1
|
Neto DCF, Diz JSF, Guimarães SJA, Dos Santos EM, Nascimento MDDSB, de Azevedo-Santos APS, França TCC, LaPlante SR, do Nascimento CJ, Lima JA. Guanylhydrazone and semicarbazone derivatives as potential prototypes for the design of cholinesterase inhibitors against Alzheimer's disease: biological evaluation and molecular modeling studies. Chem Biol Interact 2025; 415:111515. [PMID: 40246050 DOI: 10.1016/j.cbi.2025.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Despite being present in many drugs, guanylhydrazones and semicarbazones are two functional groups that have been little investigated as potential therapeutic strategies for the treatment of Alzheimer's disease (AD). For this reason, we initiated the synthesis and evaluation of these compounds as potential anticholinesterase agents, aiming to offer new alternatives for drug development against AD. In the severe phase of AD butyrylcholinesterase (BChE) becomes the main enzyme responsible for the hydrolysis of acetylcholine (ACh). Therefore, in this project, we present the results of BChE inhibitory activity, enzyme kinetics, cytotoxicity, and molecular modeling studies for three guanylhydrazone and two semicarbazone derivatives that were previously synthesized and evaluated as acetylcholinesterase (AChE) inhibitors. Among the compounds tested, guanylhydrazones (1, 2, and 3) showed inhibitory activity against BChE, exhibiting a mixed non-competitive inhibition profile. Specifically, compound 2 (phenanthrenequinone) demonstrated superior inhibitory potency with an IC50 of 0.68 μM, compared to compound 1 (acridinone) with an IC50 of 3.87 μM, and compound 3 (benzodioxole) with an IC50 of 101.7 μM. In contrast, semicarbazones (4 and 5) showed no BChE inhibition up to the highest concentration tested (300 μM). Importantly, all five compounds were found to be non-cytotoxic. Our results suggest that these compounds have potential as drug prototypes targeting different phases of AD. Compounds 3, 4, and 5 may be more effective in the early phase, when AChE activity remains high; compound 1 could be useful in the intermediate phase; and compound 2 appears particularly promising for the severe phase, when BChE plays a more dominant role.
Collapse
Affiliation(s)
- Denise Cristian Ferreira Neto
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, RJ, Brazil; Department of Chemistry, Federal University of Roraima, Av. Cap. Ene Garcês, 2413, 69310-000, Boa Vista, Roraima, Brazil.
| | - Joyce Sobreiro Francisco Diz
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil; Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Av. das Américas 28705, Área 4, 23020-470, Rio de Janeiro, RJ, Brazil
| | - Sulayne Janayna Araújo Guimarães
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Eduardo Mendes Dos Santos
- Federal University of Maranhão, Postgraduate Program in Adult Health (PPGSAD), Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | | | - Ana Paula Silva de Azevedo-Santos
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil; Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Claudia Jorge do Nascimento
- Institute of Biosciences, Federal University of the State of Rio de Janeiro, Av. Pasteur, 296, Urca, 22290-250, Rio de Janeiro, Brazil
| | - Josélia Alencar Lima
- Federal University of Maranhão, Postgraduate Program in Adult Health (PPGSAD), Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil.
| |
Collapse
|
2
|
Kadi I, Seyhan G, Zebbiche Z, Sari S, Barut B, Boumoud T, Mermer A, Boulebd H. Novel 2-Alkoxy-3-Cyanopyridine Derivatives as Cholinesterase Inhibitors: Synthesis, Biological Evaluation, and In Silico Investigations. Chem Biodivers 2025:e202402915. [PMID: 40051287 DOI: 10.1002/cbdv.202402915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease remains a major challenge in neuroscience and medicine. Cholinesterase inhibitors provide symptomatic relief but do not alter disease progression. While significant progress has been made in understanding its biology, there is an urgent need for effective therapies. In this study, a series of 2-alkoxy-3-cyanopyridine derivatives (1-7) were prepared and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Among the compounds, 3 and 4 were identified as good inhibitors of AChE and BuChE with relatively low IC50 values. 3 inhibited AChE with an IC50 of 53.95 ± 4.29 µM, while 4 had a greater potency for BuChE with an IC50 of 31.79 ± 0.38 µM. Kinetic studies revealed that 3 and 4 are competitive inhibitors with Ki values of 14.23 ± 0.42 and 19.80 ± 3.38 µM for AChE and BuChE, respectively. In silico investigations, including docking studies, DFT calculations, and ADME/drug-likeness properties, were carried out to understand the mode of interaction of 3 and 4 toward the AChE and BuChE enzymes, as well as to determine their molecular geometry, chemical reactivity, and pharmacokinetic properties. This study highlights the potential of 3-cyanopyridine derivatives in the treatment of AD and provides a solid foundation for further optimization and exploration of their therapeutic applications.
Collapse
Affiliation(s)
- Ibtissem Kadi
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Gökçe Seyhan
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Zineddine Zebbiche
- Department of Chemistry, Faculty of Exact Sciences, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Suat Sari
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Taoues Boumoud
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Arif Mermer
- Experimental Medicine Application & Research Center, University of Health Sciences, Istanbul, Türkiye
- Department of Biotechnology, University of Health Sciences, Istanbul, Türkiye
- Department of Pharmacy, University of Health Sciences, Istanbul, Türkiye
| | - Houssem Boulebd
- Department of Chemistry, Faculty of Exact Sciences, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
3
|
Kulkarni AS, Ramana SR, Nuthakki VK, Bhatt S, Jamwal A, Nandawadekar LD, Jotshi A, Kumar A, Nandi U, Bharate SB, Reddy DS. Silicon incorporated tacrine: design, synthesis, and evaluation of biological and pharmacokinetic parameters. RSC Med Chem 2025:d5md00019j. [PMID: 40177641 PMCID: PMC11959489 DOI: 10.1039/d5md00019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Tacrine, an orally bioavailable cholinesterase inhibitor, was previously used to treat Alzheimer's disease but was withdrawn due to hepatotoxicity. The unique structural features of tacrine have once again captured the interest of medicinal chemists. However, the blood-brain barrier (BBB) permeability hampered the development of the majority of its new analogs. Herein, we employed a silicon switch approach for improving the BBB permeability of CNS drugs with tacrine as a tool compound. The replacement of C2 methylene of tacrine with dimethyl silicon yielded 'sila-tacrine' that inhibits acetylcholinesterase as well as butyrylcholinesterase with IC50 values of 3.18 and 6.09 μM, respectively. Sila-tacrine competitively inhibits acetylcholinesterase while it is a non-competitive inhibitor of butyrylcholinesterase. The molecular docking results corroborated with the in vitro cholinesterase inhibition activity of tacrine vs. sila-tacrine. Sila-tacrine demonstrated metabolic stability in HLM and MLM and exhibited superior plasma exposure in an oral pharmacokinetic study in Swiss albino mice. However, tissue distribution studies revealed lower-than-expected brain levels due to efflux pump-mediated transport. This study offers a proof-of-concept for the silicon switch approach in improving the BBB permeability of CNS-active compounds.
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sreenivasa Rao Ramana
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Vijay K Nuthakki
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Shipra Bhatt
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Ashiya Jamwal
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Laxman D Nandawadekar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad-500007 India
| | - Anshika Jotshi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Ajay Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Utpal Nandi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Bose Institute Unified Academic Campus Kolkata 700091 India
| | - Sandip B Bharate
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad-500007 India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad-500007 India
| |
Collapse
|
4
|
Aly SH, Uba AI, Nilofar N, Majrashi TA, El Hassab MA, Eldehna WM, Zengin G, Eldahshan OA. Chemical composition and biological activity of lemongrass volatile oil and n-Hexane extract: GC/MS analysis, in vitro and molecular modelling studies. PLoS One 2025; 20:e0319147. [PMID: 39999113 PMCID: PMC11856542 DOI: 10.1371/journal.pone.0319147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Lemon grass, formally identified as Cymbopogon citratus, is a plant that belongs to the Poaceae family. The present work aimed to examine the chemical composition by GC/MS analysis and assess the biological potential of C. citratus volatile oil and n-hexane extract. The volatile oil and n-hexane extract were evaluated for antioxidant potential and tested for their enzyme inhibition against tyrosinase, butyrylcholinesterase (BChE), acetylcholinesterase (AChE), α-amylase, and α-glucosidase. The chemical analysis of the lemongrass n-hexane extract (HE) and volatile oil (VO) revealed that the main constituents in the HE are aliphatic hydrocarbons (42.98%), triterpenoids (20.14%), and aromatic hydrocarbons (17.25%). Conversely, the main constituents of the (VO) are predominantly monoterpenes, namely α-citral (36.08%), β-citral (34.22%), and β-myrcene (13.84%). The oil showed more potent antioxidant potential in DPPH, ABTS, CUPRAC, FRAP, and phosphomolybdenum (10.18, 35.69 mg Trolox equivalent/g, 98.97 and 69.73 mg Trolox equivalent/g and 43.01 mmol Trolox equivalent/g). The HE displayed higher BChE (1.53 mg Galanthamine equivalent)/g), as well as α-amylase and α-glucosidase inhibitory activities (0.39 and 2.40 mmol Acarbose equivalent/g). The VO demonstrated more potent tyrosinase inhibitory activities (57.19 mg Kojic acid equivalent/g) along with acetyl and butyrylcholinesterase inhibition. Dominant compounds exhibited the ability to bind with high affinity to various target proteins, with a particular affinity for AChE and BChE. The volatile oil and n-hexane extract of C. citratus show significant promise as a viable choice for the advancement of novel therapeutic strategies aimed at addressing oxidative stress, neurodegeneration, and diabetes.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt,
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey,
| | - Nilofar Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey,
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, Chieti, Italy,
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia,
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt,
| | - Wagdy M. Eldehna
- Department of Pharmaceutical of Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt,
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria, Egypt,
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey,
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Panek D, Pasieka A, Jończyk J, Gawlińska M, Zaręba P, Siwek A, Wolak M, Mordyl B, Głuch‐Lutwin M, Latacz G, Brazzolotto X, Chantegreil F, Nachon F, Zdarova Karasova J, Pejchal J, Mzik M, Sestak V, Prchal L, Odvarkova J, Soukup O, Korabecny J, Sorf A, Hamsikova M, Zemanova L, Muckova L, Vánova N, Dryja P, Sałat K, Höfner G, Wanner K, Więckowska A, Malawska B. Multifunctional, Fluorene-Based Modulator of Cholinergic and GABAergic Neurotransmission as a Novel Drug Candidate for Palliative Treatment of Alzheimer's Disease. Angew Chem Int Ed Engl 2025; 64:e202420510. [PMID: 39523866 PMCID: PMC11796312 DOI: 10.1002/anie.202420510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia (BPSD). Given that cholinergic neurons are predominantly affected in AD, current treatments primarily aim to enhance cholinergic neurotransmission. However, imbalances in other neurotransmitters, such as γ-aminobutyric acid (GABA), also contribute to AD symptomatology. In the presented research, using a combination of crystallography and computational methods we developed compound 6 as a dual modulator of GABAergic and cholinergic neurotransmission systems. Compound 6 demonstrated inhibition of BuChE (IC50=0.21 μM) and GABA transporter 1 (IC50=10.96 μM) and 3 (IC50=7.76 μM), along with a favorable drug-likeness profile. Subsequent in vivo studies revealed the effectiveness of 6 in enhancing memory retention and alleviating anxiety and depression symptoms in animal models, while also proving safe and bioavailable for oral administration. The innovative multi-target-directed ligand 6 offers a new approach to treating cognitive deficits and BPSD in AD.
Collapse
|
6
|
Silva Sousa GL, Nadur NF, de Almeida Peixoto Ferreira L, da Silva Honório T, Simon A, Cabral LM, Móra Santos ML, Andrade B, de Lima EV, Clarke JR, Castro RN, Olímpio de Moura R, Kümmerle AE. Discovery of novel thiosemicarbazone-acridine targeting butyrylcholinesterase with antioxidant, metal complexing and neuroprotector abilities as potential treatment of Alzheimer's disease: In vitro, in vivo, and in silico studies. Eur J Med Chem 2025; 281:117030. [PMID: 39531933 DOI: 10.1016/j.ejmech.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Inhibition of cholinesterases, combined with antioxidant activity, metal-chelating capacity, and neuroprotection, is recognized as an effective multitarget therapy for the treatment of Alzheimer's disease (AD). Based on our in-house thiosemicarbazone-acridine compounds, this study recognized these derivatives as possible multi-target-directed ligand (MTDL). Initial screening against cholinesterases identified CL-01, which exhibited a promising IC50 value of 0.71 μM against butyrylcholinesterase (BChE). Twelve new derivatives were designed based on CL-01 aiming to retain the BChE inhibitory activity while incorporating a MTDL profile, including antioxidant properties and metal-complexing abilities. Among the new derivatives, CL-13 maintained a good BChE inhibition (IC50 = 1.15 μM) with improved selective index against acetylcholinesterase (SI = 9.2). The acridine nucleus was important for the activity, as its saturated tetrahydroacridine analogue (TA-01) showed a decrease in cholinesterases inhibition potencies and altered the mode of inhibition, revealing for the first time distinct functional roles for the two nuclei. Moreover, CL-13 emerged as a promising lead compound, demonstrating interesting antioxidant activity (DPPH EC50 = 47.01 μM), chelating capacity of biometals involved in Aβ aggregation and/or oxidative stress, and a lack of neurotoxicity at 50 μM in SH-SY5Y cells. It also exhibited neuroprotective effects in an in vitro oxidative stress model induced by H2O2. Finally, in vivo experiments confirmed that CL-13 effectively reversed scopolamine-induced cognitive impairment, without affecting locomotor activity in the mice.
Collapse
Affiliation(s)
| | - Nathalia Fonseca Nadur
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23897-000, Brazil
| | | | - Thiago da Silva Honório
- Cell Culture Laboratory (LabCel), Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Alice Simon
- Cell Culture Laboratory (LabCel), Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Lucio Mendes Cabral
- Cell Culture Laboratory (LabCel), Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | | | - Bruna Andrade
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Emanuelle V de Lima
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Julia R Clarke
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Rosane Nora Castro
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23897-000, Brazil
| | | | - Arthur Eugen Kümmerle
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23897-000, Brazil.
| |
Collapse
|
7
|
Karami H, Soltani S, Wolber G, Sadigh-Eteghad S, Nikbakht R, Farrokhi H, Narimani F, Teimuri-Mofrad R, Rashidi MR. Anti-Alzheimer effects of the newly synthesized cationic compounds as multi-target dual hAChE/hBuChE inhibitor: An in silico, in vitro, and in vivo approach. BIOIMPACTS : BI 2024; 15:24196. [PMID: 40161933 PMCID: PMC11954736 DOI: 10.34172/bi.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/02/2025]
Abstract
Introduction Multi-target anti-Alzheimer's disease (AD) compounds are promising leads for the development of AD modifying agents. Ionic compounds containing quaternary ammonium moiety were synthesized, and their multi-targeted anti-AD effects were examined. Methods Imidazole derivatives containing a quaternary ammonium moiety were synthesized and evaluated for their potential anti-Alzheimer properties using computational (in silico), cellular (in vitro), and animal (in vivo) models. The inhibition kinetics of both human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) were assessed. Neuroprotective effects in amyloid-beta (Aβ)-exposed PC12 cells were also examined. Furthermore, the compounds' impact on Aβ-induced memory impairment in Wistar rats was evaluated, with a detailed analysis of the underlying mechanisms. Results Compound 5g demonstrated acceptable cytotoxicity against human cells. This compound exhibited non-competitive dual inhibition of both hAChE and hBuChE. Additionally, compound 5g mitigated the morphological changes induced by amyloid-beta (Aβ) in PC12 cells and decreased cell mortality. It exhibited anti-oxidative stress properties, evident by reduction in reactive oxygen species (ROS) production, and inhibition of lipid peroxidation. The compound also down regulated the expression of pro-inflammatory genes IL-1β and TNF-α. In vitro studies validated compound 5g's ability to inhibit lactate dehydrogenase (LDH), attenuate neuroinflammation, and prevent the autophagy-apoptosis cascade. When administered to rats with Aβ-induced memory dysfunction, compound 5g enhanced cognitive function and improved spatial memory. In the hippocampi of treated rats, there was a noted downregulation of TNF-α and NF-kB. Furthermore, compound 5g counteracted the elevated activity of AChE. Molecular modeling validated the binding of compound 5g to both steric and catalytic sites of cholinesterase enzymes. Conclusion The novel quaternary ammonium derivative, compound 5g, demonstrated multi-target anti-AD properties, as evidenced by in silico, in vitro and in vivo studies. Behavioral assessments and molecular analyses further confirmed its therapeutic efficacy in amyloid-beta (Aβ)-challenged rats.
Collapse
Affiliation(s)
- Hosna Karami
- Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Somaieh Soltani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gerhard Wolber
- Molecular Design Group, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Nikbakht
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hanieh Farrokhi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Farzaneh Narimani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Nanotechnology Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Tummatorn J, Meewan I, Khunnawutmanotham N, Chimnoi N, Suwanwong N, Rodphon W, Thongsornkleeb C, Yang J, Ruchirawat S. Cholinesterase Inhibitory Activity and Molecular Docking Studies of Isocryptolepine-Triazole Adducts. ChemMedChem 2024; 19:e202400447. [PMID: 39083643 DOI: 10.1002/cmdc.202400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Due to the rising prevalence of Alzheimer's disease (AD), there is a pressing need for more effective drugs to treat or manage AD's symptoms. Studies have shown that cholinesterase inhibition can improve cognitive and behavioral symptoms associated with AD, by addressing the cholinergic deficit. Based on the recent development of cholinesterase inhibitors with indoloquinoline and triazole moiety, we rationalized that compounds with an isocryptolepine-triazole scaffold may also have the same biological targets. In this study, eighteen previously synthesized isocryptolepine-triazole compounds were assessed for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The majority of these compounds demonstrated potent selective AChE inhibition. Furthermore, our molecular docking and molecular dynamic simulation studies reveal that the isocryptolepine and triazole moieties are important for the binding of the compounds with the periphery of the AChE's binding pocket. While reductions in molecular weights and lipophilicities may be necessary to improve their pharmacokinetic properties, this work provides valuable insights for designing future AChE inhibitors, based on the novel isocryptolepine-triazole scaffold.
Collapse
Affiliation(s)
- Jumreang Tummatorn
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Ittipat Meewan
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Nitirat Chimnoi
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Nutchapong Suwanwong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Warabhorn Rodphon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Charnsak Thongsornkleeb
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Jingyue Yang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| |
Collapse
|
9
|
Buran K, İnan Y, Uba AI, Zengin G. Novel benzene sulfonamide-piperazine hybrid compounds: design, synthesis, antioxidant, enzyme inhibition activities and docking, ADME profiling studies. Z NATURFORSCH C 2024; 79:351-360. [PMID: 38909275 DOI: 10.1515/znc-2024-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
Benzene sulfonamides are an important biological substituent for several activities. In this study, hybridization of benzene sulfonamide with piperazine derivatives were investigated for their antioxidant capacity and enzyme inhibitory potencies. Six molecules were synthesized and characterized. DPPH, ABTS, FRAP, CUPRAC, chelating and phosphomolybdemum assays were applied to evaluate antioxidant capacities. Results show that compounds have high antioxidant capacity and compound 4 has the best antioxidant activity among them. Compound 4 has higher antioxidant activity than references for FRAP (IC50: 0.08 mM), CUPRAC (IC50: 0.21 mM) and phosphomolybdenum (IC50: 0.22 mM) assays. Besides this, compound 4 has moderate DPPH and ABTS antioxidant capacity. Furthermore, enzyme inhibition activities of these molecules were investigated against AChE, BChE, tyrosinase, α-amylase and α-glucosidase enzymes. It was revealed that all compounds have good enzyme inhibitory potential except for α-amylase enzyme. The best inhibitory activities were observed for AChE with compound 5 the same value (IC50: 1.003 mM), for BChE with compounds 2 and 5 the same value (IC50: 1.008 mM), for tyrosinase compound 4 (IC50: 1.19 mM), and for α-glucosidase with compound 3 (IC50: 1.000 mM). Docking studies have been conducted with these molecules, and the results correlate well with the inhibitory assays.
Collapse
Affiliation(s)
- Kerem Buran
- Department of Pharmaceutical Chemistry, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, 34668, Türkiye
| | - Yiğit İnan
- Department of Pharmacognosy, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, 34668, Türkiye
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, İstanbul, 34537, Türkiye
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Türkiye
| |
Collapse
|
10
|
Mahadi TM, Yagi S, Nilofar, Caprioli G, Piatti D, Ricciutelli M, Uba AI, Ponniya SKM, Eltigani SM, Zengin G. Assessing the Chemical Profile and Biological Potentials of Tamarix aphylla (L.) H.Karst. and Tamarix senegalensis DC. by In Vitro, In Silico, and Network Methodologies. Appl Biochem Biotechnol 2024; 196:7762-7791. [PMID: 38558274 DOI: 10.1007/s12010-024-04924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The present study aimed to investigate the chemical profile, antioxidant, and enzyme inhibition properties of extracts from fruits and aerial parts (leaves and twigs) of Tamarix aphylla and T. senegalensis. Hexane, dichloromethane, ethyl acetate (EtOAc), and methanol extracts were prepared sequentially by maceration. Results revealed that EtOAc extracts of T. senegalensis and T. aphylla fruits contained the highest total phenolic content (113.74 and 111.21 mg GAE/g) while that of T. senegalensis (38.47 mg RE/g) recorded the highest total flavonoids content. Among the quantified compounds; ellagic, gallic, 3-hydroxybenzoic, caffeic, syringic, p-coumaric acids, isorhamnetin, procyanidin B2, and kaempferol were the most abundant compounds in the two species. EtOAc extracts of the two organs of T. senegalensis in addition to MeOH extract of T. aphylla aerial parts displayed the highest chelating power (21.00-21.30 mg EDTAE/g, p > 0.05). The highest anti-AChE (3.11 mg GALAE/g) and anti-BChE (3.62 mg GALAE/g) activities were recorded from the hexane and EtOAc extracts of T. senegalensis aerial parts and fruits, respectively. EtOAc extracts of the fruits of the two species exerted the highest anti-tyrosinase (anti-Tyr) activity (99.44 and 98.65 mg KAE/g, p > 0.05). Also, the EtOAc extracts of the both organs of the two species exhibited highest anti-glucosidase activity (0.88-0.90 mmol ACAE/g, p > 0.05) while the best anti-α-amylase activity was recorded from the dichloromethane extract of T. senegalensis fruits (0.74 mmol ACAE/g). In this study, network pharmacology was employed to examine the connection between compounds from Tamarix and their potential effectiveness against Alzheimer's disease. The compounds demonstrated potential interactions with pivotal genes including APP, GSK3B, and CDK5, indicating a therapeutic potential. Molecular docking was carried out to understand the binding mode and interaction of the compounds with the target enzymes. Key interactions observed, such as H-bonds, promoted the binding, and weaker ones, such as van der Waals attractions, reinforced it. These findings suggest that these two Tamarix species possess bioactive properties with health-promoting effects.
Collapse
Affiliation(s)
- Tawsol M Mahadi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Medicinal and Aromatic Plants and Traditional Medicine and Research Institute, National Center for Research, Khartoum, Sudan
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan.
- Université de Lorraine, INRAE, LAE, Nancy, F-54000, France.
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Diletta Piatti
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Massimo Ricciutelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | | | - Sayadat M Eltigani
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Gökhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
11
|
Aly SH, Mahmoud AMA, Abdel Mageed SS, Khaleel EF, Badi RM, Elkaeed EB, Rasheed RA, El Hassab MA, Eldehna WM. Exploring the phytochemicals, antioxidant properties, and hepatoprotective potential of Moricandia sinaica leaves against paracetamol-induced toxicity: Biological evaluations and in Silico insights. PLoS One 2024; 19:e0307901. [PMID: 39383154 PMCID: PMC11463746 DOI: 10.1371/journal.pone.0307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/13/2024] [Indexed: 10/11/2024] Open
Abstract
Thirteen components were identified in the methanol extract of Moricandia sinaica leaves (MSLE) through analysis utilizing HPLC-ESI-MS/MS., including flavonoids, anthocyanins, phenolic acids, and fatty acids. The methanol extract of M. sinaica leaves contained total phenolics and flavonoids (59.37 ± 2.19 mg GAE/g and 38.94 ± 2.72 mg QE/g), respectively. Furthermore, it revealed in vitro antioxidant properties as determined by the DPPH and FRAP assays, with respective IC50 values of 10.22 ± 0.64 and 20.89 ± 1.25 μg/mL. The extract exhibited a notable hepatoprotective effect in rats who experienced paracetamol-induced hepatotoxicity. When a dose of 250 mg/kg was given, there was a 52% reduction in alanine transaminase and a 30% reduction in aspartate transaminase compared to the group with the disease. Furthermore, it demonstrated a 3.4-fold, 2.2-fold, and 2.6-fold increase in superoxide dismutase, non-protein sulfhydryl, and glutathione peroxidase, respectively. In addition, it demonstrated a 68% decrease in lipid peroxide levels compared to the group with paracetamol-induced condition. The verification was conducted using a histological study, which identified improved liver histology with a small number of distended hepatocytes. Moreover, in silico studies focused on the enzymes NADPH oxidase, butyrylcholinesterase, and tyrosinase as the targets for the major compounds. In conclusion, MSLE showed promising hepatoprotective and antioxidant activities due to its richness in antioxidant metabolites.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Abdulla M. A. Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Department of Histology & Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
12
|
Kaplan E, Koc ZE, Uysal A, Uba AI, Zengin G. Elucidation of the Microwave-Assisted Synthesis and Characterization of Heteronuclear Complexes of Bisbenzimidazole Derivatives and Their Biological Activities by In Vitro and In Silico Assays. Chem Biol Drug Des 2024; 104:e14605. [PMID: 39231795 DOI: 10.1111/cbdd.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
A novel and efficient protocol for the microwave-assisted synthesis of diversely substituted 2,2'-bisbenzimidazol-5,6'-dicarboxylic acid (BIMCA) from the reaction of 3,4-diaminobenzoic acid with oxalic acid has been developed, which proceeds through sequential nucleophilic addition and electrophilic substitution in accordance with the Philips method. The synthetic utility of this strategy was demonstrated by the concise, one-pot synthesis of (BIMCA) and metal complexes. (BIMCA) with a [{Fe(salen)}2O] Schiff base ligand complex and new benzimidazole coordination compounds with double oxygen [(BIMCA){Fe(salen)}2] ligand complexes were obtained. The resulting [(BIMCA){Fe(salen)}2] ligand complex was then synthesized from Co(CH3COO)2.4H2O, Ni(CH3COO)2.4H2O and Cu(CH3COO)2.H2O heteronuclear complexes. The condensations proceed with good yield to give products that, in certain instances, are not readily attainable by conventional condensation techniques. The structures of the compounds were identified by Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), elemental analysis and magnetic susceptibility. The mutagenic potential of the synthesized chemicals was evaluated by the Ames test towards mutant Salmonella typhimurium strains TA98 and TA100. It was recorded that these chemicals had no mutagenic action. Also, antimicrobial activities were screened by broth microdilution test. It was seen that the minimum inhibitory concentration (MIC) against Klebsiella pneumoniae, Staphylococcus aureus and Staphylococcus epidermidis was 0.195 mg/mL, followed by a MIC value of 0.390 mg/mL against Escherichia coli and Salmonella typhimurium. [(BIMCA){Fe(salen)}2Co(II)] demonstrated significant antimicrobial activity against Proteus mirabilis and Staphylococcus aureus, with an MIC of 0.195 mg/mL, followed by an MIC of 0.390 mg/mL against Pseudomonas aeruginosa, K. pneumonia and Salmonella typhimurium. The antioxidant properties were examined using various chemical assays, and [(BIMCA){Fe(salen)}2O] and (BIMCA) exhibited greater 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, when compared with other compounds. Enzyme inhibitory effects were tested against acetylcholinesterase (AChE), amylase, butyrylcholinesterase (BChE) and tyrosinase. [(BIMCA){Fe(salen)}2Cu(II)] displayed the best AChE (IC50 0.51 mg/mL), BChE (IC50 0.51 mg/mL) and tyrosinase (IC50 1.52 mg/mL) inhibitory effects. Furthermore, molecular docking calculations were performed to gain insights into the interaction between [(BIMCA){Fe(salen)}2] and AChE, and between [(BIMCA){Fe(salen)}2Cu(II)] and amylase. Both compounds showed the potential inhibition of the protein targets.
Collapse
Affiliation(s)
- Esra Kaplan
- Department of Chemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ziya Erdem Koc
- Department of Chemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ahmet Uysal
- Vocational School of Health Services, Selcuk University, Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
13
|
Dall'Acqua S, Yagi S, Sut S, Uba AI, Ponniya SKM, Koyuncu I, Toprak K, Balos MM, Kaplan A, Çakılcıoğlu U, Zengin G. Combining chemical profiles and biological abilities of different extracts from Tanacetum nitens (Boiss. & Noë) Grierson using network pharmacology. Arch Pharm (Weinheim) 2024; 357:e2400194. [PMID: 38877616 DOI: 10.1002/ardp.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Tanacetum nitens (Boiss. & Noë) Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, β-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Le Laboratoire Agronomie et Environnement, Université de Lorraine, INRAE, LAE, Nancy, France
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kenan Toprak
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mehmet Maruf Balos
- Sanlıurfa Provincial Directorate of National Education, Sanlıurfa, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Uğur Çakılcıoğlu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Gokhan Zengin
- Department of Faculty, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
14
|
Olalekan SO, Obakachi VA, Badeji AA, Akinsipo (Oyelaja) OB, Familoni O, Asekun OT, Oladipo SD, Osinubi AD. Exploring the therapeutic potential of prolinamides as multi-targeted agents for Alzheimer's disease treatment: molecular docking and molecular dynamic simulation studies. In Silico Pharmacol 2024; 12:80. [PMID: 39224128 PMCID: PMC11365881 DOI: 10.1007/s40203-024-00250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) presents a significant global health challenge, with its prevalence expected to rise sharply in the coming years. Despite extensive research, effective treatments addressing the multifaceted pathophysiology of AD remain elusive. This study investigates the therapeutic potential of twenty-seven prolinamides (P1 - P27), with the focus on their interactions with key proteins implicated in AD pathogenesis. Four of the compounds, namely; 10-((4-nitrophenyl)prolyl)-10 H-phenothiazine (P14), 2-((4-nitrophenyl)prolyl)isoindoline (P19), 1-(4-formylphenyl)-N-(p-tolyl)pyrrolidine-2-carboxamide (P22), and N,1-bis(4-nitrophenyl)pyrrolidine-2-carboxamide (P27) showed promising potential as Alzheimer's drug. In-silico approaches including molecular docking, molecular dynamic (MD) simulation, post md study, physicochemical and drug-likeness parameters were employed to ascertain the potential of these compounds as inhibitors of certain proteins implicated in the pathophysiology of Alzheimer's disease. Molecular docking and dynamics simulations demonstrated that P14, P19, P22 and P27 exhibited promising binding affinities towards crucial AD-associated proteins, including Beta-Secretase 1 (BACE1), Butyrylcholinesterase (BuChE), and Tau-tubulin kinase 2 (TTBK2). Structural stability analyses revealed that prolinamides, particularly P22 and P27 for BACE1 and P14 and P19 for BuChE, exhibited greater stability than their reference ligands, indicated by lower RMSD, RoG, and RMSF values. For BuChE, Rivastigmine had a docking score of -7.0 kcal/mol, a binding free energy (ΔGbind) of -22.19 ± 2.44 kcal/mol, RMSD of 1.361 ± 0.162 Å, RMSF of 9.357 ± 3.212 Å, and RoG of 22.919 ± 0.064 Å, whereas P19 exhibited a superior docking score of -10.3 kcal/mol, a significantly better ΔGbind of -33.74 ± 2.84 kcal/mol, RMSD of 1.347 ± 0.132 Å, RMSF of 8.164 ± 2.748 Å, and RoG of 22.868 ± 0.070 Å. Physicochemical and pharmacokinetic assessments affirmed the drug-likeness and bioavailability of P19 notably capable of penetrating the blood-brain barrier. Compounds P19 and P22, emerged as multi-targeted ligands, offering the potential for simultaneous modulation of multiple AD-related pathways. These findings highlight the possibilities of these compounds to be explored as novel therapeutic agents for AD. They also highlight the need for further experimental validation to confirm their efficacy and safety profiles, advancing them toward clinical application in AD management. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00250-z.
Collapse
Affiliation(s)
- Samuel O. Olalekan
- Department of Physiology, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State Nigeria
| | - Vincent A. Obakachi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028 South Africa
| | - Abosede A. Badeji
- Department of Chemical Sciences, Tai Solarin University of Education, Ijagun, P.M.B. 2118, Ijebu Ode, Ogun State Nigeria
| | | | - Oluwole Familoni
- Drug Design Research Group, Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, 101245 Nigeria
| | - Olayinka T. Asekun
- Drug Design Research Group, Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, 101245 Nigeria
| | - Segun D. Oladipo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
- Department of Chemical Sciences, Olabisi Onabanjo University, P.M.B 2002, Ago-Iwoye, Nigeria
| | - Adejoke D. Osinubi
- Department of Chemical Sciences, Tai Solarin University of Education, Ijagun, P.M.B. 2118, Ijebu Ode, Ogun State Nigeria
- Drug Design Research Group, Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, 101245 Nigeria
| |
Collapse
|
15
|
Kisla M, Yaman M, Zengin-Karadayi F, Korkmaz B, Bayazeid O, Kumar A, Peravali R, Gunes D, Tiryaki RS, Gelinci E, Cakan-Akdogan G, Ates-Alagoz Z, Konu O. Synthesis and Structure of Novel Phenothiazine Derivatives, and Compound Prioritization via In Silico Target Search and Screening for Cytotoxic and Cholinesterase Modulatory Activities in Liver Cancer Cells and In Vivo in Zebrafish. ACS OMEGA 2024; 9:30594-30614. [PMID: 39035947 PMCID: PMC11256110 DOI: 10.1021/acsomega.3c06532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Phenothiazines (PTZ) are antipsychotics known to modulate a variety of neurotransmitter activities that include dopaminergic and cholinergic signaling and have been identified as potential anticancer agents in vitro. However, it is important to also test whether a highly cytotoxic, repurposed, or novel PTZ has low toxicity and neuromodulatory activity in vivo using vertebrate model organisms, such as zebrafish. In this study, we synthesized novel phenothiazines and screened them in vitro in liver cancer and in vivo in zebrafish embryos/larvae. The syntheses of several intermediate PTZ 10-yl acyl chlorides were followed by elemental analysis and determination of 1H NMR and 13C NMR mass (ESI+) spectra of a large number of novel PTZ 10-carboxamides. Cytotoxicities of 28 PTZ derivatives (1-28) screened against Hep3B and SkHep1 liver cancer cell lines revealed five intermediate and five novel leads along with trifluoperazine (TFP), prochlorperazine (PCP), and perphenazine, which are relatively more cytotoxic than the basic PTZ core. Overall, the derivatives were more cytotoxic to Hep3B than SkHep1 cells. Moreover, in silico target screening identified cholinesterases as some of the commonest targets of the screened phenothiazines. Interestingly, molecular docking studies with acetylcholinesterase (AChE) and butyrylcholinesterase proteins showed that the most cytotoxic compounds 1, 3, PCP, and TFP behaved similar to Huprin W in their amino acid interactions with the AChE protein. The highly cytotoxic intermediate PTZ derivative 1 exhibited a relatively lower toxicity profile than those of 2 and 3 during the zebrafish development. It also modulated in vivo the cholinesterase activity in a dose-dependent manner while significantly increasing the total cholinesterase activity and/or ACHE mRNA levels, independent of the liver cancer cell type. Our screen also identified novel phenothiazines, i.e., 8 and 10, with significant cytotoxic and cholinesterase modulatory effects in liver cancer cells; yet both compounds had low levels of toxicity in zebrafish. Moreover, they modulated the cholinesterase activity or expression of ACHE in a cancer cell line-specific manner, and compound 10 significantly inhibited the cholinesterase activity in zebrafish. Accordingly, using a successful combination of in silico, in vitro, and in vivo approaches, we identified several lead anticancer and cholinesterase modulatory PTZ derivatives for future research.
Collapse
Affiliation(s)
- Mehmet
Murat Kisla
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06100 Ankara, Turkey
| | - Murat Yaman
- Interdisciplinary
Program in Neuroscience, Bilkent University, 06800 Ankara, Turkey
| | - Fikriye Zengin-Karadayi
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Busra Korkmaz
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
| | - Omer Bayazeid
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
| | - Amrish Kumar
- Institute
of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute
of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Damla Gunes
- Interdisciplinary
Program in Neuroscience, Bilkent University, 06800 Ankara, Turkey
| | - Rafed Said Tiryaki
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
| | - Emine Gelinci
- Izmir
Biomedicine
and Genome Center (IBG), 35340 Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir
Biomedicine
and Genome Center (IBG), 35340 Izmir, Turkey
- Medical
Biology Department, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Zeynep Ates-Alagoz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Ozlen Konu
- Interdisciplinary
Program in Neuroscience, Bilkent University, 06800 Ankara, Turkey
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
16
|
Borowiec K, Szwajgier D, Stachniuk A, Mielniczuk J, Trzpil A. Investigation of Changes in the Polyphenol Profile Verified by LC-MS/MS and the Pro-Health Activities of Fruit Smoothie. Mol Nutr Food Res 2024; 68:e2300426. [PMID: 38924345 DOI: 10.1002/mnfr.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/30/2024] [Indexed: 06/28/2024]
Abstract
SCOPE Bilberry, bananas, and apples are used for smoothie production because the health-promoting activities and to prevent human diseases including neurodegenerative disorders. The smoothie is prepared to promote a promising practice for increasing the intake of fruit in the diet. METHODS AND RESULTS The smoothie is packed into dark glass jars, pasteurized, and stored for up to 4 months at 4 or 22 °C. Then, it is analyzed for the polyphenols profile using liquid chromatography-high resolution mass spectometry (LC-HRMS) Polyphenols content and the antiinflammatory, anticholinesterase, and antioxidant activities, and the impact on catalase activity are controlled using biochemical analyses. A significant decrease in the flavanol content (p < 0.05) is investigated, while there are lower decreases or no changes in the other polyphenols content in the smoothies stored at 4 °C. The changes in the anticholinesterase and antioxidant activities of the smoothie are correlated with the total polyphenols, anthocyanins, flavonols, and tannins content. CONCLUSION The proposed preservation of the smoothie and its storage at refrigeration temperature is adequate to maintain the smoothie's nutritional and functional effect for a 4-month shelf life. Even significant changes in the content of individual subgroups of polyphenols are not drastically reflected in the decrease of the smoothie biological activities.
Collapse
Affiliation(s)
- Kamila Borowiec
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, Lublin, 20-704, Poland
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, Lublin, 20-090, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, Lublin, 20-704, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, Lublin, 20-090, Poland
| | - Jacek Mielniczuk
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, ul. Głęboka 28, Lublin, 20-612, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, Lublin, 20-090, Poland
| |
Collapse
|
17
|
Mlakić M, Čadež T, Šinko G, Škorić I, Kovarik Z. New Heterostilbene and Triazole Oximes as Potential CNS-Active and Cholinesterase-Targeted Therapeutics. Biomolecules 2024; 14:679. [PMID: 38927082 PMCID: PMC11201660 DOI: 10.3390/biom14060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain-blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents-sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Tena Čadež
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
18
|
Basu S, Hendler-Neumark A, Bisker G. Rationally Designed Functionalization of Single-Walled Carbon Nanotubes for Real-Time Monitoring of Cholinesterase Activity and Inhibition in Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309481. [PMID: 38358018 DOI: 10.1002/smll.202309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.
Collapse
Affiliation(s)
- Srestha Basu
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
19
|
Yagi S, Zengin G, Uba AI, Maciejewska-Turska M, Sieniawska E, Świątek Ł, Rajtar B, Bahşi M, Guler O, Dall’Acqua S, Polz-Dacewicz M. Exploring Chemical Composition, Antioxidant, Enzyme Inhibitory and Cytotoxic Properties of Glaucium acutidentatum Hausskn. & Bornm. from Turkey Flora: A Novel Source of Bioactive Agents to Design Functional Applications. Antioxidants (Basel) 2024; 13:643. [PMID: 38929082 PMCID: PMC11200578 DOI: 10.3390/antiox13060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The present study was performed to determine the chemical constituents, cytotoxicity, antioxidant and enzyme inhibition activities of the aerial parts of Glaucium acutidentatum Hausskn. and Bornm. (family Papaveraceae). Methanolic and aqueous extracts were prepared by maceration, homogenizer-assisted extraction (HAE) and infusion. Results showed that the highest total phenolic and flavonoids contents were obtained from the methanol extracts obtained by HAE (53.22 ± 0.10 mg GAE/g) and maceration (30.28 ± 0.51 mg RE/g), respectively. The aporphine, beznyltetrahydroisoquinoline, and protopine types of Glaucium alkaloids have been tentatively identified. Among them, glaucine was identified in all extracts. Flavonoids, phenolic acids, coumarins, organic acids and fatty acids were also detected. Methanolic extract obtained using the HAE method displayed the highest anti-DPPH (41.42 ± 0.62 mg TE/g), total antioxidant (1.20 ± 0.17 mmol TE/g), Cu2+ (113.55 ± 6.44 mg TE/g), and Fe3+ (74.52 ± 4.74 mg TE/g) reducing properties. The aqueous extracts obtained by infusion and HAE methods exerted the best anti-ABTS (103.59 ± 1.49 mg TE/g) and chelating (19.81 ± 0.05 mg EDTAE/g) activities, respectively. Methanolic extract from HAE recorded the highest acetylcholinesterase (2.55 ± 0.10 mg GALAE/g) and α-amylase (0.51 ± 0.02 mmol ACAE/g) inhibition activities, while that obtained by maceration showed the best butyrylcholinesterase (3.76 ± 0.31 mg GALAE/g) inhibition activity. Both extracts revealed the best tyrosinase inhibitory activity (25.15 ± 1.00 and 26.79 ± 2.36 mg KAE/g, p ≥ 0.05). G. acutidentatum maceration-derived aqueous extract showed selective anticancer activity against cells originating from human hypopharyngeal carcinoma. In conclusion, these findings indicated that G. acutidentatum is a promising source of alkaloids and phenolic compounds for variable pharmaceutical formulations.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan;
- LAE, INRAE, Université de Lorraine, F-54000 Nancy, France
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey;
| | | | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (B.R.); (M.P.-D.)
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (B.R.); (M.P.-D.)
| | - Muammer Bahşi
- Department of Primary Education, Faculty of Education, Fırat University, Elazıg 23119, Turkey;
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Tunceli 62500, Turkey;
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (B.R.); (M.P.-D.)
| |
Collapse
|
20
|
Akkaya D, Seyhan G, Sari S, Barut B. In vitro and in silico investigation of FDA-approved drugs to be repurposed against Alzheimer's disease. Drug Dev Res 2024; 85:e22184. [PMID: 38634273 DOI: 10.1002/ddr.22184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Alzheimer's disease (AD), one of the main causes of dementia, is a neurodegenerative disorder. Cholinesterase inhibitors are used in the treatment of AD, but prolonged use of these drugs can lead to serious side effects. Drug repurposing is an approach that aims to reveal the effectiveness of drugs in different diseases beyond their clinical uses. In this work, we investigated in vitro and in silico inhibitory effects of 11 different drugs on cholinesterases. The results showed that trimebutine, theophylline, and levamisole had the highest acetylcholinesterase inhibitory actions among the tested drugs, and these drugs inhibited by 68.70 ± 0.46, 53.25 ± 3.40, and 44.03 ± 1.20%, respectively at 1000 µM. In addition, these drugs are bound to acetylcholinesterase via competitive manner. Molecular modeling predicted good fitness in acetylcholinesterase active site for these drugs and possible central nervous system action for trimebutine. All of these results demonstrated that trimebutine was determined to be the drug with the highest potential for use in AD.
Collapse
Affiliation(s)
- Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gökçe Seyhan
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Suat Sari
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
21
|
Soylu-Eter Ö, Özsoy N, Karalı N. Synthesis and molecular docking studies of 5-trifluoromethoxy-2-indolinones as cholinesterase dual inhibitors. Future Med Chem 2024; 16:623-645. [PMID: 38470247 DOI: 10.4155/fmc-2023-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: In Alzheimer's disease, butyrylcholinesterase (BuChE) activity gradually increases, while acetylcholinesterase (AChE) activity decreases or remains unchanged. Dual inhibitors have important roles in regulation of synaptic acetylcholine levels and progression of Alzheimer's disease. Methods: 1-(Thiomorpholin-4-ylmethyl)/benzyl-5-trifluoromethoxy-2-indolinones (6-7) were synthesized. AChE and BuChE inhibitory effects were investigated with Ellman's method. Molecular docking studies were performed for analyzing the possible binding interactions at active sites. Results: Compound 6g was the strongest inhibitor against both AChE (Ki = 0.35 μM) and BuChE (Ki = 0.53 μM). It showed higher inhibitory effects than both donepezil and galantamine. Moreover, compound 7m had a higher inhibitory effect than galantamine and the effect was comparable to that of donepezil against both AChE (Ki = 0.69 μM) and BuChE (Ki = 0.95 μM). Conclusion: The benzyl substitution compared with 1-(thiomorpholin-4-ylmethyl) group significantly increased both AChE and BuChE inhibitory effects.
Collapse
Affiliation(s)
- Özge Soylu-Eter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, Istanbul University, 34126, Istanbul, Turkey
| | - Nurten Özsoy
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Nilgün Karalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|
22
|
Terzic M, Fayez S, Fahmy NM, Eldahshan OA, Uba AI, Ponniya SKM, Selvi S, Nilofar, Koyuncu I, Yüksekdağ Ö, Zengin G. Chemical characterization of three different extracts obtained from Chelidonium majus L. (Greater celandine) with insights into their in vitro, in silico and network pharmacological properties. Fitoterapia 2024; 174:105835. [PMID: 38301936 DOI: 10.1016/j.fitote.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Plant species C. majus, which is a very rich source of secondary metabolites, was used to obtain extracts, using a conventional extraction technique. For the extraction of bioactive molecules, three solvents were used: ethyl acetate, methanol and water, which differ from each other based on their polarity. The obtained extracts were examined in terms of chemical composition, antioxidant, enzyme inhibitory activity, and cytotoxic effects. The research results indicate that methanol was a better and more efficient extractant in the process of isolating bioactive compounds than ethyl acetate and water. The chemical composition of this solvent, i.e. its polarity, contributed the most to the extraction of alkaloids and flavonoids. The high content of total phenolic compounds in the methanol extract, as well as individual alkaloids, caused a very strong antioxidant activity, as well as a strong inhibitory power when it comes to inhibiting the excessive activity of cholinesterase and tyrosinase. Methanol and ethyl acetate extracts achieved very good cytotoxic activity against cancerous cells HGC-27 and HT-29 and did not exert a toxic effect on non-cancerous cell lines (HEK293). Extracts of plant species C. majus, especially methanol extract could be characterized as a very good starting plant material for the formulation of products intended for various branches of the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Milena Terzic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | | | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Özgür Yüksekdağ
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey.
| |
Collapse
|
23
|
Sut S, Dall'Acqua S, Sinan KI, Zengin G, Uba AI, Etienne OK, Jugreet S, Mahomoodally MF. Bioactive agents from Parkia biglobosa (Jacq.) R.Br. ex G. Don bark extracts for health promotion and nutraceutical uses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2820-2831. [PMID: 38009330 DOI: 10.1002/jsfa.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Parkia biglobosa stem bark extracts were prepared using methanol, methanol 80%, water and ethyl acetate to investigate their phytochemical contents, as well as antioxidant and enzyme inhibitory properties. RESULTS Liquid chromatography (LC) quadrupole time-of-flight mass spectrometry (MS) and LC-MSn revealed the presence of flavonoids, hydroxycinnamic acid derivatives and gallotannins. Particularly, the water extract contained rutin (480 μg per 100 mg) and 3-caffeoylquinic acid (1109 μg per 100 mg) in higher amounts, whereas the 80% methanol extract contains methoxyluteolin-7-O-rutinoside and catechin derivatives as major compounds. Total phenolic and flavonoid contents of the extracts were yielded in the range of 32.26-119.88 mg gallic acid equivalents g-1 and 0.60-2.39 mg rutin equivalents g-1 , respectively. Total antioxidant capacity was also displayed in the range of 0.53-6.34 mmol Trolox equivalents (TE) g-1 . Both the methanolic extracts showed higher total antioxidant capacity that could be related to the total phenolic contents. Radical scavenging capacity in DPPH (2,2-diphenyl-2-picryl-hydrazyl) (37.21-508.30 mg TE g-1 ) and ABTS [2,2-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid)] (60.95-1068.06 mg TE g-1 ) assays, reducing power in cupric ion reducing antioxidant capacity (54.23-1002.78 mg TE g-1 ) and ferric ion reducing antioxidant power (33.18-558.68 mg TE g-1 ) assays, as well as metal chelating activity (2.45-11.28 mg EDTA equivalents g-1 ), were exhibited by all extracts. All extracts were found to inhibit acetylcholinesterase [0.23-2.47 mg galanthamine equivalents (GALAE) g-1 ], tyrosinase [27.20-83.33 mg kojic acid equivalents g-1 ], amylase [mmol acarbose equivalents (ACAE) g-1 ]. On the other hand, all extracts, except the water extract, inhibited butyrylcholinesterase (5.38-6.56 mg GALAE g-1 ), whereas only the water and ethyl acetate extract showed glucosidase inhibitory potential (1.96 and 1.82 mmol ACAE g-1 ). In general, the water extract was found to be a weaker enzyme inhibitor suggesting that water is not the preferrable extraction solvent to obtain active products. CONCLUSION The present study demonstrated that the stem bark extracts of P. biglobosa contains good amount of phytochemical and extracts present significant antioxidant, as well as reasonable enzyme inhibitory effects. Hence, these findings suggest that further studies can be performed on more specific biological targets and models of bioactivity to determine their safe usage as a nutraceutical or for the preparation functional foods. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdullah Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkiye
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
24
|
Limtragool OA, Pitchuanchom S, Boonyarat C, Kanokmedhakul K, Kanokmedhakul S. Bioactive cholinesterase inhibitions of clerodanes from the flowers of Croton krabas and molecular docking studies. Nat Prod Res 2024:1-10. [PMID: 38501726 DOI: 10.1080/14786419.2024.2330513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The first investigation of the phytochemical profile of the flowers of Croton krabas led to the isolation of two new clerodane diterpenes, 6S-crotocaudin (1) and crotocaudin B (2), together with two known clerodanes, 6S-crotoeurin C (3) and isoteucvin (4). The structures and absolute configurations of isolated clerodanes were elucidated by extensive analysis of NMR spectroscopic data, mass spectrometry and ECD calculations. Compounds 1-4 demonstrated significant inhibitory activity towards acetylcholinesterase (AChE). Notably, compound 2 exhibited the strongest AChE inhibition (IC50 1.01 µM). Compounds 3 and 4 showed potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 1.09 and 1.12 µM, respectively. The molecular docking results revealed that 2 bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE, while 3 occupied in the CAS of BChE.
Collapse
Affiliation(s)
- Oue-Artorn Limtragool
- Department of Chemistry, Multidisciplinary Research Unit of Pure and Applied Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Siripit Pitchuanchom
- Department of Chemistry, Multidisciplinary Research Unit of Pure and Applied Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Department of Chemistry, Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Department of Chemistry, Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
25
|
Dutra LL, Borges RJ, Maltarollo VG, Mendes TAO, Bressan GC, Leite JPV. In silico evaluation of pharmacokinetics properties of withanolides and simulation of their biological activities against Alzheimer's disease. J Biomol Struct Dyn 2024; 42:2616-2631. [PMID: 37166375 DOI: 10.1080/07391102.2023.2206909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
The withanolides are naturally occurring steroidal lactones found mainly in plants of the Solanaceae family. The subtribe Withaninae includes species like Withania sominifera, which are a source of many bioactive withanolides. In this work, we selected and evaluate the ADMET-related properties of 91 withanolides found in species of the subtribe Withaninae computationally, to predict the relationship between their structures and their pharmacokinetic profiles. We also evaluated the interaction of these withanolides with known targets of Alzheimer's disease (AD) through molecular docking and molecular dynamics. Withanolides presented favorable pharmacokinetic properties, like high gastrointestinal absorption, lipophilicity (logP ≤ 5), good distribution and excretion parameters, and a favorable toxicity profile. The specie Withania aristata stood out as an interesting source of the promising withanolides classified as 5-ene with 16-ene or 17-ene. These withanolides presented a favourable pharmacokinetic profile and were also highlighted as the best candidates for inhibition of AD-related targets. Our results also suggest that withanolides are likely to act as cholinesterase inhibitors by interacting with the catalytic pocket in an energy favorable and stable way.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Luana L Dutra
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Rafael J Borges
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Vinícius G Maltarollo
- Pharmaceutical Products Department- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gustavo C Bressan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - João Paulo V Leite
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Sinan KI, Sut S, Zengin G, Dall'Acqua S, Bouyahya A, Uba AI, Ponniya SKM, Rengasamy KRR. Integration of chemical characterization, biological activities, and network pharmacology of different extracts from Syzygium rowlandii. J Mol Struct 2024; 1299:137117. [DOI: 10.1016/j.molstruc.2023.137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Bon L, Banaś A, Dias I, Melo-Marques I, Cardoso SM, Chaves S, Santos MA. New Multitarget Rivastigmine-Indole Hybrids as Potential Drug Candidates for Alzheimer's Disease. Pharmaceutics 2024; 16:281. [PMID: 38399339 PMCID: PMC10892719 DOI: 10.3390/pharmaceutics16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no cure so far, probably due to the complexity of this multifactorial disease with diverse processes associated with its origin and progress. Several neuropathological hallmarks have been identified that encourage the search for new multitarget drugs. Therefore, following a multitarget approach, nine rivastigmine-indole (RIV-IND) hybrids (5a1-3, 5b1-3, 5c1-3) were designed, synthesized and evaluated for their multiple biological properties and free radical scavenging activity, as potential multitarget anti-AD drugs. The molecular docking studies of these hybrids on the active center of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) suggest their capacity to act as dual enzyme inhibitors with probable greater disease-modifying impact relative to AChE-selective FDA-approved drugs. Compounds 5a3 (IC50 = 10.9 µM) and 5c3 (IC50 = 26.8 µM) revealed higher AChE inhibition than the parent RIV drug. Radical scavenging assays demonstrated that all the hybrids containing a hydroxyl substituent in the IND moiety (5a2-3, 5b2-3, 5c2-3) have good antioxidant activity (EC50 7.8-20.7 µM). The most effective inhibitors of Aβ42 self-aggregation are 5a3, 5b3 and 5c3 (47.8-55.5%), and compounds 5b2 and 5c2 can prevent the toxicity induced by Aβ1-42 to cells. The in silico evaluation of the drug-likeness of the hybrids also showed that all the compounds seem to have potential oral availability. Overall, within this class of RIV-IND hybrids, 5a3 and 5c3 appear as lead compounds for anti-AD drug candidates, deserving further investigation.
Collapse
Affiliation(s)
- Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Angelika Banaś
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Melo-Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
| | - Sandra M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - M. Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| |
Collapse
|
28
|
Kurt-Celep I, Zheleva-Dimitrova D, Sinan KI, Uba AI, Nilofar, Mahomoodally MF, Aumeeruddy MZ, Cakilcioglu U, Dall'Acqua S, Zengin G. Uncovering chemical profiles, biological potentials, and protection effect against ECM destruction in H 2 O 2 -treated HDF cells of the extracts of Stachys tundjeliensis. Arch Pharm (Weinheim) 2024; 357:e2300528. [PMID: 37974540 DOI: 10.1002/ardp.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
29
|
Fahmy NM, Fayez S, Zengin G, Selvi S, Uba AI, Mollica A, Bouyahya A, Ponniya SKM, Nilofar, Lekmine S, Ferrante C, Eldahshan OA. Chemical exploration of different extracts from Phytolacca americana leaves and their potential utilization for global health problems: ın silico and network pharmacology validation. J Biomol Struct Dyn 2024:1-21. [PMID: 38288952 DOI: 10.1080/07391102.2024.2308770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2025]
Abstract
Phytolacca americana L. is of great interest as a traditional additive in various folk remedies in several countries, including Turkey. We aimed to determine the chemical profile (assisted by high-Performance liquid chromatography-electrospray ionization-tandem mass apectrometry (HPLC-ESI-MS/MS) experiments of three extracts obtained by different polarity solvents viz. ethyl acetate (to extract semipolar compounds), methanol and water (to extract highly polar metabolites) from P. americana leaves. Their anti-diabetic effects were investigated in vitro by assessing their inhibition toα-amylase and α-glucosidase. Assessment of the neuroprotective potential of the three extracts was carried out against acetyl-(AChE) and butyryl-(BChE) cholinesterase enzymes. HPLC-ESI-MS/MS experiments showed a total of 17 chromatographic peaks primarily classified to six flavonoids, two saponins, and six fatty acids. Antioxidant assays revealed remarkable activity for the ethyl acetate and methanol extracts. The BChE inhibition was considerably more significant (4.08 mg galantamine equivalent (GALAE)/g) for the ethyl acetate extract, whereas the methanol extract had good inhibitory efficacy for AChE (2.05 mg GALAE/g). Through network pharmacology, the compounds' mechanism of action of targeted key gene in their associated diseases were identified. The hubb gene signal transducer and activator of transcription 3 (STAT3) and tumour necrosis factor (TNFα) where the P. americana compound's site of action in inflammation bowel disease. The results offer possibilities for the prospective application of P. americana in metabolic regulation, blood glucose control, and as a source of bioactive compounds with cholinesterase enzyme inhibitory characteristics which could be of relevance in the cosmetic or pharmaceutical industry for combating melanogenesis.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Adriano Mollica
- Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara, Chieti, Italy
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino deiSemplici", Universitàdegli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela, Algeria
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino deiSemplici", Universitàdegli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center of Drug Development Research and Discovery, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Bittar VP, Silva Borges AL, Justino AB, Carrillo MSP, Mateus Duarte RF, Silva NBS, Gonçalves DS, Prado DG, Araújo IAC, Martins MM, Gomes Martins CH, Botelho FV, Silva NM, de Oliveira A, Espíndola FS. Bioactive compounds from the leaves of Maytenus ilicifolia Mart. ex Reissek: Inhibition of LDL oxidation, glycation, lipid peroxidation, target enzymes, and microbial growth. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117315. [PMID: 37852339 DOI: 10.1016/j.jep.2023.117315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 μg/mL and 7.95 μg/mL) compared to acarbose (0.144 μg/mL). Most organic fractions exhibited ∼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.
Collapse
Affiliation(s)
- Vinicius Prado Bittar
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Ana Luiza Silva Borges
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Allisson Benatti Justino
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Maria Sol Peña Carrillo
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Rener Francisco Mateus Duarte
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Daniela Silva Gonçalves
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Diego Godina Prado
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Iasmin Aparecida Cunha Araújo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, 38400-902, Brazil
| | - Mário Machado Martins
- Laboratory of Nanobiotechnology "Dr. Luiz Ricardo Goulart Filho", Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Françoise Vasconcelos Botelho
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, 38400-902, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Foued Salmen Espíndola
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
31
|
Veras JPC, França VLB, Carvalho HF, Freire VN. Noncovalent binding of carbofuran to acetylcholinesterase from Homo sapiens, Danio rerio, Apis mellifera and Caenorhabditis elegans: Homology modelling, molecular docking and dynamics, and quantum biochemistry description. Chem Biol Interact 2024; 388:110826. [PMID: 38101596 DOI: 10.1016/j.cbi.2023.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Although various regulatory agencies have banned or severely restricted the use of carbofuran (CAR), recent reports indicate the presence of CAR residues in both cultivated and wild areas. This pesticide is a potent inhibitor of acetylcholinesterase (AChE), which acts by preventing the hydrolysis of acetylcholine (ACh). Given the critical role of AChE::ACh in the proper functioning of the nervous system, we thought it appropriate to investigate the binding of CAR to AChEs from Homo sapiens, Danio rerio, Apis mellifera, and Caenorhabditis elegans using homology modelling, molecular docking, molecular dynamics, and quantum biochemistry. Molecular docking and dynamics results indicated peculiar structural behavior in each AChE::CAR system. Quantum biochemistry results showed similar affinities for all complexes, confirming the description of carbofuran as a broad-spectrum pesticide, and have a limited correlation with IC50 values. We found the following decreasing affinity order of AChE species: H. sapiens > A. mellifera > C. elegans > D. rerio. The computational results suggest that CAR occupies different pockets in the AChEs studied. In addition, our results showed that CAR binds to hsAChE and ceAChE in a very similar manner: it has high affinities for the same subsites in both species and forms hydrogen bonds with residues (hsTYR124 and ceTRP107) occupying homologous positions in the peripheral site. This suggests that this nematode is a potential model to evaluate the toxicity of carbamates, even though the sequence identity between them is only 41 %. Interestingly, we also observed that the catalytic histidines of drAChE and amAChE exhibited favorable contacts with carbofuran, suggesting that the non-covalent binding of carbofuran to these proteins may promote faster carbamylation rates than the binding modes to human and worm acetylcholinesterases. Our computational results provide a better understanding of the binding mechanisms in these complexes, as well as new insights into the mechanism of carbamylation.
Collapse
Affiliation(s)
- João P C Veras
- Department of Physics, Federal University of Ceará, Campus of Pici, 60440-554, Fortaleza, Ceará, Brazil
| | - Victor L B França
- Department of Physics, Federal University of Ceará, Campus of Pici, 60440-554, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-275, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-864, Campinas, São Paulo, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Campus of Pici, 60440-554, Fortaleza, Ceará, Brazil
| |
Collapse
|
32
|
Nilofar, Duran T, Uba AI, Cvetanović Kljakić A, Božunović J, Gašić U, Bouyahya A, Yıldiztugay E, Ferrante C, Zengin G. Extractions of aerial parts of Hippomarathrum scabrum with conventional and green methodologies: Chemical profiling, antioxidant, enzyme inhibition, and anti-cancer effects. J Sep Sci 2024; 47:e2300678. [PMID: 37994215 DOI: 10.1002/jssc.202300678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Hippomarathrum scabrum L. is an endemic medicinal plant in Turkey; however, there have been few studies investigating the phytochemistry and biological properties of these plants has not been investigated. The aim of this work is to determine the chemical composition of different extracts (extracts obtained by using supercritical carbon dioxide extraction, accelerated solvent extraction, homogenizer-assisted extraction, microwave-assisted extraction, and ultrasound-assisted extraction from Hippomarathrum scabrum L., and evaluate their biological properties. The analysis revealed that 5-O-caffeoylquinic acid, rutin, and isorhamnetin 3-O-rutinoside were the main bioactive compounds. The extract obtained by accelerated extraction contains the highest concentration of 5-O-Caffeoylquinic acid (7616.74 ± 63.09 mg/kg dry extract) followed by the extract obtained by homogenizer-assisted extraction (6682.53 ± 13.04 mg/kg dry extract). In antioxidant tests, all extracts expressed significant antioxidant activity. Also, cytotoxic and anticancer effects of these plant extracts were detected in the human prostate cancer cell line. Intrinsic apoptotic genes were up-regulated and anti-apoptotic genes were down-regulated in human prostate cancer cells after inhibition concentration dose treatment. The findings are promising, and suggest the use of these plant extracts could be used as natural sources with different biological activities, as well as anticancer agents.
Collapse
Affiliation(s)
- Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Tugce Duran
- Department of Medical Genetics, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morroco
| | - Evren Yıldiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
33
|
Vaaland IC, López Ó, Puerta A, Fernandes MX, Padrón JM, Fernández-Bolaños JG, Sydnes MO, Lindbäck E. Investigation of the enantioselectivity of acetylcholinesterase and butyrylcholinesterase upon inhibition by tacrine-iminosugar heterodimers. J Enzyme Inhib Med Chem 2023; 38:349-360. [DOI: 10.1080/14756366.2022.2150762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- I. Caroline Vaaland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez, La Laguna, Spain
| | - Miguel X. Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez, La Laguna, Spain
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez, La Laguna, Spain
| | | | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
34
|
Žunec S, Vadlja D, Ramić A, Zandona A, Maraković N, Brekalo I, Primožič I, Katalinić M. Profiling Novel Quinuclidine-Based Derivatives as Potential Anticholinesterase Drugs: Enzyme Inhibition and Effects on Cell Viability. Int J Mol Sci 2023; 25:155. [PMID: 38203326 PMCID: PMC10778980 DOI: 10.3390/ijms25010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cholinergic system, relying on the neurotransmitter acetylcholine (ACh), plays a significant role in muscle contraction, cognition, and autonomic nervous system regulation. The enzymes acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, responsible for hydrolyzing ACh, can fine-tune the cholinergic system's activity and are, therefore, excellent pharmacological targets to address a range of medical conditions. We designed, synthesized, and profiled 14 N-alkyl quaternary quinuclidines as inhibitors of human AChE and BChE and analyzed their impact on cell viability to assess their safety in the context of application as potential therapeutics. Our results showed that all of the 14 tested quinuclidines inhibited both AChE and BChE in the micromolar range (Ki = 0.26 - 156.2 μM). The highest inhibition potency was observed for two bisquaternary derivatives, 7 (1,1'-(decano)bis(3-hydroxyquinuclidinium bromide)) and 14 (1,1'-(decano)bis(3-hydroxyiminoquinuclidinium bromide)). The cytotoxic effect within 7-200 μM was observed only for monoquaternary quinuclidine derivatives, especially those with the C12-C16 alkyl chain. Further analysis revealed a time-independent mechanism of action, significant LDH release, and a decrease in the cells' mitochondrial membrane potential. Taking all results into consideration, we can confirm that a quinuclidine core presents a good scaffold for cholinesterase binding and that two bisquaternary quinuclidine derivatives could be considered as candidates worth further investigations as drugs acting in the cholinergic system. On the other hand, specific cell-related effects probably triggered by the free long alkyl chain in monoquaternary quinuclidine derivatives should not be neglected in future N-alkyl quaternary quinuclidine derivative structure refinements. Such an effect and their potential to interact with other specific targets, as indicated by a pharmacophore model, open up a new perspective for future investigations of these compounds' scaffold in the treatment of specific conditions and diseases other than cholinergic system-linked disorders.
Collapse
Affiliation(s)
- Suzana Žunec
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Donna Vadlja
- Armed Forces of the Republic of Croatia, Trg Kralja Petra Krešimira IV br. 1, 10000 Zagreb, Croatia;
| | - Alma Ramić
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Nikola Maraković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Iva Brekalo
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Ines Primožič
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| |
Collapse
|
35
|
Linphosan C, Uk-At S, Setsuwan P, Srisupattanakul P, Boonyarat C, Poopasit K, Limtragool OA. A New Clerodane from the Leaves of Croton krabas and Its Cholinesterase Inhibitory Activities. Chem Biodivers 2023; 20:e202301309. [PMID: 37926685 DOI: 10.1002/cbdv.202301309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Chromatographic separation of the leaves of Croton krabas resulted in the isolation of one new clerodane, crotoeurin D (1), along with two known compounds, 6S-crotoeurin C (2) and blumenol A (3). Their structures were determined based on extensive nuclear magnetic resonance spectroscopic data analysis and mass spectrometry. The absolute configuration of the new clerodane was assigned by nuclear overhauser effect spectroscopy correlations and electronic circular dichroism calculations. Compound 1 exhibited significant acetylcholinesterase and butyrylcholinesterase inhibitory activities. Moreover, the binding modes of 1 revealed that its structure formed strong hydrogen bonds and hydrophobic interactions with the active sites of both enzymes.
Collapse
Affiliation(s)
- Chaiwat Linphosan
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Sunita Uk-At
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Phiraphon Setsuwan
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Pattanasak Srisupattanakul
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kitisak Poopasit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Oue-Artorn Limtragool
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| |
Collapse
|
36
|
Fayez S, Fahmy NM, Zengin G, Yagi S, Uba AI, Eldahshan OA, Koyuncu I, Temiz E, Dall'Acqua S, Sut S, Selvi S. LC-MS/MS and GC-MS profiling, antioxidant, enzyme inhibition, and antiproliferative activities of Thymus leucostomus H ausskn. & V elen. extracts. Arch Pharm (Weinheim) 2023; 356:e2300444. [PMID: 37754205 DOI: 10.1002/ardp.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that ɣ-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.
Collapse
Affiliation(s)
- Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Abbassia, Egypt
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
37
|
Yagi S, Uba AI, Sinan KI, Piatti D, Sagratini G, Caprioli G, Eltigani SM, Lazarova I, Zengin G. Comparative Study on the Chemical Profile, Antioxidant Activity, and Enzyme Inhibition Capacity of Red and White Hibiscus sabdariffa Variety Calyces. ACS OMEGA 2023; 8:42511-42521. [PMID: 38024777 PMCID: PMC10652262 DOI: 10.1021/acsomega.3c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Hibiscus sabdariffa L. (Family: Malvaceae) is believed to be domesticated by the people of western Sudan sometime before 4000 BC for their nutritional and medicinal properties. This study aimed to investigate the chemical profile, antioxidant activity, and enzyme inhibition property of extracts from red roselle (RR) and white roselle (WR) varieties grown in Sudan. Three aqueous extracts obtained by maceration, infusion, and decoction, in addition to the methanolic one, were prepared from the two roselle varieties. Results showed that the highest total phenolic and flavonoid contents of RR were obtained from the extracts prepared by infusion (28.40 mg GAE/g) and decoction (7.94 mg RE/g) respectively, while those from the WR were recorded from the methanolic extract (49.59 mg GAE/g and 5.81 mg RE/g respectively). Extracts of RR were mainly characterized by high accumulation of chlorogenic acid (6502.34-9634.96 mg kg-1), neochlorogenic acid (937.57-8949.61 mg kg-1), and gallic acid (190-4573.55 mg kg-1). On the other hand, neochlorogenic acid (1777.05-6946.39 mg kg-1) and rutin (439.29-2806.01 mg kg-1) were the dominant compounds in WR. All extracts from RR had significant (p < 0.05) higher antioxidant activity than their respective WR except in their metal chelating power, where the methanolic extract of the latter showed the highest activity (3.87 mg EDTAE/g). RR extracts prepared by infusion recorded the highest antioxidant values (35.09, 52.17, 65.62, and 44.92 mg TE/g) in the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), CUPRAC (cupric ion reducing antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, respectively. All aqueous extracts from the WR exerted significant (p < 0.05) acetylcholinesterase (AChE) inhibitory activity (3.42-4.77 mg GALAE/g; GALAE = galantamine equivalents), while only one extract, obtained by maceration, from RR exerted AChE inhibitory activity (4.79 mg GALAE/g). All extracts of the RR showed relatively higher BChE (butyrylcholinesterase) inhibitory activity (3.71-4.23 mg GALAE/g) than the WR ones. Methanolic extracts of the two roselle varieties displayed the highest Tyr (tyrosinase) inhibitory activity (RR = 48.25 mg KAE/g; WR = 42.71 mg KAE/g). The methanolic extract of RR exhibited the highest amylase (0.59 mmol ACAE/g) and glucosidase (1.46 mmol ACAE/g) inhibitory activity. Molecular docking analysis showed that delphinidin 3,5-diglucoside, rutin, isoquercitrin, hyperoside, and chlorogenic acid exerted the most promising enzyme inhibitory effect. In conclusion, these findings indicated that the chemical profiles and biological activity of roselle varied according to the variety, extraction solvent, and technique used. These two roselle varieties can serve as a valuable source for the development of multiple formulations in food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Sakina Yagi
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Abdullahi Ibrahim Uba
- Department
of Molecular Biology and Genetics, Istanbul
AREL University, Istanbul 34537, Turkey
| | - Kouadio Ibrahime Sinan
- Physiology
and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Diletta Piatti
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Gianni Sagratini
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Giovanni Caprioli
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Sayadat M. Eltigani
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Irina Lazarova
- Department
of Chemistry, Faculty of Pharmacy, Medical
University-Sofia, 2, Dunav Street, Sofia 1000, Bulgaria
| | - Gökhan Zengin
- Physiology
and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| |
Collapse
|
38
|
Lazarova I, Zengin G, Piatti D, Uba AI, Sagratini G, Caprioli G, Emre G, Ponniya SKM, Rengasamy KR, Paradis NJ, Koyuncu I, Şeker F, Wu C, Nilofar, Flores GA, Cusumano G, Angelini P, Venanzoni R. Appraisals on the chemical characterization and biological potentials of Ranunculus constantinopolitanus extracts using chromatographic, computational, and molecular network approaches. Food Chem Toxicol 2023; 181:114064. [PMID: 37793470 DOI: 10.1016/j.fct.2023.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
In this context, phytochemicals were extracted from Ranunculus constantinopolitanus using ethyl acetate (EA), ethanol, ethanol/water (70%), and water solvent. The analysis encompassed quantification of total phenolic and flavonoid content using spectrophotometric assays, chemical profiling via high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) for the extracts, and assessment of antioxidant activity via 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), metal chelating (MCA), and phosphomolybdenum (PBD) assays. Moreover, antimicrobial activity was assessed against four different bacterial strains, as well as various yeasts. Enzyme inhibitory activities were evaluated against five types of enzymes. Additionally, the extracts were examined for their anticancer and protective effects on several cancer cell lines and the human normal cell line. All of the extracts exhibited significant levels of ferulic acid, kaempferol, and caffeic acid. All tested extracts demonstrated antimicrobial activity, with Escherichia coli and Pseudomonas aeruginosa being most sensitive to EA and ethanol extracts. Molecular docking studies revealed that kaempferol-3-O-glucoside strong interactions with AChE, BChE and tyrosinase. In addition, network pharmacology showed an association between gastric cancer and kaempferol-3-O-glucoside. Based on the results, R. constantinopolitanus can be a potential reservoir of bioactive compounds for future bioproduct innovation and pharmaceutical industries.
Collapse
Affiliation(s)
- Irina Lazarova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Gianni Sagratini
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gizem Emre
- Department of Pharmaceutical Botany, Pharmacy Faculty, Marmara University, Istanbul, Turkey
| | - Sathish Kumar M Ponniya
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Fatma Şeker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Turkey
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Nilofar
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey; Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Giancarlo Angeles Flores
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| |
Collapse
|
39
|
Kappenberg YG, Nogara PA, Stefanello FS, Delgado CP, Rocha JBT, Zanatta N, Martins MAP, Bonacorso HG. 1,2,3-Triazolo[4,5-b]aminoquinolines: Design, synthesis, structure, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, and molecular docking of novel modified tacrines. Bioorg Chem 2023; 139:106704. [PMID: 37453239 DOI: 10.1016/j.bioorg.2023.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
An efficient [4 + 2] cyclization protocol to synthesize a series of twelve examples of 1,2,3-triazolo[4,5-b]aminoquinolines (5) as novel structurally modified tacrines was obtained by reacting readily accessible precursors (i.e., 3-alky(aryl)-5-amino-1,2,3-triazole-4-carbonitriles (3)) and selected cycloalkanones (4) of five-, six-, and seven-membered rings. We evaluated the AChE and BChE inhibitory activity of the novel modified tacrines 5, and the compound derivatives from cyclohexanone (4b) showed the best AChE and BChE inhibitory activities. Specifically, 1,2,3-triazolo[4,5-b]aminoquinolines 5bb obtained from 3-methyl-carbonitrile (3b) showed the highest AChE (IC50 = 12.01 μM), while 5ib from 3-sulfonamido-carbonitrile (3i) was the most significant inhibitor for BChE (IC50 = 1.78 μM). In general, the inhibitory potency of compound 5 was weaker than the pure tacrine reference, and our findings may help to design and develop novel anticholinesterase drugs based on modified tacrines.
Collapse
Affiliation(s)
- Yuri G Kappenberg
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil; Instituto Federal Sul-Rio-Grandense (IFSul), 96418-400- Bagé, RS, Brazil
| | - Felipe S Stefanello
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Cássia P Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
40
|
Ogunsuyi OB, Omage FB, Olagoke OC, Oboh G, Rocha JBT. Phytochemicals from African eggplants ( Solanum macrocarpon L) and Black nightshade ( Solanum nigrum L) leaves as acetylcholinesterase inhibitors: an in-silico study. J Biomol Struct Dyn 2023; 41:7725-7734. [PMID: 36165440 DOI: 10.1080/07391102.2022.2124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Acetylcholinesterase inhibitors (AChEIs) like donepezil are commonly used to treat Alzheimer's disease. AChEIs have also been considered for other therapeutic uses, such as anti-inflammatory neuroprotective agents. Consequently, the use of natural plant products as potential AChEIs can have therapeutic benefits. We previously reported the anticholinesterase properties of the phenolics and alkaloids found in the leaf extracts of two tropical plants with nutritional and ethnobotanical importance-African eggplant (Solanum macrocarpon L) and Black nightshade (Solanum nigrum L). Here, we tested the ability of both extracts to inhibit human erythrocyte AChE (an indirect mediator of pro-inflammatory cytokines production via acetylcholine degradation). We further used molecular docking and MD simulation to identify the potential molecular mechanism(s) of phenolic and alkaloid compounds as human AChEIs. Special focus was given to compounds containing the benzyl group that can establish stacking interactions similar to donepezil (a standard AChEI). Flavone-luteolin rutinosides (LR) were identified as single-binding or dual-binding AChEIs; specifically, we attributed the dual-binding LR4 and LR5 to their linked hexose moiety. This characteristic allows the dual binders to occupy the catalytic triads and the peripheral anionic subsite, while exploring the catalytic gorge. We further delineated the inhibition of human erythrocyte AChE, as the flavone common to both plant extracts-luteolin rutinosides-had positive in silico interactions with AChE. These findings suggest that phytochemicals from S. macrocarpon and S. nigrum with dual binding properties can be potential AChE inhibitors. In fact, compounds such as LR4 and LR5 should be further investigated as potential inhibitors of human AChE and may represent important natural alternatives to donepezil.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Folorunsho Bright Omage
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Olawande Chinedu Olagoke
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - João Batista Teixeria Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
41
|
Matošević A, Opsenica DM, Spasić M, Maraković N, Zandona A, Žunec S, Bartolić M, Kovarik Z, Bosak A. Evaluation of 4-aminoquinoline derivatives with an n-octylamino spacer as potential multi-targeting ligands for the treatment of Alzheimer's disease. Chem Biol Interact 2023; 382:110620. [PMID: 37406982 DOI: 10.1016/j.cbi.2023.110620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of β-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 μM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dejan M Opsenica
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Studentski trg 12-16, 11000, Beograd, Serbia; Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000, Belgrade, Serbia
| | - Marta Spasić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
42
|
Kurt-Celep İ, Zengin G, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Cakilcioglu U, Guler O, Kaplan A, Sharmeen J, Mahomoodally MF. Unraveling the chemical profile, antioxidant, enzyme inhibitory, cytotoxic potential of different extracts from Astragalus caraganae. Arch Pharm (Weinheim) 2023; 356:e2300263. [PMID: 37434089 DOI: 10.1002/ardp.202300263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Six extracts (water, ethanol, ethanol-water, ethyl acetate, dichloromethane, and n-hexane) of Astragalus caraganae were studied for their biological activities and bioactive contents. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), the ethanol-water extract yielded the highest total bioactive content (4242.90 µg g-1 ), followed by the ethanol and water extracts (3721.24 and 3661.37 µg g-1 , respectively), while the least total bioactive content was yielded by the hexane extract, followed by the dichloromethane and ethyl acetate extracts (47.44, 274.68, and 688.89 µg g-1 , respectively). Rutin, p-coumaric, chlorogenic, isoquercitrin, and delphindin-3,5-diglucoside were among the major components. Unlike the dichloromethane extracts, all the other extracts showed radical scavenging ability in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (8.73-52.11 mg Trolox equivalent [TE]/g), while all extracts displayed scavenging property in the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay (16.18-282.74 mg TE/g). The extracts showed antiacetylcholinesterase (1.27-2.73 mg galantamine equivalent [GALAE]/g), antibutyrylcholinesterase (0.20-5.57 mg GALAE/g) and antityrosinase (9.37-63.56 mg kojic acid equivalent [KAE]/g) effects. The molecular mechanism of the H2 O2 -induced oxidative stress pathway was aimed to be elucidated by applying ethanol, ethanol/water and water extracts at 200 µg/mL concentration to human dermal cells (HDFs). A. caraganae in HDF cells had neither a cytotoxic nor genotoxic effect but could have a cytostatic effect in increasing concentrations. The findings have allowed a better insight into the pharmacological potential of the plant, with respect to their chemical entities and bioactive contents, as well as extraction solvents and their polarity.
Collapse
Affiliation(s)
- İnci Kurt-Celep
- Faculty of Pharmacy, Department of Pharmacognosy, Ataşehir, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdullahi I Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | | | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Jugreet Sharmeen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
43
|
Tallini LR, da Silva CR, Jung T, Alves EDO, Baldin SL, Apel M, Timmers LFSM, Rico EP, Bastida J, Zuanazzi JAS. Acetylcholinesterase Inhibition Activity of Hippeastrum papilio (Ravenna) Van Scheepen (Amaryllidaceae) Using Zebrafish Brain Homogenates. Life (Basel) 2023; 13:1721. [PMID: 37629578 PMCID: PMC10455992 DOI: 10.3390/life13081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The Amaryllidaceae family constitutes an interesting source of exclusive alkaloids with a broad spectrum of biological activity. Galanthamine, the most relevant one, has been commercialized for the palliative treatment of Alzheimer's disease symptoms since 2001 due to its potential as an acetylcholinesterase (AChE) inhibitor. In vitro screenings against AChE by applying different Amaryllidaceae species and alkaloids have been reported in the literature; however, they are usually carried out using purified market enzymes. The main goal of this work is to evaluate the AChE inhibitory potential of Hippeastrum papilio (Amaryllidaceae) extracts using zebrafish brain homogenates. The biological assays show that the H. papilio bulb extracts present an interesting AChE inhibitory activity in comparison with the positive reference control galanthamine (IC50 values of 1.20 ± 0.10 and 0.79 ± 0.15 μg/mL, respectively). The chemical profile of H. papilio shows that this species has a high amount of galanthamine, which may contribute to the inhibitory effect on AChE activity of zebrafish brains. Computational experiments were used to build the model for zebrafish AChE and to evaluate the interactions between galanthamine and the enzymic active site. This work suggests that zebrafish could represent an important model in the search for bioactive molecules from the Amaryllidaceae family for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Camila Rockenbach da Silva
- Centro de Ciências da Vida, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil; (C.R.d.S.); (L.F.S.M.T.)
| | - Tatiana Jung
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil;
| | - Elen de Oliveira Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| | - Samira Leila Baldin
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil (E.P.R.)
| | - Miriam Apel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| | - Luis F. S. M. Timmers
- Centro de Ciências da Vida, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil; (C.R.d.S.); (L.F.S.M.T.)
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil
| | - Eduardo Pacheco Rico
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil (E.P.R.)
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Angelo S. Zuanazzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| |
Collapse
|
44
|
Acquaviva A, Nilofar, Bouyahya A, Zengin G, Di Simone SC, Recinella L, Leone S, Brunetti L, Uba AI, Cakilcioğlu U, Polat R, Darendelioglu E, Menghini L, Ferrante C, Libero ML, Orlando G, Chiavaroli A. Chemical Characterization of Different Extracts from Artemisia annua and Their Antioxidant, Enzyme Inhibitory and Anti-Inflammatory Properties. Chem Biodivers 2023; 20:e202300547. [PMID: 37306942 DOI: 10.1002/cbdv.202300547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.
Collapse
Affiliation(s)
- Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Nilofar
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, 1014, Rabat, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | | | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Ugur Cakilcioğlu
- Munzur University, Pertek Sakine Genç Vocational School, Tunceli, Pertek, 62500, Turkey
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, 12000, Turkey
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetic, Science and Art Faculty, Bingol University, Bingöl, 12000, Turkey
| | - Luigi Menghini
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
45
|
Sari S, Önder S, Akkaya D, Sabuncuoğlu S, Zengin M, Barut B, Karakurt A. Azole derivatives inhibit wildtype butyrylcholinesterase and its common mutants. Drug Dev Res 2023; 84:1018-1028. [PMID: 37154110 DOI: 10.1002/ddr.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Azoles, which have been used for antifungal chemotherapy for decades, have recently been of interest for their efficacy against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). There is little known about the potential of azoles against BChE, however there is none regarding their inhibitory effects against mutants of BChE. In the current study, an azole library of 1-aryl-2-(1H-imidazol-1-yl)ethanol/ethanone oxime esters were tested against AChE and BChE, which yielded derivates more potent than the positive control, galantamine, against both isoforms. Kinetic analyses were performed for wildtype and mutant (A328F and A328Y) inhibition for the two most potent BChE inhibitors, pivalic and 3-bezoylpropanoic acid esters of 2-(1H-imidazol-1-yl)-1-(2-naphthyl)ethanol, which were found to have great affinity to the wildtype and mutant BChE types with Ki values as low as 0.173 ± 0.012 µM. The compounds were identified to show linear competitive or mixed type inhibition. Molecular modeling confirmed these kinetic data and provided further insights regarding molecular basis of BChE inhibition by the active derivatives. Thus, current study suggests new azole derivatives with promising cholinesterase inhibitory effects and reveals the first set of information to promote our understanding for the inhibitory behavior of this class against the mutant BChE forms.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Seda Önder
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Akkaya
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| |
Collapse
|
46
|
Acquaviva A, Di Simone SC, Nilofar, Bouyahya A, Zengin G, Recinella L, Leone S, Brunetti L, Uba AI, Guler O, Balos M, Cakilcioğlu U, Menghini L, Ferrante C, Orlando G, Libero ML, Chiavaroli A. Screening for Chemical Characterization and Pharmacological Properties of Different Extracts from Nepeta italica. PLANTS (BASEL, SWITZERLAND) 2023; 12:2785. [PMID: 37570939 PMCID: PMC10420686 DOI: 10.3390/plants12152785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Plants from the Nepeta genus have been proved to possess different pharmacological properties, among which are antimicrobial, antioxidant, anti-inflammatory, analgesic, and cytotoxic effects. Nepeta italica is a medicinal plant traditionally used for its analgesic effects, and in the present study, the phytochemical composition and biological effects of hexane, dichloromethane (DCM), ethyl acetate (EA), ethanol, ethanol-water, and water extracts of the aerial parts were investigated for determining phenolic composition, antioxidant effects, and anti-inflammatory effects in isolated mouse colon specimens exposed to lipopolysaccharide (LPS). Polar extracts were the richest in terms of phenolic compounds, especially rosmarinic acid. In parallel, ethanol, ethanol-water, and water extracts were also the most effective as scavenging/reducing and enzyme inhibition agents, especially towards cholinesterases and α-glucosidase, and in inhibiting the LPS-induced cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) gene expression in mouse colon. This poses the basis for future in vivo investigations for confirming the protective effects of polar extracts of N. italica against inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alessandra Acquaviva
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Nilofar
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Lucia Recinella
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey;
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek 62500, Turkey; (O.G.); (U.C.)
| | - Maruf Balos
- Sanlıurfa Provincial Directorate of National Education, Sanlıurfa 63320, Turkey;
| | - Ugur Cakilcioğlu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek 62500, Turkey; (O.G.); (U.C.)
| | - Luigi Menghini
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Maria Loreta Libero
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (S.C.D.S.); (N.); (L.R.); (S.L.); (L.B.); (L.M.); (C.F.); (G.O.); (A.C.)
| |
Collapse
|
47
|
Sanchis I, Spinelli R, Dias J, Brazzolotto X, Rietmann Á, Aimaretti F, Siano ÁS. Inhibition of Human Cholinesterases and in vitro β-Amyloid Aggregation by Rationally Designed Peptides. ChemMedChem 2023; 18:e202200691. [PMID: 36995341 DOI: 10.1002/cmdc.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
The multifactorial nature of Alzheimer's disease (AD) is now widely recognized, which has increased the interest in compounds that can address more than one AD-associated targets. Herein, we report the inhibitory activity on the human cholinesterases (acetylcholinesterase, hAChE and butyrylcholinesterase, hBChE) and on the AChE-induced β-amyloid peptide (Aβ) aggregation by a series of peptide derivatives designed by mutating aliphatic residues for aromatic ones. We identified peptide W3 (LGWVSKGKLL-NH2 ) as an interesting scaffold for the development of new anti-AD multitarget-directed drugs. It showed the lowest IC50 value against hAChE reported for a peptide (0.99±0.02 μM) and inhibited 94.2 %±1.2 of AChE-induced Aβ aggregation at 10 μM. Furthermore, it inhibited hBChE (IC50 , 15.44±0.91 μM), showed no in vivo toxicity in brine shrimp and had shown moderated radical scavenging and Fe2+ chelating capabilities in previous studies. The results are in line with multiple reports showing the utility of the indole moiety for the development of cholinesterase inhibitors.
Collapse
Affiliation(s)
- Ivan Sanchis
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Roque Spinelli
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées (IRBA) 1, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées (IRBA) 1, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Álvaro Rietmann
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Florencia Aimaretti
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Álvaro S Siano
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
48
|
Merz GE, Chalkley MJ, Tan SK, Tse E, Lee J, Prusiner SB, Paras NA, DeGrado WF, Southworth DR. Stacked binding of a PET ligand to Alzheimer's tau paired helical filaments. Nat Commun 2023; 14:3048. [PMID: 37236970 PMCID: PMC10220082 DOI: 10.1038/s41467-023-38537-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulation of filamentous aggregates of tau protein in the brain is a pathological hallmark of Alzheimer's disease (AD) and many other neurodegenerative tauopathies. The filaments adopt disease-specific cross-β amyloid conformations that self-propagate and are implicated in neuronal loss. Development of molecular diagnostics and therapeutics is of critical importance. However, mechanisms of small molecule binding to the amyloid core is poorly understood. We used cryo-electron microscopy to determine a 2.7 Å structure of AD patient-derived tau paired-helical filaments bound to the PET ligand GTP-1. The compound is bound stoichiometrically at a single site along an exposed cleft of each protofilament in a stacked arrangement matching the fibril symmetry. Multiscale modeling reveals pi-pi aromatic interactions that pair favorably with the small molecule-protein contacts, supporting high specificity and affinity for the AD tau conformation. This binding mode offers critical insight into designing compounds to target different amyloid folds found across neurodegenerative diseases.
Collapse
Affiliation(s)
- Gregory E Merz
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Chalkley
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sophia K Tan
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Nick A Paras
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - William F DeGrado
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Abdullaha M, Banoo R, Nuthakki VK, Sharma M, Kaur S, Thakur S, Kumar A, Jadhav HR, Bharate SB. Methoxy-naphthyl-Linked N-Benzyl Pyridinium Styryls as Dual Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, and Structure-Activity Relationship. ACS OMEGA 2023; 8:17591-17608. [PMID: 37251153 PMCID: PMC10210183 DOI: 10.1021/acsomega.2c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
The multifaceted nature of Alzheimer's disease (AD) indicates the need for multitargeted agents as potential therapeutics. Both cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play a vital role in disease progression. Thus, inhibiting both ChEs is more beneficial than only one for effectively managing AD. The present study provides a detailed lead optimization of the e-pharmacophore-generated pyridinium styryl scaffold to discover a dual ChE inhibitor. A structure-activity relationship analysis indicated the importance of three structural fragments, methoxy-naphthyl, vinyl-pyridinium, and substituted-benzyl, in a dual ChE inhibitor pharmacophore. The optimized 6-methoxy-naphthyl derivative, 7av (SB-1436), inhibits EeAChE and eqBChE with IC50 values of 176 and 370 nM, respectively. The kinetic study has shown that 7av inhibits AChE and BChE in a non-competitive manner with ki values of 46 and 115 nM, respectively. The docking and molecular dynamics simulation demonstrated that 7av binds with the catalytic and peripheral anionic sites of AChE and BChE. Compound 7av also significantly stops the self-aggregation of Aβ. The data presented herein indicate the potential of 7av for further investigation in preclinical models of AD.
Collapse
Affiliation(s)
- Mohd Abdullaha
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Razia Banoo
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K. Nuthakki
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Sharma
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhleen Kaur
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Shikha Thakur
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Ajay Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Hemant R. Jadhav
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
50
|
Fahmy NM, Fayez S, Uba AI, Shariati MA, Aljohani ASM, El-Ashmawy IM, Batiha GES, Eldahshan OA, Singab AN, Zengin G. Comparative GC-MS Analysis of Fresh and Dried Curcuma Essential Oils with Insights into Their Antioxidant and Enzyme Inhibitory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091785. [PMID: 37176843 PMCID: PMC10180709 DOI: 10.3390/plants12091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
Species belonging to the Zingiberaceae family are of high nutritional, industrial, and medicinal values. In this study, we investigated the effect of processing steps (fresh vs. dried milled rhizomes) and extraction methodologies (hydrodistillation vs. hexane extraction) of curcuma essential oil on its chemical content (using GC-MS analysis), its antioxidant behavior (using in vitro assays such as DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation), and its enzyme inhibitory activities (on tyrosinase, acetylcholinesterase, butylcholinesterase, α-amylase, and α-glucosidase) supported by multivariate analysis, in silico studies, and molecular dynamics. The GC-MS investigations revealed a high degree of similarity in the chemical profile of fresh hydrodistilled and hexane-extracted essential oils with tumerone and curlone being the major metabolites. The extraction techniques affected the concentrations of other minor constituents such as terpinolene, caryophylla-4(12), 8(13)-dien-5α-ol, and neo-intermedeol, which were almost exclusively detected in the hydrodistilled fresh essential oil; however, zingiberene and β-sesquiphellandrene were predominant in the hexane-extracted fresh essential oil. In the dried curcuma rhizomes, tumerone and curlone contents were significantly reduced, with the former being detected only in the hydrodistilled essential oil while the latter was doubly concentrated in the hexane-derived oil. Constituents such as D-limonene and caryophyllene oxide represented ca. 29% of the dried hydrodistilled essential oil, while ar-turmerone was detected only in the dried hydrodistilled and hexane-extracted essential oils, representing ca. 16% and 26% of the essential oil composition, respectively. These variations in the essential oil chemical content have subsequently affected its antioxidant properties and enzyme inhibitory activities. In silico investigations showed that hydrophobic interactions and hydrogen bonding were the characteristic binding modes of the bioactive metabolites to their respective targets. Molecular dynamics revealed the stability of the ligand-target complex over time. From the current study we conclude that fresh hexane-extracted essential oil showed the best radical scavenging properties, and fresh rhizomes in general display better enzyme inhibitory activity regardless of the extraction technique.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Türkiye
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave., Almaty 050060, Kazakhstan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ibrahim M El-Ashmawy
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Türkiye
| |
Collapse
|