1
|
Saidi NI, Azhar NA, Jahaya MA, Shamsuddin MS, Zamzuri S. Genomic analysis and spatiotemporal distribution of newly emerging lumpy skin disease virus in malaysia identify recombinant strain from transboundary spread. Vet J 2025; 312:106365. [PMID: 40286977 DOI: 10.1016/j.tvjl.2025.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/15/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Lumpy skin disease is a transboundary viral disease affecting bovine species. This disease had never been recorded in Malaysia prior to May of 2021, and had spread to 65 of 92 districts in Peninsular Malaysia by December of the same year. In this study, we conducted a whole-genome sequencing, phylogenetic analysis and geographical mapping of the outbreak from lumpy skin disease virus isolated from the first wave of outbreaks to better understand the origin, transmission, and genetic diversity of the virus. The whole genome sequences of these isolates were deposited in GenBank with accession number PP145891 and PP145892. Malaysia LSDV isolates were found clustered with recombinant strains in clade 2.5, particularly subclade 2.5.1, which included strains from China, Vietnam, Thailand, and Indonesia. The spread of the disease in Malaysia was closely linked to cross-border cattle movements from Thailand, as evidenced by the spatiotemporal distribution of the outbreaks. This study emphasizes the need for ongoing genomic surveillance to detect emerging variants and inform targeted control strategies, including vaccination and cross-border cooperation to curb future outbreaks.
Collapse
Affiliation(s)
- Nurain Izzati Saidi
- Central Zone Veterinary Laboratory, Malaysia Department of Veterinary Services, Sepang, Selangor, Malaysia.
| | - Nur Athirah Azhar
- Central Zone Veterinary Laboratory, Malaysia Department of Veterinary Services, Sepang, Selangor, Malaysia
| | - Mohamad Azlan Jahaya
- Central Zone Veterinary Laboratory, Malaysia Department of Veterinary Services, Sepang, Selangor, Malaysia
| | - Mohd Shafarin Shamsuddin
- Central Zone Veterinary Laboratory, Malaysia Department of Veterinary Services, Sepang, Selangor, Malaysia
| | - Syahrol Zamzuri
- Central Zone Veterinary Laboratory, Malaysia Department of Veterinary Services, Sepang, Selangor, Malaysia
| |
Collapse
|
2
|
Nugroho W, Widodo E, Reichel MP, Artanto S, Ariani RQ, Khabiri A, Mohammed MH, Hemmatzadeh F. Clinical and molecular description of natural infections with an Asian strain of lumpy skin disease virus in Bos indicus. Sci Rep 2025; 15:12641. [PMID: 40221583 PMCID: PMC11993639 DOI: 10.1038/s41598-025-96300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Knowledge of the dynamic of clinical infections with Asian strains of LSD virus (LSDV) in Bos indicus is scarce. This study reports on the clinical, serological and molecular features of natural infections with LSDV in B. indicus during the first outbreak in Yogyakarta, Indonesia, 2023. Eleven Peranakan ongole (PO) breed cattle with multiple skin lumps were included in the study. Data was collected on lump progression, rectal temperature, anorexia, lameness and oedema, along with serum samples, on five sampling points at four days intervals. Seroconversion was detected using an ELISA, viral DNA in sera was detected using PCR and a phylogenetic tree of the viral DNA sequences was constructed. A Kendall's tau-b bivariate correlation was conducted to test correlations between variables observed. Results showed that, after lumps, lameness was the most frequently observed clinical feature (9/11), followed by oedema, anorexia (both 6/11) and fever (5/11). Lump presence was strongly correlated with lameness and moderately correlated viral DNA load in sera (r = 0.61, P < 0.01, and r = 0.51, P < 0.01), anorexia was moderately correlated with the course of oedema (r = 0.45, P < 0.01). Younger animals were ill for longer than older individuals. Antibody levels increased on Day eight but declined rapidly yet, remained above the threshold, on day 16. The detection of viral DNA in sera was of short duration and intermittent in a few animals; the virus was closely related to Clade 2 of LSDV. This study provides preliminary knowledge of features of LSDV infection in Indonesia for further studies on vaccination, clinical treatment and prognosis of the disease.
Collapse
Affiliation(s)
- Widi Nugroho
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Dieng Atas, Kalisongo, Dau, Kab. Malang, East Java, 65151, Indonesia.
| | - Estu Widodo
- Veterinary Service Center, Kulonprogo, Yogyakarta, Indonesia
| | - Michael Philipp Reichel
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Sidna Artanto
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rossa Qalbiya Ariani
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Dieng Atas, Kalisongo, Dau, Kab. Malang, East Java, 65151, Indonesia
| | - Aliakbar Khabiri
- School of Animal and Veterinary Sciences, Roseworthy Campus, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5371, Australia
| | - Majed Hameed Mohammed
- School of Animal and Veterinary Sciences, Roseworthy Campus, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5371, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, Roseworthy Campus, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5371, Australia.
| |
Collapse
|
3
|
Suwankitwat N, Deemagarn T, Bhakha K, Songkasupa T, Lekcharoensuk P, Arunvipas P. Monitoring of genetic alterations of lumpy skin disease virus in cattle after vaccination in Thailand. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:352-360. [PMID: 40264531 PMCID: PMC12010217 DOI: 10.5187/jast.2023.e72] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 04/24/2025]
Abstract
Lumpy skin disease (LSD) is a contagious viral disease that has a significant impact on the cattle and buffalo agricultural industries. The use of live attenuated LSD virus (LSDV) vaccines (LAVs) is the most efficient method of disease prevention. However, it is well recognized that LAVs might result in viral mutation that could enhance viral infectivity or virulence. The goal of this research was to monitor the changes in genetic characteristics of LSDV in cattle after vaccination in Thailand. Five LSDV DNA samples from five different regions of Thailand including North, Northeast, West, Central, and South were selected. All samples came from non-vaccinated animals that developed LSD clinical signs after vaccination with the LAVs in each area. The samples were examined using real-time polymerase chain reaction (PCR) targeting the p32 gene and the whole genome sequences were analyzed. The genomes were compared to LSDV / Thailand / Yasothon / 2021, a recombinant LSDV strain discovered during the early stage of the outbreak in Northeast Thailand. Single nucleotide polymorphisms (SNPs), amino acid changes, and affected proteins were analyzed. The study discovered that following immunization in the area, LSDVs from Chiang Mai (North), Khon Kaen (Northeast), and Nakhon Pathom (Central) differed from the Yasothon isolate. Open reading frame (ORF) 032 Poly (A) polymerase large subunit, ORF094 virion core protein, and ORF133 DNA ligase-like protein, as well as virulence and host range genes; ORF144 Kelch-like protein and ORF148 Ankyrin-like protein had mutations, while the genomic sequences of Prachuap Khiri Khan (West) and Trang (South) isolates are 100% identical to the Yasothon virus. Mutations occurred in LSDV genomes from the North, Northeast, and Central regions following immunization. As a result, viral genetics should be examined on an annual basis for effective diagnosis and control of the disease.
Collapse
Affiliation(s)
- Nutthakarn Suwankitwat
- Animal Health and Biomedical Sciences,
Graduate School, Bangkhen Campus, Kasetsart University,
Bangkok 10900, Thailand
- National Institute of Animal Health,
Department of Livestock Development, Bangkok 10900,
Thailand
| | - Taweewat Deemagarn
- National Institute of Animal Health,
Department of Livestock Development, Bangkok 10900,
Thailand
| | - Kultyarat Bhakha
- National Institute of Animal Health,
Department of Livestock Development, Bangkok 10900,
Thailand
| | - Tapanut Songkasupa
- National Institute of Animal Health,
Department of Livestock Development, Bangkok 10900,
Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology,
Faculty of Veterinary Medicine, Bangkhen Campus, Kasetsart
University, Bangkok 10900, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife
Clinical Sciences, Faculty of Veterinary Medicine, Kamphaeng Saen Campus,
Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
4
|
Bhakha K, Matsui Y, Buakhao N, Wanganurakkul S, Deemagarn T, Oba M, Takemae H, Mizutani T, Misawa N, Chintapitaksakul L, Yamada K, Suwankitwat N. Development of a Multi-Locus Real-Time PCR with a High-Resolution Melting Assay to Differentiate Wild-Type, Asian Recombinant, and Vaccine Strains of Lumpy Skin Disease Virus. Vet Sci 2025; 12:213. [PMID: 40266924 PMCID: PMC11945404 DOI: 10.3390/vetsci12030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025] Open
Abstract
Lumpy skin disease virus (LSDV) affects cattle and causes significant economic damage. The live vaccine derived from an attenuated strain is effective but is associated with mild disease and skin lesions in some vaccinated cattle. Moreover, recombinant LSDV strains, particularly one with wild-type field and vaccine strains, have recently emerged and spread throughout Asian countries. A cost-effective LSDV typing method is required. We developed a multi-locus real-time PCR with a high-resolution melting (HRM) assay to differentiate between the wild-type, vaccine, and dominant Asian recombinant strains. Based on a multiple alignment analysis, we selected three target genes for the HRM assay, ORF095, ORF126, and ORF145, in which there are insertions/deletions and nucleotide substitutions between wild-type and vaccine strains, and designed primer sets for the assay. Using the synthetic DNA encoding these genes for the two strains, it was shown that the PCR amplicons intercalated with a saturating fluorescent dye could clearly differentiate between wild-type and vaccine strains in the HRM analysis for all three target genes. Further, using clinical samples, our method was able to identify recombinant strains harboring the wild-type ORF095 and ORF145 and the vaccine strain ORF126 genes. Thus, our HRM assay may provide rapid LSDV typing.
Collapse
Affiliation(s)
- Kultyarat Bhakha
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| | - Yuto Matsui
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; (Y.M.); (N.M.)
| | - Natchaya Buakhao
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| | - Saruda Wanganurakkul
- Veterinary Research and Development Center (Eastern Region), Department of Livestock Development, Chonburi 20220, Thailand;
| | - Taweewat Deemagarn
- Animal Health Research and Innovation Promotion Section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand;
| | - Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan; (M.O.); (H.T.); (T.M.)
| | - Hitoshi Takemae
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan; (M.O.); (H.T.); (T.M.)
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan; (M.O.); (H.T.); (T.M.)
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; (Y.M.); (N.M.)
| | - Lerdchai Chintapitaksakul
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| | - Kentaro Yamada
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; (Y.M.); (N.M.)
- Laboratory Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan
| | - Nutthakarn Suwankitwat
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| |
Collapse
|
5
|
Modethed W, Kreausukon K, Singhla T, Boonsri K, Pringproa K, Sthitmatee N, Vinitchaikul P, Srisawang S, Salvador R, Gubbins S, Limon G, Punyapornwithaya V. An evaluation of financial losses due to lumpy skin disease outbreaks in dairy farms of northern Thailand. Front Vet Sci 2025; 11:1501460. [PMID: 39926595 PMCID: PMC11804113 DOI: 10.3389/fvets.2024.1501460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Lumpy skin disease (LSD) poses a significant threat to the cattle industry, resulting in adverse economic consequences in affected countries. This study aims to estimate the financial losses due to LSD outbreaks in dairy farms in northern Thailand. Based on a retrospective study, data was collected using a standardized questionnaire from 100 farms affected by LSD outbreaks (outbreak farms) and 33 farms that did not experience LSD outbreaks (non-LSD outbreak farms) in two dairy farming areas that experienced LSD outbreaks between June and December 2021. In outbreak farms, the average total financial losses was 727.38 USD per farm, significantly higher than the 349.19 USD per farm observed in non-LSD outbreak farms. The primary cause of financial loss in outbreak farms was mortality. Reductions in milk sold due to a drop in milk production, and the need to discard milk because of the withdrawal time of antibiotics used for treating secondary infections on affected cattle, also contributed substantially to the financial losses. On farms without LSD outbreaks, the main expenses were related to vaccination and disease prevention, amounting to 130.66 USD and 218.53 USD per farm, respectively. LSD outbreaks negatively affect all farms in the outbreak areas, as both outbreak farms and non-LSD outbreak farms had to bear prevention costs. In the post-outbreak phase, the primary activities focused on continued monitoring of new LSD cases and conducting surveillance, carried out collaboratively by farmers and livestock authorities. This is the first study in Thailand providing valuable insights into the financial implications of LSD outbreaks for farmers, highlighting the substantial financial consequences of the disease. The findings from this study are beneficial for decision making, efficient resource allocation and the development of effective mitigation strategies.
Collapse
Affiliation(s)
- Wittawat Modethed
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Tawatchai Singhla
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittikorn Boonsri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Supitchaya Srisawang
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Roderick Salvador
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | | | | | - Veerasak Punyapornwithaya
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Lee S, Baker CM, Sellens E, Stevenson MA, Roche S, Hall RN, Breed AC, Firestone SM. A systematic review of epidemiological modelling in response to lumpy skin disease outbreaks. Front Vet Sci 2024; 11:1459293. [PMID: 39376926 PMCID: PMC11456570 DOI: 10.3389/fvets.2024.1459293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Lumpy skin disease (LSD) is an infectious disease currently spreading worldwide and poses a serious global threat. However, there is limited evidence and understanding to support the use of models to inform decision-making in LSD outbreak responses. This review aimed to identify modelling approaches that can be used before and during an outbreak of LSD, examining their characteristics and priorities, and proposing a structured workflow. We conducted a systematic review and identified 60 relevant publications on LSD outbreak modelling. The review identified six categories of question to be addressed following outbreak detection (origin, entry pathway, outbreak severity, risk factors, spread, and effectiveness of control measures), and five analytical techniques used to address them (descriptive epidemiology, risk factor analysis, spatiotemporal analysis, dynamic transmission modelling, and simulation modelling). We evaluated the questions each analytical technique can address, along with their data requirements and limitations, and accordingly assigned priorities to the modelling. Based on this, we propose a structured workflow for modelling during an LSD outbreak. Additionally, we emphasise the importance of pre-outbreak preparation and continuous updating of modelling post-outbreak for effective decision-making. This study also discusses the inherent limitations and uncertainties in the identified modelling approaches. To support this workflow, high-quality data must be collected in standardised formats, and efforts should be made to reduce inherent uncertainties of the models. The suggested modelling workflow can be used as a process to support rapid response for countries facing their first LSD occurrence and can be adapted to other transboundary diseases.
Collapse
Affiliation(s)
- Simin Lee
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher M. Baker
- School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Parkville, VIC, Australia
- The Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Emily Sellens
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Mark A. Stevenson
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sharon Roche
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | | | - Andrew C. Breed
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Song Y, Zuo O, Zhang G, Hu J, Tian Z, Guan G, Luo J, Yin H, Shang Y, Du J. Emergence of Lumpy Skin Disease Virus Infection in Yaks, Cattle-Yaks, and Cattle on the Qinghai-Xizang Plateau of China. Transbound Emerg Dis 2024; 2024:2383886. [PMID: 40303140 PMCID: PMC12016979 DOI: 10.1155/2024/2383886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 05/02/2025]
Abstract
Lumpy skin disease (LSD) is a viral disease caused by lumpy skin disease virus (LSDV), which mainly infects cattle and can cause huge economic losses. In May 2023, yaks, cattle-yaks, and cattle in Tibet (Xizang), China, developed fever, skin nodules, and severe discharges and were suspected to be cases of LSD. Samples from these animals were analyzed using molecular biology and serological methods. The RPO30, P32, and GPCR genes were amplified by PCR and sequenced, and the whole genome of the virus was determined using viral metagenomics technology. Sequencing results showed that it was indeed an LSDV infection, and enzyme-linked immunosorbent assay results confirmed the presence of LSDV antibodies. The whole genome phylogenetic tree shows that LSDV/CHINA/Tibet/2023 is different from the previous epidemic strains in China, but clusters with India 2022 strain. This is the first report of LSD in yaks, cattle-yaks, and cattle on the highest altitude plateau in the world.
Collapse
Affiliation(s)
- Yuqing Song
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Ou Zuo
- Animal Epidemic Disease Prevention and Control Center of Agricultural and Rural Bureau of Ali Prefecture, Gaer County, Xizang Autonomous Region 859499, China
| | - Gelin Zhang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Jianwu Hu
- College of Veterinary MedicineHuazhong Agricultural University, Wuhan 430070, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou University, Yangzhou 225009, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| |
Collapse
|
8
|
Riana E, Sri-In C, Songkasupa T, Bartholomay LC, Thontiravong A, Tiawsirisup S. Infection, dissemination, and transmission of lumpy skin disease virus in Aedes aegypti (Linnaeus), Culex tritaeniorhynchus (Giles), and Culex quinquefasciatus (Say) mosquitoes. Acta Trop 2024; 254:107205. [PMID: 38579960 DOI: 10.1016/j.actatropica.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.
Collapse
Affiliation(s)
- Elizabeth Riana
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Sri-In
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tapanut Songkasupa
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Aunyaratana Thontiravong
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sonthaya Tiawsirisup
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Rittipornlertrak A, Modethed W, Sangkakam K, Muenthaisong A, Vinitchaikul P, Boonsri K, Pringproa K, Punyapornwithaya V, Kreausukon K, Sthitmatee N, Singhla T. Persistence of passive immunity in calves receiving colostrum from cows vaccinated with a live attenuated lumpy skin disease vaccine and the performance of serological tests. Front Vet Sci 2024; 11:1303424. [PMID: 38835894 PMCID: PMC11148353 DOI: 10.3389/fvets.2024.1303424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
This study aimed to determine the persistent duration of maternal immunity against lumpy skin disease virus (LSDV) in dairy calves born from vaccinated cows using a virus neutralization test (VNT). The performance of the VNT and an in-house-ELISA test was also determined. Thirty-seven pregnant cows from 12 LSD-free dairy farms in Lamphun province, Thailand were immunized with a homologous Neethling strain-based attenuated vaccine and calved from December 2021 to April 2022. Blood samples from dam-calve pairs were collected within the first week after calving. Subsequently, blood samples were taken from the calves at monthly intervals over a period of 4 months and tested for the humoral immune response using a VNT. The calf sera were also tested with an in-house ELISA test to estimate the accuracy of both tests using a Bayesian approach. For the results, antibodies against LSDV can persist in cows for 4-9 months post-vaccination. Moreover, neutralizing antibodies and LSDV-specific antibodies against LSDV were detected in the majority of calves (75.68%) during the first week after colostrum intake. However, the percentage of seropositive calves declined to zero by day 120, with seropositivity dropping below 50% after day 60. Only a small number of seropositive calves (approximately 13.51%) were observed on day 90. These findings indicated that passive immunity against LSDV can last up to 3 months. The median of posterior estimates for sensitivity (Se) and specificity (Sp) of the VNT were 87.3% [95% posterior probability interval (PPI) = 81.1-92.2%] and 94.5% (95% PPI = 87.7-98.3%), respectively. The estimated Se and Sp for the ELISA test were 83.1% (95% PPI = 73.6-92.6%) and 94.7% (95% PPI = 88.4-98.5%), respectively. In conclusion, this study illustrates the transfer and persistence of maternal passive immunity against LSDV to calves under field conditions. This highlights a potential three-month vaccination gap in calves born from vaccinated cows, while an in-house ELISA test can be used as an ancillary test for LSDV immune response detection. However, further research is required to assess the vaccination protocols for calves as young as 2 months old to precisely determine the duration of maternal immunity.
Collapse
Affiliation(s)
- Amarin Rittipornlertrak
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wittawat Modethed
- Chiang Mai Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperative, Chiang Mai, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kittikorn Boonsri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Veerasak Punyapornwithaya
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Khwanchai Kreausukon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tawatchai Singhla
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Makalo MJR, Settypalli TBK, Meki IK, Bakhoum MT, Ahmed HO, Phalatsi MS, Ramatla T, Onyiche TE, Nionzima-Bohloa L, Metlin A, Dhingra M, Cattoli G, Lamien CE, Thekisoe OMM. Genetic Characterization of Lumpy Skin Disease Viruses Circulating in Lesotho Cattle. Viruses 2024; 16:762. [PMID: 38793643 PMCID: PMC11125814 DOI: 10.3390/v16050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lumpy skin disease is one of the fast-spreading viral diseases of cattle and buffalo that can potentially cause severe economic impact. Lesotho experienced LSD for the first time in 1947 and episodes of outbreaks occurred throughout the decades. In this study, eighteen specimens were collected from LSD-clinically diseased cattle between 2020 and 2022 from Mafeteng, Leribe, Maseru, Berea, and Mohales' Hoek districts of Lesotho. A total of 11 DNA samples were analyzed by PCR and sequencing of the extracellular enveloped virus (EEV) glycoprotein, G-protein-coupled chemokine receptor (GPCR), 30 kDa RNA polymerase subunit (RPO30), and B22R genes. All nucleotide sequences of the above-mentioned genes confirmed that the PCR amplicons of clinical samples are truly LSDV, as they were identical to respective LSDV isolates on the NCBI GenBank. Two of the elevem samples were further characterized by whole-genome sequencing. The analysis, based on both CaPV marker genes and complete genome sequences, revealed that the LSDV isolates from Lesotho cluster with the NW-like LSDVs, which includes the commonly circulating LSDV field isolates from Africa, the Middle East, the Balkans, Turkey, and Eastern Europe.
Collapse
Affiliation(s)
- Mabusetsa Joseph Raporoto Makalo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
- Department of Livestock Services, Ministry of Agriculture, Food Security, and Nutrition, Private A82, Maseru, Lesotho;
| | - Tirumala Bharani Kumar Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Mame Thierno Bakhoum
- Laboratoire National de l’Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), BP 2057, Dakar, Senegal;
| | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | | | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
| | - ThankGod Emmanuel Onyiche
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria
| | - Lineo Nionzima-Bohloa
- Department of Livestock Services, Ministry of Agriculture, Food Security, and Nutrition, Private A82, Maseru, Lesotho;
| | - Artem Metlin
- Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy; (A.M.); (M.D.)
| | - Madhur Dhingra
- Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy; (A.M.); (M.D.)
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Oriel Matlhahane Molifi Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
| |
Collapse
|
11
|
Owada K, Mahony TJ, Ambrose RK, Hayes BJ, Soares Magalhães RJ. Epidemiological Risk Factors and Modelling Approaches for Risk Assessment of Lumpy Skin Disease Virus Introduction and Spread: Methodological Review and Implications for Risk-Based Surveillance in Australia. Transbound Emerg Dis 2024; 2024:3090226. [PMID: 40303055 PMCID: PMC12016705 DOI: 10.1155/2024/3090226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2025]
Abstract
Lumpy skin disease (LSD) is a vector-borne infection caused by the poxvirus lumpy skin disease virus (LSDV) and is a serious disease of cattle, water buffalo, and banteng. While the disease has never occurred in Australia, it is regarded as a growing threat to the Australian cattle industry as there is on-going spread of the disease throughout Asia. The development of geospatial decision support tools, such as spatial epidemiological modelling, may assist in assessing areas at greater risk of this threat. To guide the design of disease modelling approaches to support future risk-based surveillance, existing LSDV epidemiological models need to be evaluated. In this study, we performed a literature review to evaluate existing LSDV epidemiological models, identify key risk factors for introduction and spread of LSDV, and consider previously adopted control strategies. The PRISMA guidelines were used to establish the processes for article selection and information extraction, and the PICO process was used to formulate search terms. From studies that met our inclusion criteria, we extracted information on LSDV epidemiological model structure and parameterisation, risk factors for LSDV transmission and spread, and biosecurity control strategies. The literature search retrieved a total of 402 articles from four databases, of which 68 were identified for inclusion in this review following screening. Of the 68 articles reviewed, 47 explored risk factors associated with LSDV transmission and spread, four explored risk factors of LSDV introduction, four explored existing surveillance strategies in LSD-free countries, and 14 presented epidemiological models. Our findings indicate that there are various risk factors for LSDV transmission in LSD endemic countries, including long-distance airborne movement of infected vectors such as stable flies and cattle movement between countries over land borders. Key risk factors for LSDV spread in LSD endemic countries include physical environmental characteristics, weather conditions, and population distributions of livestock and vectors. Our results indicate that while a variety of modelling studies have been conducted, the majority of studies experimentally explored LSD transmission mechanisms in vectors and cattle. Spatial and spatio-temporal models have primarily been developed for LSD endemic countries and focus on the spread of the disease in terms of environmental factors in relation to previous LSD events. There were very few studies on LSD-free countries, and these only focussed on risk of LSD introduction through specific entry pathways. This review did not identify any literature exploring the risk of spread of LSDV following introduction in LSD-free countries or geospatial modelling of the suitability of LSD-free countries for LSDV incursions. In conjunction with the risk parameters and models described in the identified literature, there is need to consider a wide range of risk factors specific to Australia to inform the design of risk-based surveillance for LSD in Australia.
Collapse
Affiliation(s)
- Kei Owada
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton 4343, Australia
| | - Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia
| | - Rebecca K. Ambrose
- Department of Agriculture and Fisheries, Queensland Government, Brisbane 4000, Australia
| | - Ben J. Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia
| | - Ricardo J. Soares Magalhães
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton 4343, Australia
- Children's Health and Environment Program, Children's Health Research Centre, The University of Queensland, South Brisbane 4101, Australia
| |
Collapse
|
12
|
Haga IR, Shih BB, Tore G, Polo N, Ribeca P, Gombo-Ochir D, Shura G, Tserenchimed T, Enkhbold B, Purevtseren D, Ulziibat G, Damdinjav B, Yimer L, Bari FD, Gizaw D, Adedeji AJ, Atai RB, Adole JA, Dogonyaro BB, Kumarawadu PL, Batten C, Corla A, Freimanis GL, Tennakoon C, Law A, Lycett S, Downing T, Beard PM. Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa. Viruses 2024; 16:557. [PMID: 38675899 PMCID: PMC11053774 DOI: 10.3390/v16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.
Collapse
Grants
- BB/R002606/1, BB/R008833/1, BB/X011038/1, BB/X011046/1, BB/CCG2250, BB/CCG1780/1, BBS/E/RL/230002C, BBS/E/RL/230002D, , BBS/E/I/00007039, /1, BB/IDG2250/1, Biotechnology and Biological Sciences Research Council
Collapse
Affiliation(s)
- Ismar R. Haga
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Barbara B. Shih
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK
| | - Gessica Tore
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Noemi Polo
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Paolo Ribeca
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- UK Health Security Agency, 61 Colindale Ave, London NW9 5EQ, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, Mathematics Institute, Zeeman Builing, University of Warwick, Coventry CV4 7AL, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Ronald Ross Building, University of Liverpool, Liverpool L69 7BE, UK
- Biomathematics and Statistics Scotland, James Maxwell Clerk Building, Peter Guthrie Tait Road, Kings Buildings, Edinburgh EH9 3FD, UK
| | - Delgerzul Gombo-Ochir
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gansukh Shura
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Tsagaan Tserenchimed
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Bazarragchaa Enkhbold
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Dulam Purevtseren
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gerelmaa Ulziibat
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Batchuluun Damdinjav
- General Authority for Veterinary Service, Ministry of Food, Agriculture and Light Industry, Ulaanbaatar 13381, Mongolia;
| | - Lama Yimer
- School of Veterinary Medicine, Wollega University, Nekemte P.O. Box 395, Ethiopia;
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Fufa D. Bari
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Daniel Gizaw
- Animal Health Institute (AHI), Sebata P.O. Box 04, Ethiopia;
| | - Adeyinka Jeremy Adedeji
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Rebecca Bitiyong Atai
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Jolly Amoche Adole
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | | | | | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Amanda Corla
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Graham L. Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Chandana Tennakoon
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Andy Law
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Tim Downing
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Philippa M. Beard
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
13
|
Sarwar MF, Waseem QUA, Awan MF, Ali S, Ahmad A, Malook SU, Ali Q. In-silico characterization of LSDV132 protein divulged its BCL-2-like nature. Heliyon 2024; 10:e27657. [PMID: 38510042 PMCID: PMC10951589 DOI: 10.1016/j.heliyon.2024.e27657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Lumpy skin disease virus (LSDV) belongs to Poxviridae family. This virus possesses various proteins which impart potential functions to it including assembly of newly synthesized viruses in the replication cycle and forming their structure. LSDV132 protein is also one of such proteins. Its key characteristics were unknown because, no any relevant study was reported about it. This study aimed to investigate its characteristic features and essential functions using several bioinformatics techniques. These analyses included physiochemical characterization and exploring the crucial functional and structural perspectives. Upon analysis of the physiochemical properties, the instability index was computed to be 30.89% which proposed LSDV132 protein to be a stable protein. Afterwards, the phosphorylation sites were explored. Several sites were found in this regard which led to the hypothesis that it might be involved in the regulation of apoptosis and cell signaling, among other cellular processes. Furthermore, the KEGG analysis and the analysis of protein family classification confirmed that the LSDV132 protein possessed Poxvirus-BCL-2-like motifs, indicating that it might be responsible in modulating the apoptosis of host cells. This crucial finding suggested that the protein under study possessed BCL-2-like features. Proceeding this very important finding, the molecular docking analysis was performed. In this context, various viral BCL-2 inhibitors were retrieved from the ChEMBL database for docking purpose. The docking results revealed that pelcitoclax exhibited best docking scores i.e., -9.1841 kcal/mol, among all of the other docked complexes. This fact signified that this compound might serve as an inhibitor of LSDV132 protein.
Collapse
Affiliation(s)
- Muhammad Farhan Sarwar
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Qurat ul Ain Waseem
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Mudassar Fareed Awan
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Sajed Ali
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saif ul Malook
- Department of Entomology & Nematology, University of Florida, USA
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
14
|
Wang J, Ji J, Zhong Y, Meng W, Wan S, Ding X, Chen Z, Wu W, Jia K, Li S. Construction of recombinant fluorescent LSDV for high-throughput screening of antiviral drugs. Vet Res 2024; 55:33. [PMID: 38493160 PMCID: PMC10943802 DOI: 10.1186/s13567-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024] Open
Abstract
Lumpy skin disease virus (LSDV) infection is a major socio-economic issue that seriously threatens the global cattle-farming industry. Here, a recombinant virus LSDV-ΔTK/EGFP, expressing enhanced green fluorescent protein (EGFP), was constructed with a homologous recombination system and applied to the high-throughput screening of antiviral drugs. LSDV-ΔTK/EGFP replicates in various kidney cell lines, consistent with wild-type LSDV. The cytopathic effect, viral particle morphology, and growth performance of LSDV-ΔTK/EGFP are consistent with those of wild-type LSDV. High-throughput screening allowed to identify several molecules that inhibit LSDV-ΔTK/EGFP replication. The strong inhibitory effect of theaflavin on LSDV was identified when 100 antiviral drugs were screened in vitro. An infection time analysis showed that theaflavin plays a role in the entry of LSDV into cells and in subsequent viral replication stages. The development of this recombinant virus will contribute to the development of LSDV-directed antiviral drugs and the study of viral replication and mechanisms of action.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jinzhao Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Yongcheng Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaobin Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xiaoqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Weiyong Wu
- Agriculture and Rural Affairs Bureau of Luocheng Mulao Autonomous County, Guangxi, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| |
Collapse
|
15
|
Punyapornwithaya V, Arjkumpa O, Buamithup N, Jainonthee C, Salvador R, Jampachaisri K. The impact of mass vaccination policy and control measures on lumpy skin disease cases in Thailand: insights from a Bayesian structural time series analysis. Front Vet Sci 2024; 10:1301546. [PMID: 38249552 PMCID: PMC10797105 DOI: 10.3389/fvets.2023.1301546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction In 2021, Thailand reported the highest incidence of lumpy skin disease (LSD) outbreaks in Asia. In response to the widespread outbreaks in cattle herds, the government's livestock authorities initiated comprehensive intervention measures, encompassing control strategies and a national vaccination program. Yet, the efficacy of these interventions remained unevaluated. This research sought to assess the nationwide intervention's impact on the incidence of new LSD cases through causal impact analysis. Methods Data on weekly new LSD cases in Thailand from March to September 2021 was analyzed. The Bayesian structural time series (BSTS) analysis was employed to evaluate the causal relationship between new LSD cases in the pre-intervention phase (prior to the vaccination campaign) and the post-intervention phase (following the vaccination campaign). The assessment involved two distinct scenarios, each determined by the estimated effective intervention dates. In both scenarios, a consistent decline in new LSD cases was observed after the mass vaccination initiative, while other control measures such as the restriction of animal movement, insect control, and the enhancement of the active surveillance approach remained operational throughout the pre-intervention and the post-intervention phases. Results and discussion According to the relative effect results obtained from scenario A and B, it was observed that the incidence of LSD cases exhibited reductions of 119% (95% Credible interval [CrI]: -121%, -38%) and 78% (95% CrI: -126, -41%), respectively. The BSTS results underscored the significant influence of these interventions, with a Bayesian one-sided tail-area probability of p < 0.05. This model-based study provides insight into the application of BSTS in evaluating the impact of nationwide LSD vaccination based on the national-level data. The present study is groundbreaking in two respects: it is the first study to quantify the causal effects of a mass vaccination intervention on the LSD outbreak in Thailand, and it stands as the only endeavor of its kind in the Asian context. The insights collected from this study hold potential value for policymakers in Thailand and other countries at risk of LSD outbreaks.
Collapse
Affiliation(s)
- Veerasak Punyapornwithaya
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Orapun Arjkumpa
- The 4 Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | | | - Chalita Jainonthee
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Roderick Salvador
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Katechan Jampachaisri
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
16
|
Suwankitwat N, Deemagarn T, Bhakha K, Songkasupa T, Vitoonpong R, Trakunjaroonkit P, Rodphol S, Nuansrichay B, Chintapitaksakul L, Wongsarattanasin K, Kwon OK, Kang HE, Shin YK. Complete Genomic Characterization of Lumpy Skin Disease Virus Isolates from Beef Cattle in Lopburi Province, Central Thailand, during 2021-2022. Vet Sci 2023; 11:10. [PMID: 38250916 PMCID: PMC10818611 DOI: 10.3390/vetsci11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral infection that impacts the cattle industry. The most efficient approach to prevent disease involves the utilization of live-attenuated LSD vaccines (LAVs), which stands out as the most successful method. However, LAVs might be subjected to changes to their genomes during replication that increase viral infectivity or virulence. The objective of this study was to monitor alterations in the genetic characteristics of the lumpy skin disease virus (LSDV) in beef cattle following the administration of LAVs in Lopburi Province of Central Thailand. A total of four skin samples from LSD cases were collected from non-vaccinated animals that exhibited LSD clinical symptoms from two distinct districts, spanning three subdistricts within the region. The samples of cattle were analyzed using real-time PCR targeting the LSDV074 p32 gene, the virus was isolated, and the entire genome sequences were evaluated through a single nucleotide polymorphisms (SNPs) analysis, and phylogenetic trees were assembled. The investigations revealed that LSDVs from two isolates from Chai Badan district exhibited significant mutations in the open reading frame (ORF) 023 putative protein, while another two isolates from Lam Sonthi district had a change in the untranslated region (UTR). For a result, the most proficient disease diagnosis and control should be evaluated on viral genetics on a regular basis.
Collapse
Affiliation(s)
- Nutthakarn Suwankitwat
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Taweewat Deemagarn
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Kultyarat Bhakha
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Ratchaneekorn Vitoonpong
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Pannaporn Trakunjaroonkit
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Sureenipa Rodphol
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Bandit Nuansrichay
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Lerdchai Chintapitaksakul
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (T.D.); (K.B.); (T.S.); (R.V.); (P.T.); (S.R.); (B.N.); (L.C.)
| | - Khanin Wongsarattanasin
- Animal Health Development Group, Lopburi Provincial Livestock Office, Department of Livestock Development, Lopburi 15000, Thailand;
| | - Oh-Kyu Kwon
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (O.-K.K.); (H.-E.K.)
| | - Hae-Eun Kang
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (O.-K.K.); (H.-E.K.)
| | - Yeun-Kyung Shin
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (O.-K.K.); (H.-E.K.)
| |
Collapse
|
17
|
Manzoor S, Abubakar M, Ul-Rahman A, Syed Z, Ahmad K, Afzal M. Molecular characterization of lumpy skin disease virus from recent outbreaks in Pakistan. Arch Virol 2023; 168:297. [PMID: 38007412 DOI: 10.1007/s00705-023-05925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/20/2023] [Indexed: 11/27/2023]
Abstract
Lumpy skin disease (LSD) is a contagious viral transboundary disease listed as a notifiable disease by the World Organization of Animal Health (WOAH). The first case of this disease was reported in Pakistan in late 2021. Since then, numerous outbreaks have been documented in various regions and provinces across the country. The current study primarily aimed to analyze samples collected during LSD outbreaks in cattle populations in the Sindh and Punjab provinces of Pakistan. Phylogenetic analysis was conducted using partial sequences of the GPCR, p32, and RP030 genes. Collectively, the LSDV strains originating from outbreaks in Pakistan exhibited a noticeable clustering pattern with LSDV strains reported in African, Middle Eastern, and Asian countries, including Egypt, the Kingdom of Saudi Arabia, India, China, and Thailand. The precise reasons behind the origin of the virus strain and its subsequent spread to Pakistan remain unknown. This underscores the need for further investigations into outbreaks across the country. The findings of the current study can contribute to the establishment of effective disease control strategies, including the implementation of a mass vaccination campaign in disease-endemic countries such as Pakistan.
Collapse
Affiliation(s)
- Shumaila Manzoor
- National Veterinary Laboratory, Ministry of National Food Security and Research, Park Road, Islamabad, Pakistan.
| | - Muhammad Abubakar
- National Veterinary Laboratory, Ministry of National Food Security and Research, Park Road, Islamabad, Pakistan
| | - Aziz Ul-Rahman
- Department of Pathobiology & Biomedical Sciences, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, Pakistan.
| | - Zainab Syed
- FAO Project, National Agriculture Research Centre premises, Islamabad, Pakistan
| | - Khurshid Ahmad
- National Veterinary Laboratory, Ministry of National Food Security and Research, Park Road, Islamabad, Pakistan
| | - Muhammad Afzal
- FAO Project, National Agriculture Research Centre premises, Islamabad, Pakistan
| |
Collapse
|
18
|
Manjunatha Reddy GB, Pabbineedi SM, Nagaraj S, Bijalwan S, Tadakod S, Bhutia Z, Palmu D, Rai S, Bhutia PD, Bhutia PT, Shenga E, Gulati BR. Lumpy Skin Disease (LSD) in Yak ( Bos grunniens): An Evidence of Species Spillover from Cattle in India. Microorganisms 2023; 11:2823. [PMID: 38137967 PMCID: PMC10746030 DOI: 10.3390/microorganisms11122823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Lumpy skin disease (LSD), caused by the lumpy skin disease virus (LSDV), is a global concern that affects cattle and buffalo. Recently, the disease has been reported in new species such as the Indian Gazelle, Camel, Banteng, Gaur, and Giraffe from various parts of the world. This report provides an insight into the occurrence of LSD in Yak from Sikkim, a North-Eastern state of India. During the investigation, both cattle and yak exhibited typical clinical signs of LSD, including skin nodular lesions. The morbidity, mortality, and case fatality rates for cattle were 9.08%, 1.84%, and 20.24%, respectively. Similarly, the morbidity, mortality, and case fatality rates in yak were 7.57%, 1.24%, and 16.33%, respectively. The virus isolation and amplification of LSDV-specific genes confirmed the presence of LSDV in cattle, yak, and vectors. Further, demonstrated antibodies in randomly collected sera from naïve and unvaccinated cattle and yak using indirect Enzyme Linked Immuno-sorbent Assay (iELISA) and Serum Neutralisation test (SNT) from this region. Sequencing and phylogenetic analysis of P32, GPCR, and RPO30 genes revealed that the virus isolated from both species was 100% identical to each other and also closely related to the field LSDV isolates circulating in the Indian subcontinent. The study highlighted the emergence of LSDV in unconventional hosts and underscored the need to include other bovine species in national disease control programs, encompassing disease surveillance initiatives.
Collapse
Affiliation(s)
| | - Sai Mounica Pabbineedi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India; (S.M.P.); (S.N.); (S.B.); (S.T.); (B.R.G.)
| | - Sudeep Nagaraj
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India; (S.M.P.); (S.N.); (S.B.); (S.T.); (B.R.G.)
| | - Shraddha Bijalwan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India; (S.M.P.); (S.N.); (S.B.); (S.T.); (B.R.G.)
| | - Sunil Tadakod
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India; (S.M.P.); (S.N.); (S.B.); (S.T.); (B.R.G.)
| | - Zeruiah Bhutia
- Animal Husbandry and Veterinary Services Department, Tadong, Sikkim 791109, India; (Z.B.); (D.P.); (S.R.); (P.D.B.); (P.T.B.); (E.S.)
| | - Diki Palmu
- Animal Husbandry and Veterinary Services Department, Tadong, Sikkim 791109, India; (Z.B.); (D.P.); (S.R.); (P.D.B.); (P.T.B.); (E.S.)
| | - Seema Rai
- Animal Husbandry and Veterinary Services Department, Tadong, Sikkim 791109, India; (Z.B.); (D.P.); (S.R.); (P.D.B.); (P.T.B.); (E.S.)
| | - Pempa Doma Bhutia
- Animal Husbandry and Veterinary Services Department, Tadong, Sikkim 791109, India; (Z.B.); (D.P.); (S.R.); (P.D.B.); (P.T.B.); (E.S.)
| | - Pem Tshering Bhutia
- Animal Husbandry and Veterinary Services Department, Tadong, Sikkim 791109, India; (Z.B.); (D.P.); (S.R.); (P.D.B.); (P.T.B.); (E.S.)
| | - Emila Shenga
- Animal Husbandry and Veterinary Services Department, Tadong, Sikkim 791109, India; (Z.B.); (D.P.); (S.R.); (P.D.B.); (P.T.B.); (E.S.)
| | - Baldev Raj Gulati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India; (S.M.P.); (S.N.); (S.B.); (S.T.); (B.R.G.)
| |
Collapse
|
19
|
Modethed W, Singhla T, Boonsri K, Pringproa K, Sthitmatee N, Vinitchaikul P, Sansamur C, Kreausukon K, Punyapornwithaya V. Identifying the patterns and sizes of the first lumpy skin disease outbreak clusters in Northern Thailand with a high degree of dairy farm aggregation using spatio-temporal models. PLoS One 2023; 18:e0291692. [PMID: 37967138 PMCID: PMC10651038 DOI: 10.1371/journal.pone.0291692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
Lumpy skin disease (LSD) is one of the most important notifiable transboundary diseases affecting cattle in many parts of the world. In Thailand, LSD outbreaks in cattle farming areas have been reported in 69 out of 77 provinces, indicating a serious nationwide situation. Understanding the dynamics of spatial and temporal LSD epidemic patterns can provide important information on disease transmission and control. This study aims to identify spatial and temporal clusters in the first LSD outbreaks in dairy farming areas with a high degree of aggregation in Northern Thailand using spatio-temporal models. The data were obtained from an official LSD outbreak investigation conducted between June and August 2021 on dairy farms (n = 202). The outbreak of LSD was confirmed by employing clinical observations and laboratory analysis. The spatio-temporal models including space-time permutation (STP), Poisson, and Bernoulli were applied to the outbreak data with the settings of 10%, 25%, and 50%, respectively, for the maximum reported cluster size (MRCS). Overall, the number of most likely and secondary clusters varied depending on the model and MRCS settings. All MRCS settings in the STP model detected the most likely clusters in the same area and the Poisson models in different areas, with the largest being defined by a 50% MRCS. Although the sizes of the most likely clusters identified by the Bernoulli models were different, they all had the same cluster period. Based on the sizes of the detected clusters, strict LSD insect-vector control should be undertaken within one kilometer of the outbreak farm in areas where no LSD vaccination has been administered. This study determines the sizes and patterns of LSD outbreak clusters in the dairy farming area with a high degree of farm aggregation. The spatio-temporal study models used in this study, along with multiple adjusted MRCS, provide critical epidemiological information. These models also expand the options for assisting livestock authorities in facilitating effective LSD prevention and control programs. By prioritizing areas for resource allocation, these models can help improve the efficiency of such programs.
Collapse
Affiliation(s)
- Wittawat Modethed
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tawatchai Singhla
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Kittikorn Boonsri
- Center of Veterinary Diagnosis and Technology Transfer, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattawooti Sthitmatee
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Paramintra Vinitchaikul
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Chalutwan Sansamur
- Akkhararatchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Khwanchai Kreausukon
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol 2023; 14:1266759. [PMID: 38029115 PMCID: PMC10652407 DOI: 10.3389/fmicb.2023.1266759] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Lumpy skin disease is recognized as a transboundary and emerging disease of cattle, buffaloes and other wild ruminants. Being initially restricted to Africa, and since 1989 the Middle East, the unprecedented recent spread across Eurasia demonstrates how underestimated and neglected this disease is. The initial identification of the causative agent of LSD as a poxvirus called LSD virus, was well as findings on LSDV transmission and epidemiology were pioneered at Onderstepoort, South Africa, from as early as the 1940s by researchers such as Weiss, Haig and Alexander. As more data emerges from an ever-increasing number of epidemiological studies, previously emphasized research gaps are being revisited and discussed. The currently available knowledge is in agreement with the previously described South African research experience that LSDV transmission can occur by multiple routes, including indirect contact, shared water sources and arthropods. The virus population is prone to molecular evolution, generating novel phylogenetically distinct variants resulting from a diverse range of selective pressures, including recombination between field and homologous vaccine strains in cell culture that produce virulent recombinants which pose diagnostic challenges. Host restriction is not limited to livestock, with certain wild ruminants being susceptible, with unknown consequences for the epidemiology of the disease.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD, Australia
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - David B. Wallace
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
21
|
Sprygin A, Mazloum A, Van Schalkwyk A, Krotova A, Bydovskaya O, Prokhvatilova L, Chvala I. Development and application of a real-time polymerase chain reaction assay to detect lumpy skin disease virus belonging to the Kenyan sheep and goat pox group. BMC Res Notes 2023; 16:247. [PMID: 37777780 PMCID: PMC10543856 DOI: 10.1186/s13104-023-06502-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023] Open
Abstract
Lumpy skin disease (LSD) outbreaks in Southeast and South Asia are attributed to different lineages of LSD virus (LSDV). Variants belonging to the novel recombinant cluster 2.5 circulate in China and Thailand, while a Kenyan sheep and goat pox (KSGP) strain from cluster 1.1 circulates in India, Pakistan, and Bangladesh. The clusters representing these circulating strains are vastly different. However, if their distribution encroaches into each other's ranges, it will be impossible to differentiate between them due to the lack of suitable molecular tools. Thus, fit-for-purpose molecular tools are in demand to effectively and timeously diagnose and investigate the epidemiology of LSDVs in a region. These could significantly contribute to the phylogenetic delineation of LSDVs and the development of preventive measures against transboundary spillovers. This work aimed to develop a real-time polymerase chain reaction assay targeting open reading frame LW032, capable of specifically detecting KSGP-related isolates and recombinant LSDV strains containing the KSGP backbone. The analytical specificity was proven against the widest possible panel of recombinant vaccine-like LSDV strains known to date. The amplification efficiency was 91.08%, and the assay repeatability had a cycle threshold variation of 0.56-1.1 over five repetitions across three runs. This KSGP-specific assay is reliable and fast and is recommended for use in LSDV epidemiological studies where the accurate detection of KSGP genetic signatures is a priority, particularly in regions where KSGP-like and other lineages are circulating.
Collapse
Affiliation(s)
| | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | | | | | | | - Ilya Chvala
- Federal Center for Animal Health, Vladimir, Russia
| |
Collapse
|
22
|
Pervin S, Ahamed MM, Chouhan CS, Jahan MS, Ahmed R, Nazmul KHM, Nazir H, Siddique MP, Rahman MT, Kafi MA, Rahman MB. Isolation, adaptation, and characterization of lumpy skin disease virus from cattle in Bangladesh. J Adv Vet Anim Res 2023; 10:563-569. [PMID: 37969804 PMCID: PMC10636076 DOI: 10.5455/javar.2023.j710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/17/2023] Open
Abstract
Objective The research aimed to isolate, adapt to cell culture, and characterize the lumpy skin disease virus (LSDV) from clinically infected cattle in Bangladesh. Materials and Methods From September 2019 to June 2020, 37 skin nodules and skin swabs were aseptically collected from afflicted cattle in the outbreak regions of Jhenaidah and Kishoreganj in Bangladesh. The LSDV was isolated from embryonated specific pathogen-free (SPF) chicken eggs along the chorioallantoic membrane (CAM) route and the Vero cell line after several blind passages. The viral attachment protein was targeted for molecular detection using polymerase chain reactions (PCR). For phylogenetic analysis, PCR-positive products were partially sequenced. Results The virus was evident in the cell line, showed cytopathic effects after the 13 blind passage, and on the CAM of SPF chicken eggs, exhibited thickening of the CAM with pock-like lesions. A total of 12 samples (32.43%) tested positive for LSDV by PCR. Phylogenetic analysis of the present isolates (accession numbers MN792649 and MN792650) revealed 100% similarity with strains from India (MN295064), Kenya (AF325528, MN072619, KX683219), Greece (KY829023), Serbia (KY702007), and Kazakhstan (MN642592); moreover, 99.43% to 100% similarity to the sheep pox virus. Conclusion Partially sequenced LSDV was developed as a vaccine seed and was first isolated in Bangladesh and characterized at the molecular level.
Collapse
Affiliation(s)
- Sumaiya Pervin
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mostakin Ahamed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Chandra Shaker Chouhan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Salim Jahan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rony Ahmed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - K. H. M. Nazmul
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Hussain Nazir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Bahanur Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
23
|
Suwankitwat N, Bhakha K, Molee L, Songkasupa T, Puangjinda K, Chamchoy T, Arjkumpa O, Nuansrichay B, Srisomrun S, Pongphitcha P, Lekcharoensuk P, Arunvipas P. Long-term monitoring of immune response to recombinant lumpy skin disease virus in dairy cattle from small-household farms in western Thailand. Comp Immunol Microbiol Infect Dis 2023; 99:102008. [PMID: 37467568 DOI: 10.1016/j.cimid.2023.102008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Lumpy skin disease (LSD) was firstly reported in Thailand in 2021 which affected the cattle industry. However, there is limited information on the immune response of LSDV infection in Thailand where recombinant vaccine strain circulated. The aim of this research was to study the duration of LSD immune response of subclinical and clinical animals after natural infection in dairy cattle. Sixty-six dairy cattle from ten farms in central and western regions of Thailand were investigated. Antibody was detected by virus neutralization test and ELISA. Cell mediated immunity (CMI)-related cytokine gene expressions were evaluated. Antibody was detected until at least 15 months after the noticeable symptom. Cattle with subclinical disease had lower antibody levels compared to animals which had clinical disease. IFN-γ and TNF-α levels were increased, while IL-10 level was decreased in the infected animals compared to the controls. This study elucidated immune responses in dairy cattle herd affected by recombinant LSDV.
Collapse
Affiliation(s)
- Nutthakarn Suwankitwat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Bangkhen campus, Kasetsart University, Bangkok 10900, Thailand; Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Kultyarat Bhakha
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Lamul Molee
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Tapanut Songkasupa
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Kanokwan Puangjinda
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Tapakorn Chamchoy
- Epidemiology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Orapun Arjkumpa
- The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen 40260, Thailand.
| | - Bandit Nuansrichay
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand.
| | - Smit Srisomrun
- Bovine Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| | - Phitcha Pongphitcha
- Bovine Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Bangkhen campus, Kasetsart University, Bangkok 10900, Thailand.
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
24
|
Breman FC, Haegeman A, Krešić N, Philips W, De Regge N. Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution. Viruses 2023; 15:1471. [PMID: 37515159 PMCID: PMC10385495 DOI: 10.3390/v15071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lumpy Skin Disease virus is a poxvirus from the genus Capripox that mainly affects bovines and it causes severe economic losses to livestock holders. The Lumpy Skin Disease virus is currently dispersing in Asia, but little is known about detailed phylogenetic relations between the strains and genome evolution. We reconstructed a whole-genome-sequence (WGS)-based phylogeny and compared it with single-gene-based phylogenies. To study population and spatiotemporal patterns in greater detail, we reconstructed networks. We determined that there are strains from multiple clades within the previously defined cluster 1.2 that correspond with recorded outbreaks across Eurasia and South Asia (Indian subcontinent), while strains from cluster 2.5 spread in Southeast Asia. We concluded that using only a single gene (cheap, fast and easy to routinely use) for sequencing lacks phylogenetic and spatiotemporal resolution and we recommend to create at least one WGS whenever possible. We also found that there are three gene regions, highly variable, across the genome of LSDV. These gene regions are located in the 5' and 3' flanking regions of the LSDV genome and they encode genes that are involved in immune evasion strategies of the virus. These may provide a starting point to further investigate the evolution of the virus.
Collapse
Affiliation(s)
- Floris C Breman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Andy Haegeman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nina Krešić
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Wannes Philips
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nick De Regge
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| |
Collapse
|
25
|
Li Y, Zeng Z, Li K, Rehman MU, Nawaz S, Kulyar MFEA, Hu M, Zhang W, Zhang Z, An M, Hu J, Li J. Detection of Culex tritaeniorhynchus Giles and Novel Recombinant Strain of Lumpy Skin Disease Virus Causes High Mortality in Yaks. Viruses 2023; 15:v15040880. [PMID: 37112860 PMCID: PMC10142747 DOI: 10.3390/v15040880] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Lumpy skin disease virus (LSDV) is capable of causing transboundary diseases characterized by fever, nodules on the skin, mucous membranes, and inner organs. The disease may cause emaciation with the enlargement of lymph nodes and sometimes death. It has had endemic importance in various parts of Asia in recent years, causing substantial economic losses to the cattle industry. The current study reported a suspected LSDV infection (based on signs and symptoms) from a mixed farm of yak and cattle in Sichuan Province, China. The clinical samples were found positive for LSDV using qPCR and ELISA, while LSDV DNA was detected in Culex tritaeniorhynchus Giles. The complete genome sequence of China/LSDV/SiC/2021 was determined by Next-generation sequencing. It was found that China/LSDV/SiC/2021 is highly homologous to the novel vaccine-related recombinant LSDV currently emerging in China and countries surrounding China. Phylogenetic tree analysis revealed that the novel vaccine-associated recombinant LSDV formed a unique dendrograms topology between field and vaccine-associated strains. China/LSDV/SiC/2021 was found to be a novel recombinant strain, with at least 18 recombination events via field viruses identified in the genome sequence. These results suggest that recombinant LSDV can cause high mortality in yaks, and its transmission might be due to the Culex tritaeniorhynchus Giles, which acts as a mechanical vector.
Collapse
|
26
|
Haegeman A, De Leeuw I, Philips W, De Regge N. Development and Validation of a New DIVA Real-Time PCR Allowing to Differentiate Wild-Type Lumpy Skin Disease Virus Strains, Including the Asian Recombinant Strains, from Neethling-Based Vaccine Strains. Viruses 2023; 15:v15040870. [PMID: 37112850 PMCID: PMC10146157 DOI: 10.3390/v15040870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The current epidemic in Asia, driven by LSDV recombinants, poses difficulties to existing DIVA PCR tests, as these do not differentiate between homologous vaccine strains and the recombinant strains. We, therefore, developed and validated a new duplex real-time PCR capable of differentiating Neethling-based vaccine strains from classical and recombinant wild-type strains that are currently circulating in Asia. The DIVA potential of this new assay, seen in the in silico evaluation, was confirmed on samples from LSDV infected and vaccinated animals and on isolates of LSDV recombinants (n = 12), vaccine (n = 5), and classic wild-type strains (n = 6). No cross-reactivity or a-specificity with other capripox viruses was observed under field conditions in non-capripox viral stocks and negative animals. The high analytical sensitivity is translated into a high diagnostic specificity as more than 70 samples were all correctly detected with Ct values very similar to those of a published first-line pan capripox real-time PCR. Finally, the low inter- and intra-run variability observed shows that the new DIVA PCR is very robust which facilitates its implementation in the lab. All validation parameters that are mentioned above indicate the potential of the newly developed test as a promising diagnostic tool which could help to control the current LSDV epidemic in Asia.
Collapse
Affiliation(s)
- Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
- Correspondence:
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Wannes Philips
- Sciensano, EURL for Diseases Caused by Capripox Viruses, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Nick De Regge
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| |
Collapse
|
27
|
Kumar A, Venkatesan G, Kushwaha A, Poulinlu G, Saha T, Ramakrishnan MA, Dhar P, Kumar GS, Singh RK. Genomic characterization of Lumpy Skin Disease virus (LSDV) from India: Circulation of Kenyan-like LSDV strains with unique kelch-like proteins. Acta Trop 2023; 241:106838. [PMID: 36796571 DOI: 10.1016/j.actatropica.2023.106838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
Lumpy skin disease (LSD) is an economically important poxviral disease endemic to Asia, Europe, and Africa. Recently, LSD has spread to naïve countries, including India, China, Bangladesh, Pakistan, Myanmar, Vietnam, and Thailand. Here, we describe the complete genomic characterization of LSDV from India, LSDV-WB/IND/19 isolated from an LSD affected calf in 2019 determined by Illumina next-generation sequencing (NGS). The LSDV-WB/IND/19 has a genome size of 150,969 bp encoding 156 putative ORFs. Phylogenetic analysis based on complete genome sequence suggested that LSDV-WB/IND/19 is closely related to Kenyan LSDV strains with 10-12 variants with non-synonymous changes confined to LSD_019, LSD_049, LSD_089, LSD_094, LSD_096, LSD_140, and LSD_144 genes. In contrast to complete kelch-like proteins in Kenyan LSDV strains, LSDV-WB/IND/19 LSD_019 and LSD_144 genes were found to encode truncated versions (019a, 019b, and 144a, 144b). LSD_019a and LSD_019b proteins of LSDV-WB/IND/19 resemble that of wild-type LSDV strains based on SNPs and the C-terminal part of LSD_019b except for deletion at K229, whereas the LSD_144a and LSD_144b proteins resemble that of Kenyan LSDV strains based on SNPs, however, C-terminal part of LSD_144a resembles that of vaccine-associated LSDV strains due to premature truncation. The NGS findings were confirmed by Sanger sequencing of these genes in Vero cell isolate as well as in the original skin scab along with similar findings in another Indian LSDV from scab specimen. LSD_019 and LSD_144 genes are thought to modulate virulence and host range in capripoxviruses. This study demonstrates the circulation of unique LSDV strains in India and highlights the importance of constant monitoring of the molecular evolution of LSDV and associated factors in the region in light of the emergence of recombinant LSDV strains.
Collapse
Affiliation(s)
- Amit Kumar
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India.
| | - Gnanavel Venkatesan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Anand Kushwaha
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - G Poulinlu
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - Tapabrata Saha
- Block Animal Health Centre, Chhatna, Bankura, West Bengal, India
| | - M A Ramakrishnan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Pronab Dhar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - G Sai Kumar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
28
|
Ul-Rahman A, Niaz N, Raza MA, Mehmood A, Rajpoot SU, Abubakar M, Shabbir MZ. First emergence of lumpy skin disease in cattle in Pakistan. Transbound Emerg Dis 2022; 69:3150-3152. [PMID: 36256877 DOI: 10.1111/tbed.14742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Aziz Ul-Rahman
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Nasir Niaz
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Asif Raza
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Asif Mehmood
- Veterinary Research Institute, Livestock & Dairy Development Department, Government of Punjab, Lahore, Pakistan
| | - Saad Ullah Rajpoot
- Disease Surveillance Laboratory, Livestock & Dairy Development Department, Government of Punjab, Multan, Pakistan
| | - Muhammad Abubakar
- National Veterinary Laboratories, Ministry of National Food Security & Research, Islamabad, Pakistan
| | | |
Collapse
|
29
|
Lumpy Skin Disease Outbreaks in Africa, Europe, and Asia (2005-2022): Multiple Change Point Analysis and Time Series Forecast. Viruses 2022; 14:v14102203. [PMID: 36298758 PMCID: PMC9611638 DOI: 10.3390/v14102203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
LSD is an important transboundary disease affecting the cattle industry worldwide. The objectives of this study were to determine trends and significant change points, and to forecast the number of LSD outbreak reports in Africa, Europe, and Asia. LSD outbreak report data (January 2005 to January 2022) from the World Organization for Animal Health were analyzed. We determined statistically significant change points in the data using binary segmentation, and forecast the number of LSD reports using auto-regressive moving average (ARIMA) and neural network auto-regressive (NNAR) models. Four significant change points were identified for each continent. The year between the third and fourth change points (2016-2019) in the African data was the period with the highest mean of number of LSD reports. All change points of LSD outbreaks in Europe corresponded with massive outbreaks during 2015-2017. Asia had the highest number of LSD reports in 2019 after the third detected change point in 2018. For the next three years (2022-2024), both ARIMA and NNAR forecast a rise in the number of LSD reports in Africa and a steady number in Europe. However, ARIMA predicts a stable number of outbreaks in Asia, whereas NNAR predicts an increase in 2023-2024. This study provides information that contributes to a better understanding of the epidemiology of LSD.
Collapse
|
30
|
Suwankitwat N, Songkasupa T, Boonpornprasert P, Sripipattanakul P, Theerawatanasirikul S, Deemagarn T, Suwannaboon M, Arjkumpa O, Buamithup N, Hongsawat A, Jindajang S, Nipaeng N, Aunpomma D, Molee L, Puangjinda K, Lohlamoh W, Nuansrichay B, Narawongsanont R, Arunvipas P, Lekcharoensuk P. Rapid Spread and Genetic Characterisation of a Recently Emerged Recombinant Lumpy Skin Disease Virus in Thailand. Vet Sci 2022; 9:vetsci9100542. [PMID: 36288155 PMCID: PMC9609959 DOI: 10.3390/vetsci9100542] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Lumpy skin disease (LSD) is an economically important disease of cattle caused by LSD virus (LSDV), a member of poxviruses. It had never been found in Thailand before March 2021, but has since spread broadly to various provinces. Regional veterinarians have collected samples from the LSD cattle and submitted them for diagnosis as a part of disease surveillance during the outbreaks. Our study aimed to monitor the distribution of the outbreaks by recording the LSD cases based on clinical signs and laboratory tests up to June 2022, and characterise the causative agent virologically and genetically. Outbreak maps were created to illustrate the rapid temporal distribution of the LSD index cases in each province of Thailand. We detected two distant origins of the outbreaks. LSDV DNA was confirmed in blood, milk, and skin samples collected from sick animals by real-time PCR. LSDV was proven to be the causative virus based on serological, virological, and pathological diagnoses. By genetic analysis, the Thai LSDV is a recombinant virus derived from a vaccine strain previously appearing in China and Vietnam. Its genetic material is a mosaic hybrid genome containing the vaccine virus DNA as the backbone interspersed with DNA fragments of a field strain. Abstract The emergence of the lumpy skin disease virus (LSDV) was first detected in north-eastern Thailand in March 2021. Since then, the abrupt increase of LSD cases was observed throughout the country as outbreaks have spread rapidly to 64 out of a total of 77 provinces within four months. Blood, milk, and nodular skin samples collected from affected animals have been diagnosed by real-time PCR targeting the p32 gene. LSDV was isolated by primary lamb testis (PLT) cells, followed by Madin-Darby bovine kidney (MDBK) cells, and confirmed by immunoperoxidase monolayer assay (IPMA). Histopathology and immunohistochemistry (IHC) of a skin lesion showed inclusion bodies in keratinocytes and skin epithelial cells. Phylogenetic analyses of RPO30 and GPCR genes, and the whole genome revealed that Thai viruses were closely related to the vaccine-derived recombinant LSDV strains found previously in China and Vietnam. Recombination analysis confirmed that the Thai LSDV possesses a mosaic hybrid genome containing the vaccine virus DNA as the backbone and a field strain DNA as the minor donor. This is an inclusive report on the disease distributions, complete diagnoses, and genetic characterisation of LSDV during the first wave of LSD outbreaks in Thailand.
Collapse
Affiliation(s)
- Nutthakarn Suwankitwat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Department of Livestock Development, Bangkok 10400, Thailand
| | | | | | | | - Sirin Theerawatanasirikul
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Minta Suwannaboon
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen 40260, Thailand
| | - Orapun Arjkumpa
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen 40260, Thailand
| | | | | | - Sirima Jindajang
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok 10400, Thailand
| | - Nawakarn Nipaeng
- Veterinary Research and Development Center (Lower Northeastern Region), Department of Livestock Development, Surin 32000, Thailand
| | - Dilok Aunpomma
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen 40260, Thailand
| | - Lamul Molee
- Department of Livestock Development, Bangkok 10400, Thailand
| | | | | | | | - Rawint Narawongsanont
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kamphaeng Saen Campus, Kasetsart University, Nakhon Pathom 73140, Thailand
- Correspondence: (P.A.); (P.L.); Tel.: +66-2-942-8436 (P.L.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: (P.A.); (P.L.); Tel.: +66-2-942-8436 (P.L.)
| |
Collapse
|
31
|
Abdalhamed AM, Naser SM, Mohamed AH, Zeedan GSG. Development of gold nanoparticles-lateral flow test as a novel field diagnostic assay for detecting foot-and-mouth disease and lumpy skin disease viruses. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:574-586. [PMID: 36721504 PMCID: PMC9867639 DOI: 10.18502/ijm.v14i4.10245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Rapid diagnosis is a cornerstone for controlling and preventing viral disease outbreaks. The present study is aimed to develop a rapid field diagnostic test based on gold nanoparticles for the detection of lumpy skin diseases (LSD), and foot and mouth diseases (FMD) in animals with high sensitivity and specificity. Materials and Methods FMD and LSD vaccines were used as a source of viruses' antigens for preparing monoclonal antibodies and conjugated with gold nanoparticles that characterized using various techniques such as UV-visible spectrometry, and transmission electron microscopy (TEM). Monoclonal antibodies (mAbs) for each serotype produced in experimental rats and used to capture antibodies for FMDV and/or LSDV. ELISA was used to screen 469 milk samples and 1165 serum samples from naturally infected cattle, buffaloes, sheep, and goats for validation of the lateral flow test (LFT). LSDV DNA was extracted from 117 blood and skin biopsy samples collected from naturally infected cattle during the 2019 outbreak. Results The specificity and sensitivity of GNP-LFT were evaluated and compared to Ag-ELISA, Western blot tests (WB), and PCR. A total of 95 FMDV positives out of 469 (20.25%) milk samples and 268 FMDV positives out of 1165 (23.3%) serum samples from natural infected cattle, buffaloes, sheep, and goats examined by ELISA to valid GNPS-LFT Viral LSDV DNA was detected in 60/117 (51.5%) and 31/60 (52.9%). While the GNPS-LFT assay results were 49/117 (41.9%) and 29/60 (48.3%) blood and skin biopsy samples, respectively. The diagnostic sensitivity and specificity of the GNP-LFT test were 72% and 82%, respectively. All vesicular fluid and epithelium samples collected from infected animals were identified as positive by the GNP-LFT and Ag-ELISA. Ag-ELISA, on the other hand, was 90% and 100%. While the developed GNP-LFT used LSDV polyclonal antibodies were similar to ELISA and IgG-WB with a sensitivity of 72.8% and a specificity of 88.8%, respectively. Conclusion The GNPS-LFT is a novel immunoassay based on mono or polyclonal antibodies conjugated with gold nanoparticles that provides an accurate, rapid, specific, and sensitive tool for field rapid diagnosis of FMDV and LSDV.
Collapse
Affiliation(s)
- Abeer Mostafa Abdalhamed
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt
| | - Soad Mohammed Naser
- Clinical Pathology Research Unit, Department of Parasitology and Animals Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Ayman Hamady Mohamed
- Biotechnology Unit, Department of Biotechnology, Cell Biology Research and Food Hygiene, Animal Health Institute, Dokki, Giza, Egypt
| | - Gamil Sayed Gamil Zeedan
- Department of Parasitology and Animals Diseases (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt,Corresponding author: Gamil Sayed Gamil Zeedan, Ph.D, Department of Parasitology and Animals Diseases, (Infectious Diseases), National Research Centre, Dokki, Giza, Egypt. Tel: +201145535240 Fax: +20233370931
| |
Collapse
|