V.); (M.A.)
| | - Muhammad Ahsin
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA; (S.v.V.); (M.A.)
| | - Guanqi Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
| | - Jason E. Rowntree
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; (I.C.F.M.); (J.E.R.)
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
22
|
Feng Y, Yang Y, Zou S, Qiu S, Yang H, Hu Y, Lin G, Yao X, Liu S, Zou M. Identification of alpha-linolenic acid as a broad-spectrum antiviral against zika, dengue, herpes simplex, influenza virus and SARS-CoV-2 infection. Antiviral Res 2023:105666. [PMID: 37429528 DOI: 10.1016/j.antiviral.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Zika virus (ZIKV) has garnered global attention due to its association with severe congenital defects including microcephaly. However, there are no licensed vaccines or drugs against ZIKV infection. Pregnant women have the greatest need for treatment, making drug safety crucial. Alpha-linolenic acid (ALA), a polyunsaturated ω-3 fatty acid, has been used as a health-care product and dietary supplement due to its potential medicinal properties. Here, we demonstrated that ALA inhibits ZIKV infection in cells without loss of cell viability. Time-of-addition assay revealed that ALA interrupts the binding, adsorption, and entry stages of ZIKV replication cycle. The mechanism is probably that ALA disrupts the membrane integrity of the virions to release ZIKV RNA, inhibiting viral infectivity. Further examination revealed that ALA inhibits DENV-2, HSV-1, influenza virus and SARS-CoV-2 infection dose-dependently. ALA is a promising broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Yifei Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Qiu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guifen Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
23
|
Wang S, Pan L, Wu R, Shao Y, Xue M, Zhu H, Min W, Zheng X, Liang Y, Zhu M. Oily fish and raw vegetable consumption can decrease the risk of AQP4-positive neuromyelitis optica spectrum disorders: a Mendelian-randomization study. Sci Rep 2023; 13:9372. [PMID: 37296187 PMCID: PMC10256733 DOI: 10.1038/s41598-023-36372-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory disorders of the central nervous system targeting aquaporin-4 (AQP4). The risk factors for NMOSD remain to be determined, though they may be related to diet and nutrition. This study aimed to explore the possibility of a causal relationship between specific food intake and AQP4-positive NMOSD risk. The study followed a two-sample Mendelian randomization (MR) design. Genetic instruments and self-reported information on the intake of 29 types of food were obtained from a genome-wide association study (GWAS) on 445,779 UK Biobank participants. A total of 132 individuals with AQP4-positive NMOSD and 784 controls from this GWAS were included in our study. The associations were evaluated using inverse-variance-weighted meta-analysis, weighted-median analysis, and MR-Egger regression. A high consumption of oily fish and raw vegetables was associated with a decreased risk of AQP4-positive NMOSD (odds ratio [OR] = 1.78 × 10-16, 95% confidence interval [CI] = 2.60 × 10-25-1.22 × 10-7, p = 0.001; OR = 5.28 × 10-6, 95% CI = 4.67 × 10-11-0.598, p = 0.041, respectively). The results were consistent in the sensitivity analyses, and no evidence of directional pleiotropy was observed. Our study provides useful implications for the development of AQP4-positive NMOSD prevention strategies. Further research is needed to determine the exact causal relationship and mechanisms underlying the association between specific food intake and AQP4-positive NMOSD.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Pan
- Clinical College, Jilin University, Changchun, China
| | - Rui Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yanqing Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Mengru Xue
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Zhu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Wanwan Min
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiangyu Zheng
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yekun Liang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Xing Y, Liang S, Zhang L, Ni H, Zhang X, Wang J, Yang L, Song S, Li HH, Jia C, Jin F. Combination of Lactobacillus fermentum NS9 and aronia anthocyanidin extract alleviates sodium iodate-induced retina degeneration. Sci Rep 2023; 13:8380. [PMID: 37225720 DOI: 10.1038/s41598-023-34219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
It is important to explore the effective approaches to prevent dry age-related macular degeneration (AMD). In this study, significantly decreased full-field electroretinograms wave amplitudes and disordered retina structures were detected in rat retinas of sodium iodate induced dry AMD model. Six a- and b-wave amplitudes and the antioxidant activities were significantly increased, and the outer nuclear layer thickness was significantly improved in the rat retinas treated with the combination of Lactobacillus fermentum NS9 (LF) and aronia anthocyanidin extract (AAE) compared with the model. The effects were much better than the treatment with AAE alone. The proteomics analysis showed the expressions of α-, β- and γ-crystallins were increased by 3-8 folds in AAE treated alone and by 6-11 folds in AAE + LF treatment compared with the model, which was further confirmed by immuno-blotting analysis. Analysis of gut microbial composition indicated that higher abundance of the genus Parasutterella and species P. excrementihominis was found in the AAE + LF treatment compared with the other groups. The results indicated that the combined treatment of AAE + LF is a potential way to prevent the retina degeneration which is significantly better than the AAE treated alone.
Collapse
Affiliation(s)
- Yan Xing
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Research Laboratory of Antioxidation & Anti-Aging, Guozhen Health Technology (Beijing) Co., Ltd., Beijing, 102206, China
| | - Shan Liang
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Limei Zhang
- Research Laboratory of Antioxidation & Anti-Aging, Guozhen Health Technology (Beijing) Co., Ltd., Beijing, 102206, China
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xueqin Zhang
- Research Laboratory of Antioxidation & Anti-Aging, Guozhen Health Technology (Beijing) Co., Ltd., Beijing, 102206, China
| | - Jiancheng Wang
- Research Laboratory of Antioxidation & Anti-Aging, Guozhen Health Technology (Beijing) Co., Ltd., Beijing, 102206, China
| | - Liu Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuangshuang Song
- Research Laboratory of Antioxidation & Anti-Aging, Guozhen Health Technology (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hai-Hang Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center), Beijing, 102206, China.
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Shah UA, Parikh R, Castro F, Bellone M, Lesokhin AM. Dietary and microbiome evidence in multiple myeloma and other plasma cell disorders. Leukemia 2023; 37:964-980. [PMID: 36997677 PMCID: PMC10443185 DOI: 10.1038/s41375-023-01874-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/11/2023]
Abstract
Multiple Myeloma (MM) remains an incurable plasma cell neoplasm. Although little is known about the etiology of MM, several metabolic risk factors such as obesity, diabetes mellitus, diet, and the human intestinal microbiome have been linked to the pathogenesis of MM. In this article, we provide a detailed review of dietary and microbiome factors involved in the pathogenesis of MM and their impact on outcomes. Concurrent with treatment advancements that have improved survival in MM, focused efforts are needed to reduce the burden of MM as well as improve MM specific and overall outcomes once MM is diagnosed. The findings presented in this review will provide a comprehensive guide on the evidence available to date of the impact of dietary and other lifestyle interventions on the gut microbiome and on MM incidence, outcomes, and quality of life. Data generated from such studies can help formulate evidence-based guidelines for healthcare providers to counsel individuals at risk such as those with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM) as well as MM survivors with respect to their dietary habits.
Collapse
Affiliation(s)
- Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Richa Parikh
- Department of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Francesca Castro
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Bellone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Deng Y, Wang R, Li X, Tan X, Zhang Y, Gooneratne R, Li J. Fish Oil Ameliorates Vibrio parahaemolyticus Infection in Mice by Restoring Colonic Microbiota, Metabolic Profiles, and Immune Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6920-6934. [PMID: 37126589 DOI: 10.1021/acs.jafc.2c08559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
27
|
Xu C, Gu L, Hu L, Jiang C, Li Q, Sun L, Zhou H, Liu Y, Xue H, Li J, Zhang Z, Zhang X, Xu Q. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer. Nat Commun 2023; 14:2042. [PMID: 37041160 PMCID: PMC10090135 DOI: 10.1038/s41467-023-37590-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
Colonocyte metabolism shapes the microbiome. Metabolites are the main mediators of information exchange between intestine and microbial communities. Arachidonic acid (AA) is an essential polyunsaturated fatty acid and its role in colorectal cancer (CRC) remains unexplored. In this study, we show that AA feeding promotes tumor growth in AOM/DSS and intestinal specific Apc-/- mice via modulating the intestinal microecology of increased gram-negative bacteria. Delta-5 desaturase (FADS1), a rate-limiting enzyme, is upregulated in CRC and effectively mediates AA synthesis. Functionally, FADS1 regulates CRC tumor growth via high AA microenvironment-induced enriched gram-negative microbes. Elimination of gram-negative microbe abolishes FADS1 effect. Mechanistically, gram-negative microbes activate TLR4/MYD88 pathway in CRC cells that contributes FADS1-AA axis to metabolize to prostaglandin E2 (PGE2). Cumulatively, we report a potential cancer-promoting mechanism of FADS1-AA axis in CRC that converts raising synthesized AA to PGE2 via modulating the intestinal microecology of gram-negative.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Longci Sun
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhou
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Schirò G, Iacono S, Balistreri CR. The Role of Human Microbiota in Myasthenia Gravis: A Narrative Review. Neurol Int 2023; 15:392-404. [PMID: 36976669 PMCID: PMC10053295 DOI: 10.3390/neurolint15010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fluctuating weakness of the skeletal muscles. Although antibodies against the neuromuscular junction components are recognized, the MG pathogenesis remains unclear, even if with a well-known multifactorial character. However, the perturbations of human microbiota have been recently suggested to contribute to MG pathogenesis and clinical course. Accordingly, some products derived from commensal flora have been demonstrated to have anti-inflammatory effects, while other have been shown to possess pro-inflammatory properties. In addition, patients with MG when compared with age-matched controls showed a distinctive composition in the oral and gut microbiota, with a typical increase in Streptococcus and Bacteroides and a reduction in Clostridia as well as short-chain fatty acid reduction. Moreover, restoring the gut microbiota perturbation has been evidenced after the administration of probiotics followed by an improvement of symptoms in MG cases. To highlight the role of the oral and gut microbiota in MG pathogenesis and clinical course, here, the current evidence has been summarized and reviewed.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Salvatore Iacono
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Correspondence:
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
29
|
Song D, Wang X, Ma Y, Liu NN, Wang H. Beneficial insights into postbiotics against colorectal cancer. Front Nutr 2023; 10:1111872. [PMID: 36969804 PMCID: PMC10036377 DOI: 10.3389/fnut.2023.1111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer types with limited therapeutic options worldwide. Gut microbiota has been recognized as the pivotal determinant in maintaining gastrointestinal (GI) tract homeostasis, while dysbiosis of gut microbiota contributes to CRC development. Recently, the beneficial role of postbiotics, a new concept in describing microorganism derived substances, in CRC has been uncovered by various studies. However, a comprehensive characterization of the molecular identity, mechanism of action, or routes of administration of postbiotics, particularly their role in CRC, is still lacking. In this review, we outline the current state of research toward the beneficial effects of gut microbiota derived postbiotics against CRC, which will represent the key elements of future precision-medicine approaches in the development of novel therapeutic strategies targeting gut microbiota to improve treatment outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Jagielski P, Bolesławska I, Wybrańska I, Przysławski J, Łuszczki E. Effects of a Diet Containing Sources of Prebiotics and Probiotics and Modification of the Gut Microbiota on the Reduction of Body Fat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1348. [PMID: 36674104 PMCID: PMC9859211 DOI: 10.3390/ijerph20021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In 2022, according to the World Health Organization (WHO) report, overweight and obesity have reached epidemic proportions in the WHO European Region, affecting almost 60% of adults. Based on the assessment of BMI (Body Mass Index), a group of 56 women aged 25-45 years (31 women group A average BMI 34.9 ± 4.86 kg/m2 and 25 women group B average BMI 33.4 ± 4.02 kg/m2) were qualified for the study. In a multi-center, two-arm, parallel, non-randomized study, two types of weight-reduction diets (A and B) were used over a 3-month period. In group A, a standard low-energy diet was used with individually adjusted caloric intake of 1100-1300 kcal, with an increase in the amount and frequency of consumption of sauerkraut and groats and a daily intake of fermented milk drinks (300-400 g), fermented cucumbers (100 g), mineral water (1 L) and cod liver oil (5 mL). In group B, a standard low-energy diet with individually adjusted caloric intake of 1100-1300 kcal with daily intake of fermented milk products (150 g), highly mineralized water (0.5 L), once a week fermented cucumbers, and once a week buckwheat groats was used. The following measurements were taken: body weight, body fat mass, water content, body height, waist circumference, and hip circumference. Body weight and body composition were measured using the Tanita MC-780 MA and TANITA BC-601 analyzer using the bioelectric bioimpedance method. The stool samples were analyzed in the microbiology laboratory where quantification of Bifidobcaterium spp., Bacteroides spp., Faecalibacterium prausnitzii species, Akkermansia muciniphila and total bacterial count (TBC) was performed. Under the influence of the introduced nutritional intervention, a statistically significant reduction in body weight, body fat, waist circumference, and hip circumference was demonstrated after 3 months. Under the influence of weight reduction, as well as dietary changes, there was an increase in the number of Akkermansia muciniphila bacteria in the women studied. The low-energy diet containing sources of natural prebiotics and probiotics had a more favorable effect on the number of Faecalibacterium prausnitzii bacteria compared to the standard diet.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Iwona Wybrańska
- Clinical Biochemistry, Department of Genetics and Nutrigenomics, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-310 Rzeszów, Poland
| |
Collapse
|
31
|
Hakola L, Vuorinen AL, Takkinen HM, Niinistö S, Ahonen S, Rautanen J, Peltonen EJ, Nevalainen J, Ilonen J, Toppari J, Veijola R, Knip M, Virtanen SM. Dietary fatty acid intake in childhood and the risk of islet autoimmunity and type 1 diabetes: the DIPP birth cohort study. Eur J Nutr 2023; 62:847-856. [PMID: 36284022 PMCID: PMC9941262 DOI: 10.1007/s00394-022-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/11/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim was to study the associations between dietary intake of fatty acids in childhood and the risk of islet autoimmunity and type 1 diabetes (T1D). METHODS The prospective Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study included children with genetic susceptibility to T1D born between 1996 and 2004. Participants were followed up every 3 to 12 months up to 6 years for diet, islet autoantibodies, and T1D. Dietary intake of several fatty acids at the age of 3 months to 6 years was assessed 1-8 times per participant with a 3-day food record. Joint models adjusted for energy intake, sex, HLA genotype and familial diabetes were used to investigate the associations of longitudinal intake of fatty acids and the development of islet autoimmunity and T1D. RESULTS During the 6-year follow-up, 247 (4.4%) children of 5626 developed islet autoimmunity and 94 (1.7%) children of 5674 developed T1D. Higher intake of monounsaturated fatty acids (HR 0.63; 95% CI 0.47, 0.82), arachidonic acid (0.69; 0.50, 0.94), total n-3 fatty acids (0.64; 0.48, 0.84), and long-chain n-3 fatty acids (0.14; 0.04, 0.43), was associated with a decreased risk of islet autoimmunity with and without energy adjustment. Higher intake of total fat (0.73; 0.53, 0.98), and saturated fatty acids (0.55; 0.33, 0.90) was associated with a decreased risk of T1D only when energy adjusted. CONCLUSION Intake of several fatty acids was associated with a decreased risk of islet autoimmunity or T1D among high-risk children. Our findings support the idea that dietary factors, including n-3 fatty acids, may play a role in the disease process of T1D.
Collapse
Affiliation(s)
- Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland.
| | - Anna-Leena Vuorinen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Hanna-Mari Takkinen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sari Niinistö
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Suvi Ahonen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jenna Rautanen
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Essi J Peltonen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Jaakko Nevalainen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
32
|
Jayapala HPS, Lim SY. N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Comb Chem High Throughput Screen 2023; 26:892-905. [PMID: 35786331 DOI: 10.2174/1386207325666220701121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
For several decades, studies have reported that n-3 polyunsaturated fatty acids (PUFAs) play a beneficial role in cardiovascular, immune, cognitive, visual, mental and metabolic health. The mammalian intestine is colonized by microbiota, including bacteria, archaea, viruses, protozoans, and fungi. The composition of the gut microbiota is influenced by long-term dietary habits, disease-associated dysbiosis, and the use of antibiotics. Accumulating evidence suggests a relationship between n-3 PUFAs and the gut microbiota. N-3 PUFAs can alter the diversity and abundance of the gut microbiome, and gut microbiota can also affect the metabolism and absorption of n-3 PUFAs. Changes in the populations of certain gut microbiota can lead to negative effects on inflammation, obesity, and metabolic diseases. An imbalanced consumption of n-3/n-6 PUFAs may lead to gut microbial dysbiosis, in particular, a significant increase in the ratio of Firmicutes to Bacteroidetes, which eventually results in being overweight and obesity. N-3 PUFA deficiency disrupts the microbiota community in metabolic disorders. In addition, accumulating evidence indicates that the interplay between n-3 PUFAs, gut microbiota, and immune reactions helps to maintain the integrity of the intestinal wall and interacts with host immune cells. Supplementation with n-3 PUFAs may be an effective therapeutic measure to restore gut microbiota homeostasis and correct metabolic disturbances associated with modern chronic diseases. In particular, marine extracts from seaweed contain a considerable dry weight of lipids, including n-3 PUFAs such as eicosapentaenoic acid (EPA, C20: 5) and docosahexaenoic acid (DHA, C22: 6). This review describes how gut microbiota function in intestinal health, how n-3 PUFAs interact with the gut microbiota, and the potential of n-3 PUFAs to influence the gut-brain axis, acting through gut microbiota composition.
Collapse
Affiliation(s)
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, 49112, Korea
| |
Collapse
|
33
|
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs) for Immunomodulation in COVID-19 Related Acute Respiratory Distress Syndrome (ARDS). J Clin Med 2022; 12:jcm12010304. [PMID: 36615103 PMCID: PMC9820910 DOI: 10.3390/jcm12010304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), might be complicated by Acute Respiratory Distress Syndrome (ARDS) caused by severe lung damage. It is relevant to find treatments for COVID-19-related ARDS. Currently, DHA and EPA n-3 PUFAs, known for their immunomodulatory activities, have been proposed for COVID-19 management, and clinical trials are ongoing. Here, examining COVID-19-related ARDS immunopathology, we reference in vitro and in vivo studies, indicating n-3 PUFA immunomodulation on lung microenvironment (bronchial and alveolar epithelial cells, macrophages, infiltrating immune cells) and ARDS, potentially affecting immune responses in COVID-19-related ARDS. Concerning in vitro studies, evidence exists of the potential anti-inflammatory activity of DHA on airway epithelial cells and monocytes/macrophages; however, it is necessary to analyze n-3 PUFA immunomodulation using viral experimental models relevant to SARS-CoV-2 infection. Then, although pre-clinical investigations in experimental acute lung injury/ARDS revealed beneficial immunomodulation by n-3 PUFAs when extracellular pathogen infections were used as lung inflammatory models, contradictory results were reported using intracellular viral infections. Finally, clinical trials investigating n-3 PUFA immunomodulation in ARDS are limited, with small samples and contradictory results. In conclusion, further in vitro and in vivo investigations are needed to establish whether n-3 PUFAs may have some therapeutic potential in COVID-19-related ARDS.
Collapse
|
34
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
35
|
Seo B, Yang K, Kahe K, Qureshi AA, Chan AT, De Vivo I, Cho E, Giovannucci EL, Nan H. Association of omega-3 and omega-6 fatty acid intake with leukocyte telomere length in US males. Am J Clin Nutr 2022; 116:1759-1766. [PMID: 36130216 PMCID: PMC9761772 DOI: 10.1093/ajcn/nqac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Omega-3 (n-3) and omega-6 (n-6) fatty acids may contribute to oxidative stress and inflammation, which are related to telomere shortening. Evidence supporting an association between intake of n-3 or n-6 fatty acids and leukocyte telomere length (LTL) in males has been limited. OBJECTIVES We conducted a cross-sectional study to examine the associations of total or individual n-3 or total n-6 fatty acid intake with LTL in US males. METHODS We included 2,494 US males with LTL measurement from 4 nested case-control studies within the Health Professionals Follow-Up Study. Individuals with previous histories of cancers, diabetes, and cardiovascular diseases at or before blood collection were excluded. Blood collection was performed between 1993 and 1995, and relevant information including n-3 and n-6 intake was collected in 1994 by questionnaire. The LTL was log-transformed and Z scores of the LTL were calculated for statistical analyses by standardizing the LTL in comparison with the mean within each selected nested case-control study. RESULTS We found that consumption of DHA (22:6n-3) was positively associated with LTL. In the multivariable-adjusted model, compared with individuals who had the lowest intake of DHA (i.e., first quartile group), the percentage differences (95% CIs) of LTL were -3.7 (-13.7, 7.5), 7.0 (-4.3, 19.7), and 8.2 (-3.5, 21.3) for individuals in the second, third, and fourth quartiles of consumption, respectively (P-trend = 0.0498). We did not find significant associations between total n-3 or total n-6 fatty acid intakes and LTL. In addition, we found that males who consumed canned tuna had longer LTL than those who did not; in the multivariable-adjusted model, the percentage difference of LTL was 10.5 (95% CI: 1.3, 20.4) (P = 0.02). CONCLUSIONS Our results suggest that higher intakes of DHA and canned tuna consumption are associated with longer LTL.
Collapse
Affiliation(s)
- Bojung Seo
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Keming Yang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Department of Global Health, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
36
|
Gao L, Zhang Z, Xing Z, Li Q, Kong N, Wang L, Song L. The variation of intestinal autochthonous bacteria in cultured tiger pufferfish Takifugu rubripes. Front Cell Infect Microbiol 2022; 12:1062512. [PMID: 36583108 PMCID: PMC9792791 DOI: 10.3389/fcimb.2022.1062512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Intestinal autochthonous bacteria play important roles in the maintenance of the physiological homeostasis of animals, especially contributing to the host immune system. In the present study, the variation of autochthonous bacterial community in the intestinal tract of 2-7 months-old tiger pufferfish Takifugu rubripes and bacterial communities in the seawater of recirculating aquaculture system (RAS) and the following offshore sea cage aquaculture system (OSCS) were analyzed during the aquaculture period from May to October 2021. Proteobacteria was found to be the most dominant phyla in both intestinal and seawater bacterial communities, which accounted for 68.82% and 65.65% of the total bacterial abundance, respectively. Arcobacter was the most core bacterial taxon in the intestinal bacterial community, with the most dominant abundance (42.89%) at the genus level and dominant positions in co-occurrence relationships with other bacterial taxa (node-betweenness value of 150). Enterococcaceae was specifically enriched in the intestinal bacterial community of pufferfishes from RAS, while Vibrionaceae was enriched in the intestinal bacterial community from OSCS. The F-values of beta diversity analysis between intestinal and seawater bacterial communities generally increased from May (6.69) to October (32.32), indicating the increasing differences between the intestinal and seawater bacterial communities along with the aquaculture process. Four bacterial taxa of Weissella sp., Akkermansia muciniphila, Dietzia sp. and Psychrobacter pacificensis had significant correlations with immune response parameters, and they were suggested to be the indicators for immune status and pathological process of pufferfish. The knowledge about the specific core bacteria, potentially pathogenic bacteria and the change of bacterial community in the intestinal tract of cultured pufferfish is of great scientific significance and will contribute to the understanding of intestinal bacterial homeostasis and biosecurity practice in pufferfish aquaculture.
Collapse
Affiliation(s)
- Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Ziyang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Linsheng Song,
| |
Collapse
|
37
|
Ran L, Yu J, Ma R, Yao Q, Wang M, Bi Y, Yu Z, Wu Y. Microalgae oil from Schizochytrium sp. alleviates obesity and modulates gut microbiota in high-fat diet-fed mice. Food Funct 2022; 13:12799-12813. [PMID: 36421064 DOI: 10.1039/d2fo01772e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Omega-3 PUFAs rich in fish oil are believed to prevent obesity by improving lipid metabolism and regulating gut microbiota. Microalgae oil is considered as an alternative source of omega-3 PUFAs owing to diminishing fish resources. Schizochytrium microalgae oil (SMO), with a high DHA proportion, is a promising source for commercial DHA production. However, its weight-loss and gut microbiota-regulating properties are not well studied. Here we compared the obesity reducing effects of SMO, commercial fish oil (FO) and a weight-loss drug, Orlistat (OL), in a high-fat diet (HFD) induced obesity mouse model. We found that SMO is comparable to commercial FO and OL with regard to weight loss, and it even exhibits the weight-loss effects earlier than FO and OL. It can efficiently inhibit the expression of lipogenesis-related genes and induce the expression of lipolysis-related genes. Moreover, SMO has different gut microbiota modulating effects from those of FO and OL. It does not influence the diversity of bacterial community, but does increase the abundance of several beneficial SCFAs-producing bacteria and inhibits obesity-promoting Desulfovibrio and several pathogens. We also found that SMO recovers the HFD-disturbed metabolic capability of gut microbiota. It can increase the abundance of several metabolism-related pathways, such as those of amino acids, SCFAs and bile acid, and decrease the level of the LPS biosynthesis pathway, which probably contributes to an improvement of lipid metabolism and restoration of the colonic mucosal barrier impaired by HFD. Our data suggest that SMO can be used as a superior dietary supplement for alleviating obesity.
Collapse
Affiliation(s)
- Liyuan Ran
- College of Laboratory Animals (Shandong Laboratory Animal Center), Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinhui Yu
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, 116044, China.,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, China.,Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Rui Ma
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, 116044, China.,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, China
| | - Qing Yao
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, 116044, China.,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, China
| | - Mingjie Wang
- Shandong Provincial Hospital, Shandong University, Jinan, China.,Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Inner Mongolia, China
| | - Yuping Bi
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zichao Yu
- College of Laboratory Animals (Shandong Laboratory Animal Center), Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yingjie Wu
- College of Laboratory Animals (Shandong Laboratory Animal Center), Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China. .,Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, 116044, China.,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
38
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
39
|
Krusinski L, Maciel ICF, Sergin S, Jambunathan V, Garg E, Garmyn AJ, Singh S, Bitler CA, Rowntree JE, Fenton JI. Effects of Hay, Baleage, and Soybean Hulls Waste Used as Supplemental Feeds on the Nutritional Profile of Grass-Finished Beef. Foods 2022; 11:foods11233856. [PMID: 36496663 PMCID: PMC9741108 DOI: 10.3390/foods11233856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Grass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand these variations, the current study investigated the effects of commonly used supplemental feeds on the nutritional profile of GFB. This two-year study involved 117 steers randomly allocated to one of four diets: (1) grass+hay (G-HAY), (2) grass+baleage (G-BLG), (3) grass+soybean hulls (G-SH), and (4) baleage+soybean hulls in feedlot (BLG-SH). Feed samples were analyzed for their nutritional value, and beef samples underwent analysis for fatty acids (FAs), vitamin E, minerals, lipid oxidation, and shear force. FAs were measured by GC-MS, vitamin E was analyzed chromatographically, minerals were analyzed by ICP-MS, and lipid oxidation was measured via a thiobarbituric acid reactive substances (TBARS) assay. G-SH beef had the highest n-6:n-3 ratio (p < 0.001), while BLG-SH beef contained less vitamin E (p < 0.001) and higher TBARS values (p < 0.001) compared to the other groups. G-HAY beef contained more long-chain n-3 polyunsaturated FAs compared to the other groups (p < 0.001). In conclusion, G-HAY beef had the most beneficial nutritional profile, while soybean hulls increased the n-6:n-3 ratio of beef.
Collapse
Affiliation(s)
- Lucas Krusinski
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Isabella C. F. Maciel
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Vijayashree Jambunathan
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Esha Garg
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Andrea J. Garmyn
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Sukhdeep Singh
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | | | - Jason E. Rowntree
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-(517)-353-3342
| |
Collapse
|
40
|
Ramos-Lopez O. Multi-Omics Nutritional Approaches Targeting Metabolic-Associated Fatty Liver Disease. Genes (Basel) 2022; 13:2142. [PMID: 36421817 PMCID: PMC9690481 DOI: 10.3390/genes13112142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 10/29/2023] Open
Abstract
Currently, metabolic-associated fatty liver disease (MAFLD) is a leading global cause of chronic liver disease, and is expected to become one of the most common indications of liver transplantation. MAFLD is associated with obesity, involving multiple mechanisms such as alterations in lipid metabolism, insulin resistance, hyperinflammation, mitochondrial dysfunction, cell apoptosis, oxidative stress, and extracellular matrix formation. However, the onset and progression of MAFLD is variable among individuals, being influenced by intrinsic (personal) and external environmental factors. In this context, sequence structural variants across the human genome, epigenetic phenomena (i.e., DNA methylation, histone modifications, and long non-coding RNAs) affecting gene expression, gut microbiota dysbiosis, and metabolomics/lipidomic fingerprints may account for differences in MAFLD outcomes through interactions with nutritional features. This knowledge may contribute to gaining a deeper understanding of the molecular and physiological processes underlying MAFLD pathogenesis and phenotype heterogeneity, as well as facilitating the identification of biomarkers of disease progression and therapeutic targets for the implementation of tailored nutritional strategies. This comprehensive literature review highlights the potential of nutrigenetic, nutriepigenetic, nutrimetagenomic, nutritranscriptomics, and nutrimetabolomic approaches for the prevention and management of MAFLD in humans through the lens of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
41
|
Chiang EPI, Syu JN, Hung HC, Rodriguez RL, Wang WJ, Chiang ER, Chiu SC, Chao CY, Tang FY. N-3 polyunsaturated fatty acids block the trimethylamine-N-oxide- ACE2- TMPRSS2 cascade to inhibit the infection of human endothelial progenitor cells by SARS-CoV-2. J Nutr Biochem 2022; 109:109102. [PMID: 35817244 PMCID: PMC9264727 DOI: 10.1016/j.jnutbio.2022.109102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is a novel coronavirus that infects many types of cells and causes cytokine storms, excessive inflammation, acute respiratory distress to induce failure of respiratory system and other critical organs. In this study, our results showed that trimethylamine-N-oxide (TMAO), a metabolite generated by gut microbiota, acts as a regulatory mediator to enhance the inerleukin-6 (IL-6) cytokine production and the infection of human endothelial progenitor cells (hEPCs) by SARS-CoV-2. Treatment of N-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) could effectively block the entry of SARS-CoV-2 in hEPCs. The anti-infection effects of N-3 PUFAs were associated with the inactivation of NF-κB signaling pathway, a decreased expression of the entry receptor angiotensin-converting enzyme 2 (ACE2) and downstream transmembrane serine protease 2 in hEPCs upon the stimulation of TMAO. Treatment of DHA and EPA further effectively inhibited TMAO-mediated expression of IL-6 protein, probably through an inactivation of MAPK/p38/JNK signaling cascades and a downregulation of microRNA (miR)-221 in hEPCs. In conclusion, N-3 PUFAs such as DHA and EPA could effectively act as preventive agents to block the infection of SARS-CoV-2 and IL-6 cytokine production in hEPCs upon the stimulation of TMAO.
Collapse
Affiliation(s)
- En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jia-Ning Syu
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China
| | - Hung-Chang Hung
- Department of Internal Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou City, Taiwan, Republic of China
| | - Raymond L Rodriguez
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
| | - En-Rung Chiang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China; National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, Republic of China
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
42
|
Fatty Acid and Micronutrient Profile of Longissimus Lumborum from Red Angus and Red Angus x Akaushi Cattle Finished on Grass or Grain. Foods 2022; 11:foods11213451. [PMID: 36360064 PMCID: PMC9656263 DOI: 10.3390/foods11213451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022] Open
Abstract
Cattle diet and breed modify the nutritional profile of beef. The objective of this study was to compare the fatty acid (FA) and micronutrient profiles of Red Angus (RA) and RA x Akaushi (AK) crossbreed steers fed either a grass or grain diet. This two-year study randomly assigned steers to the diets using a 2 × 2 factorial experiment. FAs and micronutrients were analyzed. Diet effect was the strongest with grass-finished beef being higher in n-3 polyunsaturated FAs (p < 0.001), conjugated linoleic acid (p < 0.05), vaccenic acid (p < 0.05), iron (p < 0.001), and vitamin E (p < 0.001) compared to grain-finished beef. Breed effects were observed for lauric and myristic acids (p < 0.05), selenium (p < 0.05), and zinc (p < 0.01) with AK containing more of these compounds than RA. Diet × breed effects were non-existent. These results indicate that diet has a stronger influence than breed on modifying the nutritional profile of beef. Because of a more favorable FA and antioxidant profile, consumption of grass-finished beef could benefit human health.
Collapse
|
43
|
Fu T, Ye S, Sun Y, Dan L, Wang X, Chen J. Greater Adherence to Cardioprotective Diet Can Reduce Inflammatory Bowel Disease Risk: A Longitudinal Cohort Study. Nutrients 2022; 14:nu14194058. [PMID: 36235711 PMCID: PMC9573093 DOI: 10.3390/nu14194058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The cardioprotective diet was reported to be associated with several chronic cardiometabolic diseases through an anti-inflammation effect. However, the association between the cardioprotective diet and the risk of inflammatory bowel disease (IBD) was unclear and deserved to be further explored. Methods: We calculated the cardioprotective diet score based on the consumptions of seven common food groups using the validated food frequency questionnaire data in the UK Biobank. Incident IBD was ascertained from primary care data, inpatient data, and the death registry. Cox proportional hazard models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between the cardioprotective diet score and the risk of IBD. Results: During a mean follow-up of 12.1 years, we documented 2717 incident IBD cases, including 851 cases of Crohn’s disease and 1866 cases of ulcerative colitis. Compared to participants with a cardioprotective diet score of 0−1, we observed a decreased risk of IBD among participants with cardioprotective diet scores of 3 (HR 0.85, 95% CI 0.73−0.99), 4 (HR 0.84, 95% CI 0.72−0.98), and 5−7 (HR 0.77, 95% CI 0.66−0.89) (p-trend < 0.001). Conclusions: A greater adherence to the cardioprotective diet was associated with a lower risk of IBD. Our finding highlighted the importance of focusing on the cardioprotective diet to prevent IBD.
Collapse
Affiliation(s)
- Tian Fu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China
| | - Yuhao Sun
- Center for Global Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lintao Dan
- Center for Global Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China
- Correspondence: (X.W.); (J.C.)
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China
- Center for Global Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (X.W.); (J.C.)
| |
Collapse
|
44
|
Xue F, Mo Q, Ma P, Zhang J, Wang S, Zheng C, Sun Y, Liu M, Yang Z, Bai H. Metagenomic insights into the modulatory effects of kelp powder (Thallus laminariae)-Treated dairy milk on growth performances and physiological lipometabolic processes of kunming mice. Front Nutr 2022; 9:949809. [PMID: 36238454 PMCID: PMC9552932 DOI: 10.3389/fnut.2022.949809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Kelp powder, supplemented with a dairy cow diet, effectively improved the milk polyunsaturated fatty acids (PUFAs) content. However, little information exists on the downstream effects of the kelp-treated milk on body health, gut microbiota, and nutrient metabolism. For this purpose, 48 3-week old Kunming (KM) male mice with an average body weight of 16.1 g ± 0.2 g were randomly divided into the control treatment (CON, fed with standard chow), the common milk supplement treatment (Milk), and the kelp powder-treated milk supplement treatment (KPM). The experiment lasted for 35 days, with a 7-day long adaptive period and a 28-day long main trial. Phenotypic parameters including growth performances and serum lipids-related parameters were first measured, and results indicated that Milk and KPM supplement significantly promoted the total body weight gain (P < 0.05), while significantly decreasing the feed conversion ratio compared with CON (P < 0.05). No significant differences were observed in the blood lipids content among all three treatments, however, the triglyceride content showed a decreasing trend after KPM supplement treatment. Further, activities of liver lipometabolic-related enzymes were investigated to determine the underlying factors that impacted physiological lipid metabolism. KPM treatment showed a significant reductive effect on the activity of lipogenesis-related enzymes, such as FAS and ACC, while a significant stimulative effect on the activity of lipolysis-related enzymes included the ATGL and CPT1 compared with CON (P < 0.05). Finally, gastrointestinal tract development and cecal microbiota community that correlated with body lipid degradation and absorption were measured to determine the underlying mechanism of KPM supplementation on physiological lipid metabolism. Results indicated that supplementation with KPM significantly enhanced cecal bacteria diversity which was reflected in the significant increase of Chao1 and ACE indexes. Besides, starch-degraded bacteria such as Faecalibacterium, Ruminococcaceae, and Streptococcus are significant decreased (P < 0.05), while cellulose-degraded bacteria including Parabacteroides, Prevotella, Lactobacillus, Clostridium, and Bifidobacterium are significantly increased (P < 0.05) after KPM supplement, which may further restrict the energy generation and therefore reduce the lipid deposition. In summary, kelp supplement helped increase the milk PUFAs content, enhance the bacterial diversity and relative abundances of probiotics, which finally modulated physiological lipid metabolism, and promote growth performances.
Collapse
Affiliation(s)
- Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
| | - Qingnan Mo
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Pengyun Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jian Zhang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shuzhen Wang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Chuanxia Zheng
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yuqin Sun
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
| | - Zhengang Yang
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
- *Correspondence: Zhengang Yang
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Hao Bai
| |
Collapse
|
45
|
Vitetta L. Can krill oil from small crustaceans be a panacea that alleviates symptoms of knee osteoarthritis? Am J Clin Nutr 2022; 116:621-622. [PMID: 35880815 DOI: 10.1093/ajcn/nqac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Keller L, Dempfle A, Dahmen B, Schreiber S, Adan RAH, Andreani NA, Danner UN, Eisert A, Fetissov S, Fischmeister FPS, Karwautz A, Konrad K, Kooij KL, Trinh S, van der Vijgh B, van Elburg AA, Zeiler M, Baines J, Seitz J, Herpertz-Dahlmann B. The effects of polyunsaturated fatty acid (PUFA) administration on the microbiome-gut-brain axis in adolescents with anorexia nervosa (the MiGBAN study): study protocol for a longitudinal, double-blind, randomized, placebo-controlled trial. Trials 2022; 23:545. [PMID: 35790976 PMCID: PMC9254435 DOI: 10.1186/s13063-022-06413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Anorexia nervosa (AN) is a severe psychiatric disease that often takes a chronic course due to insufficient treatment options. Emerging evidence on the gut-brain axis offers the opportunity to find innovative treatments for patients with psychiatric disorders. The gut microbiome of patients with AN shows profound alterations that do not completely disappear after weight rehabilitation. In previous studies, the administration of polyunsaturated fatty acids (PUFA) resulted in effects that might be beneficial in the treatment of AN, affecting the microbiome, body weight and executive functions. Therefore, the MiGBAN study aims to examine the effects of a nutritional supplementation with PUFA on the gut microbiome and body mass index (BMI) in patients with AN. Methods This is a longitudinal, double-blind, randomized, placebo-controlled trial. Within 2 years, 60 adolescent patients aged 12 to 19 years with AN will receive either PUFA or placebo for 6 months additional to treatment as usual. After 1 year, the long-term effect of PUFA on the gut microbiome and consecutively on BMI will be determined. Secondary outcomes include improvement of gastrointestinal symptoms, eating disorder psychopathology, and comorbidities. Additionally, the interaction of the gut microbiome with the brain (microbiome-gut-brain axis) will be studied by conducting MRI measurements to assess functional and morphological changes and neuropsychological assessments to describe cognitive functioning. Anti-inflammatory effects of PUFA in AN will be examined via serum inflammation and gut permeability markers. Our hypothesis is that PUFA administration will have positive effects on the gut microbiota and thus the treatment of AN by leading to a faster weight gain and a reduction of gastrointestinal problems and eating disorder psychopathology. Discussion Due to previously heterogeneous results, a systematic and longitudinal investigation of the microbiome-gut-brain axis in AN is essential. The current trial aims to further analyse this promising research field to identify new, effective therapeutic tools that could help improve the treatment and quality of life of patients. If this trial is successful and PUFA supplementation contributes to beneficial microbiome changes and a better treatment outcome, their administration would be a readily applicable additional component of multimodal AN treatment. Trial registration German Clinical Trials Register DRKS00017130. Registered on 12 November 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06413-7.
Collapse
Affiliation(s)
- Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany.
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Brigitte Dahmen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Samira Schreiber
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Roger A H Adan
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Unna N Danner
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, The Netherlands.,Department of Clinical Psychology, Utrecht University, Utrecht, Netherlands
| | - Albrecht Eisert
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Florian Ph S Fischmeister
- Institute of Psychology, University of Graz, Graz, Austria.,BioTechMed, Graz, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Karwautz
- Eating Disorders Unit at the Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Kerstin Konrad
- Section for Neuropsychology, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Karlijn L Kooij
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefanie Trinh
- Institute of Neuroanatomy, University Hospital RWTH Aachen, Aachen, Germany
| | - Benny van der Vijgh
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, The Netherlands
| | - Annemarie A van Elburg
- Altrecht Eating Disorders Rintveld, Altrecht Mental Health Institute, Zeist, The Netherlands.,Department of Clinical Psychology, Utrecht University, Utrecht, Netherlands
| | - Michael Zeiler
- Eating Disorders Unit at the Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - John Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
47
|
Caponio GR, Lippolis T, Tutino V, Gigante I, De Nunzio V, Milella RA, Gasparro M, Notarnicola M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants (Basel) 2022; 11:antiox11071274. [PMID: 35883765 PMCID: PMC9312044 DOI: 10.3390/antiox11071274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, nutraceuticals have gained great popularity, owing to their physiological and potential health effects, such as anti-inflammatory, anti-cancer, antioxidant, and prebiotic effects, and their regulation of lipid metabolism. Since the Mediterranean diet is a nutritionally recommended dietary pattern including high-level consumption of nutraceuticals, this review aimed to summarize the main results obtained by our in vitro and in vivo studies on the effects of the major constituents of the Mediterranean diet (i.e., extra virgin olive oil compounds, polyunsaturated fatty acids, and fruit components). Based on experimental studies, the therapeutic purpose of nutraceuticals depends on their bioavailability, solubility, toxicity, and delivery system. This review provides more in-depth knowledge on the effects linked to nutraceuticals administration on human health, focusing the gastrointestinal tract and suggesting specific dietary components for personalized adjuvant therapies.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valeria Tutino
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
48
|
Gut Microbiome Modification through Dietary Intervention in Patients with Colorectal Cancer: Protocol for a Prospective, Interventional, Controlled, Randomized Clinical Trial in Patients with Scheduled Surgical Intervention for CRC. J Clin Med 2022; 11:jcm11133613. [PMID: 35806897 PMCID: PMC9267451 DOI: 10.3390/jcm11133613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second cause of cancer death worldwide. Several factors have been postulated to be involved in CRC pathophysiology, including heritable and environmental factors, which are the latest to be closely associated with nutritional habits, physical activity, obesity, and the gut microbiota. The latter may also play a key role in CRC prognosis and derived complications in patients undergoing surgery. This is a single-center, open, controlled, randomized clinical trial, in patients with scheduled surgical intervention for CRC. The primary objective is to assess whether a pre-surgical nutritional intervention, based on a high-fiber diet rich in polyunsaturated fatty acids (PUFAs), can reduce disturbances of the gut microbiota composition and, consequently, the rate of post-surgical complications in patients with CRC. Patients will be randomized in a 1:1 ratio after receiving a diagnosis of CRC. In the control arm, patients will receive standard nutritional recommendations, while patients in the intervention arm will be advised to follow a high-fiber diet rich in PUFAs before surgery. Participants will be followed up for one year to evaluate the overall rate of postsurgical complications, recurrences of CRC, response to adjuvant therapy, and overall/disease-free survival.
Collapse
|
49
|
Detection and characterization of lipids in eleven species of fish by non-targeted liquid chromatography/mass spectrometry. Food Chem 2022; 393:133402. [DOI: 10.1016/j.foodchem.2022.133402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 12/18/2022]
|
50
|
Ziyaei K, Ataie Z, Mokhtari M, Adrah K, Daneshmehr MA. An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. Int J Biol Macromol 2022; 209:244-257. [PMID: 35306019 PMCID: PMC8924028 DOI: 10.1016/j.ijbiomac.2022.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/07/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. The rapidly increasing COVID-19 cases and successive mutations of the virus have made it a major challenge for scientists to find the best and efficient drug/vaccine/strategy to counteract the virus pathogenesis. As a result of research in scientific databases, regulating the immune system and its responses with nutrients and nutritional interventions is the most critical solution to prevent and combat this infection. Also, modulating other organs such as the intestine with these compounds can lead to the vaccines' effectiveness. Marine resources, mainly algae, are rich sources of nutrients and bioactive compounds with known immunomodulatory properties and the gut microbiome regulations. According to the purpose of the review, algae-derived bioactive compounds with immunomodulatory activities, sulfated polysaccharides, and polyunsaturated fatty acids have a good effect on the immune system. In addition, they have probiotic/prebiotic properties in the intestine and modulate the gut microbiomes; therefore, they can increase the effectiveness of vaccines produced. Thus, they with respectable safety, immune regulation, and modulation of microbiota have potential therapeutic against infections, especially COVID-19. They can also be employed as promising candidates for the prevention and treatment of viral infections, such as COVID-19.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Zahra Ataie
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Mokhtari
- Department of Medical Bioinformatics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Kelvin Adrah
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|