1
|
Le Moan E, Derrien A, Terre-Terrillon A, Fabioux C, Jean F, Lassudrie M, Flye-Sainte-Marie J, Hégaret H. Low contamination and rapid depuration of domoic acid in the variegated scallop, Mimachlamys varia. MARINE POLLUTION BULLETIN 2025; 216:117946. [PMID: 40252348 DOI: 10.1016/j.marpolbul.2025.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025]
Abstract
Harmful algal blooms (HABs) are natural proliferations of microalgal species, able to produce toxic compounds, such as domoic acid (DA), a neurotoxin responsible for the Amnesic Shellfish Poisoning (ASP) which can be lethal for mammals. Pectinid species are of high economic value and are particularly vulnerable to these events. As filter-feeders, they can accumulate DA and transfer it through the food web. However, DA retention (accumulation and depuration) varies between species, meaning that not all fisheries are equally affected. Therefore, there is a need to better understand species-specific DA dynamics in order to effectively manage fisheries and mitigate economic impacts. Variegated scallops, Mimachlamys varia, have low DA levels compared to king scallops, Pecten maximus, although both occur in similar locations. However, there is a lack of knowledge on DA retention in M. varia, partly due to the difficulty of monitoring field-level individual contamination, and obtaining large volumes of toxic Pseudo-nitzschia species under laboratory conditions. This study summarises the information available from French monitoring networks for DA contamination in M. varia and investigates DA accumulation and depuration by experimental exposure. The in-situ monitoring revealed that M. varia can accumulate DA, but at lower concentrations than other bivalves at similar locations and times. The experimental exposure induced contamination and we estimated a high depuration rate of 3.3d-1 for the digestive gland. These findings have implications for fisheries management and suggest that M. varia may be less susceptible to domoic acid-related effects than other pectinid species and could be an alternative resource.
Collapse
Affiliation(s)
- Eline Le Moan
- Univ Brest, IRD, CNRS, Ifremer, IUEM, 6539 LEMAR, Plouzane, F-29280, France.
| | | | | | - Caroline Fabioux
- Univ Brest, IRD, CNRS, Ifremer, IUEM, 6539 LEMAR, Plouzane, F-29280, France
| | - Fred Jean
- Univ Brest, IRD, CNRS, Ifremer, IUEM, 6539 LEMAR, Plouzane, F-29280, France
| | | | | | - Hélène Hégaret
- Univ Brest, IRD, CNRS, Ifremer, IUEM, 6539 LEMAR, Plouzane, F-29280, France
| |
Collapse
|
2
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. J Proteome Res 2024; 23:5577-5585. [PMID: 39582169 PMCID: PMC11752080 DOI: 10.1021/acs.jproteome.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus Pseudo-nitzschia during toxic algal bloom events. California sea lions (Zalophus californianus) are exposed to domoic acid through the ingestion of fish that feed on toxic diatoms, resulting in domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure. Therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multiomics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and post-mortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed 31 statistically significant proteins in the DAT individuals compared to the non-DAT individuals (adjusted p < 0.05). Of these proteins, 19 were decreased in the DAT group of which three were apolipoproteins that are known to transport lipids in the blood, prompting lipidomic analyses. In the lipidomic analyses, 331 lipid species were detected with high confidence and multidimensional separations, and 29 were found to be statistically significant (adjusted p < 0.05 and log2(FC) < -1 or >1) in the DAT versus non-DAT comparison. Of these, 28 were lower in the DAT individuals, while only 1 was higher. Furthermore, 15 of the 28 lower concentration lipids were triglycerides, illustrating their putative connection with the perturbed apolipoproteins and potential use in rapid DAT diagnoses.
Collapse
Affiliation(s)
- Amie M Solosky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Iliana M Claudio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessie R Chappel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Alison M Bland
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Frances M D Gulland
- Wildlife Health Center, University of California, Davis, California 95616, United States
| | - Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
3
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James CC, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Fussy Z, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular forecasting of domoic acid during a pervasive toxic diatom bloom. Proc Natl Acad Sci U S A 2024; 121:e2319177121. [PMID: 39298472 PMCID: PMC11459128 DOI: 10.1073/pnas.2319177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/05/2024] [Indexed: 09/21/2024] Open
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis, this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis (dab) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters (sit1) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that coexpression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have colimited the diatom population along with low Si. Iron limitation represents an overlooked driver of both toxin production and ecological success of the low-iron-adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms.
Collapse
Affiliation(s)
- John K. Brunson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Monica Thukral
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - John P. Ryan
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Clarissa R. Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Bethany C. Kolody
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Chase C. James
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Francisco P. Chavez
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan16310, Malaysia
| | - Ariel J. Rabines
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Pratap Venepally
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Zoltan Fussy
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Raphael M. Kudela
- Ocean Sciences Department, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA95064
| | - G. Jason Smith
- Environmental Biotechnology Department, Moss Landing Marine Laboratories, Moss Landing, CA95039
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Andrew E. Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592757. [PMID: 38766156 PMCID: PMC11100735 DOI: 10.1101/2024.05.06.592757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus, Pseudo-nitzschia , during toxic algal bloom events. California sea lions ( Zalophus californianus ) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses. SYNOPSIS Multi-omics evaluations reveal blood apolipoproteins and triglycerides are altered in domoic acid toxicosis in California sea lions. GRAPHIC ABSTRACT
Collapse
|
5
|
FANG M, WU Y, ZHANG W, ZHANG L, YANG Z. [Research progress of novel functional materials in extraction of algal toxins]. Se Pu 2024; 42:225-233. [PMID: 38503699 PMCID: PMC10951811 DOI: 10.3724/sp.j.1123.2023.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 03/21/2024] Open
Abstract
Algal toxins are secondary metabolites produced by harmful algae; these metabolites are characterized with strong toxicity, diverse structure and bioaccumulation. Aquatic organisms that feed on harmful algae can accumulate algal toxins in their bodies, and the consumption of these organisms by humans can cause symptoms of paralysis, diarrhea, and even death. The onset of poisoning can occur within as little as 30 min; in many cases, no suitable antidote for algal toxins is available. Thus, algal toxins present significant threats to human health, the aquaculture industry, and aquatic ecosystems. Because the potential risks of algal toxins are a critical issue, these toxins have become a research hotspot. The water environment and various types of aquatic products should be monitored and analyzed to ensure their safety. However, because of possible matrix effects and the low content of algal toxins in actual samples, an efficient pretreatment method is necessary prior to instrumental analyses. Efficient sample pretreatment techniques can not only reduce or eliminate interferences from the sample matrix during analysis but also enrich the target analytes to meet the detection limit of the analytical instrument, thereby ensuring the sensitivity and accuracy of the detection method. In recent years, sample pretreatment techniques such as solid-phase extraction (SPE), solid-phase microextraction (SPME), magnetic SPE (MSPE), dispersive SPE (DSPE), and pipette tip-based SPE (PT-SPE) have gained wide attention in the field of algal-toxin separation and analysis. The performance of these pretreatment techniques largely depends on the characteristics of the extraction materials. Given the diverse physicochemical properties of algal toxins, including their different molecular sizes, hydrophobicity/hydrophilicity, and charges, the design and preparation of materials suitable for algal-toxin extraction is an essential undertaking. The optimal extraction material should be capable of reversible algal-toxin adsorption and preferably possess a porous structure with a large surface area to allow for high recovery rates and good interfacial contact with the toxins. Additionally, the extraction material should exhibit good chemical stability in the sample solution and elution solvent within the working pH range; otherwise, it may dissolve or lose its functional groups. Many research efforts have sought to develop novel adsorbent materials with these properties in the separation and analysis of algal toxins, focusing on carbon-based materials, metal organic frameworks (MOFs), covalent organic frameworks (COFs), molecularly imprinted polymers (MIPs), and their functionalized counterparts. Carbon-based materials, MOFs, and COFs have advantages such as large surface areas and abundant adsorption sites. These extraction materials are widely used in the separation and analysis of target substances in complex environmental, biological, and food samples owing to their excellent performance and unique microstructure. They are also the main adsorbents used for the extraction of algal toxins. These extraction materials play an essential role in the extraction of algal toxins, but they also present a number of limitations: (1) Carbon-based materials, MOFs, and COFs have relatively poor selective-adsorption ability towards target substances; (2) Most MOFs are unstable in aqueous solutions and challenging to apply during extraction from water-based sample solutions; (3) COFs mainly consist of lightweight elements, rendering them difficult to completely separate from sample solutions using centrifugal force, which limits their application range; (4) Although MIPs have good selectivity, issues such as template-molecule loss, slow mass-transfer rates, and low adsorption capacity must be addressed. Therefore, the design and preparation of novel functionalized extraction materials specifically tailored for algal toxins and studies on new composite extraction materials are highly desirable. This article collects representative literature from domestic and international research on algal-toxin analysis over the past decade, summarizes the relevant findings, categorizes the applications of novel functional materials in algal-toxin-extraction processes, and provides an outlook on their future development prospects.
Collapse
|
6
|
Beltrán-Solís K, García-Mendoza E, Sánchez-Serrano S, López LM. Domoic acid affects brain morphology and causes behavioral alterations in two fish species. Sci Rep 2023; 13:21729. [PMID: 38066055 PMCID: PMC10709449 DOI: 10.1038/s41598-023-49041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Domoic acid (DA) produces neurotoxic damage in seabirds and marine mammals when they are exposed to this potent neurotoxin. Other vertebrates are also susceptible to DA intoxication including humans. However, neurobehavioral affectations have not been detected in fish when naturally exposed to DA but only when it is administered intraperitoneally. Therefore, the current idea is that fish are less sensitive to DA acquired under ecologically relevant routes of exposure. Here, we show that oral consumption of DA induces neurobehavioral and histopathological alterations in the brain and heart of totoaba (Totoaba macdonaldi) and striped bass (Morone saxatilis). Lesions were found in both species in the optic tectum and cerebellum after exposure for 7 days to a diet containing 0.776 µgDA g-1. The affectations prevailed chronically. Also, we found that cardiac tissue exhibits lesions and focal atrium melanism. Although affectations of the brain and heart tissue were evident, excitotoxic signs like those described for other vertebrates were not observed. However, the use of standardized behavioral tests (dark/light and antipredator avoidance tests) permitted the detection of behavioral impairment of fish after DA exposure. Pathological and associated behavioral alterations produced by DA can have relevant physiological consequences but also important ecological implications.
Collapse
Affiliation(s)
- Kassandra Beltrán-Solís
- Posgrado en Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Ernesto García-Mendoza
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico.
| | - Samuel Sánchez-Serrano
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Baja California, Mexico
| | - Lus M López
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Baja California, Mexico
| |
Collapse
|
7
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James C, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565333. [PMID: 37961417 PMCID: PMC10635071 DOI: 10.1101/2023.11.02.565333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis , this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis ( dab ) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters ( sit1 ) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that co-expression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have co-limited the diatom population along with low Si. Iron limitation represents a previously unrecognized driver of both toxin production and ecological success of the low iron adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms. Significance Pseudo-nitzschia diatoms form oceanic harmful algal blooms that threaten human health through production of the neurotoxin domoic acid (DA). DA biosynthetic gene expression is hypothesized to control DA production in the environment, yet what regulates expression of these genes is yet to be discovered. In this study, we uncovered expression of DA biosynthesis genes by multiple toxigenic Pseudo-nitzschia species during an economically impactful bloom along the North American West Coast, and identified genes that predict DA in advance of its production. We discovered that iron and silica co-limitation restrained the bloom and likely promoted toxin production. This work suggests that increasing iron limitation due to global change may play a previously unrecognized role in driving bloom frequency and toxicity.
Collapse
|
8
|
Petroff RL, Williams C, Li JL, MacDonald JW, Bammler TK, Richards T, English CN, Baldessari A, Shum S, Jing J, Isoherranen N, Crouthamel B, McKain N, Grant KS, Burbacher TM, Harry GJ. Prolonged, Low-Level Exposure to the Marine Toxin, Domoic Acid, and Measures of Neurotoxicity in Nonhuman Primates. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97003. [PMID: 36102641 PMCID: PMC9472675 DOI: 10.1289/ehp10923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher Williams
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Epigenetics & Stem Cell Biology Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Todd Richards
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jing Jing
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Brenda Crouthamel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Noelle McKain
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kimberly S. Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
Potential endocrine correlation with exposure to domoic acid in Southern Right Whale (Eubalaena australis) at the Península Valdés breeding ground. Oecologia 2021; 198:21-34. [PMID: 34800166 DOI: 10.1007/s00442-021-05078-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
In waters off Península Valdés (PV), Argentina, southern right whales (SRW, Eubalaena australis) are occasionally exposed to domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia. Domoic acid toxicity in marine mammals can cause gastrointestinal and neurological clinical signs, alterations in hematologic and endocrine variables, and can be fatal in extreme cases. In this study, we validated an enzyme immunoassay to quantify fecal glucocorticoid metabolites (fGCm) in 16 SRW fecal samples from live and dead stranded whales in PV from 2013 to 2018 and assessed fGCm levels associated with DA exposure. Overall, fGCm levels were significantly lower in SRWs with detectable fecal DA (n = 3) as compared to SRWs with undetectable fecal DA levels (n = 13). The highest fecal DA was observed in a live lactating female, which had low fGCm compared to the other lactating females studied. The highest fGCm was observed in a lactating female with undetectable DA; interestingly, at the time of sample collection, this female was sighted with two calves, an extremely unusual occurrence in this species. Though the sample size of these exceptionally rare breeding-season fecal samples was unavoidably small, our study provides evidence of potential adrenal alterations in whales exposed to an environmental neurotoxin such as DA.
Collapse
|
10
|
Hofbauer WK. Toxic or Otherwise Harmful Algae and the Built Environment. Toxins (Basel) 2021; 13:465. [PMID: 34209446 PMCID: PMC8310063 DOI: 10.3390/toxins13070465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
This article gives a comprehensive overview on potentially harmful algae occurring in the built environment. Man-made structures provide diverse habitats where algae can grow, mainly aerophytic in nature. Literature reveals that algae that is potentially harmful to humans do occur in the anthropogenic environment in the air, on surfaces or in water bodies. Algae may negatively affect humans in different ways: they may be toxic, allergenic and pathogenic to humans or attack human structures. Toxin-producing alga are represented in the built environment mainly by blue green algae (Cyanoprokaryota). In special occasions, other toxic algae may also be involved. Green algae (Chlorophyta) found airborne or growing on manmade surfaces may be allergenic whereas Cyanoprokaryota and other forms may not only be toxic but also allergenic. Pathogenicity is found only in a special group of algae, especially in the genus Prototheca. In addition, rare cases with infections due to algae with green chloroplasts are reported. Algal action may be involved in the biodeterioration of buildings and works of art, which is still discussed controversially. Whereas in many cases the disfigurement of surfaces and even the corrosion of materials is encountered, in other cases a protective effect on the materials is reported. A comprehensive list of 79 taxa of potentially harmful, airborne algae supplemented with their counterparts occurring in the built environment, is given. Due to global climate change, it is not unlikely that the built environment will suffer from more and higher amounts of harmful algal species in the future. Therefore, intensified research in composition, ecophysiology and development of algal growth in the built environment is indicated.
Collapse
Affiliation(s)
- Wolfgang Karl Hofbauer
- Umwelt, Hygiene und Sensorik, Fraunhofer-Institut für Bauphysik, 83626 Valley, Bavaria, Germany
| |
Collapse
|
11
|
Blanco J, Mariño C, Martín H, Álvarez G, Rossignoli AE. Characterization of the Domoic Acid Uptake Mechanism of the Mussel ( Mytilus galloprovincialis) Digestive Gland. Toxins (Basel) 2021; 13:458. [PMID: 34208992 PMCID: PMC8310042 DOI: 10.3390/toxins13070458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis-Menten kinetics, with a very high estimated KM (1722 µg DA mL-1) and a Vmax of 71.9 µg DA g-1 h-1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl--depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl--free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl- (or anion-) dependent transporter. In media with Na+ and Cl-, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Araceli E. Rossignoli
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| |
Collapse
|
12
|
Li RA, Talikka M, Gubian S, Vom Berg C, Martin F, Peitsch MC, Hoeng J, Zupanic A. Systems Toxicology Approach for Assessing Developmental Neurotoxicity in Larval Zebrafish. Front Genet 2021; 12:652632. [PMID: 34211495 PMCID: PMC8239408 DOI: 10.3389/fgene.2021.652632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse outcomes that result from chemical toxicity are rarely caused by dysregulation of individual proteins; rather, they are often caused by system-level perturbations in networks of molecular events. To fully understand the mechanisms of toxicity, it is necessary to recognize the interactions of molecules, pathways, and biological processes within these networks. The developing brain is a prime example of an extremely complex network, which makes developmental neurotoxicity one of the most challenging areas in toxicology. We have developed a systems toxicology method that uses a computable biological network to represent molecular interactions in the developing brain of zebrafish larvae. The network is curated from scientific literature and describes interactions between biological processes, signaling pathways, and adverse outcomes associated with neurotoxicity. This allows us to identify important signaling hubs, pathway interactions, and emergent adverse outcomes, providing a more complete understanding of neurotoxicity. Here, we describe the construction of a zebrafish developmental neurotoxicity network and its validation by integration with publicly available neurotoxicity-related transcriptomic datasets. Our network analysis identified consistent regulation of tumor suppressors p53 and retinoblastoma 1 (Rb1) as well as the oncogene Krüppel-like factor (Klf8) in response to chemically induced developmental neurotoxicity. The developed network can be used to interpret transcriptomic data in a neurotoxicological context.
Collapse
Affiliation(s)
- Roman A Li
- Eawag, Dübendorf, Switzerland.,PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sylvain Gubian
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anze Zupanic
- Eawag, Dübendorf, Switzerland.,National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
13
|
Ventoso P, Pazos AJ, Blanco J, Pérez-Parallé ML, Triviño JC, Sánchez JL. Transcriptional Response in the Digestive Gland of the King Scallop ( Pecten maximus) After the Injection of Domoic Acid. Toxins (Basel) 2021; 13:toxins13050339. [PMID: 34067146 PMCID: PMC8150855 DOI: 10.3390/toxins13050339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.
Collapse
Affiliation(s)
- Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Antonio J. Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
- Correspondence:
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo. 13, 36620 Vilanova de Arousa, Spain;
| | - M. Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Juan C. Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, 46980 Valencia, Spain;
| | - José L. Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| |
Collapse
|
14
|
Sykes AV, Almansa E, Ponte G, Cooke GM, Andrews PLR. Can Cephalopods Vomit? Hypothesis Based on a Review of Circumstantial Evidence and Preliminary Experimental Observations. Front Physiol 2020; 11:765. [PMID: 32848811 PMCID: PMC7396502 DOI: 10.3389/fphys.2020.00765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
In representative species of all vertebrate classes, the oral ejection of upper digestive tract contents by vomiting or regurgitation is used to void food contaminated with toxins or containing indigestible material not voidable in the feces. Vomiting or regurgitation has been reported in a number of invertebrate marine species (Exaiptasia diaphana, Cancer productus, and Pleurobranchaea californica), prompting consideration of whether cephalopods have this capability. This "hypothesis and theory" paper reviews four lines of supporting evidence: (1) the mollusk P. californica sharing some digestive tract morphological and innervation similarities with Octopus vulgaris is able to vomit or regurgitate with the mechanisms well characterized, providing an example of motor program switching; (2) a rationale for vomiting or regurgitation in cephalopods based upon the potential requirement to void indigestible material, which may cause damage and ejection of toxin contaminated food; (3) anecdotal reports (including from the literature) of vomiting- or regurgitation-like behavior in several species of cephalopod (Sepia officinalis, Sepioteuthis sepioidea, O. vulgaris, and Enteroctopus dofleini); and (4) anatomical and physiological studies indicating that ejection of gastric/crop contents via the buccal cavity is a theoretical possibility by retroperistalsis in the upper digestive tract (esophagus, crop, and stomach). We have not identified any publications refuting our hypothesis, so a balanced review is not possible. Overall, the evidence presented is circumstantial, so experiments adapting current methodology (e.g., research community survey, in vitro studies of motility, and analysis of indigestible gut contents and feces) are described to obtain additional evidence to either support or refute our hypothesis. We recognize the possibility that further research may not support the hypothesis; therefore, we consider how cephalopods may protect themselves against ingestion of toxic food by external chemodetection prior to ingestion and digestive gland detoxification post-ingestion. Reviewing the evidence for the hypothesis has identified a number of gaps in knowledge of the anatomy (e.g., the presence of sphincters) and physiology (e.g., the fate of indigestible food residues, pH of digestive secretions, sensory innervation, and digestive gland detoxification mechanisms) of the digestive tract as well as a paucity of recent studies on the role of epithelial chemoreceptors in prey identification and food intake.
Collapse
Affiliation(s)
- António V Sykes
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Eduardo Almansa
- Department of Aquaculture, Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Santa Cruz de Tenerife, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Paul L R Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
15
|
Marine Excitatory Amino Acids: Structure, Properties, Biosynthesis and Recent Approaches to Their Syntheses. Molecules 2020; 25:molecules25133049. [PMID: 32635311 PMCID: PMC7412112 DOI: 10.3390/molecules25133049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022] Open
Abstract
This review considers the results of recent studies on marine excitatory amino acids, including kainic acid, domoic acid, dysiherbaine, and neodysiherbaine A, known as potent agonists of one of subtypes of glutamate receptors, the so-called kainate receptors. Novel information, particularly concerning biosynthesis, environmental roles, biological action, and syntheses of these marine metabolites, obtained mainly in last 10–15 years, is summarized. The goal of the review was not only to discuss recently obtained data, but also to provide a brief introduction to the field of marine excitatory amino acid research.
Collapse
|
16
|
Blanco J, Mauríz A, Álvarez G. Distribution of Domoic Acid in the Digestive Gland of the King Scallop Pecten maximus. Toxins (Basel) 2020; 12:E371. [PMID: 32512724 PMCID: PMC7354575 DOI: 10.3390/toxins12060371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
The king scallop Pecten maximus retains the amnesic shellfish poisoning toxin, domoic acid (DA), for a long time. Most of the toxin is accumulated in the digestive gland, but this organ contains several cell types whose contribution to the accumulation of the toxin is unknown. Determining the time-course of the depuration by analyzing whole organs is difficult because the inter-individual variability is high. A sampling method, using biopsies of the digestive gland, has been developed. This method allows for repetitive sampling of the same scallop, but the representativeness of the samples obtained in this way needs to be validated. In this work, we found that the distribution of DA in the digestive gland of the scallops is mostly homogeneous. Only the area closest to the gonad, and especially its outer portion, had a lower concentration than the other ones, probably due to a transfer of the toxin to the intestinal loop. Samples obtained by biopsies can therefore be considered to be representative. Most of the toxin was accumulated in large cells (mostly digestive cells), which could be due to differences during the toxin absorption or to the preferential depuration of the toxin from the small cells (mostly secretory).
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón S/N, 36620 Vilanova de Arousa, Spain;
| | - Aida Mauríz
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón S/N, 36620 Vilanova de Arousa, Spain;
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Casilla 117, Chile
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo Casilla 117, Chile
| |
Collapse
|
17
|
Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, Dolucan J, Mead D, Oliver K, Omer AD, Pelan S, Ryan Y, Sims Y, Skelton J, Smith M, Torrance J, Weisz D, Wipat A, Aiden EL, Howe K, Williams ST. The gene-rich genome of the scallop Pecten maximus. Gigascience 2020; 9:giaa037. [PMID: 32352532 PMCID: PMC7191990 DOI: 10.1093/gigascience/giaa037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The king scallop, Pecten maximus, is distributed in shallow waters along the Atlantic coast of Europe. It forms the basis of a valuable commercial fishery and plays a key role in coastal ecosystems and food webs. Like other filter feeding bivalves it can accumulate potent phytotoxins, to which it has evolved some immunity. The molecular origins of this immunity are of interest to evolutionary biologists, pharmaceutical companies, and fisheries management. FINDINGS Here we report the genome assembly of this species, conducted as part of the Wellcome Sanger 25 Genomes Project. This genome was assembled from PacBio reads and scaffolded with 10X Chromium and Hi-C data. Its 3,983 scaffolds have an N50 of 44.8 Mb (longest scaffold 60.1 Mb), with 92% of the assembly sequence contained in 19 scaffolds, corresponding to the 19 chromosomes found in this species. The total assembly spans 918.3 Mb and is the best-scaffolded marine bivalve genome published to date, exhibiting 95.5% recovery of the metazoan BUSCO set. Gene annotation resulted in 67,741 gene models. Analysis of gene content revealed large numbers of gene duplicates, as previously seen in bivalves, with little gene loss, in comparison with the sequenced genomes of other marine bivalve species. CONCLUSIONS The genome assembly of P. maximus and its annotated gene set provide a high-quality platform for studies on such disparate topics as shell biomineralization, pigmentation, vision, and resistance to algal toxins. As a result of our findings we highlight the sodium channel gene Nav1, known to confer resistance to saxitoxin and tetrodotoxin, as a candidate for further studies investigating immunity to domoic acid.
Collapse
Affiliation(s)
- Nathan J Kenny
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | - Shane A McCarthy
- University of Cambridge, Department of Genetics,Cambridge CB2 3EH, UK
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
| | - Katherine James
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | | | - Craig Corton
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Dan Mead
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Pelan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Yan Ryan
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | | | | | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Erez L Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Kerstin Howe
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Suzanne T Williams
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
18
|
Gill S, Kumara VMR. Detecting Neurodevelopmental Toxicity of Domoic Acid and Ochratoxin A Using Rat Fetal Neural Stem Cells. Mar Drugs 2019; 17:md17100566. [PMID: 31590222 PMCID: PMC6835907 DOI: 10.3390/md17100566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, animal experiments in rodents are the gold standard for developmental neurotoxicity (DNT) investigations; however, testing guidelines for these experiments are insufficient in terms of animal use, time, and costs. Thus, alternative reliable approaches are needed for predicting DNT. We chose rat neural stem cells (rNSC) as a model system, and used a well-known neurotoxin, domoic acid (DA), as a model test chemical to validate the assay. This assay was used to investigate the potential neurotoxic effects of Ochratoxin A (OTA), of which the main target organ is the kidney. However, limited information is available regarding its neurotoxic effects. The effects of DA and OTA on the cytotoxicity and on the degree of differentiation of rat rNSC into astrocytes, neurons, and oligodendrocytes were monitored using cell-specific immunofluorescence staining for undifferentiated rNSC (nestin), neurospheres (nestin and A2B5), neurons (MAP2 clone M13, MAP2 clone AP18, and Doublecortin), astrocytes (GFAP), and oligodendrocytes (A2B5 and mGalc). In the absence of any chemical exposure, approximately 46% of rNSC differentiated into astrocytes and neurons, while 40% of the rNSC differentiated into oligodendrocytes. Both non-cytotoxic and cytotoxic concentrations of DA and OTA reduced the differentiation of rNSC into astrocytes, neurons, and oligodendrocytes. Furthermore, a non-cytotoxic nanomolar (0.05 µM) concentration of DA and 0.2 µM of OTA reduced the percentage differentiation of rNSC into astrocytes and neurons. Morphometric analysis showed that the highest concentration (10 μM) of DA reduced axonal length. These indicate that low, non-cytotoxic concentrations of DA and OTA can interfere with the differentiation of rNSC.
Collapse
Affiliation(s)
- S Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney's Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.
| | - V M Ruvin Kumara
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney's Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
19
|
RNA-Seq Transcriptome Profiling of the Queen Scallop (Aequipecten opercularis) Digestive Gland after Exposure to Domoic Acid-Producing Pseudo-nitzschia. Toxins (Basel) 2019; 11:toxins11020097. [PMID: 30736356 PMCID: PMC6410316 DOI: 10.3390/toxins11020097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Some species of the genus Pseudo-nitzschia produce the toxin domoic acid, which causes amnesic shellfish poisoning (ASP). Given that bivalve mollusks are filter feeders, they can accumulate these toxins in their tissues. To elucidate the transcriptional response of the queen scallop Aequipecten opercularis after exposure to domoic acid-producing Pseudo-nitzschia, the digestive gland transcriptome was de novo assembled using an Illumina HiSeq 2000 platform. Then, a differential gene expression analysis was performed. After the assembly, 142,137 unigenes were obtained, and a total of 10,144 genes were differentially expressed in the groups exposed to the toxin. Functional enrichment analysis found that 374 Pfam (protein families database) domains were significantly enriched. The C1q domain, the C-type lectin, the major facilitator superfamily, the immunoglobulin domain, and the cytochrome P450 were among the most enriched Pfam domains. Protein network analysis showed a small number of highly connected nodes involved in specific functions: proteasome components, mitochondrial ribosomal proteins, protein translocases of mitochondrial membranes, cytochromes P450, and glutathione S-transferases. The results suggest that exposure to domoic acid-producing organisms causes oxidative stress and mitochondrial dysfunction. The transcriptional response counteracts these effects with the up-regulation of genes coding for some mitochondrial proteins, proteasome components, and antioxidant enzymes (glutathione S-transferases, thioredoxins, glutaredoxins, and copper/zinc superoxide dismutases).
Collapse
|
20
|
Moyer CE, Hiolski EM, Marcinek DJ, Lefebvre KA, Smith DR, Zuo Y. Repeated low level domoic acid exposure increases CA1 VGluT1 levels, but not bouton density, VGluT2 or VGAT levels in the hippocampus of adult mice. HARMFUL ALGAE 2018; 79:74-86. [PMID: 30420019 PMCID: PMC6237202 DOI: 10.1016/j.hal.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Domoic acid (DA) is a neurotoxin produced during harmful algal blooms that accumulates in marine organisms that serve as food resources for humans. While acute DA neurotoxicity can cause seizures and hippocampal lesions, less is known regarding how chronic, subacute DA exposure in adulthood impacts the hippocampus. With more frequent occurrences of harmful algal blooms, it is important to understand the potential impact of repeated, low-level DA exposure on human health. To model repeated, low-dose DA exposure, adult mice received a single low-dose (0.75 ± 0.05 μg/g) of DA or vehicle weekly for 22 consecutive weeks. Quantitative immunohistochemistry was performed to assess the effects of repeated, low-level DA exposure on hippocampal cells and synapses. Vesicular glutamate transporter 1 (VGluT1) immunoreactivity within excitatory boutons in CA1 of DA-exposed mice was increased. Levels of other vesicular transporter proteins (i.e., VGluT2 and the vesicular GABA transporter (VGAT)) within boutons, and corresponding bouton densities, were not significantly altered in CA1, CA3, or dentate gyrus. There were no significant changes in neuron density or glial fibrillary acidic protein (GFAP) immunoreactivity following chronic, low-dose exposure. This suggests that repeated low doses of DA, unlike high doses of DA, do not cause neuronal loss or astrocyte activation in hippocampus in adult mice. Instead, these findings demonstrate that repeated exposure to low levels of DA leads to subtle changes in VGluT1 expression within CA1 excitatory boutons, which may alter glutamatergic transmission in CA1 and disrupt behaviors dependent on spatial memory.
Collapse
Affiliation(s)
- Caitlin E Moyer
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States
| | - Emma M Hiolski
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States
| | - David J Marcinek
- Departments of Radiology, Pathology, and Bioengineering, University of Washington, South Lake Union Campus, 850 Republican St., Brotman 142, Box 358050, Seattle, WA, 98109, United States
| | - Kathi A Lefebvre
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, United States
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States
| | - Yi Zuo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States.
| |
Collapse
|
21
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
22
|
Jing J, Petroff R, Shum S, Crouthamel B, Topletz AR, Grant KS, Burbacher TM, Isoherranen N. Toxicokinetics and Physiologically Based Pharmacokinetic Modeling of the Shellfish Toxin Domoic Acid in Nonhuman Primates. Drug Metab Dispos 2018; 46:155-165. [PMID: 29150543 PMCID: PMC5776359 DOI: 10.1124/dmd.117.078485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Domoic acid (DA), a neurotoxin, is produced by marine algae and has caused toxications worldwide in animals and humans. However, the toxicokinetics of DA have not been fully evaluated, and information is missing on the disposition of DA following oral exposures at doses that are considered safe for human consumption. In this study, toxicokinetics of DA were investigated in cynomolgus monkeys following single doses of 5 µg/kg DA intravenously, 0.075 mg/kg DA orally, and 0.15 mg/kg DA orally. After intravenous dosing, DA had a systemic clearance of 124 ± 71 (ml/h)/kg, volume of distribution at steady state of 131 ± 71 ml/kg and elimination half-life of 1.2 ± 1.1 hours. However, following oral dosing, the average terminal half-life of DA was 11.3 ± 2.4 hours, indicating that DA disposition follows flip-flop kinetics with slow, rate-limiting absorption. The absorption of DA was low after oral dosing with absolute bioavailability of 6% ± 4%. The renal clearance of DA was variable [21-152 (ml/h)/kg] with 42% ± 11% of the intravenous DA dose recovered in urine. A physiologically based pharmacokinetic model was developed for DA in monkeys and humans that replicated the flip-flop kinetics observed after oral administration and allowed simulation of urinary excretion and brain and kidney distribution of DA following intravenous and oral dosing. This study is the first to characterize DA disposition at exposure levels close to the current estimated tolerable daily intake and to mechanistically model DA disposition in a model species, providing important information of the toxicokinetics of DA for human safety assessment.
Collapse
Affiliation(s)
- Jing Jing
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Rebekah Petroff
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Sara Shum
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Brenda Crouthamel
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Ariel R Topletz
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Kimberly S Grant
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Thomas M Burbacher
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Nina Isoherranen
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| |
Collapse
|
23
|
Yamamoto A, Kudo S, Nakaya M, Hanaishi R, Masuda Y, Kimura J, Sakuraba A, Shibata M, Kudo S, Itsukaichi T, Sato H, Murakami A, Kogawa A. [Validation Study of Analytical Method for Determination of Amnesic Shellfish Poison in Bivalves]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2018; 58:281-287. [PMID: 29311448 DOI: 10.3358/shokueishi.58.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amnesic shellfish poison (ASP) is regarded as one of the shellfish poison groups in the EU, though it is not subject to regulation in Japan. We have developed an analytical method of ASP based on the report by Hatfield et al. and other methods. Validation studies were carried out with certified compositional reference materials (CRM). Performance parameters were estimated based on 17 analytical results. The estimate of trueness was 97.5%, and the estimate of intralaboratory reproducibility (RSD) was 1.5%. The HorRat(r) value was 0.16. These performance parameters meet the criteria in the Codex Procedural Manual. Furthermore, internal quality control was performed by using the CRM. The action limits were set based on the performance parameters of the method. Most of the results of the internal quality control were within the action limit range. The results confirmed that the quality of the analyses was well maintained. The purpose of the analytical method is to confirm that the level of ASP in scallop is less than 4.6 mg/kg. The applicability of the analytical method to scallops was confirmed by using spiked samples.
Collapse
Affiliation(s)
| | - Shiho Kudo
- Aomori Prefectural Public Health and Environment Center
| | - Minoru Nakaya
- Aomori Prefectural Public Health and Environment Center
| | | | | | - Junko Kimura
- Aomori Prefectural Public Health and Environment Center
| | - Asae Sakuraba
- Aomori Prefectural Public Health and Environment Center
| | | | - Sho Kudo
- Aomori Prefectural Public Health and Environment Center
| | | | - Hirohisa Sato
- Aomori Prefectural Public Health and Environment Center
| | | | - Akiko Kogawa
- Aomori Prefectural Public Health and Environment Center
| |
Collapse
|
24
|
The Preparation and Identification of a Monoclonal Antibody against Domoic Acid and Establishment of Detection by Indirect Competitive ELISA. Toxins (Basel) 2017; 9:toxins9080250. [PMID: 28817087 PMCID: PMC5577584 DOI: 10.3390/toxins9080250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 01/18/2023] Open
Abstract
Domoic acid (DA) is a potent toxin, marine biotoxin, and primarily produced by Pseudo-nitzschia. The DA hapten was coupled with bovine serum albumin (BSA), and ovalbumin (OVA) as carrier proteins. DA-BSA conjugate was used as immunogen and DA-OVA as coating antigen. Cell fusion between spleen cells and sp2/0 myeloma cells developed 1C3 hybridoma clone producing 1C3 monoclonal antibody (mAb). Hybridoma was injected into the mice to produce ascites, and further purified by caprylic acid/ammonium sulfate method. The mAb was of IgG3 subclass, and was specific to DA with high affinity (2.5 × 108 L/mol). Moreover, western blot exhibited significant specificity to the DA antigens. Indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) showed DA working range of 0.006–0.2 ng/mL. The IC50 was 0.03 ng/mL with low limit of detection (LOD) of 0.006 ng/mL. Average DA recovery from spiked shellfish extract was 100.56 ± 2.8% with the coefficient variation of 0.01–0.1%. Hence, mAb producing 1C3 hybridoma was successfully developed and could be used to detect DA in contaminated samples.
Collapse
|
25
|
Sykes AV, Almansa E, Cooke GM, Ponte G, Andrews PLR. The Digestive Tract of Cephalopods: a Neglected Topic of Relevance to Animal Welfare in the Laboratory and Aquaculture. Front Physiol 2017; 8:492. [PMID: 28769814 PMCID: PMC5511845 DOI: 10.3389/fphys.2017.00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU) regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i) Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent) and the amount of food provided; (ii) The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii) Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv) Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control) but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v) A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised here will rely on studies of the physiology of the digestive tract.
Collapse
Affiliation(s)
- António V Sykes
- Centro de Ciências do Mar do Algarve, Universidade do AlgarveFaro, Portugal
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Giovanna Ponte
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| | - Paul L R Andrews
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| |
Collapse
|
26
|
Ramya EM, Kumar GP, Anand T, Anilakumar KR. Modulatory effects of Terminalia arjuna against domoic acid induced toxicity in Caco-2 cell line. Cytotechnology 2017; 69:725-739. [PMID: 28342004 DOI: 10.1007/s10616-017-0080-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/10/2017] [Indexed: 01/30/2023] Open
Abstract
Domoic acid is a potent marine algal toxin produced by diatomic genus of Pseudo-nitzschia causing amnesic shell fish poisoning. Domoic acid toxicosis mainly involves excitotoxic effects coupled with oxidative stress. The present study was aimed to evaluate the protective effects of hydro-alcoholic extract of Terminalia arjuna (TA) against domoic acid induced toxic effects in Caco-2 cell line. It was observed that the toxicity induced by domoic acid in Caco-2 cells was mediated by oxidative insult leading to morphological changes, DNA damage and apoptosis. In our study pre-treatment of the cells with TA (10, 20 and 30 μg/ml) showed significant protection against domoic acid induced morphological, oxidative and apoptotic damages in a dose dependent manner. The effect of phytocompounds present in TA viz., kaempferol and arjungenin showed significant protection against domoic acid induced toxicity in Caco-2 cell line. Hence, it could be inferred that the protective effect of TA extract against domoic acid induced toxicity could be due to the individual or synergistic effects of kaempferol and argungenin. However, further clinical studies are warranted to consider TA as a natural remedy to prevent amnesic shell fish poisoning.
Collapse
Affiliation(s)
- E M Ramya
- Applied Nutrition Division, Defence Food Research Laboratory (DRDO), Mysore, 570011, India
| | - G Phani Kumar
- Applied Nutrition Division, Defence Food Research Laboratory (DRDO), Mysore, 570011, India.
| | - T Anand
- Biochemistry and Nanosciences Division, DFRL, Mysore, 570011, India
| | - K R Anilakumar
- Applied Nutrition Division, Defence Food Research Laboratory (DRDO), Mysore, 570011, India
| |
Collapse
|
27
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
28
|
Scalco E, Amato A, Ferrante MI, Montresor M. The sexual phase of the diatom Pseudo-nitzschia multistriata: cytological and time-lapse cinematography characterization. PROTOPLASMA 2016; 253:1421-1431. [PMID: 26494151 DOI: 10.1007/s00709-015-0891-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Pseudo-nitzschia is a thoroughly studied pennate diatom genus for ecological and biological reasons. Many species in this genus, including Pseudo-nitzschia multistriata, can produce domoic acid, a toxin responsible for amnesic shellfish poisoning. Physiological, phylogenetic and biological features of P. multistriata were studied extensively in the past. Life cycle stages, including the sexual phase, fundamental in diatoms to restore the maximum cell size and avoid miniaturization to death, have been well described for this species. P. multistriata is heterothallic; sexual reproduction is induced when strains of opposite mating type are mixed, and proceeds with cells producing two functionally anisogamous gametes each; however, detailed cytological information for this process is missing. By means of confocal laser scanning microscopy and nuclear staining, we followed the nuclear fate during meiosis, and using time-lapse cinematography, we timed every step of the sexual reproduction process from mate pairing to initial cell hatching. The present paper depicts cytological aspects during gametogenesis in P. multistriata, shedding light on the chloroplast behaviour during sexual reproduction, finely describing the timing of the sexual phases and providing reference data for further studies on the molecular control of this fundamental process.
Collapse
Affiliation(s)
- Eleonora Scalco
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Alberto Amato
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Marina Montresor
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
29
|
Vieira AC, Cifuentes JM, Bermúdez R, Ferreiro SF, Castro AR, Botana LM. Heart Alterations after Domoic Acid Administration in Rats. Toxins (Basel) 2016; 8:E68. [PMID: 26978401 PMCID: PMC4810213 DOI: 10.3390/toxins8030068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. In the present study we have addressed the long-term toxicological effects (30 days) of DA intraperitoneal administration in rats. Different histological techniques were employed in order to study DA toxicity in heart, an organ which has not been thoroughly studied after DA intoxication to date. The presence of DA was detected by immunohistochemical assays, and cellular alterations were observed both by optical and transmission electron microscopy. Although histological staining methods did not provide any observable tissue damage, transmission electron microscopy showed several injuries: a moderate lysis of myofibrils and loss of mitochondrial conformation. This is the first time the association between heart damage and the presence of the toxin has been observed.
Collapse
Affiliation(s)
- Andres C Vieira
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - José Manuel Cifuentes
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Roberto Bermúdez
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Sara F Ferreiro
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Albina Román Castro
- Rede de Infraestruturas de Apoio á Investigación e ao Desenvolvemento Tecnolóxico (RIADT) Lugo, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
30
|
Zhang Y, Chen D, Hong Z. A Rapid LC-HRMS Method for the Determination of Domoic Acid in Urine Using a Self-Assembly Pipette Tip Solid-Phase Extraction. Toxins (Basel) 2015; 8:E10. [PMID: 26729165 PMCID: PMC4728532 DOI: 10.3390/toxins8010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed a self-assembly pipette tip solid-phase extraction (PTSPE) method using a high molecular weight polymer material (PAX) as the adsorbent for the determination of domoic acid (DA) in human urine samples by liquid chromatography high-resolution mass spectrometry (LC-HRMS) analysis. The PTSPE cartridge, assembled by packing 9.1 mg of PAX as sorbent into a 200 μL pipette tip, showed high adsorption capacity for DA owing to the strong cationic properties of PAX. Compared with conventional SPE, the PTSPE is simple and fast, and shows some advantages in the aspects of less solvent consumption, low cost, the absence of the evaporation step, and short time requirement. All the parameters influencing the extraction efficiency such as pH, the amount of sorbent, the number of aspirating/dispensing cycles, and the type and volume of eluent in PTSPE were carefully investigated and optimized. Under the optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) values of DA were 0.12 μg/L and 0.37 μg/L respectively. The extraction recoveries of DA from the urine samples spiked at four different concentrations were in a range from 88.4% to 102.5%. The intra- and inter-day precisions varied from 2.1% to 7.6% and from 2.6% to 12.7%, respectively. The accuracy ranged from -1.9% to -7.4%.
Collapse
Affiliation(s)
- Yiping Zhang
- Third Institute of Oceanography State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China.
| | - Dawei Chen
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Zhuan Hong
- Third Institute of Oceanography State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China.
| |
Collapse
|
31
|
Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis. Mar Drugs 2015; 13:3672-709. [PMID: 26065408 PMCID: PMC4483651 DOI: 10.3390/md13063672] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel), valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.
Collapse
|
32
|
Neely BA, Ferrante JA, Chaves JM, Soper JL, Almeida JS, Arthur JM, Gulland FMD, Janech MG. Proteomic Analysis of Plasma from California Sea Lions (Zalophus californianus) Reveals Apolipoprotein E as a Candidate Biomarker of Chronic Domoic Acid Toxicosis. PLoS One 2015; 10:e0123295. [PMID: 25919366 PMCID: PMC4412824 DOI: 10.1371/journal.pone.0123295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
Abstract
Domoic acid toxicosis (DAT) in California sea lions (Zalophus californianus) is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05). Interestingly, 11 apolipoprotein E (ApoE) charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value) and high specificity (92.3% with 85.7% positive predictive value). These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers.
Collapse
Affiliation(s)
- Benjamin A. Neely
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Jason A. Ferrante
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States of America
- Grice Marine Laboratory, College of Charleston, Charleston, SC, United States of America
| | - J. Mauro Chaves
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States of America
| | | | - Jonas S. Almeida
- Department of Biomedical Informatics, Stony Brook University, Long Island, NY, United States of America
| | - John M. Arthur
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States of America
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, United States of America
| | | | - Michael G. Janech
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States of America
- Grice Marine Laboratory, College of Charleston, Charleston, SC, United States of America
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
33
|
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol 2014; 5:259. [PMID: 25538678 PMCID: PMC4259123 DOI: 10.3389/fneur.2014.00259] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022] Open
Abstract
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.
Collapse
Affiliation(s)
- David N Vaughan
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
34
|
Fisher JL. The neurotoxin domoate causes long-lasting inhibition of the kainate receptor GluK5 subunit. Neuropharmacology 2014; 85:9-17. [PMID: 24859608 PMCID: PMC4107164 DOI: 10.1016/j.neuropharm.2014.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 02/04/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are responsible for fast excitatory neurotransmission in the mammalian brain, and are critical regulators of neuronal activity and synaptic plasticity. The three main types of iGluRs (AMPA, NMDA, and kainate receptors) are composed of distinct subunit populations. The tetrameric kainate receptors can be assembled from a combination of five different types of subunits (GluK1-GluK5). GluK1-3 subunits are able to produce functional homomeric receptors, while GluK4-5 are obligate heteromers, and must assemble with a GluK1-3 subunit. The neurotoxin domoate is widely used as an agonist at kainate-type receptors because it produces a less desensitizing response compared to glutamate. We have identified an additional, subunit-dependent action of domoate at recombinant kainate receptors. When applied to heteromeric GluK2/K5 receptors, domoate generates a small, long-lasting, tonic current. In addition, brief exposure to domoate inhibits the GluK5 subunit, preventing its activation by other agonists for several minutes. These characteristics are not associated with the GluK1, K2, or K4 subunits and can be prevented by a mutation in GluK5 that reduces agonist binding affinity. The results also show that the domoate-bound, GluK2/K5 heteromeric receptors can be fully activated by agonists acting through the GluK2 subunit, suggesting that the subunits within the tetramer can function independently to open the ion channel, and that the domoate-bound state is not a desensitized or blocked conformation. This study describes new properties associated with domoate action at kainate receptors, and further characterizes the distinct roles played by different subunits in heteromeric receptors.
Collapse
Affiliation(s)
- Janet L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
35
|
Domoic acid epileptic disease. Mar Drugs 2014; 12:1185-207. [PMID: 24663110 PMCID: PMC3967204 DOI: 10.3390/md12031185] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/08/2014] [Accepted: 02/08/2014] [Indexed: 12/23/2022] Open
Abstract
Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis.
Collapse
|
36
|
Apoptogenic metabolites in fractions of the Benthic diatom Cocconeis scutellum parva. Mar Drugs 2014; 12:547-67. [PMID: 24451194 PMCID: PMC3917286 DOI: 10.3390/md12010547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 12/12/2022] Open
Abstract
Benthic diatoms of the genus Cocconeis contain a specific apoptogenic activity. It triggers a fast destruction of the androgenic gland in the early post-larval life of the marine shrimp Hippolyte inermis, leading to the generation of small females. Previous in vitro investigations demonstrated that crude extracts of these diatoms specifically activate a dose-dependent apoptotic process in human cancer cells (BT20 breast carcinoma) but not in human normal lymphocytes. Here, a bioassay-guided fractionation has been performed to detect the apoptogenic compound(s). Various HPLC separation systems were needed to isolate the active fractions, since the apoptogenic metabolite is highly active, present in low amounts and is masked by abundant but non-active cellular compounds. The activity is due to at least two compounds characterized by different polarities, a hydrophilic and a lipophilic fraction. We purified the lipophilic fraction, which led to the characterization of an active sub-fraction containing a highly lipophilic compound, whose molecular structure has not yet been identified, but is under investigation. The results point to the possible medical uses of the active compound. Once the molecular structure has been identified, the study and modulation of apoptotic processes in various types of cells will be possible.
Collapse
|
37
|
Munday R, Reeve J. Risk assessment of shellfish toxins. Toxins (Basel) 2013; 5:2109-37. [PMID: 24226039 PMCID: PMC3847717 DOI: 10.3390/toxins5112109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/30/2013] [Indexed: 01/24/2023] Open
Abstract
Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-7-838-5138; Fax: +64-7-838-5012
| | - John Reeve
- Ministry of Primary Industries, PO Box 2526, Wellington, New Zealand; E-Mail:
| |
Collapse
|
38
|
Giménez Papiol G, Casanova A, Fernández-Tejedor M, de la Iglesia P, Diogène J. Management of domoic acid monitoring in shellfish from the Catalan coast. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:6653-6666. [PMID: 23275095 DOI: 10.1007/s10661-012-3054-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Monitoring of amnesic shellfish poisoning (ASP) toxins in shellfish from the Catalan coast started in 2001. No ASP toxins were detected in any of the analyses performed before 2008. On 22 January 2008, domoic acid (DA) was detected in Donax trunculus (0.5 mg kg(-1)) and confirmed by rapid resolution liquid chromatography-tandem mass spectrometry (0.6 mg kg(-1)). A total of 974 shellfish samples were analyzed from January 2008 to December 2011, covering all the Catalan production areas and the most important marketed species. DA was detected in 23.8 % of the samples and was recorded every month in all areas and all species, except Ostrea edulis, although the percentage of samples with DA and DA content varied widely among samples. DA exceeded the regulatory level of 20 mg kg(-1) twice: in Callista chione sampled on February 2008 and in D. trunculus sampled on April 2010. DA content in Bolinus brandaris appeared constant and close to 4.5 mg kg(-1) for months in 2009. Mytilus galloprovincialis, Crassostrea gigas, and Ruditapes sp. presented very low concentrations of DA in the Ebro Delta bays, despite 113 alert situations according to Pseudo-nitzschia spp. abundances and the high number of shellfish samples analyzed. The origin of DA in Catalan shellfish remains unknown.
Collapse
Affiliation(s)
- Gemma Giménez Papiol
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), Ctra. Poble Nou Km. 5.5, 43540, Sant Carles de la Rapita, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
39
|
Port JA, Parker MS, Kodner RB, Wallace JC, Armbrust EV, Faustman EM. Identification of G protein-coupled receptor signaling pathway proteins in marine diatoms using comparative genomics. BMC Genomics 2013; 14:503. [PMID: 23883327 PMCID: PMC3727952 DOI: 10.1186/1471-2164-14-503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 07/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The G protein-coupled receptor (GPCR) signaling pathway plays an essential role in signal transmission and response to external stimuli in mammalian cells. Protein components of this pathway have been characterized in plants and simpler eukaryotes such as yeast, but their presence and role in unicellular photosynthetic eukaryotes have not been determined. We use a comparative genomics approach using whole genome sequences and gene expression libraries of four diatoms (Pseudo-nitzschia multiseries, Thalassiosira pseudonana, Phaeodactylum tricornutum and Fragilariopsis cylindrus) to search for evidence of GPCR signaling pathway proteins that share sequence conservation to known GPCR pathway proteins. RESULTS The majority of the core components of GPCR signaling were well conserved in all four diatoms, with protein sequence similarity to GPCRs, human G protein α- and β-subunits and downstream effectors. There was evidence for the Gγ-subunit and thus a full heterotrimeric G protein only in T. pseudonana. Phylogenetic analysis of putative diatom GPCRs indicated similarity but deep divergence to the class C GPCRs, with branches basal to the GABAB receptor subfamily. The extracellular and intracellular regions of these putative diatom GPCR sequences exhibited large variation in sequence length, and seven of these sequences contained the necessary ligand binding domain for class C GPCR activation. Transcriptional data indicated that a number of the putative GPCR sequences are expressed in diatoms under various stress conditions in culture, and that many of the GPCR-activated signaling proteins, including the G protein, are also expressed. CONCLUSIONS The presence of sequences in all four diatoms that code for the proteins required for a functional mammalian GPCR pathway highlights the highly conserved nature of this pathway and suggests a complex signaling machinery related to environmental perception and response in these unicellular organisms. The lack of evidence for some GPCR pathway proteins in one or more of the diatoms, such as the Gγ-subunit, may be due to differences in genome completeness and genome coverage for the four diatoms. The high divergence of putative diatom GPCR sequences to known class C GPCRs suggests these sequences may represent another, potentially ancestral, subfamily of class C GPCRs.
Collapse
Affiliation(s)
- Jesse A Port
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Sharma S, Rais A, Sandhu R, Nel W, Ebadi M. Clinical significance of metallothioneins in cell therapy and nanomedicine. Int J Nanomedicine 2013; 8:1477-88. [PMID: 23620664 PMCID: PMC3633583 DOI: 10.2147/ijn.s42019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian metallothioneins (MTs) are low molecular weight (6–7 kDa) cysteine-rich proteins that are specifically induced by metal nanoparticles (NPs). MT induction in cell therapy may provide better protection by serving as antioxidant, anti-inflammatory, antiapoptotic agents, and by augmenting zinc-mediated transcriptional regulation of genes involved in cell proliferation and differentiation. Liposome-encapsulated MT-1 promoter has been used extensively to induce growth hormone or other genes in culture and gene-manipulated animals. MTs are induced as a defensive mechanism in chronic inflammatory conditions including neurodegenerative diseases, cardiovascular diseases, cancer, and infections, hence can serve as early and sensitive biomarkers of environmental safety and effectiveness of newly developed NPs for clinical applications. Microarray analysis has indicated that MTs are significantly induced in drug resistant cancers and during radiation treatment. Nutritional stress and environmental toxins (eg, kainic acid and domoic acid) induce MTs and aggregation of multilamellar electron-dense membrane stacks (Charnoly body) due to mitochondrial degeneration. MTs enhance mitochondrial bioenergetics of reduced nicotinamide adenine dinucleotide–ubiquinone oxidoreductase (complex-1), a rate-limiting enzyme complex involved in the oxidative phosphorylation. Monoamine oxidase-B inhibitors (eg, selegiline) inhibit α-synuclein nitration, implicated in Lewy body formation, and inhibit 1-methyl 4-phenylpyridinium and 3-morpholinosydnonimine-induced apoptosis in cultured human dopaminergic neurons and mesencephalic fetal stem cells. MTs as free radical scavengers inhibit Charnoly body formation and neurodegenerative α-synucleinopathies, hence Charnoly body formation and α-synuclein index may be used as early and sensitive biomarkers to assess NP effectiveness and toxicity to discover better drug delivery and surgical interventions. Furthermore, pharmacological interventions augmenting MTs may facilitate the theranostic potential of NP-labeled cells and other therapeutic agents. These unique characteristics of MTs might be helpful in the synthesis, characterization, and functionalization of emerging NPs for theranostic applications. This report highlights the clinical significance of MTs and their versatility as early, sensitive biomarkers in cell-based therapy and nanomedicine.
Collapse
Affiliation(s)
- Sushil Sharma
- Saint James School of Medicine, Bonaire, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Giordano G, Kavanagh TJ, Faustman EM, White CC, Costa LG. Low-level domoic acid protects mouse cerebellar granule neurons from acute neurotoxicity: role of glutathione. Toxicol Sci 2013; 132:399-408. [PMID: 23315585 PMCID: PMC3693515 DOI: 10.1093/toxsci/kft002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/28/2012] [Indexed: 11/14/2022] Open
Abstract
Domoic acid (DomA) is a potent marine neurotoxin. By activating α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid/kainate receptors, DomA induces oxidative stress-mediated apoptotic cell death in neurons. The effect of prolonged (10 days) exposure to a low, nontoxic concentration (5nM) of DomA on acute (intermediate concentration) neurotoxicity of this toxin was investigated in cerebellar granule neurons (CGNs) from wild-type mice and mice lacking the glutamate cysteine ligase (GCL) modifier subunit (Gclm (/)). CGNs from Gclm (/) mice have very low glutathione (GSH) levels and are very sensitive to DomA toxicity. In CGNs from wild-type mice, prolonged exposure to 5nM DomA did not cause any overt toxicity but reduced oxidative stress-mediated apoptotic cell death induced by exposure to an intermediate concentration (100nM for 24h) of DomA. This protection was not observed in CGNs from Gclm (/) mice. Prolonged DomA exposure increased GSH levels in CGNs of wild-type but not Gclm (/) mice. Levels of GCLC (the catalytic subunit of GCL) protein and mRNA were increased in CGNs of both mouse strains, whereas levels of GCLM protein and mRNA, activity of GCL, and levels of GCL holoenzyme were only increased in CGNs of wild-type mice. Chronic DomA exposure also protected wild-type CGNs from acute toxicity of other oxidants. The results indicate that CGNs from Gclm (/) mice, which are already more sensitive to DomA toxicity, are unable to upregulate their GSH levels. As Gclm (/) mice may represent a model for a common human polymorphism in GCLM, such individuals may be at particular risk for DomA-induced neurotoxicity.
Collapse
Affiliation(s)
- Gennaro Giordano
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA.
| | | | | | | | | |
Collapse
|
42
|
Costa LG, Giordano G, Faustman EM. Domoic acid as a developmental neurotoxin. Neurotoxicology 2010; 31:409-23. [PMID: 20471419 PMCID: PMC2934754 DOI: 10.1016/j.neuro.2010.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/21/2022]
Abstract
Domoic acid (DomA) is an excitatory amino acid which can accumulate in shellfish and finfish under certain environmental conditions. DomA is a potent neurotoxin. In humans and in non-human primates, oral exposure to a few mg/kg DomA elicits gastrointestinal effects, while slightly higher doses cause neurological symptoms, seizures, memory impairment, and limbic system degeneration. In rodents, which appear to be less sensitive than humans or non-human primates, oral doses cause behavioral abnormalities (e.g. hindlimb scratching), followed by seizures and hippocampal degeneration. Similar effects are also seen in other species (from sea lions to zebrafish), indicating that DomA exerts similar neurotoxic effects across species. The neurotoxicity of DomA is ascribed to its ability to interact and activate the AMPA/KA receptors, a subfamily of receptors for the neuroexcitatory neurotransmitter glutamate. Studies exploring the neurotoxic effects of DomA on the developing nervous system indicate that DomA elicits similar behavioral, biochemical and morphological effects as in adult animals. However, most importantly, developmental neurotoxicity is seen at doses of DomA that are one to two orders of magnitude lower than those exerting neurotoxicity in adults. This difference may be due to toxicokinetic and/or toxicodynamic differences. Estimated safe doses may be exceeded in adults by high consumption of shellfish contaminated with DomA at the current limit of 20 microg/g. Given the potential higher susceptibility of the young to DomA neurotoxicity, additional studies investigating exposure to, and effects of this neurotoxin during brain development are warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
43
|
Neurological disease rises from ocean to bring model for human epilepsy to life. Toxins (Basel) 2010; 2:1646-75. [PMID: 22069654 PMCID: PMC3153267 DOI: 10.3390/toxins2071646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/28/2010] [Accepted: 06/11/2010] [Indexed: 01/20/2023] Open
Abstract
Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages.
Collapse
|
44
|
Tasker RA, Adams-Marriott AL, Shaw CA. New animal models of progressive neurodegeneration: tools for identifying targets in predictive diagnostics and presymptomatic treatment. EPMA J 2010. [PMID: 23199060 PMCID: PMC3405326 DOI: 10.1007/s13167-010-0019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mental and neurological disorders are increasingly prevalent and constitute a major societal and economic burden worldwide. Many of these diseases and disorders are characterized by progressive deterioration over time, that ultimately results in identifiable symptoms that in turn dictate therapy. Disease-specific symptoms, however, often occur late in the degenerative process. A better understanding of presymptomatic events could allow for the development of new diagnostics and earlier interventions that could slow or stop the disease process. Such studies of progressive neurodegeneration require the use of animal models that are characterized by delayed or slowly developing disease phenotype(s). This brief review describes several examples of such animal models that have recently been developed with relevance to various neurological diseases and disorders, and delineates the potential of such models to aid in predictive diagnosis, early intervention and disease prevention.
Collapse
Affiliation(s)
- R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A4P3
| | | | | |
Collapse
|
45
|
Cloning and characterization of glutamate receptors in Californian sea lions (Zalophus californianus). Mar Drugs 2010; 8:1637-49. [PMID: 20559490 PMCID: PMC2885082 DOI: 10.3390/md8051637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/16/2010] [Accepted: 04/29/2010] [Indexed: 11/23/2022] Open
Abstract
Domoic acid produced by marine algae has been shown to cause acute and chronic neurologic sequelae in Californian sea lions following acute or low-dose exposure. Histological findings in affected animals included a degenerative cardiomyopathy that was hypothesized to be caused by over-excitation of the glutamate receptors (GluRs) speculated to be present in the sea lion heart. Thus tissues from five sea lions without lesions associated with domoic acid toxicity and one animal with domoic acid-induced chronic neurologic sequelae and degenerative cardiomyopathy were examined for the presence of GluRs. Immunohistochemistry localized mGluR 2/3, mGluR 5, GluR 2/3 and NMDAR 1 in structures of the conducting system and blood vessels. NMDAR 1 and GluR 2/3 were the most widespread as immunoreactivity was observed within sea lion conducting system structures. PCR analysis, cloning and subsequent sequencing of the seal lion GluRs showed only 80% homology to those from rats, but more than 95% homologous to those from dogs. The cellular distribution and expression of subtypes of GluRs in the sea lion hearts suggests that exposure to domoic acid may induce cardiac damage and functional disturbances.
Collapse
|
46
|
|
47
|
Immunomodulatory effects of domoic acid differ between in vivo and in vitro exposure in mice. Mar Drugs 2008; 6:636-59. [PMID: 19172200 PMCID: PMC2630849 DOI: 10.3390/md6040636] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/08/2008] [Accepted: 12/15/2008] [Indexed: 11/17/2022] Open
Abstract
The immunotoxic potential of domoic acid (DA), a well-characterized neurotoxin, has not been fully investigated. Phagocytosis and lymphocyte proliferation were evaluated following in vitro and in vivo exposure to assay direct vs indirect effects. Mice were injected intraperitoneally with a single dose of DA (2.5 μg/g b.w.) and sampled after 12, 24, or 48 hr. In a separate experiment, leukocytes and splenocytes were exposed in vitro to 0, 1, 10, or 100 μM DA. In vivo exposure resulted in a significant increase in monocyte phagocytosis (12-hr), a significant decrease in neutrophil phagocytosis (24-hr), a significant decrease in monocyte phagocytosis (48-hr), and a significant reduction in T-cell mitogen-induced lymphocyte proliferation (24-hr). In vitro exposure significantly reduced neutrophil and monocyte phagocytosis at 1 μM. B- and T-cell mitogen-induced lymphocyte proliferation were both significantly increased at 1 and 10 μM, and significantly decreased at 100 μM. Differences between in vitro and in vivo results suggest that DA may exert its immunotoxic effects both directly and indirectly. Modulation of cytosolic calcium suggests that DA exerts its effects through ionotropic glutamate subtype surface receptors at least on monocytes. This study is the first to identify DA as an immunotoxic chemical in a mammalian species.
Collapse
|