1
|
Sundar S, Nirmal G, Borkar S, Goel S, Ramachandran K, Kochhar R, Hukkanen EJ, Chiarella RA, Ramachandran A. Microfluidic extensional flow device to study mass transfer dynamics in the polymer microparticle formation process. SOFT MATTER 2024; 20:6140-6149. [PMID: 39041251 DOI: 10.1039/d4sm00492b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Polymer microparticles are often used to encapsulate drugs for sustained drug-release treatments. One of the ways they are manufactured is by using a solvent extraction process, in which the polymer solution is emulsified into an aqueous bulk phase using a surfactant as a stabilizing agent, followed by the removal of the solvent. The radius of a polymer drop decreases as a function of time until the polymer reaches the gelling point, after which it is separated and dried. Among the various operating parameters, the rate of solvent extraction is a critical step that affects the morphology and porosity, and consequently, the kinetics of drug release. But a fundamental mechanistic understanding of the solvent extraction dynamics as a function of shear is still unexplored. In this study, we have developed an experimental mass transfer model to predict the extraction by using the microfluidic extensional flow device (MEFD) to probe the shear and extraction dynamics at the level of a single drop in a linear extensional flow field. We used a computer-controlled feedback algorithm to manipulate the flow field and hydrodynamically trap a Hele-Shaw drop and observe the extraction process. For the polymer solution, we used a biocompatible polymer, poly-lactic-co-glycolic acid (PLGA) with ethyl acetate (EtOAc) as the solvent. Our experiments were conducted by varying the extensional rate (G) in the channel from ∼0.1 s-1 to ∼10 s-1, and using an analytical solution of the flow field, we captured the dissolution process and measured the change in drop radius (R) with time (t). Interestingly, we initially observed a short-time asymptote R ∼ t, and later the long-time asymptote of R = constant; both trends were physically explained. The transport model developed in this work can be used to predict extraction rates and polymer microparticle composition for any polymer-solvent system. This work is also an important contribution to the literature on convective mass transfer in partially miscible emulsions.
Collapse
Affiliation(s)
- Suryavarshini Sundar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| | - Ghata Nirmal
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| | - Suraj Borkar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| | - Sachin Goel
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| | - Karthik Ramachandran
- Pharmaceutical Development, Alkermes, Inc., 900 Winter St, Waltham, MA 02451, USA
| | - Ransom Kochhar
- Pharmaceutical Development, Alkermes, Inc., 900 Winter St, Waltham, MA 02451, USA
| | - Eric J Hukkanen
- Pharmaceutical Development, Alkermes, Inc., 900 Winter St, Waltham, MA 02451, USA
| | - Renato A Chiarella
- Pharmaceutical Development, Alkermes, Inc., 900 Winter St, Waltham, MA 02451, USA
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
2
|
Fois M, Zengin A, Song K, Giselbrecht S, Habibović P, Truckenmüller RK, van Rijt S, Tahmasebi Birgani ZN. Nanofunctionalized Microparticles for Glucose Delivery in Three-Dimensional Cell Assemblies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17347-17360. [PMID: 38561903 PMCID: PMC11009907 DOI: 10.1021/acsami.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.
Collapse
Affiliation(s)
| | | | - Ke Song
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
3
|
Rapier CE, Shea KJ, Lee AP. Investigating PLGA microparticle swelling behavior reveals an interplay of expansive intermolecular forces. Sci Rep 2021; 11:14512. [PMID: 34267274 PMCID: PMC8282844 DOI: 10.1038/s41598-021-93785-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/11/2021] [Indexed: 11/09/2022] Open
Abstract
This study analyzes the swelling behavior of native, unmodified, spherically uniform, monodisperse poly(lactic-co-glycolic acid) (PLGA) microparticles in a robust high-throughput manner. This work contributes to the complex narrative of PLGA microparticle behavior and release mechanisms by complementing and extending previously reported studies on intraparticle microenvironment, degradation, and drug release. Microfluidically produced microparticles are incubated under physiological conditions and observed for 50 days to generate a profile of swelling behavior. Microparticles substantially increase in size after 15 days, continue increasing for 30 days achieving size dependent swelling indices between 49 and 83%. Swelling capacity is found to correlate with pH. Our study addresses questions such as onset, duration, swelling index, size dependency, reproducibility, and causal mechanistic forces surrounding swelling. Importantly, this study can serve as the basis for predictive modeling of microparticle behavior and swelling capacity, in addition to providing clues as to the microenvironmental conditions that encapsulated material may experience.
Collapse
Affiliation(s)
- Crystal E Rapier
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA.
| | - Kenneth J Shea
- Department of Chemistry, University of California-Irvine, Irvine, CA, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Liposomes containing 3-arylamino-nor-β-lapachone derivative: Development, characterization, and in vitro evaluation of the cytotoxic activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Junior NN, Santos IA, Meireles BA, Nicolau MSP, Lapa IR, Aguiar RS, Jardim ACG, José DP. In silico evaluation of lapachol derivatives binding to the Nsp9 of SARS-CoV-2. J Biomol Struct Dyn 2021; 40:5917-5931. [PMID: 33478342 PMCID: PMC7832454 DOI: 10.1080/07391102.2021.1875050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SARS-CoV-2 is the etiological agent of COVID-19, which represents a global health emergency that was rapidly declared a pandemic by the World Health Organization. Currently, there is a dearth of effective targeted therapies against viruses. Natural products isolated from traditional herbal plants have had a huge impact on drug development aimed at various diseases. Lapachol is a 1,4- naphthoquinone compound that has been demonstrated to have therapeutic effects against several diseases. SARS-CoV-2 non-structural proteins (nsps) play an important role in the viral replication cycle. Nsp9 seems to play a key role in transcription of the RNA genome of SARS-CoV-2. Virtual screening by docking and molecular dynamics suggests that lapachol derivatives can interact with Nsp9 from SARS-CoV-2. Complexes of lapachol derivatives V, VI, VIII, IX, and XI with the Nsp9 RNA binding site were subjected to molecular dynamics assays, to assess the stability of the complexes via RMSD. All complexes were stable over the course of 100 ns dynamics assays. Analyses of the hydrogen bonds in the complexes showed that lapachol derivatives VI and IX demonstrated strongest binding, with a stable or increasing number of hydrogen bonds over time. Our results demonstrate that Nsp9 from SARS-CoV-2 could be an important target in prospecting for ligands with antiviral potential. In addition, we showed that lapachol derivatives are potential ligands for SARS-CoV-2 Nsp9. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Nilson Nicolau Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Igor Andrade Santos
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bruno Amaral Meireles
- Campus Universitário de Iturama, Federal University of Triângulo Mineiro, Iturama, MG, Brazil
| | | | - Igor Rodrigues Lapa
- Campus Universitário de Iturama, Federal University of Triângulo Mineiro, Iturama, MG, Brazil
| | - Renato Santana Aguiar
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Diego Pandeló José
- Campus Universitário de Iturama, Federal University of Triângulo Mineiro, Iturama, MG, Brazil
| |
Collapse
|
6
|
Xia S, Ding Z, Luo L, Chen B, Schneider J, Yang J, Eberhart CG, Stark WJ, Xu Q. Shear-Thinning Viscous Materials for Subconjunctival Injection of Microparticles. AAPS PharmSciTech 2020; 22:8. [PMID: 33241486 DOI: 10.1208/s12249-020-01877-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
While drug-loaded microparticles (MPs) can serve as drug reservoirs for sustained drug release and therapeutic effects, needle clogging by MPs poses a challenge for ocular drug delivery via injection. Two polymers commonly used in ophthalmic procedures-hyaluronic acid (HA) and methylcellulose (MC)-have been tested for their applicability for ocular injections. HA and MC were physically blended with sunitinib malate (SUN)-loaded PLGA MPs for subconjunctival (SCT) injection into rat eyes. The HA and MC viscous solutions facilitated injection through fine-gauged needles due to their shear-thinning properties as shown by rheological characterizations. The diffusion barrier presented by HA and MC reduced burst drug release and extended overall release from MPs. The significant level of MP retention in the conjunctiva tissue post-operation confirmed the minimal leakage of MPs following injection. The safety of HA and MC for ocular applications was demonstrated histologically.
Collapse
|
7
|
Nicoletti CD, Faria AFM, de Sá Haddad Queiroz M, Dos Santos Galvão RM, Souza ALA, Futuro DO, Faria RX, Ferreira VF. Synthesis and biological evaluation of β-lapachone and nor-β-lapachone complexes with 2-hydroxypropyl-β-cyclodextrin as trypanocidal agents. J Bioenerg Biomembr 2020; 52:185-197. [PMID: 32198699 DOI: 10.1007/s10863-020-09826-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Abstract
We study βLAP and its derivative nor-β-Lapachone (NβL) complexes with 2-hydroxypropyl-β-cyclodextrin to increase the solubility and bioavailability. The formation of true inclusion complexes between βLAP or NβL in 2-HP-β-CD in solid solution was characterization by FT-IR, DSC, powder X-ray was and was confirmed by one- and two-dimensional 1H NMR experiments. Additionally, the biological activities of βLAP, NβL, ICβLAP, and ICNβL were investigated through trypanocidal assays with T. cruzi and cytotoxicity studies with mouse peritoneal macrophages. Originally, we tested these complexes against T. cruzi viability and observed higher biological activities and lower cytotoxicity when compared to βLAP and NβL. Thus, the complexation of βLAP and NβL with 2-HP-β-CD increases the drug solubility, in addition vectorization was observed, increasing the biological activity against epimastigotes and trypomastigotes T. cruzi forms. Reduced the toxicity of the compounds against mammalian cells. In addition, the selectivity indices higher of the inclusion complexes comparing to substance free and those of benznidazole.
Collapse
Affiliation(s)
- Caroline Deckmann Nicoletti
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Ana Flávia Martins Faria
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Av. Brasil, n° 4365, Pavilhão Carlos Chagas, sala 208c, Manguinhos, Rio de Janeiro, RJ, 21045900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Marcella de Sá Haddad Queiroz
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Raíssa Maria Dos Santos Galvão
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Av. Brasil, n° 4365, Pavilhão Carlos Chagas, sala 208c, Manguinhos, Rio de Janeiro, RJ, 21045900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Débora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Av. Brasil, n° 4365, Pavilhão Carlos Chagas, sala 208c, Manguinhos, Rio de Janeiro, RJ, 21045900, Brazil. .,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| |
Collapse
|
8
|
Das PK, Rakib MA, Khanam JA, Pillai S, Islam F. Novel Therapeutics Against Breast Cancer Stem Cells by Targeting Surface Markers and Signaling Pathways. Curr Stem Cell Res Ther 2019; 14:669-682. [DOI: 10.2174/1574888x14666190628104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
Breast cancer remains to be one of the deadliest forms of cancers, owing to
the drug resistance and tumor relapse caused by breast cancer stem cells (BCSCs) despite notable advancements
in radio-chemotherapies.
Objective:
To find out novel therapeutics against breast cancer stem cells by aiming surface markers
and signaling pathways.
Methods:
A systematic literature search was conducted through various electronic databases including,
Pubmed, Scopus, Google scholar using the keywords "BCSCs, surface markers, signaling pathways
and therapeutic options against breast cancer stem cell. Articles selected for the purpose of this review
were reviewed and extensively analyzed.
Results:
Novel therapeutic strategies include targeting BCSCs surface markers and aberrantly activated
signaling pathways or targeting their components, which play critical roles in self-renewal and defense,
have been shown to be significantly effective against breast cancer. In this review, we represent a
number of ways against BCSCs surface markers and hyper-activated signaling pathways to target this
highly malicious entity of breast cancer more effectively in order to make a feasible and useful strategy
for successful breast cancer treatment. In addition, we discuss some characteristics of BCSCs in disease
progression and therapy resistance.
Conclusion:
BCSCs involved in cancer pathogenesis, therapy resistance and cancer recurrence. Thus,
it is suggested that a multi-dimensional therapeutic approach by targeting surface markers and aberrantly
activated signaling pathways of BCSCs alone or in combination with each other could really be
worthwhile in the treatment of breast cancer.
Collapse
Affiliation(s)
- Plabon K. Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. A. Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Jahan A. Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
9
|
Reis WJ, Bozzi ÍA, Ribeiro MF, Halicki PC, Ferreira LA, Almeida da Silva PE, Ramos DF, de Simone CA, da Silva Júnior EN. Design of hybrid molecules as antimycobacterial compounds: Synthesis of isoniazid-naphthoquinone derivatives and their activity against susceptible and resistant strains of Mycobacterium tuberculosis. Bioorg Med Chem 2019; 27:4143-4150. [DOI: 10.1016/j.bmc.2019.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
|
10
|
N’Diaye M, Vergnaud-Gauduchon J, Nicolas V, Faure V, Denis S, Abreu S, Chaminade P, Rosilio V. Hybrid Lipid Polymer Nanoparticles for Combined Chemo- and Photodynamic Therapy. Mol Pharm 2019; 16:4045-4058. [DOI: 10.1021/acs.molpharmaceut.9b00797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marline N’Diaye
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Juliette Vergnaud-Gauduchon
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Valérie Nicolas
- UMS IPSIT, Univ Paris-Sud, US 31 INSERM, UMS 3679 CNRS, Microscopy Facility, 92290 Châtenay-Malabry, France
| | - Victor Faure
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Stéphanie Denis
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Sonia Abreu
- Lip(Sys)2, Chimie Analytique Pharmaceutique, Univ Paris-Sud, Université Paris-Saclay, F-92290 Chistenay-Malabry Cedex, France
| | - Pierre Chaminade
- Lip(Sys)2, Chimie Analytique Pharmaceutique, Univ Paris-Sud, Université Paris-Saclay, F-92290 Chistenay-Malabry Cedex, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| |
Collapse
|
11
|
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023]
Abstract
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer. Three strategies used to develop bioactive quinones are discussed and categorized: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Framed within these strategies for the development of naphthoquinoidal compounds against T. cruzi. Leishmania and cancer, reactions including copper-catalyzed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, C-H activation reactions, Ullmann couplings and heterocyclisations reported up to July 2019 will be discussed. The aim of derivatisation is the generation of novel molecules that can potentially inhibit cellular organelles/processes, generate reactive oxygen species and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against leishmaniases, Chagas disease and cancer.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| | - Guilherme A M Jardim
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Solange L de Castro
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
12
|
Lukman SK, Al-Ashwal RH, Sultana N, Saidin S. Electrodeposition of Ginseng/Polyaniline Encapsulated Poly(lactic- co-glycolic Acid) Microcapsule Coating on Stainless Steel 316L at Different Deposition Parameters. Chem Pharm Bull (Tokyo) 2019; 67:445-451. [DOI: 10.1248/cpb.c18-00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Siti Khadijah Lukman
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia
| | - Rania Hussein Al-Ashwal
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia
| | - Naznin Sultana
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia
- IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia
| |
Collapse
|
13
|
Kim DW, Cho JY. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity. Int J Mol Sci 2018; 19:ijms19123813. [PMID: 30513573 PMCID: PMC6321092 DOI: 10.3390/ijms19123813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
14
|
Alemrayat B, Elrayess MA, Alany RG, Elhissi A, Younes HM. Preparation and optimization of monodisperse polymeric microparticles using modified vibrating orifice aerosol generator for controlled delivery of letrozole in breast cancer therapy. Drug Dev Ind Pharm 2018; 44:1953-1965. [PMID: 30035646 DOI: 10.1080/03639045.2018.1503298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Letrozole (LTZ) is effective for the treatment of hormone-receptor-positive breast cancer in postmenopausal women. In this work, and for the first time, using vibrating orifice aerosol generator (VOAG) technology, monodisperse poly-ε-caprolactone (PCL), and poly (D, L-Lactide) (PDLLA) LTZ-loaded microparticles were prepared and found to elicit selective high cytotoxicity against cancerous breast cells with no apparent toxicity on healthy cells in vitro. Plackett-Burman experimental design was utilized to identify the most significant factors affecting particle size distribution to optimize the prepared particles. The generated microparticles were characterized in terms of microscopic morphology, size, zeta potential, drug entrapment efficiency, and release profile over one-month period. Long-term cytotoxicity of the microparticles was also investigated using MCF-7 human breast cancer cell lines in comparison with primary mammary epithelial cells (MEC). The prepared polymeric particles were monodispersed, spherical, and apparently smooth, regardless of the polymer used or the loaded LTZ concentration. Particle size varied from 15.6 to 91.6 µm and from 22.7 to 99.6 µm with size distribution (expressed as span values) ranging from 0.22 to 1.24 and from 0.29 to 1.48 for PCL and PDLLA based microparticles, respectively. Upon optimizing the manufacture parameters, span was reduced to 0.162-0.195. Drug entrapment reached as high as 96.8%, and drug release from PDLLA and PCL followed a biphasic zero-order release using 5 or 30% w/w drug loading in the formulations. Long-term in vitro cytotoxicity studies indicated that microparticles formulations significantly inhibited the growth of MCF-7 cell line over a prolonged period of time but did not have toxic effects on the normal breast epithelial cells.
Collapse
Affiliation(s)
- Bayan Alemrayat
- a Pharmaceutics and Polymeric Drug Delivery Research Laboratory, College of Pharmacy , Qatar University , Doha , Qatar
| | | | - Raid G Alany
- c Drug Discovery, Delivery and Patient Care Theme, School of Life Sciences, Pharmacy and Chemistry , Kingston University London , London , UK
| | - Abdelbary Elhissi
- a Pharmaceutics and Polymeric Drug Delivery Research Laboratory, College of Pharmacy , Qatar University , Doha , Qatar.,d Office of Vice President for Research and Graduate Studies , Qatar University , Doha , Qatar
| | - Husam M Younes
- a Pharmaceutics and Polymeric Drug Delivery Research Laboratory, College of Pharmacy , Qatar University , Doha , Qatar.,d Office of Vice President for Research and Graduate Studies , Qatar University , Doha , Qatar
| |
Collapse
|
15
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
16
|
Zheng Q, Chu Z, Li X, Kang H, Yang X, Fan Y. The Effect of Fluid Shear Stress on the In Vitro Release Kinetics of Sirolimus from PLGA Films. Polymers (Basel) 2017; 9:618. [PMID: 30965925 PMCID: PMC6418679 DOI: 10.3390/polym9110618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
Drug-carrying coatings of stents implanted in blood vessels are exposed to various blood flows. This study investigated the effect of fluid shear stress on the in vitro release kinetics of sirolimus from poly(lactic-co-glycolic acid) (PLGA) films. The homemade parallel plate flow chamber was used to exert quantitative shear stress on the sirolimus-carrying film. By adjusting the flow rate of the release media in the chamber, three levels of shear stress (3.6, 12.0, and 36.0 dyn/cm²) were respectively applied. For each level of shear stress employed, the release kinetics of sirolimus from the PLGA films exhibited a four-phase profile: an initial burst release phase (Phase I), a lag phase (Phase II), a second burst release phase (Phase III), and a terminal release phase (Phase IV). During Phases I and II, sirolimus was released slowly and in small amounts (<10%); however, during Phases III and IV, the drug release increased considerably. Comparisons of different shear stresses indicated that greater shear stress resulted in earlier and faster sirolimus release, with more cumulative drug release observed. PLGA film degradations (molecular weight reduction, mass loss, and surface topographical variations) were also investigated to better explain the observed drug release behavior. Consequently, fluid shear stress was found to significantly accelerate the release of sirolimus from the PLGA matrices. Therefore, this study could provide a practical method for evaluating the in vitro drug release from polymer matrices under uniform shear stress, and might help improve the design of biodegradable coatings on drug-eluting stents.
Collapse
Affiliation(s)
- Quan Zheng
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Zhaowei Chu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Hongyan Kang
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Xiao Yang
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
17
|
Costa MP, Feitosa ACS, Oliveira FCE, Cavalcanti BC, Dias GG, Caetano EWS, Sales FAM, Freire VN, Di Fiore S, Fischer R, Ladeira LO, da Silva Júnior EN, Pessoa C. Encapsulation of nor-β-lapachone into poly(d,l)-lactide- co-glycolide (PLGA) microcapsules: full characterization, computational details and cytotoxic activity against human cancer cell lines. MEDCHEMCOMM 2017; 8:1993-2002. [PMID: 30108718 PMCID: PMC6071939 DOI: 10.1039/c7md00196g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022]
Abstract
In this work, we characterize nor-β-lapachone-loaded (NβL-loaded) microcapsules prepared using an emulsification/solvent extraction technique. Features such as surface morphology, particle size distribution, zeta potential, optical absorption, Raman and Fourier transform infrared spectra, thermal analysis data, drug encapsulation efficiency, drug release kinetics and in vitro cytotoxicity were studied. Spherical microcapsules with a size of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Quantum DFT calculations were also performed to estimate typical interaction energies between a single nor-β-lapachone molecule and the surface of the microparticles. The NβL-loaded PLGA microcapsules exhibited a pronounced initial burst release. After the in vitro treatment with NβL-loaded microcapsules, a clear phagocytosis of the spheres was observed in a few minutes. The cytotoxic activity against a set of cancer cell lines was investigated.
Collapse
Affiliation(s)
- Marcília P Costa
- Pharmacy Course , Federal University of Piauí , 64049-550 Teresina , PI , Brazil
| | - Anderson C S Feitosa
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Fátima C E Oliveira
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Bruno C Cavalcanti
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Gleiston G Dias
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil . ; Tel: +55 31 34095720
| | - Ewerton W S Caetano
- Department of Secondary School and Teachers College , Federal Institute of Ceará , 60040-531 Fortaleza , CE , Brazil
- Federal Institute of Ceará , 63503-790 Iguatu , CE , Brazil
| | - Francisco A M Sales
- Department of Secondary School and Teachers College , Federal Institute of Ceará , 60040-531 Fortaleza , CE , Brazil
- Federal Institute of Ceará , 63503-790 Iguatu , CE , Brazil
| | - Valder N Freire
- Department of Physics , Federal University of Ceará , 60455-760 Fortaleza , CE , Brazil
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 , Aachen , Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 , Aachen , Germany
- Institute for Molecular Biotechnology , RWTH Aachen University , 52074 Aachen , Germany
| | - Luiz O Ladeira
- Institute of Exact Sciences , Department of Physics , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil . ; Tel: +55 31 34095720
| | - Claudia Pessoa
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
- Oswaldo Cruz Foundation (Fiocruz) , 60180-900 Fortaleza , CE , Brazil
| |
Collapse
|
18
|
Hamama WS, Hassanien AEDE, Zoorob HH. Advanced Routes in Synthesis and Reactions of Lawsone Molecules (2-Hydroxynaphthalene-1,4-dione). J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wafaa S. Hamama
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Alaa El-Din E. Hassanien
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Hanafi H. Zoorob
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| |
Collapse
|