1
|
Kim J, Cho H, Kim KS. Lactobacilli-derived extracellular vesicles as synergistic biomolecules for colistin efficacy against Acinetobacter baumannii. Microbiol Res 2025; 295:128104. [PMID: 40010016 DOI: 10.1016/j.micres.2025.128104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Acinetobacter baumannii (A. baumannii), a gram-negative bacterium resistant to antibiotics, presents substantial medical challenges, causing nosocomial infections with high fatality rates. Colistin (COL) is frequently employed as a last-line defense against these pathogens. Nevertheless, its therapeutic efficacy has been significantly reduced due to the emergence of COL-resistant strains. With the slow development of novel antibiotics, researchers have explored materials to boost the effectiveness of COL against such pathogens. Postbiotics, comprising bioactive compounds derived from probiotic microorganisms, have shown potential antibacterial properties and may work synergistically with certain antibiotics. This study aimed to confirm the role of extracellular vesicles (EVs) as a collection of bioactive molecules that could potentially synergize with COL. EVs from various Lactobacilli strains (LEVs) were evaluated for their effect on COL susceptibility. The findings indicated that, compared to COL treatment alone, LEVs enhanced 4- to 8-fold bactericidal efficacy of COL against A. baumannii strains in the level of minimum inhibitory concentrations (MIC). Additional mechanistic investigations into the synergistic effects of LEVs on established COL mechanisms, including lipopolysaccharide binding, reactive oxygen species (ROS) generation, and biofilm formation, showed that LEVs act as either ROS enhancers or biofilm inhibitors, depending on the bacterial strains. Finally, we demonstrated that repeated use of LEVs did not induce COL resistance in A. baumannii. These results provide the first evidence that LEVs can serve as effective postbiotics, enhancing the susceptibility of A. baumannii strains to COL.
Collapse
Affiliation(s)
- Jisung Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
2
|
Tharmalingam N, Jayanthan HS, Port J, Rossatto FCP, Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. mBio 2025; 16:e0401624. [PMID: 39998211 PMCID: PMC11980597 DOI: 10.1128/mbio.04016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Acinetobacter baumannii is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of A. baumannii, decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (pH range: 5-8). Structure-activity relationship analysis using MFQ analogs demonstrated that piperidin-2-yl methanol is required for antibacterial activity. Scanning and transmission electron microscopy demonstrated the compromised morphological and membrane integrity in MFQ-treated cells. MFQ synergized with the membrane permeabilizers polymyxin B and colistin and the MFQ + polymyxin B combination killed bacterial cells more effectively than either treatment alone. MFQ + polymyxin B was effective against other gram-negative bacteria including Escherichia coli, Burkholderia pseudomallei, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Bodipy-cadaverine displacement assays confirmed the active interaction of MFQ with other membrane lipid components, such as lipopolysaccharide, lipid A, lipoteichoic acids, and fatty acids. In all-atom molecular dynamics simulations, lipid interactions facilitated the permeation of MFQ into the simulated Gram-negative membrane. Additionally, positively charged nitrogen in the piperidine group of MFQ seems to enhance interactions with the negatively charged components of the bacterial membrane. MFQ + polymyxin B caused significantly greater curvature in the simulated membrane, indicating greater damage than standalone drug treatment. Finally, in vivo assays showed that MFQ + polymyxin B rescued Galleria mellonella larvae infected with A. baumannii. In conclusion, membrane-active agents such as MFQ may warrant further investigation as a potential components of gram-negative infection treatment, particularly in combination with polymyxin B. IMPORTANCE Antimicrobial resistance is a threat globally, and new treatments are urgently needed to combat the rise of multidrug-resistant bacteria. However, the development of anti-infectives has declined over the last two decades due to regulatory, financial and long-term requirement related challenges. In this study, we examined the membrane interactions of the antiparasitic agent mefloquine (MFQ) in combination with polymyxin B, using both in vitro and in silico approaches to evaluate their potential efficacy against gram-negative bacterial infections. We investigated the interaction of MFQ with lipid bilayers to understand the mechanism through which antibacterial activity is exerted. The piperidine moiety of MFQ plays a critical role in its interaction with the lipid bilayer and facilitates membrane permeabilization. In contrast, the membrane permeabilizer polymyxin B is associated with significant neurotoxicity and nephrotoxicity. Our findings highlight the potential of membrane-acting compounds, such as MFQ, to enhance combinatorial activity while mitigating polymyxin B-associated toxicity.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Jenna Port
- Tufts University, Boston, Massachusetts, USA
| | | | - Eleftherios Mylonakis
- Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
3
|
Yang R, Ma X, Peng F, Wen J, Allahou LW, Williams GR, Knowles JC, Poma A. Advances in antimicrobial peptides: From mechanistic insights to chemical modifications. Biotechnol Adv 2025; 81:108570. [PMID: 40154761 DOI: 10.1016/j.biotechadv.2025.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
This review provides a comprehensive analysis of antimicrobial peptides (AMPs), exploring their diverse sources, secondary structures, and unique characteristics. The review explores into the mechanisms underlying the antibacterial, immunomodulatory effects, antiviral, antiparasitic and antitumour of AMPs. Furthermore, it discusses the three principal synthesis pathways for AMPs and assesses their current clinical applications and preclinical research status. The paper also addresses the limitations of AMPs, including issues related to stability, resistance, and toxicity, while offering insights into strategies for their enhancement. Recent advancements in AMP research, such as chemical modifications (including amino acid sequence optimisation, terminal and side-chain modifications, PEGylation, conjugation with small molecules, conjugation with photosensitisers, metal ligands, polymerisation, cyclisation and specifically targeted antimicrobial peptides) are highlighted. The goal is to provide a foundation for the future design and optimisation of AMPs.
Collapse
Affiliation(s)
- Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
4
|
Liu L, Shi Z, Tong M, Fang Y, Yang D, Yu J, Cao Z. Designing a Novel Ultrashort Cyclic [R 3W 4V] Antimicrobial Peptide with Superior Antimicrobial Potential Based on the Transmembrane Structure to Facilitate Pore Formation. J Chem Inf Model 2025; 65:2623-2635. [PMID: 39976454 DOI: 10.1021/acs.jcim.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The clinical application of antimicrobial peptides (AMPs) is frequently hindered by the inherent limitations of linear peptides. Previous studies have primarily focused on the physicochemical properties of AMPs, and there is a scarcity of information regarding the transmembrane structure and interactions of AMPs with cell membranes and their antimicrobial activity. The present study is the first to propose that the backbone cyclization of linear R3W4V (l(R3W4V)) into the cyclic R3W4V (c[R3W4V]) form can enhance the stability of its transmembrane structure and consequently improve its antibacterial activity. The results of the bacterial inhibition assays performed herein demonstrated that the antibacterial activity of c[R3W4V] against Staphylococcus aureus and Bacillus subtilis was approximately 17-fold and 19-fold higher than that of l(R3W4V). The effect of c[R3W4V] on the structure of the bilayer membrane was further assessed via well-tempered bias-exchange metadynamics simulations and long-time conventional unbiased molecular dynamics simulations. This study demonstrated that the single c[R3W4V] peptide assumes a stable transmembrane configuration. Consequently, as the number of peptides accumulating in the membrane core increases at higher peptide-lipid ratios, a higher number of phospholipid headgroups embedded into the hydrophobic lipid core, leading to membrane fusion, permeabilization, and deformation of the upper and lower leaflets of the bilayer. The study provides a novel computational perspective on enhancing the antimicrobial efficacy of AMPs and highlights the importance of peptide-membrane structures, dynamics, and interactions in promoting the membrane-disruptive potential of peptides.
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhihong Shi
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Mingqiong Tong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Yaqing Fang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Dongying Yang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
5
|
Zhang N, Li X, Liu X, Cheng P, Li L, Chai Y, Cao M, Yang Y. Aspirin enhances the antibacterial activity of colistin against multidrug-resistant Pseudomonas aeruginosa. Eur J Pharmacol 2025; 997:177480. [PMID: 40057155 DOI: 10.1016/j.ejphar.2025.177480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa (PSA), recently reclassified by the World Health Organization (WHO) as a high-priority antimicrobial-resistant pathogen, continues to impose a substantial global health burden due to escalating resistance and stagnant therapeutic innovation. Colistin retains critical clinical utility against MDR P. aeruginosa infections; however, its dose-limiting nephrotoxicity and neurotoxicity necessitate strategies to optimise therapeutic indices. This study investigated the molecular mechanism underlying the synergistic activity of aspirin in potentiating colistin efficacy against MDR P. aeruginosa. In vitro analyses revealed marked synergistic bactericidal activity (FIC index ≤0.5), with metabolomic profiling demonstrating suppression of key metabolic pathways integral to bacterial membrane biogenesis, including glycerophospholipid metabolism and fatty acid biosynthesis. Ultrastructural imaging confirmed irreversible disruption of membrane integrity via combined treatment. In a rat model of P. aeruginosa-induced pneumonia, colistin-aspirin co-administration demonstrated superior efficacy to monotherapy, significantly reducing pulmonary bacterial load (3 to 4-log CFU/g reduction vs colistin alone; p < 0.01), attenuating histopathological injury, and suppressing pro-inflammatory cytokine levels (IL-6, IL-8, TNF-α) by 30-47%. Critically, this synergy enabled a reduction of colistin dosing to one-sixteenth while maintaining bactericidal potency. These findings provide mechanistic insights into aspirin-mediated colistin sensitisation and evidence supporting combinatorial regimens to circumvent colistin toxicity barriers. This work establishes a rational foundation for clinical translation of repurposed aspirin-colistin therapy against MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Ning Zhang
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China; College of Acupuncture and Massage, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China; First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Xue Li
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China; Department of the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550003, Guiyang, China
| | - Xin Liu
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China; School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Ping Cheng
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lailai Li
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China; School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China; School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Mingle Cao
- People's Hospital of Duyun City, Duyun, 558000, Guizhou, China
| | - Yuqi Yang
- Guizhou University of Traditional Chinese Medicine, 550025, Guiyang, China; School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
6
|
Artawinata PC, Kim Y, Choi IY, Park MK. Broad Antibacterial Activity and Mechanism of Garlic ( Allium sativum L. cv. Uiseong) Extracts against Cell Wall of Aeromonas hydrophila. J Microbiol Biotechnol 2025; 35:e2410035. [PMID: 40016148 PMCID: PMC11896803 DOI: 10.4014/jmb.2410.10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
Aeromonas hydrophila is a pathogenic bacterium known for its resistance to antibiotics and its ability to cause infections in aquatic environments. This has made disease management more complex, making the development of alternative antimicrobial agents necessary. Uiseong garlic is a superior variety from Republic of Korea, renowned for its high level of beneficial compounds, making it a promising candidate for natural antimicrobial application. Therefore, this study aimed to investigate the antibacterial activity and mechanism of Uiseong garlic extracts against the cell wall of A. hydrophila. Uiseong garlic extracts were prepared using water and ethanol at 22°C and 90°C, respectively. The antibacterial activities of Uiseong garlic extracts were evaluated for their yield, antibacterial dynamics, leakage of bacterial intracellular proteins, and changes in morphological characteristics. Uiseong garlic extracts at 22°C exhibited significant antibacterial activities against foodborne pathogens, particularly against 9 strains of A. hydrophila. In this study, the ethanol extract at 22°C demonstrated significantly higher antibacterial activity compared to the water extract at 22°C, with a similar pattern of antimicrobial dynamics with polymyxin B. The ethanol extract at 22°C caused a higher concentration of leaked bacterial proteins (92.87 ± 0.46 μg/ml), indicating cell membrane disruption. Additionally, transmission electron microscopy analysis further confirmed that both extracts induced plasmolysis, leading to notable damage to the bacterial cell membrane. Therefore, ethanol extract of Uiseong garlic was demonstrated as a promising alternative to antibiotics for controlling A. hydrophila.
Collapse
Affiliation(s)
- Putri Christy Artawinata
- School of Food Science and Biotechnology and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youjin Kim
- School of Food Science and Biotechnology and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Young Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mi-Kyung Park
- School of Food Science and Biotechnology and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Zhan Z, He S, Chang J, Hu M, Zhang Z, Cui Y, Shi X. Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China. Int J Food Microbiol 2025; 430:111027. [PMID: 39880505 DOI: 10.1016/j.ijfoodmicro.2024.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.0 %, 46/118) Salmonella isolates were collected, which were identified as 12 serotypes by genomic analysis, including Salmonella Typhimurium (n = 17) and Salmonella London (n = 6). Antimicrobial resistance profiling revealed that the resistance rate of these isolates to colistin was 13.0 % (6/46), while 60.9 % (28/46) exhibited multidrug-resistant. It was found that there were 51 distinct antimicrobial resistance genes in these 46 isolates, which were predominantly associated with resistance to aminoglycosides, fluoroquinolones, and β-lactams. More importantly, among six colistin-resistant isolates, two isolates (Salmonella Schwarzengrund and Salmonella Indiana) were found to carry the mcr-1 gene. The mechanism of resistance in the remaining four colistin-resistant isolates was further studied, and it was found that there were nine amino acid substitutions in PmrAB. It was demonstrated by site-directed mutagenesis that novel substitutions G53W in PmrA and I83V in PmrB led to colistin resistance in Salmonella (MIC = 2 or 4 μg/mL). Analysis results by real-time quantitative PCR and mass spectrometry indicated that the mutants PmrAG53W and PmrBI83V displayed higher expression levels of the gene pmrE than in the parental strain. This upregulation resulted in an increase in the production of 4-amino-4-deoxy-l-arabinose (L-Ara4N) that modified lipid A, thereby conferring resistance to colistin. These findings demonstrated that there was a high prevalence of MDR Salmonella isolates in retail pork in Shanghai, and the substitution G53W in PmrA and I83V in PmrB were independent factors contributing to the development of resistance to colistin in Salmonella via modification of lipid A with L-Ara4N.
Collapse
Affiliation(s)
- Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Chang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengjun Hu
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Tharmalingam N, Jayanthan HS, Port J, Rossatto FCP, Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633232. [PMID: 39868148 PMCID: PMC11761044 DOI: 10.1101/2025.01.15.633232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acinetobacter baumannii is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of A. baumannii , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8). Structure-activity relationship analysis using MFQ analogs demonstrated that piperidin-2-yl methanol is required for antibacterial activity. Scanning and transmission electron microscopy demonstrated the compromised morphological and membrane integrity in MFQ treated cells. MFQ synergized with the membrane permeabilizers polymyxin B and colistin and the MFQ+polymyxin B combination killed bacterial cells more effectively than either treatment alone. MFQ+polymyxin B was effective against other Gram-negative bacteria including Escherisia coli, Burkholderia pseudomallei, Klebsiella pneumoniae, and Pseudomonas auroginosa . Bodipy-cadaverine displacement assays confirmed the active interaction of MFQ with other membrane lipid components, such as lipopolysaccharide, lipid A, lipoteichoic acids, and fatty acids. In all-atom molecular dynamics simulations, lipid interactions facilitated the permeation of MFQ into the simulated Gram-negative membrane. Additionally, positively charged nitrogen in the piperidine group of MFQ seems to enhance interactions with the negatively charged components of the bacterial membrane. MFQ+polymyxin B caused significantly greater curvature in the simulated membrane, indicating greater damage than standalone drug treatment. Finally, in vivo assays showed that MFQ+polymyxin B rescued Galleria mellonella larvae infected with A. baumannii . In conclusion, membrane-active agents such as MFQ may warrant further investigation as potential component of Gram-negative infection treatment, particularly in combination with polymyxin B. Importance Antimicrobial resistance is a threat globally, and new treatments are urgently needed to combat the rise of multidrug-resistant bacteria. However, the development of anti-infectives has declined over the last two decades due to regulatory, financial and long-term requirement related challenges. In this study, we examined the membrane interactions of the antiparasitic agent mefloquine in combination with polymyxin B, using both in vitro and in silico approaches to evaluate their potential efficacy against Gram-negative bacterial infections. We investigated the interaction of MFQ with lipid bilayers to understand the mechanism through which antibacterial activity is exerted. The piperidine moiety of MFQ plays a critical role in its interaction with the lipid bilayer and facilitates membrane permeabilization. In contrast, the membrane permeabilizer polymyxin B is associated with significant neurotoxicity and nephrotoxicity. Our findings highlight the potential of membrane-acting compounds, such as MFQ, to enhance combinatorial activity while mitigating polymyxin B-associated toxicity.
Collapse
|
9
|
Crnčević D, Krce L, Brkljača Z, Cvitković M, Babić Brčić S, Čož-Rakovac R, Odžak R, Šprung M. A dual antibacterial action of soft quaternary ammonium compounds: bacteriostatic effects, membrane integrity, and reduced in vitro and in vivo toxicity. RSC Adv 2025; 15:1490-1506. [PMID: 39822568 PMCID: PMC11737066 DOI: 10.1039/d4ra07975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold. Our findings revealed that these compounds primarily exhibit a bacteriostatic mode of action, effectively suppressing bacterial growth even at concentrations exceeding their minimum inhibitory concentrations (MICs). Unlike traditional QACs, fluorescence spectroscopy and microscopy demonstrated membrane preservation during treatment, with reduced membrane integration compared to cetylpyridinium chloride (CPC), as corroborated by parallel artificial membrane permeability assays. Additionally, molecular dynamics simulations revealed "hook-like" conformations that limit lipid bilayer penetration and promote the formation of larger aggregates, reducing their effective concentration and minimizing cytotoxic effects. Interestingly, secondary antibacterial mechanisms, including inhibition of protein synthesis, were observed, further enhancing their activity. Zebrafish embryotoxicity and in vitro cytotoxicity studies confirmed significantly lower toxicity compared to CPC. By addressing limitations associated with conventional QACs, including toxicity, resistance, and environmental persistence, these soft QACs provide a promising foundation for next-generation antimicrobials. This work advances the understanding of QAC mechanisms while paving the way for safer, eco-friendly applications in healthcare, agriculture, and industrial settings.
Collapse
Affiliation(s)
- Doris Crnčević
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
- University of Split, Faculty of Science, Doctoral Study in Biophysics R. Bošković 33 Split Croatia
| | - Lucija Krce
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | | | - Mislav Cvitković
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | - Sanja Babić Brčić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Renata Odžak
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| | - Matilda Šprung
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| |
Collapse
|
10
|
Luo Y, He B, Li ZP, Zhong Q, Liu YC, Zhang HY, Li Y, Yan HL, Hu YL, Zheng ZJ, Ren H, Liao XP, Sun J. Rutin Synergizes with Colistin to Eradicate Salmonellosis in Mice by Enhancing the Efficacy and Reducing the Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:438-449. [PMID: 39699161 DOI: 10.1021/acs.jafc.4c06751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The wide dissemination of multidrug-resistant (MDR) Gram-negative bacteria poses a significant global health and security concern. As developing new antibiotics is generally costly, fastidious, and time-consuming, there is an urgent need for alternative therapeutic strategies to address the gap in antibiotic discovery void. This study aimed to investigate the activity of colistin (CS) in combination with a natural product, rutin (RT), to combat against Salmonella Typhimurium (S. Tm) in vitro and in vivo. The results showed that a combination with RT enabled the potentiation of CS efficacy. Further mechanistic analysis indicated that RT disrupted iron homeostasis to inactivate the PmrA/PmrB system, thereafter reducing the bacterial membrane modifications for enhancing CS binding. Besides enhancing bactericidal activity of CS, RT was also observed to mitigate the CS-induced nephrotoxicity, by which the dosing limitation of CS was overcome for better pathogen clearance. The animal trial eventually confirmed the in vivo synergistic interaction of RT with CS to treat the bacterial infection. To sum up, the present study uncovered the potential of RT as a viable adjuvant of CS to eradicate the infection and protect the hosts, which might serve as a promising alternative to combat infections caused by MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Yang Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Bing He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhi-Peng Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Qin Zhong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu-Chen Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hai-Yi Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hui-Lin Yan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Lin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi-Jian Zheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
11
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
12
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2025; 39:138-161. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
13
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Li YZ, Zhou FR, Chen XJ, Liu YG. Evaluating the therapeutic impact of Compound Polymyxin B Ointment on postoperative wound healing in patients with perianal abscesses. Front Med (Lausanne) 2024; 11:1496086. [PMID: 39741508 PMCID: PMC11685118 DOI: 10.3389/fmed.2024.1496086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Perianal abscesses pose a considerable obstacle in the realm of postoperative wound treatment owing to their elevated susceptibility to infection and associated consequences. Polymyxin B Ointment, a compound renowned for its antibacterial qualities, has the potential to provide therapeutic advantages by promoting wound healing and mitigating postoperative problems. Methods Our institution conducted a thorough retrospective analysis spanning from December 2020 to December 2023 to assess the effectiveness of Compound Polymyxin B Ointment in the management of surgical wounds in patients diagnosed with perianal abscesses. The research encompassed a cohort of 100 individuals, who were classified into two groups: a control group that received conventional postoperative care, and an observation group that received supplementary treatment with Compound Polymyxin B Ointment. The evaluation of clinical outcomes involved measuring wound healing effectiveness, pain intensity using the Visual Analogue Scale (VAS), tissue swelling, exudation, necrotic tissue shedding time, duration of hospital stays, and rate of reduction in wound area. Results The group that received Compound Polymyxin B Ointment had significant enhancements in wound healing, as seen by a noteworthy 46% of participants completing complete healing, in contrast to the control group's 32%. The VAS was used to quantify pain levels, and the observation group reported a substantial reduction of almost 50% in ratings. Furthermore, this cohort exhibited a 45% decrease in edema and a 50% decline in exudation rates, in addition to a 50% acceleration in the shedding of necrotic tissue. The duration of the hospital stay was reduced by 40%, and the reduction in wound area was 18% higher, suggesting a more effective healing process. In addition, it is worth noting that the observation group had a lower incidence of problems, so underscoring the effectiveness of the ointment in facilitating wound healing and mitigating postoperative difficulties. Discussion The utilization of Compound Polymyxin B Ointment as an adjuvant measure in the surgical treatment of perianal abscesses has been found to have a substantial positive impact on wound healing, pain relief, and complication reduction. This finding provides evidence for the possibility of the ointment as a helpful inclusion in post-surgical wound care procedures among this specific group of patients.
Collapse
Affiliation(s)
| | | | | | - Yong-Gan Liu
- Department of Anorectal, The People’s Hospital of Zhongshan, Zhongshan, Guangdong, China
| |
Collapse
|
15
|
Gugu TH, Uronnachi EM, Thawithong E, Srichana T. Spray dried polymyxin B liposome for inhalation against gram-negative bacteria. Pharm Dev Technol 2024; 29:1133-1147. [PMID: 39513323 DOI: 10.1080/10837450.2024.2427186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to provide an alternative and effective delivery system to combat polymyxin B (PMB) toxicity and bacterial resistance through inhalation therapy. PMB was formulated as liposomal dry powder for inhalation using thin-film hydration and spray-dried methods. PMB formulations were characterized physically. The aerodynamic properties were determined using next-generation impactor (NGI). In vitro drug release was done in a phosphate buffer pH 7.4 for 2 h. Cytotoxicity was evaluated by the MTT cell viability assay. Antimicrobiological activities were done using bioassay and flow cytometry. Particle sizes of the spay-dried formulations were between 259.83 ± 9.91 and 518.73 ± 27.08 nm while the zeta potentials ranged between 3.07 ± 0.27 and 4.323 ± 0.36 mV. The Fourier-transform infrared spectroscopy shows no interaction between PMB and other excipients. Differential scanning calorimetry thermograms revealed amorphousness of the formulated powders and SEM revealed spherical PMB formulations. Similarly, mass media aerodynamic diameter results were 1.72-2.75 nm, and FPF was 25%-26%. The cumulative release of the PMB formulations was 90.3 ± 0.6% within 2 h. The killing kinetics revealed total cell death at 12 and 24 h for Pseudomonas aeruginosa and Escherichia coli, respectively. The PMB inhalation liposome showed better activity and was safe for lung-associated cell lines.
Collapse
Affiliation(s)
- Thaddeus Harrison Gugu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Nigeria
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Emmanuel Maduabuchi Uronnachi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ekawat Thawithong
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
16
|
Gahlot DK, Patkowski JB, Fernández de Santaella J, Allsopp LP, Pan Z, Filloux A, Larrouy-Maumus G, Francis MS, Costa TRD. Cpx-signalling in Yersinia pseudotuberculosis modulates Lipid-A remodelling and resistance to last-resort antimicrobials. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:39. [PMID: 39568730 PMCID: PMC11573712 DOI: 10.1038/s44259-024-00059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Antibiotic resistance is a global healthcare crisis. Bacteria are highly adaptable and can rapidly acquire mechanisms of resistance towards conventional antibiotics. The permeability barrier conferred by the Gram-negative bacteria cell envelope constitutes a first line of defence against the action of antibiotics. Exposure to extracytoplasmic stresses can negatively affect cell envelope homoeostasis and this causes localised protein misfolding, compromised envelope integrity and impairs barrier function. The CpxA-CpxR two-component regulatory system has evolved to sense extracytoplasmic stresses and to regulate processes that restore homoeostasis of the cell envelope. Hence, controlled Cpx-signalling assists bacteria in adapting, surviving and proliferating in harsh environments, including exposure to antibiotics. Herein, we determined that an intact Cpx-signalling is key to maintaining the Yersinia pseudotuberculosis resistance to colistin and polymyxin B. The susceptibility displayed by Cpx-signalling defective mutants, correlated with cell-envelope deformity and specific modifications of Lipid-A. In vivo transcriptional analysis and in vitro protein-DNA binding studies demonstrated that these modifications were dependent on the direct regulation of Lipid-A biogenesis and modifications of operons by the active phosphorylated CpxR~P isoform. Altogether, our work defines the regulatory mechanism that enables Cpx-signalling to actively control cell envelope remodelling and the permeability of antibiotics in the clinically relevant enteropathogen Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonasz B. Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | | | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zhiqiao Pan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Matthew S. Francis
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Tiago R. D. Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
17
|
Moayedi S, Xia W, Lundergan L, Yuan H, Xu J. Zwitterionic Polymers for Biomedical Applications: Antimicrobial and Antifouling Strategies toward Implantable Medical Devices and Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23125-23145. [PMID: 39450830 DOI: 10.1021/acs.langmuir.4c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is extensively utilized in biomedical applications due to its biocompatibility; however, its thermal instability and susceptibility to oxidative degradation significantly constrain its long-term effectiveness. Zwitterionic polymers, characterized by their distinctive structure, enhanced stability, and superior biocompatibility, offer a more advantageous alternative. These polymers exhibit super hydrophilicity, resist nonspecific protein adsorption, and maintain stability in biological environments due to their charge-neutral ionic nature. Zwitterionic polymers enhance anticancer drug delivery by precisely targeting tumor cells and facilitating an efficient drug release. Their inherent antifouling properties and prolonged circulation within the bloodstream render them highly suitable for redox-sensitive drug carriers, thereby augmenting the antitumor efficacy. Moreover, zwitterionic polymers markedly mitigate biofouling in implants, biosensors, and wound dressings, thereby improving both their functionality and their therapeutic outcomes. These advantages arise from the formation of robust hydration layers, which significantly enhance the hemocompatibility and inhibit the adhesion of proteins, platelets, and bacteria. Zwitterionic polymers, including sulfobetaine (SB), phosphorylcholine (PC), and carboxybetaine (CB), are increasingly employed in blood-contacting devices and as effective coating materials for implantable devices. This mini-review paper aims to explore the recent diverse biomedical applications of zwitterionic polymers and highlight their advantageous properties compared with unmodified polymers. We will cover their use in drug delivery systems, tumor targeting nanocarriers, antibiofouling and antibacterial activities in implantable devices, tissue engineering, and diagnostic devices, demonstrating how their unique properties can translate into different applications. Through this exploration, this Perspective will display the potential of zwitterionic polymers as innovative polymer materials in the field of biomedical engineering and beyond.
Collapse
Affiliation(s)
- Sara Moayedi
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Weibo Xia
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Liam Lundergan
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
18
|
Sharma N, Das A, Nair AV, Sethi P, Negi VD, Chakravortty D, Marathe SA. CRISPR-Cas system positively regulates virulence of Salmonella enterica serovar Typhimurium. Gut Pathog 2024; 16:63. [PMID: 39462402 PMCID: PMC11514906 DOI: 10.1186/s13099-024-00653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Salmonella, a foodborne pathogen, possesses a type I-E clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) system. We investigated the system's role in regulating Salmonella virulence by deleting the CRISPR arrays and Cas operon. RESULTS Our study demonstrates invasion and proliferation defects of CRISPR-Cas knockout strains in intestinal epithelial cells and macrophages owing to the repression of invasion and virulence genes. However, proliferation defects were not observed in the Gp91phox-/- macrophages, suggesting the system's role in the pathogens' antioxidant defense. We deduced that the CRISPR-Cas system positively regulates H2O2 importer (OmpW), catalase (katG), peroxidase (ahpC), and superoxide dismutase (soda and sodCI), thereby protecting the cells from oxidative radicals. The knockout strains were attenuated in in-vivo infection models (Caenorhabditis elegans and BALB/c mice) due to hypersensitivity against antimicrobial peptides, complement proteins, and oxidative stress. The attenuation in virulence was attributed to the suppression of LPS modifying (pmr) genes, antioxidant genes, master regulators, and effectors of the SPI-1 (invasion) and SPI-2 (proliferation) islands in knockout strains. The regulation could be attributed to the partial complementarity of the CRISPR spacers with these genes. CONCLUSIONS Overall, our study extends our understanding of the role of the CRISPR-Cas system in Salmonella pathogenesis and its virulence determinants.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | - Ankita Das
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Palash Sethi
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | - Vidya Devi Negi
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
19
|
Koller BH, Jania LA, Li H, Barker WT, Melander RJ, Melander C. Adjuvants restore colistin sensitivity in mouse models of highly colistin-resistant isolates, limiting bacterial proliferation and dissemination. Antimicrob Agents Chemother 2024; 68:e0067124. [PMID: 39194205 PMCID: PMC11459950 DOI: 10.1128/aac.00671-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has led to a marked reduction in the effectiveness of many antibiotics, representing a substantial and escalating concern for global health. Particularly alarming is resistance in Gram-negative bacteria due to the scarcity of therapeutic options for treating infections caused by these pathogens. This challenge is further compounded by the rising incidence of resistance to colistin, an antibiotic traditionally considered a last resort for the treatment of multi-drug resistant (MDR) Gram-negative bacterial infections. In this study, we demonstrate that adjuvants restore colistin sensitivity in vivo. We previously reported that the salicylanilide kinase inhibitor IMD-0354, which was originally developed to inhibit the human kinase IKKβ in the NFκB pathway, is a potent colistin adjuvant. Subsequent analog synthesis using an amide isostere approach led to the creation of a series of novel benzimidazole compounds with enhanced colistin adjuvant activity. Herein, we demonstrate that both IMD-0354 and a lead benzimidazole effectively restore colistin susceptibility in mouse models of highly colistin-resistant Klebsiella pneumoniae and Acinetobacter baumannii-induced peritonitis. These novel adjuvants show low toxicity in vivo, significantly reduce bacterial load, and prevent dissemination that could otherwise result in systemic infection.
Collapse
Affiliation(s)
- Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William T. Barker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
20
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
21
|
Chunduru J, LaRoe N, Garza J, Hamood AN, Paré PW. Nosocomial Bacteria Inhibition with Polymyxin B: In Silico Gene Mining and In Vitro Analysis. Antibiotics (Basel) 2024; 13:745. [PMID: 39200045 PMCID: PMC11350920 DOI: 10.3390/antibiotics13080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant bacteria present a significant public health challenge; such pathogens exhibit reduced susceptibility to conventional antibiotics, limiting current treatment options. Cationic non-ribosomal peptides (CNRPs) such as brevicidine and polymyxins have emerged as promising candidates to block Gram-negative bacteria. To investigate the capability of bacteria to biosynthesize CNRPs, and specifically polymyxins, over 11,000 bacterial genomes were mined in silico. Paenibacillus polymyxa was identified as having a robust biosynthetic capacity, based on multiple polymyxin gene clusters. P. polymyxa biosynthetic competence was confirmed by metabolite characterization via HPLC purification and MALDI TOF/TOF analysis. When grown in a selected medium, the metabolite yield was 4 mg/L with a 20-fold specific activity increase. Polymyxin B (PMB) was assayed with select nosocomial pathogens, including Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumaii, which exhibited minimum inhibitory concentrations of 4, 1, and 1 µg/mL, respectively.
Collapse
Affiliation(s)
- Jayendra Chunduru
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas LaRoe
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Garza
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (A.N.H.)
| | - Abdul N. Hamood
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (A.N.H.)
| | - Paul W. Paré
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
22
|
Rudzite M, O’Toole GA. An energy coupling factor transporter of Streptococcus sanguinis impacts antibiotic susceptibility as well as metal and membrane homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603315. [PMID: 39026867 PMCID: PMC11257530 DOI: 10.1101/2024.07.12.603315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Streptococcus sanguinis is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. S. sanguinis competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to S. sanguinis antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Marta Rudzite
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
23
|
Lachat J, Lextrait G, Jouan R, Boukherissa A, Yokota A, Jang S, Ishigami K, Futahashi R, Cossard R, Naquin D, Costache V, Augusto L, Tissières P, Biondi EG, Alunni B, Timchenko T, Ohbayashi T, Kikuchi Y, Mergaert P. Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. Proc Natl Acad Sci U S A 2024; 121:e2401802121. [PMID: 38865264 PMCID: PMC11194567 DOI: 10.1073/pnas.2401802121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.
Collapse
Affiliation(s)
- Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Romain Jouan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Amira Boukherissa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Aya Yokota
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Vlad Costache
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments (MIMA2), INRAe, Jouy-en-Josas78352, France
| | - Luis Augusto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Pierre Tissières
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Emanuele G. Biondi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Benoît Alunni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Tatiana Timchenko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Tsubasa Ohbayashi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| |
Collapse
|
24
|
Yamamoto K, Sato T, Hao A, Asao K, Kaguchi R, Kusaka S, Ruddarraju RR, Kazamori D, Seo K, Takahashi S, Horiuchi M, Yokota SI, Lee SY, Ichikawa S. Development of a natural product optimization strategy for inhibitors against MraY, a promising antibacterial target. Nat Commun 2024; 15:5085. [PMID: 38877016 PMCID: PMC11178787 DOI: 10.1038/s41467-024-49484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
MraY (phospho-N-acetylmuramoyl-pentapeptide-transferase) inhibitory natural products are attractive molecules as candidates for a new class of antibacterial agents to combat antimicrobial-resistant bacteria. Structural optimization of these natural products is required to improve their drug-like properties for therapeutic use. However, chemical modifications of these natural products are painstaking tasks due to complex synthetic processes, which is a bottleneck in advancing natural products to the clinic. Here, we develop a strategy for a comprehensive in situ evaluation of the build-up library, which enables us to streamline the preparation of the analogue library and directly assess its biological activities. We apply this approach to a series of MraY inhibitory natural products. Through construction and evaluation of the 686-compound library, we identify promising analogues that exhibit potent and broad-spectrum antibacterial activity against highly drug-resistant strains in vitro as well as in vivo in an acute thigh infection model. Structures of the MraY-analogue complexes reveal distinct interaction patterns, suggesting that these analogues represent MraY inhibitors with unique binding modes. We further demonstrate the generality of our strategy by applying it to tubulin-binding natural products to modulate their tubulin polymerization activities.
Collapse
Grants
- 22K20704 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H03622 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19K16648 MEXT | Japan Society for the Promotion of Science (JSPS)
- 19H03345 MEXT | Japan Society for the Promotion of Science (JSPS)
- 18H04599 MEXT | Japan Society for the Promotion of Science (JSPS)
- 20H04757 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19ak0101118h0001 Japan Agency for Medical Research and Development (AMED)
- 21ak0101118h9903 Japan Agency for Medical Research and Development (AMED)
- JP18am0101093j0002 Japan Agency for Medical Research and Development (AMED)
- JP22ama121039 Japan Agency for Medical Research and Development (AMED)
- JP23gm1610012 Japan Agency for Medical Research and Development (AMED)
- JP23gm1610013 Japan Agency for Medical Research and Development (AMED)
- JST START Program: ST211004JO Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from the Ministry of Education, Culture, Sport, Science, and Technology in Japan, MEXT for the Joint Research Program of the Research Center for Zoonosis Control, Hokkaido University
- the Duke Science Technology Scholar Fund
- Takeda Foundation, The Tokyo Biomedical Research Foundation and was partly supported by Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by MEXT under "Support Program for Implementation of New Equipment Sharing System"
Collapse
Affiliation(s)
- Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Aili Hao
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kenta Asao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Shintaro Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | | | - Daichi Kazamori
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624, Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Kiki Seo
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624, Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Minami-1, Nishi-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Minami-1, Nishi-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami-1, Nishi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Sapporo, Japan.
| |
Collapse
|
25
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
26
|
Burt M, Angelidou G, Mais CN, Preußer C, Glatter T, Heimerl T, Groß R, Serrania J, Boosarpu G, Pogge von Strandmann E, Müller JA, Bange G, Becker A, Lehmann M, Jonigk D, Neubert L, Freitag H, Paczia N, Schmeck B, Jung AL. Lipid A in outer membrane vesicles shields bacteria from polymyxins. J Extracell Vesicles 2024; 13:e12447. [PMID: 38766978 PMCID: PMC11103557 DOI: 10.1002/jev2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
The continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic. Our research demonstrates that OMVs protect bacteria from polymyxins. OMVs derived from Polymyxin B (PB)-stressed K. pneumoniae exhibited heightened protective efficacy due to increased vesiculation, compared to OMVs from unstressed Klebsiella. OMVs also shield bacteria from different bacterial families. This was validated ex vivo and in vivo using precision cut lung slices (PCLS) and Galleria mellonella. In all models, OMVs protected K. pneumoniae from PB and reduced the associated stress response on protein level. We observed significant changes in the lipid composition of OMVs upon PB treatment, affecting their binding capacity to PB. The altered binding capacity of single OMVs from PB stressed K. pneumoniae could be linked to a reduction in the lipid A amount of their released vesicles. Although the amount of lipid A per vesicle is reduced, the overall increase in the number of vesicles results in an increased protection because the sum of lipid A and therefore PB binding sites have increased. This unravels the mechanism of the altered PB protective efficacy of OMVs from PB stressed K. pneumoniae compared to control OMVs. The lipid A-dependent protective effect against PB was confirmed in vitro using artificial vesicles. Moreover, artificial vesicles successfully protected Klebsiella from PB ex vivo and in vivo. The findings indicate that OMVs act as protective shields for bacteria by binding to polymyxins, effectively serving as decoys and preventing antibiotic interaction with the cell surface. Our findings provide valuable insights into the mechanisms underlying antibiotic cross-protection and offer potential avenues for the development of novel therapeutic interventions to address the escalating threat of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Marie Burt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
| | - Georgia Angelidou
- Core Facility for Metabolomics and Small Molecules Mass SpectrometryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Core Facility for Mass Spectrometry and ProteomicsMax Planck Institute for terrestrial MicrobiologyMarburgGermany
| | - Christopher Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Christian Preußer
- Institute for Tumor ImmunologyPhilipps‐University MarburgMarburgGermany
- Core Facility ‐ Extracellular VesiclesPhilipps‐University MarburgMarburgGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and ProteomicsMax Planck Institute for terrestrial MicrobiologyMarburgGermany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Gowtham Boosarpu
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
| | - Elke Pogge von Strandmann
- Institute for Tumor ImmunologyPhilipps‐University MarburgMarburgGermany
- Core Facility ‐ Extracellular VesiclesPhilipps‐University MarburgMarburgGermany
| | - Janis A. Müller
- Institute of VirologyPhilipps‐University MarburgMarburgGermany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Mareike Lehmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and ImmunityHelmholtz Zentrum MünchenGerman Center for Lung Research (DZL)MunichGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center of Lung Research (DZL)HannoverGermany
- Institute of PathologyUniversity Medical Center RWTH University of AachenAachenGermany
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center of Lung Research (DZL)HannoverGermany
- Institute of PathologyHannover Medical SchoolHannoverGermany
| | - Hinrich Freitag
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center of Lung Research (DZL)HannoverGermany
- Institute of PathologyHannover Medical SchoolHannoverGermany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecules Mass SpectrometryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
- Institute for Lung Health (ILH)GiessenGermany
- Department of Medicine, Pulmonary and Critical Care MedicineUniversity Medical Center MarburgUniversities of Giessen and Marburg Lung CenterPhilipps‐University MarburgMarburgGermany
- Member of the German Center for Infectious Disease Research (DZIF)MarburgGermany
- Core Facility Flow Cytometry – Bacterial VesiclesPhilipps‐University MarburgMarburgGermany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
- Core Facility Flow Cytometry – Bacterial VesiclesPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
27
|
Sha XL, Lv GT, Chen QH, Cui X, Wang L, Cui X. A peptide selectively recognizes Gram-negative bacteria and forms a bacterial extracellular trap (BET) through interfacial self-assembly. J Mater Chem B 2024; 12:3676-3685. [PMID: 38530749 DOI: 10.1039/d3tb02559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
An innate immune system intricately leverages unique mechanisms to inhibit colonization of external invasive Bacteria, for example human defensin-6, through responsive encapsulation of bacteria. Infection and accompanying antibiotic resistance stemming from Gram-negative bacteria aggregation represent an emerging public health crisis, which calls for research into novel anti-bacterial therapeutics. Herein, inspired by naturally found host-defense peptides, we design a defensin-like peptide ligand, bacteria extracellular trap (BET) peptide, with modular design composed of targeting, assembly, and hydrophobic motifs with an aggregation-induced emission feature. The ligand specifically recognizes Gram-negative bacteria via targeting cell wall conserved lipopolysaccharides (LPS) and transforms from nanoparticles to nanofibrous networks in situ to trap bacteria and induce aggregation. Importantly, treatment of the BET peptide was found to have an antibacterial effect on the Pseudomonas aeruginosa strain, which is comparable to neomycin. Animal studies further demonstrate its ability to trigger aggregation of bacteria in vivo. This biomimetic self-assembling BET peptide provides a novel approach to fight against pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiao-Ling Sha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Gan-Tian Lv
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qing-Hua Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin Cui
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| |
Collapse
|
28
|
Soni M, Chaurasia D, Kapoor G. Antibiotic susceptibility profile of Pseudomonas species isolated from clinical specimens to access, watch and reserve drugs across various hospital settings at a tertiary care hospital of central India. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:159-165. [PMID: 38854976 PMCID: PMC11162171 DOI: 10.18502/ijm.v16i2.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Over the last decade, hospital-acquired infections, particularly in the critical care setting, have become more common, with Gram-negative bacterial infections having the highest prevalence. This study aims to determine the prevalence and antibiotic susceptibility pattern of Pseudomonas species to WHO's, aware class of antibiotics, which are commonly prescribed across various ICU's, medical and surgical wards of our tertiary care teaching hospital. Materials and Methods This prospective study conducted from January 2021 to June 2022 at a tertiary care centre of central India identified Pseudomonas species from clinical samples using standard procedures and antimicrobial susceptibility testing performed as per Clinical Laboratory Standards Institute (CLSI) guidelines (M100; 32th Edition). Results A total of 1490 non duplicate Pseudomonas species isolates were grown from 21,019 culture positive clinical samples, of which 1247 were Pseudomonas aeruginosa. Out of these 1247 Pseudomonas aeruginosa 384 were MDR (30.7%). Pseudomonas aeruginosa were most commonly isolated from the pus samples (85%). ICU isolates were significantly more resistant to antibiotics than those from other units. P. aeruginosa strains from ICUs showed the highest rates of resistance to ceftazidime (93.9%). Reserve drug colistin showed good susceptibility (98.2%). All the 18 colistin resistant strains were found to be negative for plasmid mediated mcr-1,2,3 genes. Conclusion The study shall help to generate and disseminate the data so that proper antibiotic policy can be made for judicious use of Access, Watch and Reserve antibiotics and antibiotic de-escalation plan can be put forth.
Collapse
Affiliation(s)
- Mitisha Soni
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| | - Deepti Chaurasia
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| | - Garima Kapoor
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| |
Collapse
|
29
|
Hammoudi Halat D, Ayoub Moubareck C. Hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative pathogens: Understanding epidemiology, resistance patterns, and implications with COVID-19. F1000Res 2024; 12:92. [PMID: 38915769 PMCID: PMC11195619 DOI: 10.12688/f1000research.129080.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 06/26/2024] Open
Abstract
The ongoing spread of antimicrobial resistance has complicated the treatment of bacterial hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). Gram-negative pathogens, especially those with multidrug-resistant profiles, including Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Pseudomonas aeruginosa, and Acinetobacter spp., are important culprits in this type of infections. Understanding the determinants of resistance in pathogens causing pneumonia is ultimately stressing, especially in the shadows of the COVID-19 pandemic, when bacterial lung infections are considered a top priority that has become urgent to revise. Globally, the increasing prevalence of these pathogens in respiratory samples represents a significant infection challenge, with major limitations of treatment options and poor clinical outcomes. This review will focus on the epidemiology of HAP and VAP and will present the roles and the antimicrobial resistance patterns of implicated multidrug-resistant (MDR) Gram-negative pathogens like carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), carbapenem-resistant Enterobacterales (CRE), as well as colistin-resistant Gram-negative pathogens and extended-spectrum β-lactamase (ESBL)-producing Enterobacterales. While emerging from the COVID-19 pandemic, perspectives and conclusions are drawn from findings of HAP and VAP caused by MDR Gram-negative bacteria in patients with COVID-19.
Collapse
|
30
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Neutralizing Staphylococcus aureus PAMPs that Trigger Cytokine Release from THP-1 Monocytes. ACS OMEGA 2024; 9:10967-10978. [PMID: 38463252 PMCID: PMC10918781 DOI: 10.1021/acsomega.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Innate immunity has considerable specificity and can discriminate between individual species of microbes. In this regard, pathogens are "seen" as dangerous to the host and elicit an inflammatory response capable of destroying the microbes. This immune discrimination is achieved by toll-like receptors on host cells recognizing pathogens, such as Staphylococcus aureus, and microbe-specific pathogen-associated molecular pattern (PAMP) molecules, such as lipoteichoic acid (LTA). PAMPs impede wound healing by lengthening the inflammatory phase of healing and contributing to the development of chronic wounds. Preventing PAMPs from triggering the release of inflammatory cytokines will counteract the dysregulation of inflammation. Here, we use ELISA to evaluate the use of cationic molecules branched polyethylenimine (BPEI), PEGylated BPEI (PEG-BPEI), and polymyxin-B to neutralize anionic LTA and lower levels of TNF-α cytokine release from human THP-1 monocytes in a concentration-dependent manner. Additional data collected with qPCR shows that BPEI and PEG-BPEI reduce the expression profile of the TNF-α gene. Similar effects are observed for the neutralization of whole-cell S. aureus bacteria. In vitro cytotoxicity data demonstrate that PEGylation lowers the toxicity of PEG-BPEI (IC50 = 2661 μm) compared to BPEI (IC50 = 853 μM) and that both compounds are orders of magnitude less toxic than the cationic antibiotic polymyxin-B (IC50 = 79 μM). Additionally, the LTA neutralization ability of polymyxin-B is less effective than BPEI or PEG-BPEI. These properties of BPEI and PEG-BPEI expand their utility beyond disabling antibiotic resistance mechanisms and disrupting S. aureus biofilms, providing additional justification for developing these agents as wound healing therapeutics. The multiple mechanisms of action for BPEI and PEG-BPEI are superior to current wound treatment strategies that have a single modality.
Collapse
Affiliation(s)
- Neda Heydarian
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Maya Ferrell
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Ayesha S. Nair
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Chase Roedl
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zongkai Peng
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tra D. Nguyen
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - William Best
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Karen L. Wozniak
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Charles V. Rice
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
31
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
32
|
Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, Ghanei M, Mahboudi F, Rahimi-Jamnani F. Anti-Acinetobacter Baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol 2024; 24:55. [PMID: 38341536 PMCID: PMC10858608 DOI: 10.1186/s12866-023-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy and Pharmacoeconomics, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Nazari
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
33
|
Vintila BI, Arseniu AM, Morgovan C, Butuca A, Bîrluțiu V, Dobrea CM, Rus LL, Ghibu S, Bereanu AS, Arseniu R, Roxana Codru I, Sava M, Gabriela Gligor F. A Real-World Study on the Clinical Characteristics, Outcomes, and Relationship between Antibiotic Exposure and Clostridioides difficile Infection. Antibiotics (Basel) 2024; 13:144. [PMID: 38391530 PMCID: PMC10885986 DOI: 10.3390/antibiotics13020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Clostridioides difficile is a Gram-positive bacteria that causes nosocomial infections, significantly impacting public health. In the present study, we aimed to describe the clinical characteristics, outcomes, and relationship between antibiotic exposure and Clostridioides difficile infection (CDI) in patients based on reports from two databases. Thus, we conducted a retrospective study of patients diagnosed with CDI from Sibiu County Clinical Emergency Hospital (SCCEH), Romania, followed by a descriptive analysis based on spontaneous reports submitted to the EudraVigilance (EV) database. From 1 January to 31 December 2022, we included 111 hospitalized patients with CDI from SCCEH. Moreover, 249 individual case safety reports (ICSRs) from EVs were analyzed. According to the data collected from SCCEH, CDI was most frequently reported in patients aged 65-85 years (66.7%) and in females (55%). In total, 71.2% of all patients showed positive medical progress. Most cases were reported in the internal medicine (n = 30, 27%), general surgery (n = 26, 23.4%), and infectious disease (n = 22, 19.8%) departments. Patients were most frequently exposed to ceftriaxone (CFT) and meropenem (MER). Also, in the EV database, most CDI-related ADRs were reported for CFT, PIP/TAZ (piperacillin/tazobactam), MER, and CPX (ciprofloxacin). Understanding the association between previous antibiotic exposure and the risk of CDI may help update antibiotic stewardship protocols and reduce the incidence of CDI by lowering exposure to high-risk antibiotics.
Collapse
Affiliation(s)
- Bogdan Ioan Vintila
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Victoria Bîrluțiu
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
- Clinical Medical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Simona Bereanu
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Rares Arseniu
- County Emergency Clinical Hospital "Pius Brînzeu", 300723 Timișoara, Romania
| | - Ioana Roxana Codru
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Mihai Sava
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
34
|
Kim HS, Chung YJ, Lee GR, Kim EY. The clinical efficacy and suitable implementation of two extracorporeal blood purification therapies: AN69-oXiris versus PMX-HP. Front Med (Lausanne) 2024; 11:1344893. [PMID: 38357649 PMCID: PMC10864431 DOI: 10.3389/fmed.2024.1344893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Purpose In septic shock patients, pathogens and excessive endotoxins continuously overstimulate the host's immune system with a cytokine storm that can lead to multi-organ failure and even mortality. Various types of extracorporeal blood purification treatments have recently been introduced to remove excessive endotoxins and cytokines. Herein, we compared the clinical efficacy of two blood purification methods, PMX-HP and AN69-oXiris, and discussed their detailed indications according to disease severity. Materials and methods From December 2016 to April 2023, patients who underwent emergent surgery due to septic shock secondary to peritonitis and subsequently received blood purification treatment with AN69-oXiris or PMX-HP were enrolled. Propensity score (PS)-matching was conducted to adjust for baseline characteristics between the two groups, and the changes in clinical parameters and outcomes were compared. Clinical outcomes were assessed in subgroups of patients who underwent PMX-HP treatment divided according to SOFA scores into low (0-7), intermediate (8-13), and high (> 13) disease severity groups. Results Forty patients received blood purification therapy with either PMX-HP or AN69-oXiris during the study period. After 1:2 PS matching, six patients in the AN69-oXiris group and 12 patients in the PMX-HP group were finally analyzed. Vasoactive-inotropic scores (VISs) decreased in both groups after 48 h of treatment compared to the baseline values, but the change in VISs was more pronounced in the PMX-HP group {-57.6 [interquartile range (IQR) = -166.4 - (-10)] vs. -22.9 [IQR = -64-0], respectively, p = 0.041}. Decreases in cardiovascular SOFA scores were significantly pronounced in the PMX-HP group [-1.5 (IQR = -4 - 0) vs. 0 (IQR = -1 - 1), respectively, p = 0.035]. The 7-day mortality rate was significantly lower than the predicted mortality rate in a subgroup analysis of patients treated with PMX-HP in both the low disease severity group and the intermediate disease severity group. Conclusion PMX-HP and AN69-oXiris could be therapeutic options for refractory septic shock patients with intra-abdominal origins, especially after the surgical elimination of the infectious sources. A tailored modality choice that takes into account patient characteristics, such as disease severity and cost burden, could optimize the efficacy of this strategy.
Collapse
Affiliation(s)
| | | | | | - Eun Young Kim
- Division of Trauma and Surgical Critical Care, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
35
|
de Matos AM, Calado P, Miranda M, Almeida R, Rauter AP, Oliveira MC, Manageiro V, Caniça M. Alkyl deoxyglycoside-polymyxin combinations against critical priority carbapenem-resistant gram-negative bacteria. Sci Rep 2024; 14:2219. [PMID: 38278870 PMCID: PMC10817917 DOI: 10.1038/s41598-024-51428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
The escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 μg/mL when combined with colistin 0.5 μg/mL against CRPA or 0.25 μg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.
Collapse
Affiliation(s)
- Ana M de Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal.
| | - Patrícia Calado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Mónica Miranda
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Rita Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Amélia P Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
36
|
Cui Y, Zhao D, Liu K, Mei X, Sun S, Du B, Ding Y. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2. Microbiol Spectr 2024; 12:e0229323. [PMID: 38054717 PMCID: PMC10782996 DOI: 10.1128/spectrum.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.
Collapse
Affiliation(s)
- Yanru Cui
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Xiangui Mei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shanshan Sun
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
37
|
Goki NH, Tehranizadeh ZA, Saberi MR, Khameneh B, Bazzaz BSF. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides. Curr Pharm Biotechnol 2024; 25:1041-1057. [PMID: 37921126 DOI: 10.2174/0113892010194428231017051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 11/04/2023]
Abstract
Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Wu Y, Jiang S, Li D, Wu Y, Li Q, Wang X, Liu B, Bao H, Wu D, Hu X. Clinical Efficacy and Safety of Colistin Sulfate in the Treatment of Carbapenem-Resistant Organism Infections in Patients with Hematological Diseases. Infect Dis Ther 2024; 13:141-154. [PMID: 38212555 PMCID: PMC10828183 DOI: 10.1007/s40121-023-00909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant organisms (CRO) have emerged as a significant worldwide issue. However, the availability of efficacious antibiotics for treating CRO infections remains limited. Polymyxins, including colistin sulfate, represent the last-line therapeutic option against CRO infections. This study aims to retrospectively evaluate the clinical effectiveness and safety of colistin sulfate in managing CRO infections among patients with hematological diseases. METHODS Between April 2022 and January 2023, a total of 118 hematological patients diagnosed with CRO infection were treated with colistin sulfate at Suzhou Hongci Hospital of Hematology. The assessment encompassed the clinical efficacy, bacterial clearance rate, adverse reactions, and 30-day all-cause mortality. RESULTS The study found that the total effective rate of colistin sulfate in the treatment of CRO infection was 74.6%, with a bacterial clearance rate of 72.6%. Throughout the treatment, nephrotoxicity occurred in 7.6% of cases, neurotoxicity in 2.5% of cases, and the 30-day all-cause mortality rate was 22.9%. Multivariate logistic analysis revealed that the treatment course and combination medication with other antimicrobials were independent factors affecting the clinical efficacy of colistin sulfate. CONCLUSION Our study demonstrates that the treatment of colistin sulfate can achieve high clinical efficacy and microbial responses, with a low risk of nephrotoxicity. This study provides evidence of the positive clinical efficacy and safety of colistin sulfate treatment in these patients. High-quality randomized controlled trials are still needed to further confirm the beneficial role of colistin sulfate.
Collapse
Affiliation(s)
- Yuanbing Wu
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Shanshan Jiang
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Dongyang Li
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Yaxue Wu
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Qian Li
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Xing Wang
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Bin Liu
- Department of Hematology, The Hospital of Suzhou Hongci Hematology, Suzhou, 215000, Jiangsu, China
| | - Haiyan Bao
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Depei Wu
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Xiaohui Hu
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
39
|
Dessai S, Deshpande H. IV Colistin: A Rare Cause of Bartter-Like Syndrome in Adults. Cureus 2023; 15:e50672. [PMID: 38229782 PMCID: PMC10790154 DOI: 10.7759/cureus.50672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bartter syndrome is a genetic condition characterized by autosomal recessive inheritance, resulting in impaired salt reabsorption and clinical manifestations such as low/normal blood pressure and extracellular fluid volume depletion. Multiple abnormalities of the electrolytes, including decreased potassium as well as chloride levels and, in some instances, hypomagnesemia, are its defining features. Metabolic alkalosis, hypokalaemia, hypocalcemia, and hypomagnesemia, together with adequate renal function, are all components of the Bartter-like syndrome. It is associated with certain antibiotics and antineoplastic drugs. We report a case of traumatic brain injury with pneumothorax who was on treatment on colistin and presented with metabolic disturbance.
Collapse
Affiliation(s)
- Saiesh Dessai
- Department of Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Hemant Deshpande
- Department of Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
40
|
Idris N, Leong KH, Wong EH, Abdul Rahim N. Unveiling synergism of polymyxin B with chloramphenicol derivatives against multidrug-resistant (MDR) Klebsiella pneumoniae. J Antibiot (Tokyo) 2023; 76:711-719. [PMID: 37821539 DOI: 10.1038/s41429-023-00659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Polymyxins are last-line antibiotics against multidrug-resistant Klebsiella pneumoniae but using polymyxins alone may not be effective due to emerging resistance. A previous study found that combining polymyxin B with chloramphenicol effectively kills MDR K. pneumoniae, although the bone marrow toxicity of chloramphenicol is concerning. The aim of this study is to assess the antibacterial efficacy and cytotoxicity of polymyxin B when combined with chloramphenicol and its derivatives, namely thiamphenicol and florfenicol (reported to have lesser toxicity compared to chloramphenicol). The antibacterial activity was evaluated with antimicrobial susceptibility testing using broth microdilution and time-kill assays, while the cytotoxic effect on normal bone marrow cell line, HS-5 was evaluated using the MTT assay. All bacterial isolates tested were found to be susceptible to polymyxin B, but resistant to chloramphenicol, thiamphenicol, and florfenicol when used alone. The use of polymyxin B alone showed bacterial regrowth for all isolates at 24 h. The combination of polymyxin B and florfenicol demonstrated additive and synergistic effects against all isolates (≥ 2 log10 cfu ml-1 reduction) at 4 and 24 h, respectively, while the combination of polymyxin B and thiamphenicol resulted in synergistic killing at 24 h against ATCC BAA-2146. Furthermore, the combination of polymyxin B with florfenicol had the lowest cytotoxic effect on the HS-5 cells compared to polymyxin B combination with chloramphenicol and thiamphenicol. Overall, the combination of polymyxin B with florfenicol enhanced bacterial killing against MDR K. pneumoniae and exerted minimal cytotoxic effect on HS-5 cell line.
Collapse
Affiliation(s)
- Nurulain Idris
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Vintila BI, Arseniu AM, Morgovan C, Butuca A, Sava M, Bîrluțiu V, Rus LL, Ghibu S, Bereanu AS, Roxana Codru I, Gligor FG. A Pharmacovigilance Study Regarding the Risk of Antibiotic-Associated Clostridioides difficile Infection Based on Reports from the EudraVigilance Database: Analysis of Some of the Most Used Antibiotics in Intensive Care Units. Pharmaceuticals (Basel) 2023; 16:1585. [PMID: 38004450 PMCID: PMC10675398 DOI: 10.3390/ph16111585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The Gram-positive anaerobic bacterium Clostridioides difficile (CD) can produce intense exotoxins, contributing to nosocomial infections, and it is the most common cause of health-care-associated infectious diarrhea. Based on spontaneous Individual Case Safety Reports from EudraVigilance (EV), we conducted a descriptive analysis of Clostridioides difficile infection (CDI) cases that reported a spontaneous adverse reaction related to using ceftriaxone, colistimethate, ciprofloxacin, gentamicin, linezolid, meropenem, and piperacillin/tazobactam. Most ADR reports registered in EV that were related to CDI were associated with ceftriaxone (33%), ciprofloxacin (28%), and piperacillin/tazobactam (21%). Additionally, the disproportionality analysis performed showed that all studied antibiotics had a lower reporting probability when compared to clindamycin. A causal relationship between a drug and the occurrence of an adverse reaction cannot be established from EV data alone because the phenomena of underreporting, overreporting, and reporting bias may affect the results. Based on the analysis of the collected data, this study underlines the importance of surveillance and monitoring programs for the consumption of antibiotics. Furthermore, it is essential to use standardized laboratory tests to define CDI's nature accurately. To prevent this infection, specialists should collaborate and adhere strictly to antibiotic stewardship programs, hygiene practices, and isolation protocols.
Collapse
Affiliation(s)
- Bogdan Ioan Vintila
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Mihai Sava
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Victoria Bîrluțiu
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
- Clinical Medical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Simona Bereanu
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| |
Collapse
|
42
|
Wu Y, Wu P, Wu R, Li H, Duan Y, Cai C, Liu Z, She P, Zhang D. Simeprevir restores the anti-Staphylococcus activity of polymyxins. AMB Express 2023; 13:122. [PMID: 37917339 PMCID: PMC10622387 DOI: 10.1186/s13568-023-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection poses a severe threat to global public health due to its high mortality. Currently, polymyxins are mainly used for the treatment of Gram-negative bacterial-related infection, while exhibiting limited antibacterial activities against Staphylococcus aureus (S. aureus). However, the combination of antibiotics with antibiotic adjuvants is a feasible strategy for the hard-treated infection and toxicity reducing. We will investigate the antibacterial activity of simeprevir (SIM), which treated for genotype 1 and 4 chronic hepatitis C, combined with polymyxins against MRSA through high-throughput screening technology. In our study, the synergistic antibacterial effect of SIM and polymyxins against S. aureus in vitro was found by checkerboard assay and time-growth curve. The cytotoxicity of SIM combined with polymyxin B sulfate [PB(S)] or polymyxin E (PE) in vitro was evaluated using CCK-8, human RBC hemolysis and scratch assays. In addition, we investigated the eradication of biofilm formation of S. aureus by biofilm inhibition assay and the killing of persister cells. Moreover, we evaluated the therapeutic effect and in vivo toxicity of the combination against MRSA in murine subcutaneous abscess model. Furthermore, it was preliminarily found that SIM significantly enhanced the destruction of MRSA membrane by SYTOX Green and DISC3(5) probes. In summary, these results reveal that the therapy of SIM combined with polymyxins (especially PE) is promising for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Pingyun Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruolan Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Huilong Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yao Duan
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Chaoni Cai
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zixin Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Di Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
43
|
Cao Y, Ibrahim KS, Li X, Wong A, Wu Y, Yu XD, Zhou X, Tan Z, He Z, Craft JA, Shu X. Chinese medicine, Qijudihuang pill, mediates cholesterol metabolism and regulates gut microbiota in high-fat diet-fed mice, implications for age-related macular degeneration. Front Immunol 2023; 14:1274401. [PMID: 37901244 PMCID: PMC10602650 DOI: 10.3389/fimmu.2023.1274401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Traditional Chinese Medicines have been used for thousands of years but without any sound empirical basis. One such preparation is the Qijudihuang pill (QP), a mixture of eight herbs, that has been used in China for the treatment of various conditions including age-related macular degeneration (AMD), the most common cause of blindness in the aged population. In order to explain the mechanism behind the effect of QP, we used an AMD model of high-fat diet (HFD) fed mice to investigate cholesterol homeostasis, oxidative stress, inflammation and gut microbiota. METHODS Mice were randomly divided into three groups, one group was fed with control diet (CD), the other two groups were fed with high-fat-diet (HFD). One HFD group was treated with QP, both CD and the other HFD groups were treated with vehicles. Tissue samples were collected after the treatment. Cholesterol levels in retina, retinal pigment epithelium (RPE), liver and serum were determined using a commercial kit. The expression of enzymes involved in cholesterol metabolism, inflammation and oxidative stress was measured with qRT-PCR. Gut microbiota was analyzed using 16S rRNA sequencing. RESULTS In the majority of the lipid determinations, analytes were elevated by HFD but this was reversed by QP. Cholesterol metabolism including the enzymes of bile acid (BA) formation was suppressed by HFD but again this was reversed by QP. BAs play a major role in signaling between host and microbiome and this is disrupted by HFD resulting in major changes in the composition of colonic bacterial communities. Associated with these changes are predictions of the metabolic pathway complexity and abundance of individual pathways. These concerned substrate breakdowns, energy production and the biosynthesis of pro-inflammatory factors but were changed back to control characteristics by QP. CONCLUSION We propose that the ability of QP to reverse these HFD-induced effects is related to mechanisms acting to lower cholesterol level, oxidative stress and inflammation, and to modulate gut microbiota.
Collapse
Affiliation(s)
- Yanqun Cao
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Khalid S. Ibrahim
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Iraq
| | - Xing Li
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Aileen Wong
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Yi Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xu-Dong Yu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhiming He
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - John A. Craft
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Xinhua Shu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Vision Science , Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
44
|
Abban MK, Ayerakwa EA, Mosi L, Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023; 9:e20561. [PMID: 37818001 PMCID: PMC10560788 DOI: 10.1016/j.heliyon.2023.e20561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The burden of Hospital care-associated infections (HCAIs) is becoming a global concern. This is compounded by the emergence of virulent and high-risk bacterial strains such as "ESKAPE" pathogens - (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species), especially within Intensive care units (ICUs) that house high-risk and immunocompromised patients. In this review, we discuss the contributions of AMR pathogens to the increasing burden of HCAIs and provide insights into AMR mechanisms, with a particular focus on last-resort antibiotics like polymyxins. We extensively discuss how structural modifications of surface-membrane lipopolysaccharides and cationic interactions influence and inform AMR, and subsequent severity of HCAIs. We highlight some bacterial phenotypic survival mechanisms against polymyxins. Lastly, we discuss the emergence of plasmid-mediated resistance as a phenomenon making mitigation of AMR difficult, especially within the ICUs. This review provides a balanced perspective on the burden of HCAIs, associated pathogens, implication of AMR and factors influencing emerging AMR mechanisms.
Collapse
Affiliation(s)
- Molly Kukua Abban
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Eunice Ampadubea Ayerakwa
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
45
|
Hanpaibool C, Ounjai P, Yotphan S, Mulholland AJ, Spencer J, Ngamwongsatit N, Rungrotmongkol T. Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation. J Comput Aided Mol Des 2023; 37:479-489. [PMID: 37488458 DOI: 10.1007/s10822-023-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (mcr) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in Escherichia coli expressing mcr-1 mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an E. coli strain carrying the mcr-1 gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand-protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in E. coli carrying the mcr-1 gene, providing a method for the development of novel treatments against colistin-resistant bacteria.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence On Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
46
|
Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1382. [PMID: 37760679 PMCID: PMC10525099 DOI: 10.3390/antibiotics12091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy.
Collapse
Affiliation(s)
- Van C. Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| |
Collapse
|
47
|
Hu J, Li J, Huang X, Xia J, Cui M, Huang Y, Wen Y, Xie Y, Zhao Q, Cao S, Zou L, Han X. Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs. Front Microbiol 2023; 14:1244026. [PMID: 37601351 PMCID: PMC10434507 DOI: 10.3389/fmicb.2023.1244026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) infections poses a significant challenge in global pig farming. To address this issue, the study was conducted to identify and characterize 19 ETEC isolates from fecal samples of diarrheic pigs sourced from large-scale farms in Sichuan Province, China. Whole-genome sequencing and bioinformatic analysis were utilized for identification and characterization. The isolates exhibited substantial resistance to cefotaxime, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, ampicillin, tetracycline, florfenicol, and sulfadiazine, but were highly susceptible to amikacin, imipenem, and cefoxitin. Genetic diversity among the isolates was observed, with serotypes O22:H10, O163orOX21:H4, and O105:H8 being dominant. Further analysis revealed 53 resistance genes and 13 categories of 195 virulence factors. Of concern was the presence of tet(X4) in some isolates, indicating potential public health risks. The ETEC isolates demonstrated the ability to produce either heat-stable enterotoxin (ST) alone or both heat-labile enterotoxin (LT) and ST simultaneously, involving various virulence genes. Notably, STa were linked to human disease. Additionally, the presence of 4 hybrid ETEC/STEC isolates harboring Shiga-like toxin-related virulence factors, namely stx2a, stx2b, and stx2e-ONT-2771, was identified. IncF plasmids carrying multiple antimicrobial resistance genes were prevalent, and a hybrid ETEC/STEC plasmid was detected, highlighting the role of plasmids in hybrid pathotype emergence. These findings emphasized the multidrug resistance and pathogenicity of porcine-origin ETEC strains and the potential risk of epidemics through horizontal transmission of drug resistance, which is crucial for effective control strategies and interventions to mitigate the impact on animal and human health.
Collapse
Affiliation(s)
- Jiameng Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junlin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
48
|
Baijal K, Abramchuk I, Herrera CM, Stephen Trent M, Lavallée-Adam M, Downey M. Proteomics analysis reveals a role for E. coli polyphosphate kinase in membrane structure and polymyxin resistance during starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.546892. [PMID: 37461725 PMCID: PMC10350021 DOI: 10.1101/2023.07.06.546892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (∆ppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and ∆ppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of required building blocks. From our dataset, we were particularly interested in Arn and EptA proteins, which were downregulated in ∆ppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins, and provide evidence that this mis-regulation in ∆ppk cells stems from a failure to induce the BasS/BasR two-component system during starvation. We also show that ∆ppk mutants unable to upregulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Pandit S, Jacquemin L, Zhang J, Gao Z, Nishina Y, Meyer RL, Mijakovic I, Bianco A, Pang C. Polymyxin B complexation enhances the antimicrobial potential of graphene oxide. Front Cell Infect Microbiol 2023; 13:1209563. [PMID: 37415828 PMCID: PMC10321305 DOI: 10.3389/fcimb.2023.1209563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction The antibacterial activity of graphene oxide (GO) has been widely explored and tested against various pathogenic bacterial strains. Although antimicrobial activity of GO against planktonic bacterial cells was demonstrated, its bacteriostatic and bactericidal effect alone is not sufficient to damage sedentary and well protected bacterial cells inside biofilms. Thus, to be utilized as an effective antibacterial agent, it is necessary to improve the antibacterial activity of GO either by integration with other nanomaterials or by attachment of antimicrobial agents. In this study, antimicrobial peptide polymyxin B (PMB) was adsorbed onto the surface of pristine GO and GO functionalized with triethylene glycol. Methods The antibacterial effects of the resulting materials were examined by evaluating minimum inhibitory concentration, minimum bactericidal concentration, time kill assay, live/dead viability staining and scanning electron microscopy. Results and discussion PMB adsorption significantly enhanced the bacteriostatic and bactericidal activity of GO against both planktonic cells and bacterial cells in biofilms. Furthermore, the coatings of PMB-adsorbed GO applied to catheter tubes strongly mitigated biofilm formation, by preventing bacterial adhesion and killing the bacterial cells that managed to attach. The presented results suggest that antibacterial peptide absorption can significantly enhance the antibacterial activity of GO and the resulting material can be effectively used not only against planktonic bacteria but also against infectious biofilms.
Collapse
Affiliation(s)
- Santosh Pandit
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Jian Zhang
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Zhengfeng Gao
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Chengfang Pang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
50
|
Lee H, Kim B, Kim M, Yoo S, Lee J, Hwang E, Kim Y. Characterization of the Antimicrobial Activities of Trichoplusia ni Cecropin A as a High-Potency Therapeutic against Colistin-Resistant Escherichia coli. Pharmaceutics 2023; 15:1752. [PMID: 37376200 DOI: 10.3390/pharmaceutics15061752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The spread of colistin-resistant bacteria is a serious threat to public health. As an alternative to traditional antibiotics, antimicrobial peptides (AMPs) show promise against multidrug resistance. In this study, we investigated the activity of the insect AMP Tricoplusia ni cecropin A (T. ni cecropin) against colistin-resistant bacteria. T. ni cecropin exhibited significant antibacterial and antibiofilm activities against colistin-resistant Escherichia coli (ColREC) with low cytotoxicity against mammalian cells in vitro. Results of permeabilization of the ColREC outer membrane as monitored through 1-N-phenylnaphthylamine uptake, scanning electron microscopy, lipopolysaccharide (LPS) neutralization, and LPS-binding interaction revealed that T. ni cecropin manifested antibacterial activity by targeting the outer membrane of E. coli with strong interaction with LPS. T. ni cecropin specifically targeted toll-like receptor 4 (TLR4) and showed anti-inflammatory activities with a significant reduction of inflammatory cytokines in macrophages stimulated with either LPS or ColREC via blockade of TLR4-mediated inflammatory signaling. Moreover, T. ni cecropin exhibited anti-septic effects in an LPS-induced endotoxemia mouse model, confirming its LPS-neutralizing activity, immunosuppressive effect, and recovery of organ damage in vivo. These findings demonstrate that T. ni cecropin exerts strong antimicrobial activities against ColREC and could serve as a foundation for the development of AMP therapeutics.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seoyeong Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinkyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunha Hwang
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|