1
|
Soni N, Yadav M, M M, Sharma D, Paul D. Current developments and trends in hybrid extraction techniques for green analytical applications in natural products. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124543. [PMID: 40049075 DOI: 10.1016/j.jchromb.2025.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Natural product extraction has advanced significantly due to the growing need for environmentally friendly and sustainable analytical techniques. The medicinal benefits of natural products are gaining worldwide recognition. This shift emphasizes the need for sustainable extraction methods, as traditional organic solvents can negatively impact biodiversity. This review looks at new green extraction methods such as pressurized liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical fluid extraction. The overview describes the main goals, workings, and extraction principles of these techniques, which are used to extract phytochemicals from various plant sources. Additionally covered is how green solvents, more especially bio-based and deep eutectic solvents, can enhance the sustainability of these techniques. This review examines the developments in synergistic extraction, emphasizing how these hybrid techniques can be used to isolate a variety of natural products, including polyphenols, alkaloids, essential oils, and more. It also emphasizes how crucial these techniques are to the development of high-performance, environmentally friendly analytical platforms for the use of natural products. The recent uses of these extraction techniques are covered in this review. Despite the positive results, standardization, selectivity, scalability, and economic viability issues must be recognized and addressed.
Collapse
Affiliation(s)
- Navratan Soni
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Mukul Yadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Malarvannan M
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Dhanashree Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054.
| |
Collapse
|
2
|
Zhang Y, Purohit A, Aghayev Z, Wang Y, Liang J, Beykal B, Luo Y, Qiao M. Optimization and evaluation of a simplified green biorefinery for alginate extraction from sugar kelp (Saccharina latissima). Int J Biol Macromol 2025; 309:143147. [PMID: 40233905 DOI: 10.1016/j.ijbiomac.2025.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
A simplified two-stage ultrasound-assisted biorefinery process for sodium alginate extraction from sugar kelp (Saccharina latissima) was developed using green solvents. The process yielded three distinct fractions: fucoidan/laminarin (S1), sodium alginate (S2), and cellulose (P2). The results were analyzed with response surface methodology. Key parameters, including sonication amplitude, time, and pH, were evaluated, and sonication energy was introduced as a predictive factor to improve model accuracy. Mathematical optimization of the response surface model identified an optimal sodium alginate yield of 76.4 % at pH 2 and 432.2 kJ of sonication energy. Fourier-transform infrared spectroscopy (FTIR) confirmed effective sodium alginate fractionation, and molecular weight analysis correlated viscosity with alginate quality. Inductively coupled plasma mass spectrometry (ICP-MS) showed reduced heavy metal content in both fucoidan/laminarin and alginate, indicating an improved safety profile for potential food and nutritional applications. This scalable and eco-friendly biorefinery highlights an environmentally sustainable approach for sodium alginate production, maximizing biomass valorization and ensuring product safety.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Anuj Purohit
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Zahir Aghayev
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jiayi Liang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States; Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, United States
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, United States; Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
3
|
Perumal PK, Singhania RR, Raj T, Chen CW, Dong CD, Patel AK. From seaweed to superfood: Next-generation fucoidan extraction, structural and bioactivity evaluation for sustainable health solutions. Int J Biol Macromol 2025; 308:142710. [PMID: 40174842 DOI: 10.1016/j.ijbiomac.2025.142710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/10/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Sulfated fucoidan was extracted from Sargassum sp. using hydrothermal (HT), microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE) methods, each with distinct environmental and bioactivity profiles. Hydrothermal extraction yielded the highest amount of fucoidan (105.64 ± 2.14 mg/g) at 140 °C for 40 min. The extraction methods significantly influenced fucoidan's physicochemical composition and bioactivity, with antioxidant potential in the order MAE > UAE > HT. Notably, the hydrothermal extract (140-40-Pure) exhibited the strongest α-glucosidase inhibition (96 %, IC50 346.32 μg/mL) via mixed-type inhibition, while MAE and UAE extracts demonstrated superior prebiotic activity, supporting Lactobacillus plantarum and L. kefiri growth in vitro. Despite yielding lower quantities, UAE extracts showed consistent bioactivity and superior structural composition. Environmentally, UAE stands out as the greenest extraction method, with lower CO₂ emissions, reduced energy and solvent usage, and minimized processing time, aligning with SDGs-3. This research highlights the UAE's potential for scalable, eco-friendly production of bioactive fucoidans with diverse applications in the nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Tirath Raj
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
4
|
Chadwick M, Carvalho LG, Vanegas C, Dimartino S. A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Mar Drugs 2025; 23:27. [PMID: 39852529 PMCID: PMC11766506 DOI: 10.3390/md23010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fucoidan is a sulfated polysaccharide found in brown seaweed. Due to its reported biological activities, including antiviral, antibacterial and anti-inflammatory activities, it has garnered significant attention for potential biomedical applications. However, the direct relationship between fucoidan extracts' chemical structures and bioactivities is unclear, making it extremely challenging to predict whether an extract will possess a given bioactivity. This relationship is further complicated by a lack of uniformity in the recent literature in terms of the assessment and reporting of extract properties, yield and chemical composition (e.g., sulfate, fucose, uronic acid and monosaccharide contents). These inconsistencies pose significant challenges when directly comparing extraction techniques across studies. This review collected data on extract contents and properties from a selection of available studies. Where information was unavailable directly, efforts were made to extrapolate data. This approach enabled a comprehensive examination of the correlation between extraction techniques and the characteristics of the resulting extracts. A holistic framework is presented for the selection of fucoidan extraction methods, outlining key heuristics to consider when capturing the broader context of a seaweed bioprocess. Future work should focus on developing knowledge within these heuristic categories, such as the creation of technoeconomic models of each extraction process. This framework should allow for a robust extraction selection process that integrates process scale, cost and constraints into decision making. Key quality attributes for biologically active fucoidan are proposed, and areas for future research are identified, such as studies for specific bioactivities aimed at elucidating fucoidan's mechanism of action. This review also sets out future work required to standardize the reporting of fucoidan extract data. Standardization could positively enhance the quality and depth of data on fucoidan extracts, enabling the relationships between physical, chemical and bioactive properties to be identified. Recommendations on best practices for the production of high-quality fucoidan with desirable yield, characteristics and bioactivity are highlighted.
Collapse
Affiliation(s)
- Matthew Chadwick
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| | - Loïc G. Carvalho
- BioMara Ltd., 83 Princes Street, Edinburgh EH2 2ER, UK; (L.G.C.)
| | - Carlos Vanegas
- BioMara Ltd., 83 Princes Street, Edinburgh EH2 2ER, UK; (L.G.C.)
| | - Simone Dimartino
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
5
|
Sudhakar MP, Nived SA, Dharani G. Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications. Biopolymers 2025; 116:e23643. [PMID: 39655893 DOI: 10.1002/bip.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm2), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a Tg in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| | - Sureshkumar Ambika Nived
- School of Chemical & Biotechnology, The Shanmugha Arts Science, Technology & Research Academy (SASTRA, Deemed to be University), Thanjavur, India
| | - Gopal Dharani
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| |
Collapse
|
6
|
Laina KT, Drosou C, Stergiopoulos C, Eleni PM, Krokida M. Optimization of Combined Ultrasound and Microwave-Assisted Extraction for Enhanced Bioactive Compounds Recovery from Four Medicinal Plants: Oregano, Rosemary, Hypericum, and Chamomile. Molecules 2024; 29:5773. [PMID: 39683930 DOI: 10.3390/molecules29235773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
This study presents the synergistic application of ultrasound- and microwave-assisted extraction (UAE-MAE) as a novel and efficient method for recovering bioactive compounds from the medicinal plants oregano, rosemary, Hypericum perforatum, and chamomile. Extraction parameters, including microwave (MW) power, ultrasound (US) power, and extraction time, were optimized using the response surface methodology (RSM), with ethanol as the solvent. Extracts were evaluated for total phenolic content (TPC) via the Folin-Ciocalteu method and antioxidant activity (IC50) using the DPPH assay. High-performance liquid chromatography with diode array detection (HPLC-DAD) identified the main bioactive compounds contributing to their antioxidant and therapeutic potential. The optimized UAE-MAE conditions enhanced phenolic recovery and antioxidant potential across all plants. Notably, Hypericum perforatum exhibited the highest TPC (53.7 mg GAE/g) and strongest antioxidant activity (IC50 29.8 mg extract/g) under 200 W MW, 450 W US, and 12 min, yielding 14.5%. Rosemary achieved the highest yield (23.36%) with a TPC of 26.35 mg GAE/g and an IC50 of 40.75 mg extract/g at 200 W MW, 700 W US, and 8 min. Oregano's optimal conditions (500 W MW, 700 W US, 12 min) produced a TPC of 34.99 mg GAE/g and an IC50 of 50.31 mg extract/g. Chamomile extracts demonstrated lower phenolic content and antioxidant activity but achieved significant yields under 500 W MW, 700 W US, and 5 min. This study highlights UAE-MAE's superior efficiency, showcasing its potential to maximize phenolic recovery sustainably, making it a promising technique for industrial and therapeutic applications.
Collapse
Affiliation(s)
- Konstantina Theodora Laina
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Christina Drosou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Chrysanthos Stergiopoulos
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Panagiota Maria Eleni
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
7
|
Waseem M, Rizwan Javed M, Ali K, Saleem M, Faisal Manzoor M, Farhan M, Mugabi R, Sharma A, Ahmad Nayik G. Microwave-sonication synergistic extraction of dairy waste proteins: A review of green approach for dairy waste proteins valorization. ULTRASONICS SONOCHEMISTRY 2024; 111:107111. [PMID: 39426029 PMCID: PMC11536016 DOI: 10.1016/j.ultsonch.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Ultrasonic and microwave extraction process has great prospects to convert food and agricultural waste from food industries to value-added goods. Also, this review extensively elaborates the utilization of ultrasonication and microwave extraction (US-MW) process for valorization of dairy waste extracted proteins into novel foods. Both of these extraction and processing techniques are considered as green technologies when compared with the other conventional or chemical extraction and processing techniques. Further, this review also explains the impact of US-MW alone and in combination on the dairy waste proteins extraction, nutritional and techno-functional attributes of these dairy-waste proteins. The review also highlights the economic and cost-effective benefits of US-MW processes for extracting the proteins from dairy waste, indicating their feasibility and sustainability. The review also elucidated the synergistic utilization of US-MW extraction as a viable processing technique in extraction or production of bioactive compounds like dairy proteins. In conclusion, this review elucidates the US-MW, both individually and in synergy as a viable source of dairy waste proteins extraction and their application in functional foods. Moreover, in accordance to the latest developments and future prospects at pilot and commercial level to assess the practicability of synergistic use of US-MW extraction in bioenergy production from food wastes other than dairy waste for extraction and production of biodiesel, hydrogen, green methane, and ethanol.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Javed
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muhammad Saleem
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; Faculty of Sciences and Technology, ILMA University, Karachi, Pakistan.
| | - Muhammad Farhan
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Aanchal Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India.
| |
Collapse
|
8
|
Taherkhani A, Sharifi A, Koubaa M. Optimization of Bioactive Compound Extraction from Iranian Brown Macroalgae Nizimuddinia zanardini with Ultrasound and Microwave Methods Using Fuzzy Logic. Foods 2024; 13:3837. [PMID: 39682913 DOI: 10.3390/foods13233837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, three extraction methods of bioactive compounds from the brown algae Nizimuddinia zanardini were ranked using the fuzzy weighting system in two stages, ranking between different conditions and choosing the optimal conditions for each extraction method separately. The inputs included extraction yield (EY), antioxidant activity (DPPH), total flavonoid content (TFC), total phenolic content (TPC), total phlorotannin content (TPhC), time, temperature, power, and cost. The top ranks of the first phase output included: Maceration Extraction (ME) with a score of 52.67, Ultrasound-Assisted Extraction (UAE) with a score of 54.31, and Microwave-Assisted Extraction (MAE) with a score of 73.09. The results of the second stage indicated that the lowest and highest extraction yields were obtained using UAE and MAE, respectively. The TFC in the UAE was determined as 103.29 mg QE (Quercetin Equivalent)/g as the lowest value and, in the ME, 140.95 mg QE/g was the highest value. The highest and lowest TPC and TPhC were observed with MAE and UAE, respectively. DPPH decreased in UAE, MAE, and ME, respectively. According to the fuzzy weighted results and considering the purpose of extraction, MAE can be introduced as the optimal method for extracting bioactive compounds from N. zanardini. The findings on extraction methods underscore the potential to reduce costs and improve the yields of bioactive compounds, such as antioxidants and polyphenols, thereby enhancing the economic viability of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Atefe Taherkhani
- Department of Food Science and Technology, Qazvin Branch, Islamic Azad University, Qazvin 82CM+Q6X, Iran
| | - Akram Sharifi
- Department of Food Science and Technology, Qazvin Branch, Islamic Azad University, Qazvin 82CM+Q6X, Iran
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60319, 60203 Compiègne CEDEX, France
| |
Collapse
|
9
|
Hamamouche K, Elhadj Z, Khattabi L, Zahnit W, Djemoui B, Kharoubi O, Boussebaa W, Bouderballa M, El Moustapha Kallouche M, Attia SM, Ahmad SF, Atanassova M, Messaoudi M. Impact of Ultrasound- and Microwave-Assisted Extraction on Bioactive Compounds and Biological Activities of Jania rubens and Sargassum muticum. Mar Drugs 2024; 22:530. [PMID: 39728105 DOI: 10.3390/md22120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
This study represents the first investigation into the ultrasonic and microwave extraction of bioactive metabolites from Jania rubens (J. rubens) (red seaweed) and Sargassum. muticum (S. muticum) (brown seaweed), with a focus on their biological activities. The research compares ultrasound-assisted extraction (UAE) with microwave-assisted extraction (MAE) utilizing a hydromethanolic solvent to evaluate their effects on these seaweeds' bioactive compounds and biological activities. The assessment included a series of antioxidant essays: DPPH, ABTS, phenanthroline, and total antioxidant capacity, followed by enzyme inhibition activities: alpha-amylase and urease. Results revealed significant proportions of phenolic compounds, ranging from 48.31 ± 0.32 to 74.42 ± 0.80 μg GAE/mg, depending on the extraction method. The extracts demonstrated a high antioxidant activity, with IC50 values ranging from 26.58 ± 0.39 to 87.55 ± 0.69 μg/mL. Notably, the MAE extract of S. muticum showed a value of 48.11 ± 2.75 μg/mL for alpha-amylase inhibition, which is strictly superior to the reference acarbose with an IC50 equal to 3431.01 μg/mL. UPLC-ESI-MS/MS analysis identified 14 bioactive compounds. The proportion of riboflavin with MAE was 70.58% and 59.11% for J. rubens and S. muticum fractions, respectively. These findings underscore the critical influence of extraction technique selection on bioactive compounds' yield and efficiency, highlighting the potential of algal biomass as a sustainable alternative in various applications.
Collapse
Affiliation(s)
- Kahina Hamamouche
- Environmental Monitoring Network Laboratory, Department of Biology, Faculty of Natural and Life Sciences, Ahmed Ben Bella University, Oran 31000, Algeria
| | - Zoubida Elhadj
- Laboratory for Environmental and Materials Sciences Studies, Ahmed Ben Bella University, Oran 31000, Algeria
| | - Latifa Khattabi
- Biotechnology Research Center-C.R.B.T, Constantine 25017, Algeria
| | - Wafa Zahnit
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, El Bez 19000, Algeria
| | - Brahim Djemoui
- Laboratory of Excellence in Applied Organic Synthesis, Faculty of Exact and Applied Sciences, Ahmed Ben Bella University, Oran 31000, Algeria
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Natural and Life Sciences, Ahmed Ben Bella University, Oran 31000, Algeria
| | - Walid Boussebaa
- Scientific and Technical Research Center in Physico-Chemical Analysis CRAPC BP384, Bou-Ismail 42004, Algeria
| | - Mouhamed Bouderballa
- Environmental Monitoring Network Laboratory, Faculty of Natural and Life Sciences, Ahmed Ben Bella University, Oran 31000, Algeria
| | - Mohammed El Moustapha Kallouche
- Environmental Monitoring Network Laboratory, Faculty of Natural and Life Sciences, Ahmed Ben Bella University, Oran 31000, Algeria
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria
| | | |
Collapse
|
10
|
Disca V, Travaglia F, Carini C, Coïsson JD, Cravotto G, Arlorio M, Locatelli M. Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study. Antioxidants (Basel) 2024; 13:1097. [PMID: 39334756 PMCID: PMC11428740 DOI: 10.3390/antiox13091097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The extraction of bioactive compounds from food by-products is one of the most important research areas for the nutraceutical, pharmaceutical, and food industries. This research aimed to evaluate the efficiency of Ultrasound-Assisted Extraction (UAE) and Microwave-Assisted Extraction (MAE), either alone or in combination, of phenolic compounds from cocoa bean shells (CBSs). These extraction techniques were compared with conventional methods, such as under simple magnetic stirring and the Soxhlet apparatus. After the preliminary characterization of the gross composition of CBSs, the total polyphenol content and radical scavenging of extracts obtained from both raw and defatted cocoa bean shells were investigated. Quantification of the main polyphenolic compounds was then performed by RP-HPLC-DAD, identifying flavonoids and phenolic acids, as well as clovamide. The application of MAE and UAE resulted in a similar or superior extraction of polyphenols when compared with traditional methods; the concentration of individual polyphenols was variously influenced by the extraction methods employed. Combining MAE and UAE at 90 °C yielded the highest antiradical activity of the extract. Spectrophotometric analysis confirmed the presence of high-molecular-weight melanoidins, which were present in higher concentrations in the extracts obtained using MAE and UAE, especially starting from raw material. In conclusion, these results emphasize the efficiency of MAE and UAE techniques in obtaining polyphenol-rich extracts from CBS and confirm this cocoa by-product as a valuable biomass for the recovery of antioxidant compounds, with a view to possible industrial scale-up.
Collapse
Affiliation(s)
- Vincenzo Disca
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Fabiano Travaglia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Chiara Carini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coïsson
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
11
|
Fraterrigo Garofalo S, Demichelis F, Peletti V, Picco L, Tommasi T, Fino D. Comparative study of polyphenol extraction using physical techniques and water as a solvent: a sustainable approach for the valorization of apple pomace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34637-4. [PMID: 39126585 DOI: 10.1007/s11356-024-34637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Apples are among the most commonly cultivated fruits globally. Approximately 65% of annual apple production is transformed into apple juice concentrate generating a large amount of waste material named apple pomace, which includes seeds, skin, and other components. Disposing of apple by-products directly into the environment constitutes a source of environmental pollution due to its high-water content and easily fermentable nature. Apple pomace is rich in polyphenols that can be utilized as active components in cosmetic, nutraceutical, or pharmaceutical products. The present study aims to describe and compare different physical methods for the extraction of polyphenols from apple pomace. Water was used as the extraction solvent in thermal-stirred extraction (TSE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). The best extraction conditions were identified in terms of solid to solvent ratio, temperature, power, and time through a kinetic study. The best extraction parameters were compared environmentally on a pilot scale through a life cycle assessment (LCA). All the results demonstrated the MAE is the best technique to extract polyphenol from apple pomace in terms yield and environmental impact proving that it is possible to transform waste into a sustainable source of bioactive ingredients.
Collapse
Affiliation(s)
- Silvia Fraterrigo Garofalo
- Department of Applied Science and Technology (DISAT), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy.
| | - Francesca Demichelis
- Department of Applied Science and Technology (DISAT), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | | | - Lorenzo Picco
- Vortex S.R.L, Via Principe Amedeo 11, 10123, Turin, TO, Italy
| | - Tonia Tommasi
- Department of Applied Science and Technology (DISAT), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| |
Collapse
|
12
|
Pereira DT, García-García P, Korbee N, Vega J, Señoráns FJ, Figueroa FL. Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Mar Drugs 2024; 22:284. [PMID: 38921595 PMCID: PMC11204741 DOI: 10.3390/md22060284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the 'Miura' enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and β-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the 'Miura' cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and 'Miura' treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors.
Collapse
Affiliation(s)
- Débora Tomazi Pereira
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Paz García-García
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Nathalie Korbee
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Julia Vega
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Francisco J. Señoráns
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Félix L. Figueroa
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| |
Collapse
|
13
|
Zhu X, Das RS, Bhavya ML, Garcia-Vaquero M, Tiwari BK. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. ULTRASONICS SONOCHEMISTRY 2024; 105:106850. [PMID: 38520893 PMCID: PMC10979275 DOI: 10.1016/j.ultsonch.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Acoustic cavitation, an intriguing phenomenon resulting from the interaction of sound waves with a liquid medium, has emerged as a promising avenue in agri-food processing, offering opportunities to enhance established processes improving primary production of ingredients and further food processing. This comprehensive review provides an in-depth analysis of the mechanisms, design considerations, challenges and scale-up strategies associated with acoustic cavitation for agri-food applications. The paper starts by elucidating the fundamental principles of acoustic cavitation and its measurement, delving then into the diverse effects of different parameters associated with, the acoustic wave, mechanical design and operation of the ultrasonic system, along with those related to the food matrix. The technological advancements achieved in the design and set-up of ultrasonic reactors addressing limitations during scale up are also discussed. The design, engineering and mathematical modelling of ultrasonic equipment tailored for agri-food applications are explored, along with strategies to maximize cavitation intensity and efficiency in the application of brining, freezing, drying, emulsification, filtration and extraction. Advanced US equipment, such as multi-transducers (tubular resonator, FLOW:WAVE®) and larger processing surface areas through innovative designing (Barbell horn, CascatrodesTM), are one of the most promising strategies to ensure consistency of US operations at industrial scale. This review paper aims to provide valuable insights into harnessing acoustic cavitation's potential for up-scaling applications in food processing via critical examination of current research and advancements, while identifying future directions and opportunities for further research and innovation.
Collapse
Affiliation(s)
- Xianglu Zhu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Rahel Suchintita Das
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland
| | - Mysore Lokesh Bhavya
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland.
| |
Collapse
|
14
|
Periaswamy Sivagnanam S, Alaydi H, Cabral EM, Poojary MM, Karuppusamy S, Tiwari BK. Ultrasound, microwave and enzyme-assisted multiproduct biorefinery of Ascophyllum nodosum. Food Chem 2024; 433:137259. [PMID: 37672947 DOI: 10.1016/j.foodchem.2023.137259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
This study investigated the multiproduct (fucoidans, β-glucans, proteins, carotenoids, fatty acids, amino acids and polyphenols) valorization of the invasive macroalgae Ascophyllum nodosum within a green biorefinery concept using ultrasound (US), microwave (MW) treatment followed by supercritical CO2 (SC-CO2) with co-solvent and enzymatic extraction. Water and 50% aqueous ethanol were used as green extraction solvents. The extraction methods using 50% ethanol as extraction solvent improved the yields of phenolic compounds and glucan and enhanced in vitro antioxidant activity. The characterization of SC-CO2 extracts revealed that pretreatment with US and MW improved the 2-fold yield of carotenoids, total phenolics and fatty acids. However, US/MW pretreatment and enzymatic extraction did not improve the yields of proteins and free amino acids. Overall, using concurrent green US/MW-assisted extraction methods enhanced the yields of the bioactive compounds in a short duration and provided extracts with a better antioxidant capacity in the field of food applications.
Collapse
Affiliation(s)
- Saravana Periaswamy Sivagnanam
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Ireland; School of Chemical and Bio Pharmaceutical Sciences, Technological University Dublin, Ireland; Department of Biological Sciences, Munster Technological University, Bishopstown, Cork T12P928, Ireland.
| | - Hadil Alaydi
- Department of Applied Science, Technological University of Shannon: Midlands and Midwest, Moylish, Co Limerick, Ireland
| | - Eduarda M Cabral
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Ireland
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Shanmugapriya Karuppusamy
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Ireland.
| |
Collapse
|
15
|
Akshaya S, Nathanael AJ. A Review on Hydrophobically Associated Alginates: Approaches and Applications. ACS OMEGA 2024; 9:4246-4262. [PMID: 38313527 PMCID: PMC10831841 DOI: 10.1021/acsomega.3c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Alginates are linear anionic polysaccharides, which are well-known for their biocompatible, nontoxic, and biodegradable nature. The polymer consists of alternating units of β-(1 → 4)-linked D-mannuronic acid (M) and α-(1 → 4)-linked L-guluronic acid (G) that have hydroxyl and carboxyl groups as the main functional groups. As a large number of free carboxyl and hydroxyl groups are present in the polymeric chain, the polymer is predominantly hydrophilic. The food and pharmaceutical industries have been the most extensive utilizers of alginates to produce gelling and thickening agents. However, by imparting hydrophobicity to alginates, the range of applications can be widened. Although there are reviews on alginate and its chemical modifications, reviews focusing on hydrophobically associated alginates have not been presented. The commonly used chemical modifications to incorporate hydrophobicity include esterification, Ugi reaction, reductive amination, and graft copolymerization. The hydrophobically modified alginates play an important role in delivery of hydrophobic drugs and pesticides as the modification increases the affinity toward hydrophobic components and helps in their sustained release. Due to their nontoxic and edible nature, they find use in the food industry as emulsion stabilizer to stabilize oil-in-water emulsions and to improve creaming ability. Further, alginate-based materials such as membranes, aerogels, and films are hydrophobically modified to improve their functionality and applicability to water treatment and food packaging. This Review aims to highlight the important chemical modifications and methods that are done to impart hydrophobicity to alginate, and the applications of hydrophobically modified alginates in different sectors ranging from drug delivery to food packaging are discussed.
Collapse
Affiliation(s)
- Shenbagaraman Akshaya
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School
of Advanced Sciences (SAS), Vellore Institute
of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
16
|
Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. ULTRASONICS SONOCHEMISTRY 2023; 101:106646. [PMID: 37862945 PMCID: PMC10594638 DOI: 10.1016/j.ultsonch.2023.106646] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
The increasing focus on health and well-being has sparked a rising interest in bioactive components in the food, pharmaceutical, and nutraceutical industries. These components are gaining popularity due to their potential benefits for overall health. The growing interest has resulted in a continuous rise in demand for bioactive components, leading to the exploration of both edible and non-edible sources to obtain these valuable substances. Traditional extraction methods like solvent extraction, distillation, and pressing have certain drawbacks, including lower extraction efficiency, reduced yield, and the use of significant amounts of solvents or resources. Furthermore, certain extraction methods necessitate high temperatures, which can adversely affect certain bioactive components. Consequently, researchers are exploring non-thermal technologies to develop environmentally friendly and efficient extraction methods. Ultrasonic-assisted extraction (UAE) is recognized as an environmentally friendly and highly efficient extraction technology. The UAE has the potential to minimize or eliminate the need for organic solvents, thereby reducing its impact on the environment. Additionally, UAE has been found to significantly enhance the production of target bioactive components, making it an attractive method in the industry. The emergence of ultrasonic assisted extraction equipment (UAEE) has presented novel opportunities for research in chemistry, biology, pharmaceuticals, food, and other related fields. However, there is still a need for further investigation into the main components and working modes of UAEE, as current understanding in this area remains limited. Therefore, additional research and exploration are necessary to enhance our knowledge and optimize the application of UAEE. The core aim of this review is to gain a comprehensive understanding of the principles, benefits and impact on bioactive components of UAE, explore the different types of equipment used in this technique, examine the various working modes and control parameters employed in UAE, and provide a detailed overview of the blending of UAE with other emerging extraction technologies. In conclusion, the future development of UAEE is envisioned to focus on achieving increased efficiency, reduced costs, enhanced safety, and improved reliability. These key areas of advancement aim to optimize the performance and practicality of UAEE, making it a more efficient, cost-effective, and reliable extraction technology.
Collapse
Affiliation(s)
- Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixiu Pang
- Zhongke Zhigu International Pharmaceutical Biotechnology (Guangdong) Co., Ltd, Guikeng Village, Chuangxing Avenue, Gaoxin District, Qingyuan, Guangdong 511538, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
17
|
Flórez-Fernández N, Ferreira-Anta T, Queffelec J, Ingrez IB, Buján M, Muiños A, Domínguez H, Torres MD. Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Mar Drugs 2023; 21:618. [PMID: 38132939 PMCID: PMC10744486 DOI: 10.3390/md21120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding microparticles containing the antioxidant fractions using two different carriers, mannitol and alginate. The fundamental chemical characteristics of seaweed and the extracts obtained via sonication, as well as the antioxidant properties of the latter, were analyzed. The highest TEAC (Trolox equivalent antioxidant capacity) value was identified for the extracts subjected to the longest processing time using ultrasound-assisted extraction (240 min). A similar yield of microparticle formulation (around 60%) and load capacity (about 85%) were identified with mannitol and alginate as carriers. Color testing of the creams exhibited small total color differences. The rheological results indicated that the testing temperature, from 5 to 45 °C, notably influenced the apparent viscosity of the matrices. All creams were adequately fitted with the two parameters of the Ostwald-de Waele model, with the flow consistency index following an Arrhenius dependency with the testing temperature. Neither hysteresis nor water syneresis was observed in the proposed cosmetics during 6 months of cold storage at 4-6 °C.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Tania Ferreira-Anta
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Julie Queffelec
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Isa B. Ingrez
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Herminia Domínguez
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - María Dolores Torres
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| |
Collapse
|
18
|
Cabral EM, Zhu X, Garcia-Vaquero M, Pérez-Vila S, Tang J, Gómez-Mascaraque LG, Poojary MM, Curtin J, Tiwari BK. Recovery of Protein from Industrial Hemp Waste ( Cannabis sativa, L.) Using High-Pressure Processing and Ultrasound Technologies. Foods 2023; 12:2883. [PMID: 37569153 PMCID: PMC10417828 DOI: 10.3390/foods12152883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Hemp seeds are currently used mainly for oil extraction, generating waste that could be potentially exploited further as a source of proteins and other bioactives. This study aims to valorise hemp waste (Cannabis sativa, L.) from previous oil extraction as a source of protein by analysing the effect of high-pressure processing (HPP) pre-treatments (0-600 MPa; 4-8 min) combined with conventional or ultrasound-assisted extraction (UAE) methods on protein recovery/purity, amino acid composition, and protein structure. Overall, maximum protein recovery (≈62%) was achieved with HPP (200 MPa, 8 min) with UAE. The highest protein purity (≈76%) was achieved with HPP (200 MPa, 4 min) with UAE. Overall, UAE improved the extraction of all amino acids compared to conventional extraction independently of HPP pre-treatments. Arg/Lys ratios of the protein isolates ranged between 3.78 and 5.34, higher than other vegetable protein sources. SDS-PAGE did not show visible differences amongst the protein isolates. These results seem to indicate the advantages of the use of UAE for protein recovery in the food industry and the need for further studies to optimise HPP/UAE for an accurate estimation of processing costs and their effects on the composition and structure of proteins to contribute further to the circular economy.
Collapse
Affiliation(s)
- Eduarda M. Cabral
- Department of Food Quality and Sensory Science, Teagasc Ashtown Food Research Centre, Dublin 15, Ireland
| | - Xianglu Zhu
- Department of Food Chemistry and Technology, Teagasc Ashtown Food Research Centre, Dublin 15, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin 4, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Sara Pérez-Vila
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, co. Cork, P61 C996, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, T12 K8AF, Ireland
| | - Jiafei Tang
- Department of Food Chemistry and Technology, Teagasc Ashtown Food Research Centre, Dublin 15, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin 4, Ireland
| | - Laura G. Gómez-Mascaraque
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, co. Cork, P61 C996, Ireland
| | - Mahesha M. Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, Park House Grangegorman, 191 North Circular Road, Dublin 7, Ireland
| | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology, Teagasc Ashtown Food Research Centre, Dublin 15, Ireland
| |
Collapse
|
19
|
Goksen G. Elucidation and quantification health-promoting phenolic compounds, antioxidant properties and sugar levels of ultrasound assisted extraction, aroma compositions and amino acids profiles of macroalgae, Laurencia papillosa. ULTRASONICS SONOCHEMISTRY 2023; 98:106527. [PMID: 37478642 PMCID: PMC10387607 DOI: 10.1016/j.ultsonch.2023.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Currently, sustainability is one of the most critical issues confronting society today. The growing of macroalgae in ocean farms appears more sustainable than agriculture on land due to it does not require any fresh water, chemical fertiliser, or soil. Macroalgae have been shown to be a sustainable marine source of amino acids, novel bioactive phenolic and aroma compounds that can be exploitation in food, cosmetic, nutraceuticals, pharmacological applications. Despite starting the huge cultivation of macroalgae in world, bioactive compounds in the edible macroalgae have not been well characterized. Ultrasound assisted extraction (UAE) and conventional extraction (CE) techniques were compared and red macroalgae, L. papillosa extracts were characterized. The highest amount of amino acid was glutamic acid (GLU) and composed of 35% was essential amino acids. UAE at 10% amplitude for 15 min showed significantly highest (p < 0.05) phenolic (212.03±3.03 mg gallic acid equivalent/100 g) as well as antioxidant activity determined by DPPH (105.69±3.02 µmol Trolox/100 g), ABTS (238.69±2.23 µmol Trolox/100 g) radical assay and FRAP value (72.47±3.13 µmol Trolox/100 g) when in comparison with CE. Furthermore, bioactive compounds in extracts were indicated as phlorotannins, flavonoids, phenolic acids and other polyphenols using liquid chromatography coupled to diode array detection and electrospray ionisation tandem mass spectrometry (LC-DAD-ESI-MS/MS). This result confirmed higher antioxidant capacity detected with the UAE. A total of 46 volatile organic compounds were identified and quantified by GC-FID/MS with HS-SPME system. This study emerges as first report to novel extraction method used and deeply characterization of L papillosa. The results seem that significant potential application in the functional food, active packaging and nutraceuticals industry.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey.
| |
Collapse
|
20
|
Álvarez-Romero M, Ruíz-Rodríguez A, Barbero GF, Vázquez-Espinosa M, El-Mansouri F, Brigui J, Palma M. Comparison between Ultrasound- and Microwave-Assisted Extraction Methods to Determine Phenolic Compounds in Barley ( Hordeum vulgare L.). Foods 2023; 12:2638. [PMID: 37509730 PMCID: PMC10378303 DOI: 10.3390/foods12142638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Barley (Hordeum vulgare L.) is one of the major cereal crops worldwide. It is grown not only to be used as fodder but also for human consumption. Barley grains are a great source of phenolic compounds, which are particularly interesting for their health-promoting antioxidant properties, among other benefits. Two extraction methods, namely ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), have been optimized and compared by using Box-Behnken design (BBD) to determine both the antioxidant power and the phenolic compound levels of the extracts. Three variables have been assessed based on these designs: solvent composition (% MeOH in water), temperature (°C), and sample-to-solvent ratio (mg sample mL-1 solvent). The solvent composition used and the interaction between the solvent and the temperature were the most significant variables in terms of recovery of phenolic compounds and antioxidant capacity of the extracts. Short extraction times, a high precision level, and good recoveries have been confirmed for both methods. Moreover, they were successfully applied to several samples. Significant differences regarding the level of phenolic compounds and antioxidant power were revealed when analyzing three different barley varieties. Specifically, the amounts of phenolic compounds ranged from 1.08 to 1.81 mg gallic acid equivalent g-1 barley, while their antioxidant capacity ranged from 1.35 to 2.06 mg Trolox equivalent g-1 barley, depending on the barley variety. Finally, MAE was found to be slightly more efficient than UAE, presenting higher levels of phenolic compounds in the extracts.
Collapse
Affiliation(s)
- María Álvarez-Romero
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Ana Ruíz-Rodríguez
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Fouad El-Mansouri
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tangier BP 416, Morocco
| | - Jamal Brigui
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tangier BP 416, Morocco
| | - Miguel Palma
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
21
|
Flores-Contreras EA, Araújo RG, Rodríguez-Aguayo AA, Guzmán-Román M, García-Venegas JC, Nájera-Martínez EF, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldivar R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2445. [PMID: 37447006 DOI: 10.3390/plants12132445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.
Collapse
Affiliation(s)
- Elda A Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Muriel Guzmán-Román
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Erik Francisco Nájera-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
22
|
Ferreira-Anta T, Flórez-Fernández N, Torres MD, Mazón J, Dominguez H. Microwave-Assisted Hydrothermal Processing of Rugulopteryx okamurae. Mar Drugs 2023; 21:319. [PMID: 37367644 PMCID: PMC10304475 DOI: 10.3390/md21060319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
One possible scheme of Rugulopteryx okamurae biomass valorization based on a green, rapid and efficient fractionation technique was proposed. Microwave-assisted pressurized hot water extraction was the technology selected as the initial stage for the solubilization of different seaweed components. Operation at 180 °C for 10 min with a 30 liquid-to-solid ratio solubilized more than 40% of the initial material. Both the alginate recovery yield (3.2%) and the phenolic content of the water-soluble extracts (2.3%) were slightly higher when distilled water was used as solvent. However, the carbohydrate content in the extract (60%) was similar for both solvents, but the sulfate content was higher for samples processed with salt water collected from the same coast as the seaweeds. The antiradical capacity of the extracts was related to the phenolic content in the extracts, but the cytotoxicity towards HeLa229 cancer cells was highest (EC50 = 48 µg/mL) for the extract obtained with distilled water at the lowest temperature evaluated. Operation time showed a relevant enhancement of the extraction performance and bioactive properties of the soluble extracts. The further fractionation and study of this extract would be recommended to extend its potential applications. However, due to the low extraction yield, emphasis was given to the solid residue, which showed a heating value in the range 16,102-18,413 kJ/kg and could be useful for the preparation of biomaterials according to its rheological properties.
Collapse
Affiliation(s)
| | | | - Maria Dolores Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, Facultade de Ciencias, Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | | | | |
Collapse
|
23
|
Rajauria G, Ravindran R, Garcia-Vaquero M, Rai DK, Sweeney T, O’Doherty J. Purification and Molecular Characterization of Fucoidan Isolated from Ascophyllum nodosum Brown Seaweed Grown in Ireland. Mar Drugs 2023; 21:315. [PMID: 37233509 PMCID: PMC10223938 DOI: 10.3390/md21050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The present study investigates the molecular characteristics of fucoidan obtained from the brown Irish seaweed Ascophyllum nodosum, employing hydrothermal-assisted extraction (HAE) followed by a three-step purification protocol. The dried seaweed biomass contained 100.9 mg/g of fucoidan, whereas optimised HAE conditions (solvent, 0.1N HCl; time, 62 min; temperature, 120 °C; and solid to liquid ratio, 1:30 (w/v)) yielded 417.6 mg/g of fucoidan in the crude extract. A three-step purification of the crude extract, involving solvents (ethanol, water, and calcium chloride), molecular weight cut-off filter (MWCO; 10 kDa), and solid-phase extraction (SPE), resulted in 517.1 mg/g, 562.3 mg/g, and 633.2 mg/g of fucoidan (p < 0.05), respectively. In vitro antioxidant activity, as determined by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays, revealed that the crude extract exhibited the highest antioxidant activity compared to the purified fractions, commercial fucoidan, and ascorbic acid standard (p < 0.05). The molecular attributes of biologically active fucoidan-rich MWCO fraction was characterised by quadruple time of flight mass spectrometry and Fourier-transform infrared (FTIR) spectroscopy. The electrospray ionisation mass spectra of purified fucoidan revealed quadruply ([M+4H]4+) and triply ([M+3H]3+) charged fucoidan moieties at m/z 1376 and m/z 1824, respectively, and confirmed the molecular mass 5444 Da (~5.4 kDa) from multiply charged species. The FTIR analysis of both purified fucoidan and commercial fucoidan standard exhibited O-H, C-H, and S=O stretching which are represented by bands at 3400 cm-1, 2920 cm-1, and 1220-1230 cm-1, respectively. In conclusion, the fucoidan recovered from HAE followed by a three-step purification process was highly purified; however, purification reduced the antioxidant activity compared to the crude extract.
Collapse
Affiliation(s)
- Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, SUSFERM Fermentation Science and Bioprocess Engineering Centre, University College Cork, T12 K8AF Cork, Ireland;
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, V92 CX88 Tralee, Ireland;
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Rajeev Ravindran
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, V92 CX88 Tralee, Ireland;
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Dilip K. Rai
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - John O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| |
Collapse
|
24
|
Ferreira-Anta T, Torres MD, Dominguez H, Flórez-Fernández N. Formulation of Polymeric Microparticles Using Eco-Friendly Extracted Crude Fucoidans from Edible Brown Seaweed Undaria pinnatifida. Foods 2023; 12:foods12091859. [PMID: 37174397 PMCID: PMC10178044 DOI: 10.3390/foods12091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Several bioactive compounds that hold a potential interest in the food industry as phenolic compounds, polysaccharides, proteins and vitamins, among others, are present in seaweeds. Green extraction technologies are the preferred way to obtain these compounds. Pressurized hot water extraction, from 160 to 220 °C, was tested to achieve high yields of these components from the edible brown seaweed, Undaria pinnatifida. The maximum fucoidan content was recovered at 160 °C, while the phloroglucinol content and antioxidant activity were maximum at 220 °C. The possibility of encapsulating these bioactive fractions using mannitol was assessed. The highest production yield of the polymeric particles was found using the 220 °C fraction (close to 75%). In order to formulate microparticles with bioactive potential, several ratios of liquid phases were assessed, 3:1, 1:1 and 1:3 (w:w), using the liquid fractions obtained at 160 °C and 220 °C. The yield production was always above 67%, being in the 1:3 ratio (160 °C:220 °C) and close to 75%. The rheological results indicated that the presence of microparticles enhanced the apparent viscosity of the aqueous dispersions with non-Newtonian profiles, achieving the highest viscosity for those formulated with microparticles from 160 °C:200 °C (3:1).
Collapse
Affiliation(s)
- Tania Ferreira-Anta
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Maria Dolores Torres
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Herminia Dominguez
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Noelia Flórez-Fernández
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
25
|
Dégi DM, Imre K, Herman V, Dégi J, Cristina RT, Marcu A, Morariu F, Muselin F. Antimicrobial Activity of Sempervivum tectorum L. Extract on Pathogenic Bacteria Isolated from Otitis Externa of Dogs. Vet Sci 2023; 10:vetsci10040265. [PMID: 37104420 PMCID: PMC10145336 DOI: 10.3390/vetsci10040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The present study investigated the antimicrobial activity, total phenolic content, and proanthocyanidin concentration of ethanolic extracts from fresh leaves of Sempervivum tectorum L. The extracts were phytochemically analyzed and evaluated for antimicrobial activity. The broth microdilution method was used to assess antimicrobial activity against pathogenic bacteria isolated from ear swabs taken from dogs with otitis externa. Many compounds were present in the ethanolic aqueous extracts, which exhibited a broad spectrum of antimicrobial activity. They showed strong antibacterial activity against standard clinical Gram-positive strains such as S. aureus and Gram-negative strains such as P. aeruginosa. In our study, the obtained quantity of total phenolic compounds in the ethanol:water extract of leaves was 126.17 mg GAE/g. The proanthocyanidin concentration in the tested Sempervivum tectorum L. extracts was 15.39 mg PAC/g material. The high contents of total phenolics and proanthocyanidin indicated that these compounds contribute to antimicrobial activity. The antimicrobial activity of the tested S. tectorum L. extracts ranged from 1.47 to 63.75 µg/mL, starting with 1.47 µg/mL and 1.75 µg/mL against S. aureus ATCC 25923 and P. aeruginosa ATCC 27853 strains, respectively. Likewise, S. tectorum L. ethanol extract demonstrated a bacteriostatic effect against S. aureus clinical isolate with a median MIC of 23.25 µg/mL and MBC of 37.23 µg/mL; and bactericidal against S. aureus ATCC 25923 with the median MIC of 20.33 µg/mL and MBC of 37.29 µg/mL. In the Gram-negative P. aeruginosa clinical and standard strains, the expressed MIC and MBC values were 24.234 and 20.53 µg/mL for MIC, and 37.30 and 37.02 µg/mL for MBC, respectively.
Collapse
|
26
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
27
|
Stabilization Activity of Kelp Extract in Ethylene-Propylene Rubber as Safe Packaging Material. Polymers (Basel) 2023; 15:polym15040977. [PMID: 36850259 PMCID: PMC9967782 DOI: 10.3390/polym15040977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This paper presents the stabilization effects of the solid extract of kelp (Ascophyllum nodosum) on an engineering elastomer, ethylene-propylene copolymer (EPR), which may be used as packaging material. Progressive increase in additive loadings (0.5, 1, and 2 phr) increases the oxidation induction time for thermally aged rubber at 190 °C from 10 min to 30 min for pristine material and modified polymer by adding 2 phr protection powder. When the studied polymer is γ-irradiated at 50 and 100 kGy, the onset oxidation temperatures increase as a result of blocking the oxidation reactivity of free radicals. The stabilization effect occurs through the activity of alginic acid, which is one of the main active components associated with alginates. The accelerated degradation caused by γ-exposure advances more slowly when the kelp extract is present. The OOT value for the oxidation of EPR samples increases from 130 °C to 165 °C after the γ-irradiation of pristine and modified (2 phr of kelp powder) EPR, respectively. The altered oxidation state of EPR samples by the action of γ-rays in saline serum is faster in neat polymer than in stabilized material. When the probes are placed in physiological serum and irradiated at 25 kGy, the OOT value for neat EPR (145 °C) is much lower than the homologous value for the polymer samples protected by kelp extract (153 °C for the concentration of 0.5 phr, 166 °C for the concentration of 1 phr, and 185 °C for the concentration of 2 phr).
Collapse
|
28
|
Chemical Composition and Biological Activities of Lavandula coronopifolia Poir Extracts: A Comparison between Callus Culture and Native Plant. J Food Biochem 2023. [DOI: 10.1155/2023/4160399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, according to the development and high functions of in vitro cultivation, one of the questions that researchers are looking for is whether the characteristics and compositions of the obtained product meet the needs of the society or not. Therefore, this research was done aimed to compare the bioactive characteristics of callus and native plant aqueous extracts of Lavandula coronopifolia Poir. Thus, two different culture media were utilized for calluses’ growth. Extracts from these calluses and native plants were obtained using the sequential ultrasound-microwave assisted extraction (SUMAE) method. The extraction conditions were a constant temperature of 70°C ultrasound in 20 min at 250 W and 8 minutes at 800 W for microwave at 85°C. At first, results revealed that callus cultures were not able to produce any significant amounts of essential oil. Therefore, aqueous extracts obtained from calluses as well as the natural plant were examined in terms of antioxidant activity, total phenolic content, total flavonoid content, and antimicrobial activity. Moreover, their volatile components were detected with GC-MS. Both DPPH and FRAP techniques demonstrated that the callus on MS + Auxin had stronger antioxidant activity than the other callus and native plant. It also had the greatest total phenolic content. In terms of total flavonoid content, the native plant has the highest value. Generally, it can be concluded that the extract of callus on MS + Auxin has shown significant activity against the tested microorganisms than the other samples.
Collapse
|
29
|
Kainat S, Arshad MS, Khalid W, Zubair Khalid M, Koraqi H, Afzal MF, Noreen S, Aziz Z, Al-Farga A. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2144884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sumaya Kainat
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Pristina, Kosovo
| | | | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zaira Aziz
- General Medicine, Pakistan institute of Medical Sciences, Islamabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb Yemen
| |
Collapse
|
30
|
Ultrasonic-Assisted Extraction and Antioxidant Potential of Valuable Protein from Ulva rigida Macroalgae. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010086. [PMID: 36676035 PMCID: PMC9864898 DOI: 10.3390/life13010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Ulva green macroalgae or sea lettuce are rich sources of protein with nutritional benefits that promote health as a future plant-based functional ingredient in the food industry. Alkaline pretreatment improved ultrasonic-assisted protein extraction from Ulva rigida biomass. Parameters affecting ultrasonic-assisted extraction of protein were type of solvent, biomass-solvent ratio, biomass preparation and extraction cycle. In vitro digestibility was evaluated from oven- and freeze-dried biomass. Results showed highest concentration and extraction yield of protein from U. rigida using alkaline rather than acid and distilled water. A high biomass-solvent ratio at 1:10 or 0.1 g mL-1 increased protein extraction. Higher alkaline concentration increased protein extraction. Highest protein extractability was 8.5% dry matter from freeze-dried U. rigida biomass, with highest protein extraction and antioxidant activity from extraction of U. rigida macroalgae at high alkaline concentrations. U. rigida macroalgae oven-dried biomass presented suitable human digestibility. Efficient pretreatment of U. rigida maximized protein hydrolysate and bioactive peptide production for wide-ranging applications.
Collapse
|
31
|
Yan Y, Wang M, Chen N, Wang X, Fu C, Li Y, Gan X, Lv P, Zhang Y. Isolation, structures, bioactivities, application and future prospective for polysaccharides from Tremella aurantialba: A review. Front Immunol 2022; 13:1091210. [PMID: 36569950 PMCID: PMC9773546 DOI: 10.3389/fimmu.2022.1091210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Since ancient times, Tremella aurantialba has been proposed to have medicinal and food benefits. Modern phytochemistry and pharmacological studies have demonstrated that polysaccharides, the main components from T. aurantialba appear to be an all-round talent resisting a variety of chronic inflammatory diseases and protecting against different types of tumors, diabetes and cardiovascular diseases. These health and pharmacological benefits have gained much attention from scholars around the world. Further, more and more methods for polysaccharides extraction, purification, structure identification have been proposed. Significantly, the bioactivity of fungus polysaccharides is affected by many factors such as extraction and purification conditions and chemical structure. This paper provides an overview of recent advances in the isolation, structural features and biological effects of polysaccharides derived from T. aurantialba, covers recent advances in the field and outlines future research and applications of these polysaccharides.
Collapse
Affiliation(s)
- Yonghuan Yan
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China
| | - Mengtian Wang
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China,Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China,*Correspondence: Pin Lv, ; Yan Zhang,
| | - Yan Zhang
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China,*Correspondence: Pin Lv, ; Yan Zhang,
| |
Collapse
|
32
|
Buliga DI, Diacon A, Calinescu I, Popa I, Rusen E, Ghebaur A, Tutunaru O, Boscornea CA. Enhancing the light fastness of natural dyes by encapsulation in silica matrix. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Zhao L, Wu L, Li L, Zhu J, Chen X, Zhang S, Li L, Yan JK. Physicochemical, structural, and rheological characteristics of pectic polysaccharides from fresh passion fruit (Passiflora edulis f. flavicarpa L.) peel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Combined Effect of Ultrasound and Microwave Power in Tangerine Juice Processing: Bioactive Compounds, Amino Acids, Minerals, and Pathogens. Processes (Basel) 2022. [DOI: 10.3390/pr10102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The inhibition of Escherichia coli ATCC 25922 (E. coli), Staphylococcus aureus ATCC6538 (S. aureus), Salmonella Enteritidis ATCC 13076 (S. Enteritidis), and Listeria monocytogenes DSM12464 (L. monocytogenes) is one of the main aims of the food industry. This study was the first in which the use of ultrasound and microwave power were applied to optimize the values of the bioactive components, amino acids, and mineral compositions of tangerine juice and to inhibit Escherichia coli, Staphylococcus aureus, Salmonella Enteritidis, and Listeria monocytogenes. The response surface methodology (RSM) was used to describe the inactivation kinetics, and the effects of ultrasound treatment time (X1: 12–20 min), ultrasound amplitude (X2:60–100%), microwave treatment time (X3: 30–40 s), and microwave power (X4:200–700 W). The optimum parameters applied to a 5-log reduction in E. coli were determined as ultrasound (12 min, 60%) and microwave (34 s, 700 W). The optimum condition ultrasound–microwave treatment was highly effective in tangerine juice, achieving up to 5.27, 5.12, and 7.19 log reductions for S. aureus, S. Enteritidis, and L. monocytogenes, respectively. Ultrasound–microwave treatment increased the total phenolic compounds and total amino acids. While Cu, K, Mg, and Na contents were increased, Fe and Ca contents were lower in the UM-TJ (ultrasound–microwave-treated tangerine juice) sample. In this case, significant differences were detected in the color values of ultrasound–microwave-treated tangerine juice (UM-TJ) (p < 0.05). The results of this study showed that ultrasound–microwave treatment is a potential alternative processing and preservation technique for tangerine juice, resulting in no significant quality depreciation.
Collapse
|
35
|
Maurizzi E, Bigi F, Quartieri A, De Leo R, Volpelli LA, Pulvirenti A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers (Basel) 2022; 14:polym14204257. [PMID: 36297835 PMCID: PMC9610407 DOI: 10.3390/polym14204257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green.
Collapse
Affiliation(s)
- Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Antonella Volpelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
36
|
Zhang C, Gu F, Hu W, Wu G, Chen W, Dong C, Niu Z. Effect of extraction technique on chemical compositions and antioxidant activities of freeze-dried green pepper. Front Nutr 2022; 9:998840. [PMID: 36118756 PMCID: PMC9479182 DOI: 10.3389/fnut.2022.998840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the yield, content of piperine, and antioxidant activity of pepper oleoresin obtained with the methods of maceration, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and ultrasound-MAE (UMAE) were analyzed, and the microstructure of pepper residue was observed. For the yield and piperine content, the UMAE method had the best extraction capacity among the four methods. While, the oleoresin obtained with maceration had the highest total phenolic content, and the antioxidant activity of the oleoresin obtained by maceration was higher than that of the extracts acquired by UAE, MAE, and UMAE, and a high positive correlation was observed between the antioxidant activity and total phenolic content of the oleoresin obtained by these extraction methods. The ideal parameters for UMAE were an 80-mesh particle size and a 1 g/10 mL solid–liquid ratio. The kinetic parameters and models of the UMAE extraction process were also compared using first- and second-order models. The second-order kinetic equation with the lowest root mean square deviation and highest adjusted correlation coefficient proved to be more suitable for describing the extraction kinetics of pepper oleoresin. This study showed that UMAE is a fast, efficient, and cost-effective technique for the extraction of green pepper oleoresin.
Collapse
Affiliation(s)
- Chaohua Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, San Ya, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Fenglin Gu
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, San Ya, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, San Ya, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
- *Correspondence: Fenglin Gu
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Weicheng Hu
| | - Guiping Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Weijun Chen
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Conghui Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Zhiqiang Niu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
37
|
Effects of Zedo gum edible coating enriched with microwave-agitated bed extracted bioactive compounds from lemon verbena leaves on oxidative stability of Oncorhynchus mykiss. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|
39
|
Waghchaure RH, Jagdale BS, Koli PB, Adole VA. Nano 5% Fe–ZnO: A highly efficient and recyclable heterogeneous solid nano catalyst for the Biginelli reaction. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Karami Z, Akbari‐adergani B, Duangmal K. Recent development on recovering bioactive peptides and phenolic compounds from under‐utilised by‐products during production of certain edible oil plants: current situation and future perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Behrouz Akbari‐adergani
- Food and Drug Laboratory Research Center, Food and Drug Organization Ministry of Health and Medical Education Tehran 11136‐15911 Iran
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
- Emerging Processes for Food Functionality Design Research Unit Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
41
|
Pai S, Hebbar A, Selvaraj S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35518-35541. [PMID: 35233673 PMCID: PMC9079019 DOI: 10.1007/s11356-022-19423-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 05/27/2023]
Abstract
Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.
Collapse
Affiliation(s)
- Sanidhya Pai
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
42
|
A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14095181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alginate is an attractive marine resource-based biopolymer, which has been widely used in pharmaceutical, food and textile industries. This paper reviewed the latest development of the conventional and alternative processes for alginate extraction from brown seaweed. To improve extraction yield and product quality, various studies have been carried out to optimize the operation condition. Based on literature survey, the most commonly used protocol is soaking milled seaweed in 2% (w/v) formaldehyde, overnight, solid loading ratio of 1:10–20 (dry weight biomass to solution), then collecting the solid for acid pre-treatment with HCl 0.2–2% (w/v), 40–60 °C, 1:10–30 ratio for 2–4 h. Next, the solid residue from the acid pre-treatment is extracted using Na2CO3 at 2–4% (w/v), 40–60 °C, 2–3 h, 1:10–30 ratio. Then the liquid portion is precipitated by ethanol (95%+) with a ratio of 1:1 (v/v). Finally, the solid output is dried in oven at 50–60 °C. Novel extraction methods using ultrasound, microwave, enzymes and extrusion improved the extraction yield and alginate properties, but the financial benefits have not been fully justified yet. To improve the sustainable production of alginate, it is required to promote seaweed cultivation, reduce water footprint, decrease organic solvent usage and co-produce alginate with other value-added products.
Collapse
|
43
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
44
|
Assessing the Environmental and Economic Sustainability of Functional Food Ingredient Production Process. Processes (Basel) 2022. [DOI: 10.3390/pr10030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Development and application of novel technologies in food processing is vital for ensuring the availability of adequate, safe, and convenient food with the desired quality and functional properties. Environmental and economic sustainability of technologies is essential prior to their application in the food processing sector. The objective of this research is to determine the environmental and economic feasibility of ultrasound-assisted extraction (UAE) for recovering functional food ingredients from seaweed. Experimental data is used to conduct a life cycle assessment (LCA) to investigate the environmental performance with a functional unit (FU) of obtaining 1 g of extracted polyphenols, measured as gallic acid equivalents (mg GAE)/g seaweed. A life cycle impact assessment is performed with ReCiPe 2016 at midpoint. The cost of manufacturing (COM) of phenolic-rich extracts (as functional ingredient, bioactive, or nutraceutical) is estimated using time-driven activity-based costing (TDABC). The environmental profile findings show that across all categories, the UAE has considerably lower impacts than the conventional method, with electricity as the most important impact contributor, followed by solvent production. An economic assessment estimates the COM over a one-year period at a large scale using the UAE to be EUR 1,200,304, EUR 2,368,440, and EUR 4,623,290 for extraction vessel capacities of 0.05, 0.1, and 0.15 m3, respectively. Raw materials (including the type of raw material) and operational labour costs are the primary contributors to the COM. The findings thus present evidence to support the adoption of an environmentally and economically viable technology for functional ingredient production.
Collapse
|
45
|
Maliki IM, Misson M, Teoh PL, Rodrigues KF, Yong WTL. Production of Lectins from Marine Algae: Current Status, Challenges, and Opportunities for Non-Destructive Extraction. Mar Drugs 2022; 20:102. [PMID: 35200632 PMCID: PMC8880576 DOI: 10.3390/md20020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Marine algae are an excellent source of novel lectins. The isolation of lectins from marine algae expands the diversity in structure and carbohydrate specificities of lectins isolated from other sources. Marine algal lectins have been reported to have antiviral, antitumor, and antibacterial activity. Lectins are typically isolated from marine algae by grinding the algal tissue with liquid nitrogen and extracting with buffer and alcohol. While this method produces higher yields, it may not be sustainable for large-scale production, because a large amount of biomass is required to produce a minute amount of compound, and a significant amount of waste is generated during the extraction process. Therefore, non-destructive extraction using algal culture water could be used to ensure a continuous supply of lectins without exclusively disrupting the marine algae. This review discusses the traditional and recent advancements in algal lectin extraction methods over the last decade, as well as the steps required for large-scale production. The challenges and prospects of various extraction methods (destructive and non-destructive) are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (I.M.M.); (M.M.); (P.L.T.); (K.F.R.)
| |
Collapse
|
46
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
47
|
Laguna BDCC, Flores Gallegos AC, Ascacio Valdés JA, Iliná A, Galindo AS, Castañeda Facio AO, Esparza González SC, Herrera RR. Physicochemical and functional properties of the undervalued fruits of cactus Cylindropuntia imbricate (“xoconostle”) and antioxidant potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Meng W, Mu T, Marco GV. Seaweeds and microalgal biomass: The future of food and nutraceuticals. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
49
|
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MDRM. Applications of lipidomics in marine organisms: Progresses, challenges and future perspectives. Mol Omics 2022; 18:357-386. [DOI: 10.1039/d2mo00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine ecosystems comprise a high diversity of life forms, such as algae, invertebrates, and vertebrates. These organisms have adapted their physiology according to the conditions of the environments in which...
Collapse
|
50
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|