1
|
Mougiou D, Gioula G, Skoura L, Anastassopoulou C, Kachrimanidou M. Insights into the Interaction Between Clostridioides difficile and the Gut Microbiome. J Pers Med 2025; 15:94. [PMID: 40137411 PMCID: PMC11943401 DOI: 10.3390/jpm15030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a significant healthcare-associated pathogen that is predominantly caused by antibiotic-induced microbiota disturbance. Antibiotics decrease microbial diversity, resulting in C. difficile colonization and infection. Clostridium difficile infection (CDI) manifests through toxins A and B, causing diarrhea and colitis. Antibiotic usage, old age, and hospitalization are significant risk factors. A healthy gut microbiota, which is dominated by Firmicutes and Bacteroidetes, provides colonization resistance to C. difficile due to competition for nutrients, creating inhibitory substances and stimulating the immune response. Antibiotic-induced dysbiosis decreases resistance, allowing C. difficile spores to transform into vegetative forms. Patients with CDI have decreased gut microbiota diversity, with a decrease in beneficial bacteria, including Bacteroidetes, Prevotella, and Bifidobacterium, and a rise in harmful bacteria like Clostridioides and Lactobacillus. This disparity worsens the infection's symptoms and complicates therapy. Fecal Microbiota Transplantation (FMT) has emerged as a potential therapy for recurrent CDI by restoring gut microbiota diversity and function. Comprehending the connection between gut microbiota and CDI pathogenesis is critical for establishing effective preventive and treatment plans. Maintaining a healthy gut microbiota through careful antibiotic use and therapeutic options such as FMT can help in the management and prevention of CDI.
Collapse
Affiliation(s)
- Dimitra Mougiou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.M.); (G.G.)
| | - Georgia Gioula
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.M.); (G.G.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, 54124 Thessaloniki, Greece;
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.M.); (G.G.)
| |
Collapse
|
2
|
Clement J, Barlingay G, Addepalli S, Bang H, Donnelley MA, Cohen SH, Crabtree S. Risk factors for the development of Clostridioides difficile infection in patients colonized with toxigenic Clostridioides difficile. Infect Control Hosp Epidemiol 2025:1-7. [PMID: 39989316 DOI: 10.1017/ice.2025.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
OBJECTIVE Asymptomatic patients colonized with toxigenic Clostridioides difficile are at risk of progressing to C. difficile infection (CDI), but risk factors associated with progression are poorly understood. The objectives of this study were to estimate the incidence and identify risk factors to progression of hospital-onset CDI (HO-CDI) among colonized patients. METHODS This was a nested case-control study at an academic medical center including adult patients colonized with toxigenic C. difficile, detected via polymerase chain reaction (PCR) on a rectal swab collected on admission from 2017 to 2020. Patients with prior CDI or symptoms on admission, neutropenia, prior rectal surgery, or hospitalization less than 24 hours were excluded. Colonized patients that developed HO-CDI were matched 1:3 to colonized patients who did not based on PCR test date. Bivariate and multivariable-adjusted Cox regression analyses were used to identify risk factors. RESULTS Of 2,150 colonized patients, 109 developed HO-CDI, with an incidence of 5.1%. After exclusions, 321 patients (69 with HO-CDI) were included, with an estimated incidence of 4.2%. Risk factors included cirrhosis (aHR 1.94), ICU admission (aHR 1.76), malignancy (aHR 1.88), and hospitalization within six months (aHR 1.6). Prior antibiotic exposure in the past three months (aHR 2.14) and receipt of at-risk antibiotics were also identified as potential risk factors (aHR 2.17). CONCLUSIONS Progression to HO-CDI among colonized patients was not uncommon. This study highlights key risk factors associated with progression, underscoring the importance of enhanced monitoring and prevention efforts tailored to high-risk populations to mitigate HO-CDI.
Collapse
Affiliation(s)
- Josh Clement
- Department of Pharmacy, University of California Davis Health, Sacramento, CA, USA
- Department of Pharmacy, Mount Sinai Hospital, New York, NY, USA
| | - Gauri Barlingay
- Division of Infectious Disease, University of California Davis Medical Center, Sacramento, CA, USA
| | - Sindhu Addepalli
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Heejung Bang
- Division of Biostatistics, University of California Davis, Davis, CA, USA
| | - Monica A Donnelley
- Department of Pharmacy, University of California Davis Health, Sacramento, CA, USA
| | - Stuart H Cohen
- Division of Infectious Disease, University of California Davis Medical Center, Sacramento, CA, USA
| | - Scott Crabtree
- Division of Infectious Disease, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
3
|
Hirai J, Mori N, Hanai Y, Asai N, Hagihara M, Mikamo H. Evaluating Bezlotoxumab-Fidaxomicin Combination Therapy in Clostridioides Infection: A Single-Center Retrospective Study from Aichi Prefecture, Japan. Antibiotics (Basel) 2025; 14:228. [PMID: 40149040 PMCID: PMC11939304 DOI: 10.3390/antibiotics14030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Clostridioides difficile infection (CDI) poses a significant healthcare challenge, with recurrence rates reaching 30%, leading to substantial morbidity and costs. Fidaxomicin (FDX) and bezlotoxumab (BEZ) have shown potential in reducing recurrence; however, real-world data on the efficacy of their combination in high-risk CDI patients remain limited. This study aimed to evaluate the efficacy and safety of FDX + BEZ compared with FDX alone in CDI patients with recurrence risk factors. Methods: CDI patients with ≥two recurrence risk factors treated with FDX alone or FDX + BEZ were analyzed. Sixteen factors were evaluated as risk factors for recurrent CDI based on findings from previous studies. Patients with FDX treatment duration <10 days or other CDI treatment prior to FDX were excluded. Outcomes included recurrence within 2 months, global and clinical cure rates, and adverse events. Univariate and multivariate analyses were performed to evaluate efficacy. Results: Among 82 patients, the FDX + BEZ group (n = 30) demonstrated significantly higher global (86.7% vs. 65.4%; p < 0.05) and clinical cure rates (90.0% vs. 69.2%; p < 0.05) compared with the FDX-alone group (n = 52), despite more severe cases in the combination group. Recurrence rates were non-significantly lower in the FDX + BEZ group (3.3% vs. 11.5%). Combination therapy also accelerated diarrhea resolution without additional adverse events. Multivariate analysis identified FDX + BEZ as significantly associated with improved clinical cure (adjusted odds ratio 4.167; 95% CI: 1.029-16.885). Conclusions: FDX + BEZ therapy offers superior efficacy and safety in CDI patients with recurrence risk factors, presenting a promising strategy for optimizing CDI management.
Collapse
Affiliation(s)
- Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi 480-1195, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi 480-1195, Japan
- Division of Infection Control and Prevention, Nippon Medical School Chiba Hokusoh Hospital, Chiba 270-1694, Japan
| | - Nobuaki Mori
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi 480-1195, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi 480-1195, Japan
| | - Yuki Hanai
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan;
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi 480-1195, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi 480-1195, Japan
| | - Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University Hospital, Aichi 480-1195, Japan;
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi 480-1195, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi 480-1195, Japan
| |
Collapse
|
4
|
Johnke J, Zimmermann J, Stegemann T, Langel D, Franke A, Thingholm L, Schulenburg H. Caenorhabditis nematodes influence microbiome and metabolome characteristics of their natural apple substrates over time. mSystems 2025; 10:e0153324. [PMID: 39791908 PMCID: PMC11834410 DOI: 10.1128/msystems.01533-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous Caenorhabditis nematodes as a unique model system, for which source substrates like rotting apples can be easily collected. We compared single host microbiomes with their corresponding apple source substrates, as well as nematode-free substrates, over a 2-year sampling period in the botanical garden in Kiel, Germany. We found that single worms have unique microbiomes, which overlap most strongly with nematodes from the same source apple. A comparison to previous, related work revealed that variation in microbiome composition of natural Caenorhabditis isolates is significantly influenced by the substrate type, from which worms were obtained (e.g., fruits or compost). Our current sampling further showed that microbiome assembly is mostly driven by dispersal limitation. Importantly, two independent analysis approaches consistently suggest that worm microbiomes significantly influence characteristics of the apple microbiomes, possibly indicating niche construction by nematodes. Moreover, combining apple microbiome and metabolome data, we identified individual microbes and specific compounds indicative of fruit ripening that are significantly associated with nematode presence. In conclusion, our study elucidates the complex relationship between host microbiomes and their directly connected substrate microbiomes. Our analyses underscore the significant influence of nematode microbiomes on shaping the apple microbiome and, consequently, the fruit's metabolic capacity, thereby enhancing our general understanding of host-microbiome interactions in their natural habitat.IMPORTANCEAlmost all complex organisms are host to a microbial community, the microbiome. This microbiome can influence diverse host functions, such as food processing, protection against parasites, or development. The relationship between host and microbiome critically depends on the assembly of the microbial community, which may be shaped by microbes in the directly linked environment, the source microbiome. This assembly process is often not well understood because of the unavailability of source substrates. Here, we used Caenorhabditis nematodes as a model system that facilitates a direct comparison of host and source microbiomes. Based on a 2-year sampling period, we identified (i) a clear link between assembly dynamics of host and source microbiomes, (ii) a significant influence of nematode microbiomes on apple microbiomes, and (iii) specific microbes and compounds that are associated with the presence of nematodes in the sampled substrates. Overall, our study enhances our understanding of microbiome assembly dynamics and resulting functions.
Collapse
Affiliation(s)
- J. Johnke
- Zoological Institute, Kiel University, Kiel, Germany
| | - J. Zimmermann
- Zoological Institute, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - T. Stegemann
- Botanical Institute, Kiel University, Kiel, Germany
| | - D. Langel
- Botanical Institute, Kiel University, Kiel, Germany
| | - A. Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - L. Thingholm
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - H. Schulenburg
- Zoological Institute, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
5
|
Rosato R, Quaranta G, Santarelli G, Fancello G, Bianco DM, Monzo FR, Bibbò S, Cammarota G, Sanguinetti M, Masucci L, De Maio F. Can Gut Microbiota Analysis Reveal Clostridioides difficile Infection? Evidence from an Italian Cohort at Disease Onset. Microorganisms 2024; 13:16. [PMID: 39858784 PMCID: PMC11767363 DOI: 10.3390/microorganisms13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
A diverse and well-functioning gut microbiota normally serves as a protective shield against the invasion of harmful bacteria or the proliferation of opportunistic pathogens. Clostridioides difficile infection (CDI) is predominantly associated with the overuse of antibiotics, resulting in a significant alteration in the gut's microbial balance. Unfortunately, the lack of global standardization does not allow for the identification of a set of biomarkers associated with the onset and progression of this disease. In this study, we examined the composition of the gut microbiota in patients at the time of the initial detection of CDI compared to a control group of CDI-negative individuals, with a focus on identifying potential CDI biomarkers for diagnosis. While no significant differences in the alpha and beta diversity between CDI-negative and CDI-positive individuals were found, we found that certain genera (such as Clostridium XIVa and Clostridium XVIII) showed different abundance patterns in the two groups, indicating potential differences in gut microbiota balance. In conclusion, am enrichment in Clostridium XI and a decrease in Faecalibacterium emerged in the CDI-positive patients and following antibiotic treatment, indicating that changes in the Clostridium/Faecalibacterium ratio may be a promising biomarker that warrants further investigation for CDI diagnosis.
Collapse
Affiliation(s)
- Roberto Rosato
- Department of Basic Biotechnological Sciences, Intensivology and Perioperative Clinics, Section of Microbiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Quaranta
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Giulia Santarelli
- Department of Basic Biotechnological Sciences, Intensivology and Perioperative Clinics, Section of Microbiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Fancello
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Francesca Romana Monzo
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Stefano Bibbò
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Department of Basic Biotechnological Sciences, Intensivology and Perioperative Clinics, Section of Microbiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Luca Masucci
- Department of Basic Biotechnological Sciences, Intensivology and Perioperative Clinics, Section of Microbiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Smith KM, Francisco SG, Zhu Y, LeRoith T, Davis ML, Crott JW, Barger K, Greenberg AS, Smith DE, Taylor A, Yeruva L, Rowan S. Dietary prevention of antibiotic-induced dysbiosis and mortality upon aging in mice. FASEB J 2024; 38:e70241. [PMID: 39655692 PMCID: PMC11629448 DOI: 10.1096/fj.202402262r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Oral antibiotic use is both widespread and frequent in older adults and has been linked to dysbiosis of the gut microbiota, enteric infection, and chronic diseases. Diet and nutrients, particularly prebiotics, may modify the susceptibility of the gut microbiome to antibiotic-induced dysbiosis. We fed 12-month-old mice a high glycemic (HG) or low glycemic (LG) diet with or without antibiotics (ampicillin and neomycin) for an additional 11 months. The glycemic index was modulated by the ratio of rapidly digested amylopectin starch to slowly digested amylose, a type-2-resistant starch. We observed a significant decrease in survival of mice fed a HG diet containing antibiotics (HGAbx) relative to those fed a LG diet containing antibiotics (LGAbx). HGAbx mice died with an enlarged and hemorrhagic cecum, which is associated with colonic hyperplasia and goblet cell depletion. Gut microbiome analysis revealed a pronounced expansion of Proteobacteria and a near-complete loss of Bacteroidota and Firmicutes commensal bacteria in HGAbx, whereas the LGAbx group maintained a population of Bacteroides and more closely resembled the LG microbiome. The predicted functional capacity for bile salt hydrolase activity was lost in HGAbx mice but retained in LGAbx mice. An LG diet containing amylose may therefore be a potential therapeutic to prevent antibiotic-induced dysbiosis and morbidity.
Collapse
Affiliation(s)
- Kelsey M. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Sarah G. Francisco
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Ying Zhu
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Tanya LeRoith
- Department of Biomedical Sciences and PathobiologyVA‐MD College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - Meredith L. Davis
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Jimmy W. Crott
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- Department of Pathology & Laboratory MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Donald E. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Laxmi Yeruva
- USDA‐ARS, Microbiome and Metabolism Research UnitArkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Sheldon Rowan
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
7
|
Alonso-Vásquez T, Giovannini M, Garbini GL, Dziurzynski M, Bacci G, Coppini E, Fibbi D, Fondi M. An ecological and stochastic perspective on persisters resuscitation. Comput Struct Biotechnol J 2024; 27:1-9. [PMID: 39760074 PMCID: PMC11697298 DOI: 10.1016/j.csbj.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Resistance, tolerance, and persistence to antibiotics have mainly been studied at the level of a single microbial isolate. However, in recent years it has become evident that microbial interactions play a role in determining the success of antibiotic treatments, in particular by influencing the occurrence of persistence and tolerance within a population. Additionally, the challenge of resuscitation (the capability of a population to revive after antibiotic exposure) and pathogen clearance are strongly linked to the small size of the surviving population and to the presence of fluctuations in cell counts. Indeed, while large population dynamics can be considered deterministic, small populations are influenced by stochastic processes, making their behaviour less predictable. Our study argues that microbe-microbe interactions within a community affect the mode, tempo, and success of persister resuscitation and that these are further influenced by noise. To this aim, we developed a theoretical model of a three-member microbial community and analysed the role of cell-to-cell interactions on pathogen clearance, using both deterministic and stochastic simulations. Our findings highlight the importance of ecological interactions and population size fluctuations (and hence the underlying cellular mechanisms) in determining the resilience of microbial populations following antibiotic treatment.
Collapse
Affiliation(s)
- Tania Alonso-Vásquez
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Michele Giovannini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Gian Luigi Garbini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Mikolaj Dziurzynski
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| | - Ester Coppini
- G.I.D.A. SpA, Via Baciacavallo 36, Prato, 59100, Italy
| | | | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
8
|
Lee A, Yoo JS, Yoon EJ. Gut Microbiota and New Microbiome-Targeted Drugs for Clostridioides difficile Infections. Antibiotics (Basel) 2024; 13:995. [PMID: 39452261 PMCID: PMC11505460 DOI: 10.3390/antibiotics13100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Clostridioides difficile is a major causative pathogen for antibiotic-associated diarrhea and C. difficile infections (CDIs) may lead to life-threatening diseases in clinical settings. Most of the risk factors for the incidence of CDIs, i.e., antibiotic use, treatment by proton pump inhibitors, old age, and hospitalization, are associated with dysbiosis of gut microbiota and associated metabolites and, consequently, treatment options for CDIs include normalizing the composition of the intestinal microbiome. In this review, with an introduction to the CDI and its global epidemiology, CDI-associated traits of the gut microbiome and its metabolites were reviewed, and microbiome-targeting treatment options were introduced, which was approved recently as a new drug by the United States Food and Drug Administration (U.S. FDA), rather than a medical practice.
Collapse
Affiliation(s)
| | | | - Eun-Jeong Yoon
- Division of Antimicrobial Resistance Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea
| |
Collapse
|
9
|
Marsiglia R, Pane S, Del Chierico F, Russo A, Vernocchi P, Romani L, Cardile S, Diamanti A, Galli L, Tamborino A, Terlizzi V, De Angelis P, Angelino G, Putignani L. Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infections in a Cystic Fibrosis Child Previously Screen Positive, Inconclusive Diagnosis (CFSPID): A Case Report. Microorganisms 2024; 12:2059. [PMID: 39458368 PMCID: PMC11509880 DOI: 10.3390/microorganisms12102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Clostridioides difficile infection (CDI) is generally treated with vancomycin, metronidazole or fidaxomicin, although fecal microbiota transplantation (FMT) represents a promising therapeutic option for antibiotic-resistant recurrent C. difficile infections (rCDIs) in adults. In pediatric cystic fibrosis (CF) patients, CDIs are generally asymptomatic and respond to treatment. Here, we present the case of an 8-year-old female, initially diagnosed as "CFTR-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis" (CMRS/CFSPID), who then progressed to CF at 12 months. In the absence of CF-related symptoms, she presented multiple and disabling episodes of bloody diarrhoea with positive tests for C. difficile antigen and A/B toxin. After conventional treatments failed and several CDI relapses, FMT was proposed. Donor screening and GM donor-receiver matching identified her mother as a donor. Metataxonomy and targeted metabolomics provided, through a pre- and post-FMT time course, gut microbiota (GM) profiling to assess GM engraftment. At first, the GM map revealed severe dysbiosis, with a prevalence of Bacteroidetes and Proteobacteria (i.e., Klebsiella spp., Escherichia coli), a reduction in Firmicutes, a GM nearly entirely composed of Enterococcaceae (i.e., Enterococcus) and an almost complete depletion of Verrucomicrobia and Actinobacteria, mostly represented by Veillonella dispar. Post FMT, an increment in Bifidobacterium spp. and Collinsella spp. with a decrease in V. dispar restored intestinal eubiosis. Consistently, four weeks after FMT treatment, the child's gut symptoms cleared, without CDI recurrence.
Collapse
Affiliation(s)
- Riccardo Marsiglia
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Research Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (F.D.C.); (P.V.)
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (A.R.)
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Research Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (F.D.C.); (P.V.)
| | - Alessandra Russo
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (A.R.)
| | - Pamela Vernocchi
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Research Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (F.D.C.); (P.V.)
| | - Lorenza Romani
- Infectious Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Sabrina Cardile
- Unit of Gastroenterology and Nutrition, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.C.); (A.D.); (P.D.A.); (G.A.)
| | - Antonella Diamanti
- Unit of Gastroenterology and Nutrition, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.C.); (A.D.); (P.D.A.); (G.A.)
| | - Luisa Galli
- Department of Health Sciences, University of Florence, 50121 Florence, Italy;
- Infectious Disease Unit, Meyer Children’s Hospital IRCCS, 50121 Florence, Italy;
| | - Agnese Tamborino
- Infectious Disease Unit, Meyer Children’s Hospital IRCCS, 50121 Florence, Italy;
| | - Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children’s Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Viale Gaetano Pieraccini 24, 50139 Florence, Italy;
| | - Paola De Angelis
- Unit of Gastroenterology and Nutrition, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.C.); (A.D.); (P.D.A.); (G.A.)
| | - Giulia Angelino
- Unit of Gastroenterology and Nutrition, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.C.); (A.D.); (P.D.A.); (G.A.)
| | - Lorenza Putignani
- Unit of Microbiomics and Unit of Research of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
10
|
Zaatry R, Herren R, Gefen T, Geva-Zatorsky N. Microbiome and infectious disease: diagnostics to therapeutics. Microbes Infect 2024; 26:105345. [PMID: 38670215 DOI: 10.1016/j.micinf.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Over 300 years of research on the microbial world has revealed their importance in human health and disease. This review explores the impact and potential of microbial-based detection methods and therapeutic interventions, integrating research of early microbiologists, current findings, and future perspectives.
Collapse
Affiliation(s)
- Rawan Zaatry
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Rachel Herren
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Tal Gefen
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Naama Geva-Zatorsky
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel; CIFAR, Humans & the Microbiome, Toronto, Canada.
| |
Collapse
|
11
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
12
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Seif El-Din MM, Hagras M, Mayhoub AS. Phenylthiazoles with potent & optimum selectivity toward Clostridium difficile. RSC Med Chem 2024; 15:1991-2001. [PMID: 38911156 PMCID: PMC11187570 DOI: 10.1039/d4md00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 06/25/2024] Open
Abstract
Clostridium difficile (C. difficile) is one of the most threatening bacteria globally, causing high mortality and morbidity in humans and animals, and is considered a public health threat that requires urgent and aggressive action. Interruption of the human gut microbiome and the development of antibiotic resistance urgently require development and synthesis of effective alternative antibiotics with minimal effects on the normal gut microbial flora. In this study, cyclization of the aminoguanidine head to the thiazole nucleus while maintaining its other pharmacophoric features leads to selective targeting of Clostridioides difficile as shown in the graphical abstract. The most promising compound, 5, was significantly more efficient than vancomycin and metronidazole against six strains of C. diff with MIC values as low as 0.030 μg mL-1. Additionally, compound 5 was superior to vancomycin and metronidazole, showing no inhibition toward nine tested strains of the normal human gut microbiota (>64 μg mL-1). The high safety profile of compound 5 was also observed with two cell lines HRT-18 and Vero cells.
Collapse
Affiliation(s)
- Mahmoud M Seif El-Din
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology Ahmed Zewail Street Giza Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo Egypt
| | - Abdelrahman S Mayhoub
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology Ahmed Zewail Street Giza Egypt
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo Egypt
| |
Collapse
|
14
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
15
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
16
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. J Hosp Infect 2024; 148:189-219. [PMID: 38609760 DOI: 10.1016/j.jhin.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- B H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - B Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - M N Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - A Bak
- Healthcare Infection Society, London, UK
| | - C A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK; School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - D J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - N T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norfolk and Norwich University Hospital, Norwich, UK
| | - J P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - N Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - B Marsh
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - G Kontkowski
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK; C.diff support, London, UK
| | - S E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - A L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - C Settle
- South Tyneside and Sunderland NHS Foundation Trust, South Shields, UK
| | - J J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - T H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - S D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK.
| | - H R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
17
|
Stămăteanu LO, Pleşca CE, Miftode IL, Bădescu AC, Manciuc DC, Hurmuzache ME, Roșu MF, Miftode RȘ, Obreja M, Miftode EG. " Primum, non nocere": The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era-Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe. Antibiotics (Basel) 2024; 13:461. [PMID: 38786189 PMCID: PMC11117487 DOI: 10.3390/antibiotics13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI), though identified nearly five decades ago, still remains a major challenge, being associated with significant mortality rates. The strains classified as hypervirulent, notably 027/NAP1/BI, have garnered substantial attention from researchers and clinicians due to their direct correlation with the severity of the disease. Our study aims to elucidate the significance of toxigenic Clostridioides difficile (CD) strains in the clinical and therapeutic aspects of managing patients diagnosed with CDI. We conducted a single-center prospective study, including patients with CDI from north-eastern Romania. We subsequently conducted molecular biology testing to ascertain the prevalence of the presumptive 027/NAP1/BI strain within aforementioned geographic region. The patients were systematically compared and assessed both clinically and biologically, employing standardized and comparative methodologies. The study enrolled fifty patients with CDI admitted between January 2020 and June 2020. Among the investigated patients, 43 (86%) exhibited infection with toxigenic CD strains positive for toxin B genes (tcdB), binary toxin genes (cdtA and cdtB), and deletion 117 in regulatory genes (tcdC), while the remaining 7 (14%) tested negative for binary toxin genes (cdtA and cdtB) and deletion 117 in tcdC. The presence of the presumptive 027/NAP1/BI strains was linked to a higher recurrence rate (35.56%, p = 0.025), cardiovascular comorbidities (65.1% vs. 14.2%, p = 0.016), and vancomycin treatment (55.8% vs. 14.3%, p = 0.049). The findings of our investigation revealed an elevated incidence of colitis attributed to presumptive 027/NAP1/BI. Despite the prevalence of the presumptive 027 strain and its associated heightened inflammation among the patients studied, no significant differences were observed regarding the clinical course or mortality outcomes.
Collapse
Affiliation(s)
- Lidia Oana Stămăteanu
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Claudia Elena Pleşca
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Ionela Larisa Miftode
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Aida Corina Bădescu
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Doina Carmen Manciuc
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Mihnea Eudoxiu Hurmuzache
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Manuel Florin Roșu
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
- Surgical (Dentoalveolar and Maxillofacial Surgery) Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Ștefan Miftode
- Department of Internal Medicine I (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maria Obreja
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| |
Collapse
|
18
|
Liu A, Chan E, Madigan V, Leung V, Dosvaldo L, Sherry N, Howden B, Bond K, Marshall C. Using whole genome sequencing to characterize Clostridioides difficile isolates at a tertiary center in Melbourne, Australia. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e7. [PMID: 38234420 PMCID: PMC10789990 DOI: 10.1017/ash.2023.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Objective Clostridioides difficile infection (CDI) is the commonest cause of healthcare-associated diarrhea and undergoes standardized surveillance and mandatory reporting in most Australian states and territories. Historically attributed to nosocomial spread, local and international whole genome sequencing (WGS) data suggest varied sources of acquisition. This study describes C. difficile genotypes isolated at a tertiary center in Melbourne, Australia, their likely source of acquisition, and common risk factors. Design Retrospective observational study. Setting The Royal Melbourne Hospital (RMH), a 570-bed tertiary center in Victoria, Australia. Methods Short-read whole genome sequencing was performed on 75 out of 137 C. difficile isolates obtained from 1/5/2021 to 28/2/2022 and compared to previous data from 8/11/2015 to 1/11/2016. Existing data from infection control surveillance and electronic medical records were used for epidemiological and risk factor analysis. Results Eighty-five (62.1%) of the 137 cases were defined as healthcare-associated from epidemiological data. On genome sequencing, 33 different multi-locus sequence type (MLST) subtypes were identified, with changes in population structure compared to the 2015-16 period. Risk factors for CDI were present in 130 (94.9%) cases, including 108 (78.8%) on antibiotics, 86 (62.8%) on acid suppression therapy, and 25 (18.2) on chemotherapy. Conclusion In both study periods, most C. difficile isolates were not closely related, suggesting varied sources of acquisition and that spread of C. difficile within the hospital was unlikely. Current infection control precautions may therefore warrant review. Underlying risk factors for CDI were common and may contribute to the proportion of healthcare-associated infections in the absence of proven hospital transmission.
Collapse
Affiliation(s)
- Alice Liu
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Eddie Chan
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Victoria Madigan
- Infectious Diseases Department, The Northern Hospital, Melbourne, Victoria, Australia
| | - Vivian Leung
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Infection Prevention and Surveillance Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lucille Dosvaldo
- Infection Prevention and Surveillance Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Norelle Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Benjamin Howden
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Katherine Bond
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Caroline Marshall
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Infection Prevention and Surveillance Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Jadhav PA, Thomas AB, Nanda RK, Chitlange SS. Unveiling the role of gut dysbiosis in non-alcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2023; 35:1324-1333. [PMID: 37823422 DOI: 10.1097/meg.0000000000002654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial complicated condition, reflected by the accumulation of extra fat in the liver. A detailed study of literature throws light on the fascinating connection between gut dysbiosis and NAFLD. The term 'gut dysbiosis' describes an imbalance in the harmony and operation of the gut microflora, which can upshoot a number of metabolic disorders. To recognize the underlying mechanisms and determine treatment options, it is essential to comprehend the connection between gut dysbiosis and NAFLD. This in-depth review discusses the normal gut microflora composition and its role in health, alterations in the gut microflora composition that leads to disease state focusing on NAFLD. The potential mechanisms influencing the advent and aggravation of NAFLD suggested disturbance of microbial metabolites, changes in gut barrier integrity, and imbalances in the composition of the gut microflora. Furthermore, it was discovered that gut dysbiosis affected immune responses, liver inflammation, and metabolic pathways, aggravating NAFLD.
Collapse
Affiliation(s)
- Pranali A Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
20
|
Sartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, et alSartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, Foianini E, Fry DE, Garcia AF, Gerardi C, Ghannam W, Giamarellou H, Glushkova N, Gkiokas G, Goff DA, Gomi H, Gottfredsson M, Griffiths EA, Guerra Gronerth RI, Guirao X, Gupta YK, Halle-Ekane G, Hansen S, Haque M, Hardcastle TC, Hayman DTS, Hecker A, Hell M, Ho VP, Hodonou AM, Isik A, Islam S, Itani KMF, Jaidane N, Jammer I, Jenkins DR, Kamara IF, Kanj SS, Jumbam D, Keikha M, Khanna AK, Khanna S, Kapoor G, Kapoor G, Kariuki S, Khamis F, Khokha V, Kiggundu R, Kiguba R, Kim HB, Kim PK, Kirkpatrick AW, Kluger Y, Ko WC, Kok KYY, Kotecha V, Kouma I, Kovacevic B, Krasniqi J, Krutova M, Kryvoruchko I, Kullar R, Labi KA, Labricciosa FM, Lakoh S, Lakatos B, Lansang MAD, Laxminarayan R, Lee YR, Leone M, Leppaniemi A, Hara GL, Litvin A, Lohsiriwat V, Machain GM, Mahomoodally F, Maier RV, Majumder MAA, Malama S, Manasa J, Manchanda V, Manzano-Nunez R, Martínez-Martínez L, Martin-Loeches I, Marwah S, Maseda E, Mathewos M, Maves RC, McNamara D, Memish Z, Mertz D, Mishra SK, Montravers P, Moro ML, Mossialos E, Motta F, Mudenda S, Mugabi P, Mugisha MJM, Mylonakis E, Napolitano LM, Nathwani D, Nkamba L, Nsutebu EF, O’Connor DB, Ogunsola S, Jensen PØ, Ordoñez JM, Ordoñez CA, Ottolino P, Ouedraogo AS, Paiva JA, Palmieri M, Pan A, Pant N, Panyko A, Paolillo C, Patel J, Pea F, Petrone P, Petrosillo N, Pintar T, Plaudis H, Podda M, Ponce-de-Leon A, Powell SL, Puello-Guerrero A, Pulcini C, Rasa K, Regimbeau JM, Rello J, Retamozo-Palacios MR, Reynolds-Campbell G, Ribeiro J, Rickard J, Rocha-Pereira N, Rosenthal VD, Rossolini GM, Rwegerera GM, Rwigamba M, Sabbatucci M, Saladžinskas Ž, Salama RE, Sali T, Salile SS, Sall I, Kafil HS, Sakakushev BE, Sawyer RG, Scatizzi M, Seni J, Septimus EJ, Sganga G, Shabanzadeh DM, Shelat VG, Shibabaw A, Somville F, Souf S, Stefani S, Tacconelli E, Tan BK, Tattevin P, Rodriguez-Taveras C, Telles JP, Téllez-Almenares O, Tessier J, Thang NT, Timmermann C, Timsit JF, Tochie JN, Tolonen M, Trueba G, Tsioutis C, Tumietto F, Tuon FF, Ulrych J, Uranues S, van Dongen M, van Goor H, Velmahos GC, Vereczkei A, Viaggi B, Viale P, Vila J, Voss A, Vraneš J, Watkins RR, Wanjiru-Korir N, Waworuntu O, Wechsler-Fördös A, Yadgarova K, Yahaya M, Yahya AI, Xiao Y, Zakaria AD, Zakrison TL, Zamora Mesia V, Siquini W, Darzi A, Pagani L, Catena F. Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action. World J Emerg Surg 2023; 18:50. [PMID: 37845673 PMCID: PMC10580644 DOI: 10.1186/s13017-023-00518-3] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
Collapse
|
21
|
Baker KA, Poole C. CE: Current and Emerging Applications of Fecal Microbiota Transplantation. Am J Nurs 2023; 123:30-38. [PMID: 37678377 DOI: 10.1097/01.naj.0000978920.88346.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
ABSTRACT Fecal microbiota transplantation (FMT) is a life-changing treatment for people with recurrent Clostridioides difficile infection (rCDI). Frequently acquired in the hospital, CDI can cause serious gastrointestinal symptoms, including persistent watery diarrhea, abdominal pain, and severe dehydration. Antibiotics, the primary treatment, can unfortunately disrupt the gut microbiome and lead to antimicrobial resistance. FMT involves introducing stool from a healthy donor into the affected recipient to strengthen their compromised microbiome. Individuals receiving this treatment have reported remarkable improvement in clinical outcomes and quality of life. In addition to a discussion of rCDI within the context of the gastrointestinal microbiome, this article provides an overview of the FMT procedure, discusses nursing management of individuals undergoing FMT, and highlights emerging applications beyond rCDI. A case scenario is also provided to illustrate a typical trajectory for a patient undergoing FMT.
Collapse
Affiliation(s)
- Kathy A Baker
- Kathy A. Baker is a professor in the Harris College of Nursing and Health Sciences at Texas Christian University, Fort Worth, and editor-in-chief of Gastroenterology Nursing . Carsyn Poole is a staff nurse at Mayo Clinic Hospital, Rochester, MN. Contact author: Kathy A. Baker, . Baker is a paid consultant for Healix Infusion Therapy, LLC. The remaining coauthor and planners have disclosed no potential conflicts of interest, financial or otherwise. Lippincott Professional Development has identified and mitigated all relevant financial relationships
| | | |
Collapse
|
22
|
Zhai Z, Zhou Y, Zhang H, Zhang Y. Horizontal transfer and driving factors of extended-spectrum β-lactamase-producing resistance genes in mice intestine after the ingestion of contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96376-96383. [PMID: 37572258 DOI: 10.1007/s11356-023-29158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) has been identified in various water environments, posing a serious risk to public health. However, whether and how ESBL-producing genes in water-derived E. coli can spread among mammalian gut microbiota via drinking water is largely unclear. To address this problem, horizontal transfer characterization of ESBL-producing genes in mice gut microbiota was determined after the oral ingestion of contaminated water by ESBL-producing E. coli, and then the driving factors were comprehensively examined from multiple different perspectives. The results showed that water-borne ESBL-producing E. coli can colonize in the mice intestine, the ESBL-producing genes can horizontally spread among gut microbiota, and the recipient bacteria include opportunistic pathogens Klebsiella pneumoniae and Salmonella enterica. This horizontal spread may be attributed to the intestinal micro-environment changes caused by the ingestion of contaminated water by ESBL-producing E. coli. These changes, including gut microbiota diversity, increased levels of inflammatory response and reactive oxygen species, cell membrane permeability, and expression levels of conjugative transfer-related genes, are all major driving factors for horizontal transfer of ESBL-producing genes in mice gut microbiota. Our findings highlight the potential for ESBL-producing E. coli to spread resistance genes to mammalian gut microbiota during ingestion of contaminated water.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- The Affiliated Taian City Central Hospital of Qingdao University, Shandong Province, Tai'an City, 271000, China
| | - Yufa Zhou
- Center for Animal Disease Control and Prevention, Bureau of Agriculture and Rural Affairs of Daiyue District, Shandong Province, Tai'an City, 271000, China
| | - Hongna Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Hebei Province, 47 Xuefu Road, Shijiazhuang City, 050061, China.
| | - Yujing Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Hebei Province, 47 Xuefu Road, Shijiazhuang City, 050061, China
| |
Collapse
|
23
|
McFarland LV, Goldstein EJC, Kullar R. Microbiome-Related and Infection Control Approaches to Primary and Secondary Prevention of Clostridioides difficile Infections. Microorganisms 2023; 11:1534. [PMID: 37375036 DOI: 10.3390/microorganisms11061534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections (CDIs) have decreased in the past years, but since 2021, some hospitals have reported an increase in CDI rates. CDI remains a global concern and has been identified as an urgent threat to healthcare. Although multiple treatment options are available, prevention strategies are more limited. As CDI is an opportunistic infection that arises after the normally protective microbiome has been disrupted, preventive measures aimed at restoring the microbiome have been tested. Our aim is to update the present knowledge on these various preventive strategies published in the past five years (2018-2023) to guide clinicians and healthcare systems on how to best prevent CDI. A literature search was conducted using databases (PubMed, Google Scholar, and clinicaltrials.gov) for phase 2-3 clinical trials for the primary or secondary prevention of CDI and microbiome and probiotics. As the main factor for Clostridium difficile infections is the disruption of the normally protective intestinal microbiome, strategies aimed at restoring the microbiome seem most rational. Some strains of probiotics, the use of fecal microbial therapy, and live biotherapeutic products offer promise to fill this niche; although, more large randomized controlled trials are needed that document the shifts in the microbiome population.
Collapse
Affiliation(s)
| | | | - Ravina Kullar
- Expert Stewardship Inc., Newport Beach, CA 92663, USA
| |
Collapse
|
24
|
Kamiya S. Microbial ecology between Clostridioides difficile and gut microbiota. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:229-235. [PMID: 37791342 PMCID: PMC10542429 DOI: 10.12938/bmfh.2023-033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 10/05/2023]
Abstract
Clostridioides difficile colonizes a polymicrobial environment in the intestine and is a causative agent for antibiotic-associated diarrhea (AAD) and pseudomembranous colitis (PMC). The most important virulence factors of C. difficile are bacterial toxins, and three toxins (toxin A, toxin B, and binary toxin) are produced by toxigenic strains. Other virulence factors include spores, flagella, capsules, biofilms, hydrolytic enzymes and adhesins. C. difficile infection (CDI) is specifically diagnosed by anaerobic culture and toxin detection by either nucleic acid amplification test (NAAT) or enzyme-linked immunosorbent assay (ELISA). For treatment of CDI, metronidazole, vancomycin and fidaxomicin are used based on the severity of CDI. Mutual interaction between C. difficile and gut microbiota is associated with pathogenesis of CDI, and decreased microbial diversity with altered gut microbiome was detected in CDI patients. Restoration of certain gut microbiota is considered to be potentially effective for the prevention and treatment of CDI, and an ideal goal for CDI patients is restoration of the gut microbiota to a healthy state. Fecal microbiota transplantation (FMT) is a highly successful method of microbiome restoration and has been reported to be effective for the prevention of recurrent CDI. In addition, approaches to restoring the gut microbiota by using probioitcs and live biotherapeutic products (LBPs) are currently being studied to examine the effect on CDI. Further microbial ecological research on C. difficile and gut microbiota could lead to a better understanding of the pathogenesis and treatment of CDI.
Collapse
Affiliation(s)
- Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- R&D Division, Miyarisan Pharmaceutical Co. Ltd., 1-10-3 Kaminakazato, Kita-ku, Tokyo 114-0016, Japan
| |
Collapse
|
25
|
Wang L, Zhang P, Chen J, Li C, Tian Y, Xu F. Prebiotic properties of the polysaccharide from Rosa roxburghii Tratt fruit and its protective effects in high-fat diet-induced intestinal barrier dysfunction: A fecal microbiota transplantation study. Food Res Int 2023; 164:112400. [PMID: 36737985 DOI: 10.1016/j.foodres.2022.112400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Polysaccharide from Rosa roxburghii Tratt fruit (RTFP) ameliorates high-fat diet (HFD)-induced colitis in mice. However, it is still unknown whether the gut microbiota can mediate the anti-colitis effects of RTFP in mice. This research aims to investigate the role of gut microbes in modulating RTFP in colitis mice through fecal microbiota transplantation (FMT). The findings demonstrated that RTFP exhibited prebiotic effects on HFD-induced colitis mice. After FMT treatment (transplatation of the microbiota from the fecal sample to each recipient daily), the fecal microbiota of RTFP-treated donor mice remarkably alleviated colitis-related symptoms (e.g., colonic inflammation, loss of body weight, gut microbiota dysbiosis, and loss of barrier integrity) and upregulated the expression of tight junction proteins compared to the HFD-treated donor mice. Overall, RTFP can reduce the severity of HFD-induced colitis by regulating gut microbiota.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Pan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingpeng Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fei Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
26
|
Sohal A, Chaudhry H, Singla P, Sharma R, Kohli I, Dukovic D, Prajapati D. The burden of Clostridioides difficile on COVID-19 hospitalizations in the USA. J Gastroenterol Hepatol 2023; 38:590-597. [PMID: 36662626 DOI: 10.1111/jgh.16128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Clostridioides difficile infection (CDI) is the leading cause of hospital acquired-infectious diarrhea in the USA. In this study, we assess the prevalence and impact of CDI in COVID-19 hospitalizations in the USA. METHODS We used the 2020 National Inpatient Sample database to identify adult patients with COVID-19. The patients were stratified into two groups based on the presence of CDI. The impact of CDI on outcomes such as in-hospital mortality, ICU admission, shock, acute kidney injury (AKI), and sepsis rates. Multivariate regression analysis was performed to assess the effects of CDI on outcomes. RESULTS The study population comprised 1581 585 patients with COVID-19. Among these, 0.65% of people had a CDI. There was a higher incidence of mortality in patients with COVID-19 and CDI compared with patients without COVID-19 (23.25% vs 13.33%, P < 0.001). The patients with COVID-19 and CDI had a higher incidence of sepsis (7.69% vs 5%, P < 0.001), shock (23.59% vs 8.59%, P < 0.001), ICU admission (25.54% vs 12.28%, P < 0.001), and AKI (47.71% vs 28.52%, P < 0.001). On multivariate analysis, patients with CDI had a statistically significant higher risk of mortality than those without (aOR = 1.47, P < 0.001). We also noted a statistically significant higher risk of sepsis (aOR = 1.47, P < 0.001), shock (aOR = 2.7, P < 0.001), AKI (aOR = 1.55, P < 0.001), and ICU admission (aOR = 2.16, P < 0.001) in the study population. CONCLUSIONS Our study revealed the prevalence of CDI in COVID-19 patients was 0.65%. Although the prevalence was low, its presence is associated with worse outcomes and higher resource utilization.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, Seattle, Washington, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, University of California, San Francisco, Fresno, California, USA
| | - Piyush Singla
- Dayanand Medical College and Hospital, Punjab, India
| | | | - Isha Kohli
- Graduate School of Public Health, Icahn School of Medicine, New York, New York, USA
| | - Dino Dukovic
- Ross University School of Medicine, Bridgetown, Barbados
| | - Devang Prajapati
- Department of Gastroenterology and Hepatology, University of California, San Francisco, Fresno, California, USA
| |
Collapse
|
27
|
Mani J, Levy S, Angelova A, Hazrati S, Fassnacht R, Subramanian P, Richards T, Niederhuber JE, Maxwell GL, Hourigan SK. Epidemiological and microbiome associations of Clostridioides difficile carriage in infancy and early childhood. Gut Microbes 2023; 15:2203969. [PMID: 37096914 PMCID: PMC10132246 DOI: 10.1080/19490976.2023.2203969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
There has been an increase in the prevalence of Clostridioides difficile (C. diff) causing significant economic impact on the health care system. Although toxigenic C. diff carriage is recognized in infancy, there is limited data regarding its longitudinal trends, associated epidemiolocal risk factors and intestinal microbiome characteristics. The objectives of our longitudinal cohort study were to investigate temporal changes in the prevalence of toxigenic C.diff colonization in children up to 2 years, associated epidemiological and intestinal microbiome characteristics. Pregnant mothers were enrolled prenatally, and serial stool samples were collected from their children for 2 years. 2608 serial stool samples were collected from 817 children. 411/817 (50%) were males, and 738/817 (90%) were born full term. Toxigenic C.diff was detected in 7/569 (1%) of meconium samples, 116/624 (19%) of 2 m (month), 221/606 (37%) of 6 m, 227/574 (40%) of 12 m and 18/235 (8%) of 24 m samples. Infants receiving any breast milk at 6 m were less likely to be carriers at 2 m, 6 m and 12 m than those not receiving it. (p = 0.002 at 2 m, p < 0.0001 at 6 m, p = 0.022 at 12 m). There were no robust differences in the underlying alpha or beta diversity between those with and without toxigenic C. diff carriage at any timepoint, although small differences in the relative abundance of certain taxa were found. In this largest longitudinal cohort study to date, a high prevalence of toxigenic C. diff carrier state was noted. Toxigenic C. diff carrier state in children is most likely a transient component of the dynamic infant microbiome.
Collapse
Affiliation(s)
- Jyoti Mani
- Department of Pediatrics, Children’s National Medical Center, Washington, DC, USA
| | - Shira Levy
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Angelina Angelova
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Sahel Hazrati
- Women’s Service Line, Inova Health System, Falls Church, VA, USA
| | - Ryan Fassnacht
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| | - Poorani Subramanian
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| | - Tiana Richards
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| | - John E. Niederhuber
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Suchitra K. Hourigan
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| |
Collapse
|
28
|
Soveral LF, Korczaguin GG, Schmidt PS, Nunes IS, Fernandes C, Zárate-Bladés CR. Immunological mechanisms of fecal microbiota transplantation in recurrent Clostridioides difficile infection. World J Gastroenterol 2022; 28:4762-4772. [PMID: 36156924 PMCID: PMC9476857 DOI: 10.3748/wjg.v28.i33.4762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a successful method for treating recurrent Clostridioides difficile (C. difficile) infection (rCDI) with around 90% efficacy. Due to the relative simplicity of this approach, it is being widely used and currently, thousands of patients have been treated with FMT worldwide. Nonetheless, the mechanisms underlying its effects are just beginning to be understood. Data indicate that FMT effectiveness is due to a combination of microbiological direct mechanisms against C. difficile, but also through indirect mechanisms including the production of microbiota-derived metabolites as secondary bile acids and short chain fatty acids. Moreover, the modulation of the strong inflammatory response triggered by C. difficile after FMT seems to rely on a pivotal role of regulatory T cells, which would be responsible for the reduction of several cells and soluble inflammatory mediators, ensuing normalization of the intestinal mucosal immune system. In this minireview, we analyze recent advances in these immunological aspects associated with the efficacy of FMT.
Collapse
Affiliation(s)
- Lucas F Soveral
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Gabriela G Korczaguin
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Pedro S Schmidt
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Isabel S Nunes
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Camilo Fernandes
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
- Division of Infectious Diseases, Hospital Nereu Ramos, Florianopolis 88025-301, Brazil
| | - Carlos R Zárate-Bladés
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| |
Collapse
|
29
|
Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, Villela H, Lunshof JE, Gram L, Woodhams DC, Walter J, Roik A, Hentschel U, Thurber RV, Daisley B, Ushijima B, Daffonchio D, Costa R, Keller-Costa T, Bowman JS, Rosado AS, Reid G, Mason CE, Walke JB, Thomas T, Berg G. Harnessing the microbiome to prevent global biodiversity loss. Nat Microbiol 2022; 7:1726-1735. [PMID: 35864220 DOI: 10.1038/s41564-022-01173-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jeantine E Lunshof
- Department of Global Health and Social Medicine, Center for Bioethics, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Brendan Daisley
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gregor Reid
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.,University of Postdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
30
|
Surface layer protein A from hypervirulent Clostridioides difficile ribotype 001 can induce autophagy process in human intestinal epithelial cells. Microb Pathog 2022; 169:105681. [PMID: 35850375 DOI: 10.1016/j.micpath.2022.105681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Clostridioides difficile is the leading cause of nosocomial diarrhea with high morbidity and mortality worldwide. C. difficile strains produce a crystalline surface layer protein A (SlpA), which is an absolute necessity for its pathogenesis. However, its pathogenic mechanisms and its pro-inflammatory behavior are not yet fully elucidated. Herein, we report for the first time that SlpA extracted from C. difficile can induce autophagy process in Caco-2 cells. SlpA protein was purified from two C. difficile strains (RT001 and ATCC 700075). The cell viability of Caco-2 cells after exposure with different concentrations (15, 20, 25 μg/mL) of SlpA at various time points (3, 6, 12, 24 h) was measured by MTT assay. Acridine orange staining was used to visualize the hypothetical acidic vesicular organelles. The gene expression of autophagy mediators including LC3B, Atg5, Atg16L, and Beclin-1 was determined by quantitative real-time PCR assay. Western blotting assay was used to detect the expression of LC3B protein. MTT assay showed that different concentrations of SlpA did not induce significant changes in the viability of Caco-2 cells. SlpA at concentration of 20 μg/mL enhanced the formation of acidic vesicular organelles in Caco-2 cells after 12 h of exposure. Moreover, SlpA treatment significantly increased the expression of autophagy-associated genes, and increased the expression of LC3B protein in Caco-2 cells. In conclusion, our study demonstrated that SlpA is capable to induce autophagy in intestinal epithelial cells. These findings reveal a novel mechanism for the pathogenesis of C. difficile mediated by its SLPs.
Collapse
|
31
|
Lindell AE, Zimmermann-Kogadeeva M, Patil KR. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 2022; 20:431-443. [PMID: 35102308 PMCID: PMC7615390 DOI: 10.1038/s41579-022-00681-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota contributes to diverse aspects of host physiology, ranging from immunomodulation to drug metabolism. Changes in the gut microbiota composition are associated with various diseases as well as with the response to medications. It is therefore important to understand how different lifestyle and environmental factors shape gut microbiota composition. Beyond the commonly considered factor of diet, small-molecule drugs have recently been identified as major effectors of the microbiota composition. Other xenobiotics, such as environmental or chemical pollutants, can also impact gut bacterial communities. Here, we review the mechanisms of interactions between gut bacteria and antibiotics, host-targeted drugs, natural food compounds, food additives and environmental pollutants. While xenobiotics can impact bacterial growth and metabolism, bacteria in turn can bioaccumulate or chemically modify these compounds. These reciprocal interactions can manifest in complex xenobiotic-microbiota-host relationships. Our Review highlights the need to study mechanisms underlying interactions with pollutants and food additives towards deciphering the dynamics and evolution of the gut microbiota.
Collapse
Affiliation(s)
- Anna E Lindell
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Kiran R Patil
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|
33
|
Abstract
OBJECTIVES There is limited knowledge about the role of esophageal microbiome in pediatric esophageal eosinophilia (EE). We aimed to characterize the esophageal microbiome in pediatric patients with and without EE. METHODS In the present prospective study, esophageal mucosal biopsies were obtained from 41 children. Of these, 22 had normal esophageal mucosal biopsies ("healthy"), 6 children had reflux esophagitis (RE), 4 had proton pump inhibitor (PPi)-responsive esophageal eosinophilia (PPi-REE), and 9 had eosinophilic esophagitis (EoE). The microbiome composition was analyzed using 16S rRNA gene sequencing. The age median (range) in years for the healthy, RE, PPi-REE, and EoE group were 10 (1.5-18), 6 (2-15), 6.5 (5-15), and 9 (1.5-17), respectively. RESULTS The bacterial phylum Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria were the most predominant. The Epsilonproteobacteria, Betaproteobacteria, Flavobacteria, Fusobacteria, and Sphingobacteria class were underrepresented across groups. The Vibrionales was predominant in healthy and EoE group but lower in RE and PPi-REE groups. The genus Streptococcus, Rahnella, and Leptotrichia explained 29.65% of the variation in the data with an additional 10.86% variation in the data was explained by Microbacterium, Prevotella, and Vibrio genus. The healthy group had a higher diversity and richness index compared to other groups, but this was not statistically different. CONCLUSIONS The pediatric esophagus has an abundant and diverse microbiome, both in the healthy and diseased states. The healthy group had a higher, but not significantly different, diversity and richness index compared to other groups.
Collapse
|
34
|
Phothichaisri W, Chankhamhaengdecha S, Janvilisri T, Nuadthaisong J, Phetruen T, Fagan RP, Chanarat S. Potential Role of the Host-Derived Cell-Wall Binding Domain of Endolysin CD16/50L as a Molecular Anchor in Preservation of Uninfected Clostridioides difficile for New Rounds of Phage Infection. Microbiol Spectr 2022; 10:e0236121. [PMID: 35377223 PMCID: PMC9045149 DOI: 10.1128/spectrum.02361-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirayu Nuadthaisong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Robert P. Fagan
- School of Biosciences, Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
35
|
Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes 2022; 14:2022442. [PMID: 35030982 PMCID: PMC8765071 DOI: 10.1080/19490976.2021.2022442] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,CONTACT Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| |
Collapse
|
36
|
Fishbein SRS, Robinson JI, Hink T, Reske KA, Newcomer EP, Burnham CAD, Henderson JP, Dubberke ER, Dantas G. Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife 2022; 11:e72801. [PMID: 35083969 PMCID: PMC8794467 DOI: 10.7554/elife.72801] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) imposes a substantial burden on the health care system in the United States. Understanding the biological basis for the spectrum of C. difficile-related disease manifestations is imperative to improving treatment and prevention of CDI. Here, we investigate the correlates of asymptomatic C. difficile colonization using a multi-omics approach. We compared the fecal microbiome and metabolome profiles of patients with CDI versus asymptomatically colonized patients, integrating clinical and pathogen factors into our analysis. We found that CDI patients were more likely to be colonized by strains with the binary toxin (CDT) locus or strains of ribotype 027, which are often hypervirulent. We find that microbiomes of asymptomatically colonized patients are significantly enriched for species in the class Clostridia relative to those of symptomatic patients. Relative to CDI microbiomes, asymptomatically colonized patient microbiomes were enriched with sucrose degradation pathways encoded by commensal Clostridia, in addition to glycoside hydrolases putatively involved in starch and sucrose degradation. Fecal metabolomics corroborates the carbohydrate degradation signature: we identify carbohydrate compounds enriched in asymptomatically colonized patients relative to CDI patients. Further, we reveal that across C. difficile isolates, the carbohydrates sucrose, rhamnose, and lactulose do not serve as robust growth substrates in vitro, consistent with their enriched detection in our metagenomic and metabolite profiling of asymptomatically colonized individuals. We conclude that pathogen genetic variation may be strongly related to disease outcome. More interestingly, we hypothesize that in asymptomatically colonized individuals, carbohydrate metabolism by other commensal Clostridia may prevent CDI by inhibiting C. difficile proliferation. These insights into C. difficile colonization and putative commensal competition suggest novel avenues to develop probiotic or prebiotic therapeutics against CDI.
Collapse
Affiliation(s)
- Skye RS Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - John I Robinson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of MedicineSt LouisUnited States
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Erin P Newcomer
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Molecular Microbiology, Washington University School of MedicineSt LouisUnited States
- Department of Pediatrics, Washington University School of MedicineSt. LouisUnited States
| | - Jeffrey P Henderson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of MedicineSt LouisUnited States
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Molecular Microbiology, Washington University School of MedicineSt LouisUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
37
|
Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022; 10:biomedicines10020289. [PMID: 35203499 PMCID: PMC8869546 DOI: 10.3390/biomedicines10020289] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between gut microbes (both commensals and pathogens) and the host immune system. Highly specialized epithelial cells constantly cope with several protective and harmful agents to maintain the multiple physiological functions of the barrier as well as its integrity. However, both genetic defects and environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated immune-inflammatory responses, and even the development of chronic pathological conditions. Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier structural and functional homeostasis, focusing on potential alterations that may undermine this fine balance.
Collapse
|
38
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
39
|
Gupta A, Singh V, Mani I. Dysbiosis of human microbiome and infectious diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:33-51. [DOI: 10.1016/bs.pmbts.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Panpetch W, Phuengmaung P, Cheibchalard T, Somboonna N, Leelahavanichkul A, Tumwasorn S. Lacticaseibacillus casei Strain T21 Attenuates Clostridioides difficile Infection in a Murine Model Through Reduction of Inflammation and Gut Dysbiosis With Decreased Toxin Lethality and Enhanced Mucin Production. Front Microbiol 2021; 12:745299. [PMID: 34925261 PMCID: PMC8672038 DOI: 10.3389/fmicb.2021.745299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a major cause of diarrhea in patients with antibiotic administration. Lacticaseibacillus casei T21, isolated from a human gastric biopsy, was tested in a murine C. difficile infection (CDI) model and colonic epithelial cells (Caco-2 and HT-29). Daily administration of L. casei T21 [1 × 108 colony forming units (CFU)/dose] for 4 days starting at 1 day before C. difficile challenge attenuated CDI as demonstrated by a reduction in mortality rate, weight loss, diarrhea, gut leakage, gut dysbiosis, intestinal pathology changes, and levels of pro-inflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, macrophage inflammatory protein 2 (MIP-2), and keratinocyte chemoattractant (KC)] in the intestinal tissue and serum. Conditioned media from L. casei T21 exerted biological activities that fight against C. difficile as demonstrated in colonic epithelial cells by the following: (i) suppression of gene expression and production of IL-8, an important chemokine involved in C. difficile pathogenesis, (ii) reduction in the expression of SLC11A1 (solute carrier family 11 member 1) and HuR (human antigen R), important genes for the lethality of C. difficile toxin B, (iii) augmentation of intestinal integrity, and (iv) up-regulation of MUC2, a mucosal protective gene. These results supported the therapeutic potential of L. casei T21 for CDI and the need for further study on the intervention capabilities of CDI.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanya Cheibchalard
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Bangkok, Thailand
- *Correspondence: Asada Leelahavanichkul,
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
- Somying Tumwasorn,
| |
Collapse
|
41
|
Winichakoon P, Chaiwarith R, Chattipakorn N, Chattipakorn SC. Impact of gut microbiota on kidney transplantation. Transplant Rev (Orlando) 2021; 36:100668. [PMID: 34688985 DOI: 10.1016/j.trre.2021.100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Kidney transplantation is recognized as one of the most effective treatments for patients who suffer from end-stage renal disease. The major potential outcomes following kidney transplantation include engraftment, rejection, and associated complications. The outcomes are dependent on a variety of factors in those who underwent renal grafts or kidney transplant recipients. Those factors include the administration of immunosuppressive drugs and prophylactic antimicrobial agents to recipients. Recent studies have shown that gut microbiota play an important role in the outcome of subjects with kidney transplantation. An imbalance of the components/diversity of gut microbiota, known as gut dysbiosis, has been shown to have a big impact on the immune system of the host and the modification of host inflammatory cytokines. Although gut dysbiosis is affected by variation in diet and medication, a substantial amount of evidence showing a link between alteration in human gut microbiota and outcomes of kidney transplantation has recently been reported. Therefore, the objective of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data pertaining to the impact of gut microbiota on kidney transplantation. Any controversial findings are compiled to enable a clear overview of the role of gut microbiota and the outcome of kidney transplantation.
Collapse
Affiliation(s)
- Poramed Winichakoon
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Romanee Chaiwarith
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
42
|
Zhou J, Horton JR, Yu D, Ren R, Blumenthal RM, Zhang X, Cheng X. Repurposing epigenetic inhibitors to target the Clostridioides difficile-specific DNA adenine methyltransferase and sporulation regulator CamA. Epigenetics 2021; 17:970-981. [PMID: 34523387 PMCID: PMC9487755 DOI: 10.1080/15592294.2021.1976910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Epigenetically targeted therapeutic development, particularly for SAM-dependent methylations of DNA, mRNA and histones has been proceeding rapidly for cancer treatments over the past few years. However, this approach has barely begun to be exploited for developing new antibiotics, despite an overwhelming global need to counter antimicrobial resistance. Here, we explore whether SAM analogues, some of which are in (pre)clinical studies as inhibitors of human epigenetic enzymes, can also inhibit Clostridioides difficile-specific DNA adenine methyltransferase (CamA), a sporulation regulator present in all C. difficile genomes sequenced to date, but found in almost no other bacteria. We found that SGC0946 (an inhibitor of DOT1L), JNJ-64619178 (an inhibitor of PRMT5) and SGC8158 (an inhibitor of PRMT7) inhibit CamA enzymatic activity in vitro at low micromolar concentrations. Structural investigation of the ternary complexes of CamA-DNA in the presence of SGC0946 or SGC8158 revealed conformational rearrangements of the N-terminal arm, with no apparent disturbance of the active site. This N-terminal arm and its modulation of exchanges between SAM (the methyl donor) and SAH (the reaction product) during catalysis of methyl transfer are, to date, unique to CamA. Our work presents a substantial first step in generating potent and selective inhibitors of CamA that would serve in the near term as chemical probes to investigate the cellular mechanism(s) of CamA in controlling spore formation and colonization, and eventually as therapeutic antivirulence agents useful in treating C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Kiersnowska ZM, Lemiech-Mirowska E, Semczuk K, Michałkiewicz M, Sierocka A, Marczak M. Level of Knowledge of Medical Staff on the Basis of the Survey in Terms of Risk Management, Associated with Clostridioides difficile Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7060. [PMID: 34280996 PMCID: PMC8297162 DOI: 10.3390/ijerph18137060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023]
Abstract
Infections caused by the toxigenic strains of Clostridioides difficile in the hospital environment pose a serious public health problem. The progressive increase in hospital infections in Poland indicates that risk management is a tool that is not used in an effective way and significantly differs from the goals set by the Leading Authorities, the Ministry of Health and its subordinate units. Systematic education of medical personnel constitutes the basic element of rational risk management aimed at reducing the number of infections as it allows for the transfer of knowledge, development of appropriate organizational procedures, and improves internal communication. This paper presents the results of a survey conducted in hospital facilities throughout Poland. The study dealt with what medical personnel know about channels of transmission and prevention of Clostridioides difficile infections in the hospital setting, professional training and risk management in terms of reducing the number of infections. The survey reveals that Clostridioides difficile continues to be a serious problem in the inpatient care system. Procedures and management strategies implemented by hospitals in order to limit the spread of the pathogen are predominantly focused on short-term action, which does not lead to a real improvement in terms of hospitalized patients' safety. The infection risk management system was assessed at a fairly low level. The obtained research results confirmed the research hypotheses that had been formulated.
Collapse
Affiliation(s)
- Zofia Maria Kiersnowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
| | - Ewelina Lemiech-Mirowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland
| | - Katarzyna Semczuk
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Michał Michałkiewicz
- Faculty of Environmental Engineering and Energy, Institute of Environmental Engineering and Building Installations, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
| |
Collapse
|
44
|
Shah T, Baloch Z, Shah Z, Cui X, Xia X. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int J Mol Sci 2021; 22:6597. [PMID: 34202945 PMCID: PMC8235228 DOI: 10.3390/ijms22126597] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes exist in the human body, particularly the gastrointestinal tract, coevolved with the host in a mutually beneficial relationship. The main role of the intestinal microbiome is the fermentation of non-digestible substrates and increased growth of beneficial microbes that produce key antimicrobial metabolites such as short-chain fatty acids, etc., to inhibit the growth of pathogenic microbes besides other functions. Intestinal microbiota can prevent pathogen colonization through the mechanism of colonization resistance. A wide range of resistomes are present in both beneficial and pathogenic microbes. Giving antibiotic exposure to the intestinal microbiome (both beneficial and hostile) can trigger a resistome response, affecting colonization resistance. The following review provides a mechanistic overview of the intestinal microbiome and the impacts of antibiotic therapy on pathogen colonization and diseases. Further, we also discuss the epidemiology of immunocompromised patients who are at high risk for nosocomial infections, colonization and decolonization of multi-drug resistant organisms in the intestine, and the direct and indirect mechanisms that govern colonization resistance to the pathogens.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zahir Shah
- Faculty of Animal Husbandry and Veterinary Sciences, College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan;
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| |
Collapse
|
45
|
Zhou J, Horton JR, Blumenthal RM, Zhang X, Cheng X. Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nat Commun 2021; 12:3436. [PMID: 34103525 PMCID: PMC8187626 DOI: 10.1038/s41467-021-23693-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile infections are an urgent medical problem. The newly discovered C. difficile adenine methyltransferase A (CamA) is specified by all C. difficile genomes sequenced to date (>300), but is rare among other bacteria. CamA is an orphan methyltransferase, unassociated with a restriction endonuclease. CamA-mediated methylation at CAAAAA is required for normal sporulation, biofilm formation, and intestinal colonization by C. difficile. We characterized CamA kinetic parameters, and determined its structure bound to DNA containing the recognition sequence. CamA contains an N-terminal domain for catalyzing methyl transfer, and a C-terminal DNA recognition domain. Major and minor groove DNA contacts in the recognition site involve base-specific hydrogen bonds, van der Waals contacts and the Watson-Crick pairing of a rearranged A:T base pair. These provide sufficient sequence discrimination to ensure high specificity. Finally, the surprisingly weak binding of the methyl donor S-adenosyl-L-methionine (SAM) might provide avenues for inhibiting CamA activity using SAM analogs.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Kelly CR, Fischer M, Allegretti JR, LaPlante K, Stewart DB, Limketkai BN, Stollman NH. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am J Gastroenterol 2021; 116:1124-1147. [PMID: 34003176 DOI: 10.14309/ajg.0000000000001278] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile infection occurs when the bacterium produces toxin that causes diarrhea and inflammation of the colon. These guidelines indicate the preferred approach to the management of adults with C. difficile infection and represent the official practice recommendations of the American College of Gastroenterology. The scientific evidence for these guidelines was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation process. In instances where the evidence was not appropriate for Grading of Recommendations Assessment, Development, and Evaluation but there was consensus of significant clinical merit, key concept statements were developed using expert consensus. These guidelines are meant to be broadly applicable and should be viewed as the preferred, but not the only, approach to clinical scenarios.
Collapse
Affiliation(s)
- Colleen R Kelly
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Monika Fischer
- Division of Gastroenterology, Indiana University, Indianapolis, Indiana, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kerry LaPlante
- Department of Pharmacy Practice, University of Rhode Island College of Pharmacy, Kingston, Rhode Island, USA
| | - David B Stewart
- Department of Surgery, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Berkeley N Limketkai
- Division of Digestive Diseases, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Neil H Stollman
- Division of Gastroenterology, Alta Bates Summit Medical Center, East Bay Center for Digestive Health, Oakland, California, USA
| |
Collapse
|
47
|
Al-Ali D, Ahmed A, Shafiq A, McVeigh C, Chaari A, Zakaria D, Bendriss G. Fecal microbiota transplants: A review of emerging clinical data on applications, efficacy, and risks (2015-2020). Qatar Med J 2021; 2021:5. [PMID: 34604008 PMCID: PMC8475724 DOI: 10.5339/qmj.2021.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
As the importance of the gut microbiota in health and disease is a subject of growing interest, fecal microbiota transplantation (FMT) was suggested as an attractive therapeutic strategy to restore homeostasis of the gut microbiota, thereby treating diseases that were associated with alteration of the gut microbiota. FMT involves the administration of fresh, frozen, or dried fecal microorganisms from the gut of a healthy donor into the intestinal tract of a patient. This rediscovery of the potential benefits of an ancient practice was accompanied by a rapid progression of our understanding of the roles and mechanisms of gut microbes in the pathogenesis of disease. With a growing number of diseases being associated with dysbiosis or the alteration of gut microbiota, FMT was suggested as an attractive therapeutic strategy to "reset the gut" and initiate clinical resolutions or remissions. The number of FMT clinical trials is increasing worldwide, but no trials are registered in the Gulf region; this suggested the need for raising awareness of the latest studies on FMT. This review presented the emergent preclinical and clinical data to give an overview of the potential clinical applications, the benefits, and inconveniences that were worth considering for eventual future testing of fecal transplants in Qatar and the Middle East. This study highlighted the diversity of methods tested and commented on the variables that can affect the assessment of the effectiveness of FMT in specific diseases. The risks associated with FMT and the threat of antimicrobial resistance for this therapeutic approach were reviewed. From gastrointestinal diseases to neurodevelopmental disorders, understanding the roles of the gut microbiota in health and disease should be at the heart of developing novel, standardized, yet personalized, methods for this ancient therapeutic approach.
Collapse
Affiliation(s)
- Dana Al-Ali
- Premedical Division Weill Cornell Medicine-Qatar, Premedical Division, PO Box 24144 Doha, Qatar E-mail:
| | | | - Ameena Shafiq
- Premedical Division Weill Cornell Medicine-Qatar, Premedical Division, PO Box 24144 Doha, Qatar E-mail:
| | - Clare McVeigh
- Premedical Division Weill Cornell Medicine-Qatar, Premedical Division, PO Box 24144 Doha, Qatar E-mail:
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine-Qatar, Premedical Division, PO Box 24144 Doha, Qatar E-mail:
| | - Dalia Zakaria
- Premedical Division Weill Cornell Medicine-Qatar, Premedical Division, PO Box 24144 Doha, Qatar E-mail:
| | - Ghizlane Bendriss
- Premedical Division Weill Cornell Medicine-Qatar, Premedical Division, PO Box 24144 Doha, Qatar E-mail:
| |
Collapse
|
48
|
Editorial for the Special Issue: Clostridium difficile. Microorganisms 2021; 9:microorganisms9020368. [PMID: 33673344 PMCID: PMC7918445 DOI: 10.3390/microorganisms9020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium difficile (reclassified as Clostridioides difficile [...].
Collapse
|
49
|
Navalkele BD, Polistico J, Sandhu A, Awali R, Krishna A, Chandramohan S, Tillotson G, Chopra T. Clinical outcomes after faecal microbiota transplant by retention enema in both immunocompetent and immunocompromised patients with recurrent Clostridioides difficile infections at an academic medical centre. J Hosp Infect 2020; 106:643-648. [PMID: 32991940 DOI: 10.1016/j.jhin.2020.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recurrent Clostridioides difficile infection (CDI) is one of the most common and challenging infections to treat in healthcare facilities. Faecal microbiota transplantation (FMT) is recommended as a definitive treatment option. METHODS We performed a retrospective review of 50 patients from January 2015 to December 2019 who underwent FMT for recurrent CDI. Primary outcome was recurrence of CDI within 12-weeks of FMT and secondary outcomes were the need for repeat FMT, serious adverse outcomes related to FMT and all-cause mortality. RESULTS Fifty charts were reviewed, of which 47 cases comprising 17 immunocompromised patients treated with FMT via retention enema were included in the study. The majority of the patients had ≥3 recurrent CDIs (62%). Nine (19%) patients failed to respond to the first FMT and five underwent repeat FMT within four to 12 weeks. The cure rate was 81% after the first FMT (38/47) and 91% after the second FMT treatment (43/47). Serious adverse events occurred in 2% and all-cause mortality was 2% at 90-day follow up. CONCLUSION Our study demonstrated the safety and efficacy of FMT administered via retention enema, a simple bedside procedure, for the treatment and prevention of recurrent non-severe and severe CDI with an overall cure rate of 91%.
Collapse
Affiliation(s)
- B D Navalkele
- University of Mississippi Medical Center, Jackson, MS, USA.
| | | | - A Sandhu
- Detroit Medical Center, Detroit, MI, USA
| | - R Awali
- Detroit Medical Center, Detroit, MI, USA
| | - A Krishna
- Detroit Medical Center, Detroit, MI, USA
| | | | | | - T Chopra
- Detroit Medical Center, Detroit, MI, USA
| |
Collapse
|
50
|
Gulati M, Singh SK, Corrie L, Chandwani L, Singh A, Kapoor B, Kumar R, Pandey NK, Kumar B, Awasthi A, Khursheed R. Fecal Microbiota Transplant: Latest Addition to Arsenal Against Recurrent Clostridium Difficile Infection. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2020; 16:PRI-EPUB-110215. [PMID: 32981509 DOI: 10.2174/1574891x15666200925092354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
An infectious disease of colon, recurrent Clostridium difficile infection (RCDI) is hitherto considered insurmountable leading to significant morbidity and mortality. Gut dysbiosis, generally resulting from frequent use of antibiotics is considered to be responsible for the etiopathogenesis of rCDI. Ironically, the conventional treatment strategies for the disease also include the use of anti-infective drugs such as metronidazole, vancomycin and fidaxomycin. As a result of the efforts to overcome the limitations of these treatment options to control recurrence of disease, Fecal Microbiota Transplant (FMT) has emerged as an effective and safe alternative. It is pertinent to add here that FMT is defined as the process of engraftment of fecal suspension from the healthy person into the gastrointestinal tract of the diseased individual aiming at the restoration of gut microbiota. FMT has proved to be quite successful in the treatment of recurrent and resistant Clostridium difficile infections (RCDI). In last three decades a lot of information has been generated on the use of FMT for RCDI. A number of clinical trials have been reported with generally very high success rates. However, very small number of patents could be found in the area indicating that there still exists lacuna in the knowledge about FMT with respect to its preparation, regulation, mode of delivery and safety. The current review attempts to dive deeper to discuss the patents available in the area while supporting the information contained therein with the non-patent literature.
Collapse
Affiliation(s)
- Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Lipika Chandwani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Apoorva Singh
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh-160012. India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Narendra K Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| |
Collapse
|