1
|
Peng C, Xu W, Wang X, Meng F, Zhao Y, Wang Q, Wang X, Lodi RS, Dong X, Zhu C, Peng L. Alginate oligosaccharides trigger multiple defense responses in tobacco and induce resistance to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2025; 16:1506873. [PMID: 40012726 PMCID: PMC11863610 DOI: 10.3389/fpls.2025.1506873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Alginate oligosaccharides (AOSs), important plant immunity inducers, are widely used in agriculture because of their important role in the biological control of crop diseases. However, the mechanism by which AOSs induce plant resistance to pathogens is not clear. Here, we report AOS with a degree of polymerization of 2-5, which was obtained by a newly reported enzyme Aly2. AOS treatment exhibited high activity in enhancing resistance to Phytophthora infestans (P. infestans). AOS significantly induced reactive oxygen species (ROS) accumulation, calcium influx, stomata closure, and callose deposition. The salicylic acid (SA) synthesis-related gene and the defense-related genes were upregulated after AOS treatment. A transcriptome file generated from AOS-treated seedlings verified the SA pathway and suggested the presence of chitin elicitor receptor kinase (CERK). The subsequent results showed that AtCERK1 binds AOS tightly, suggesting that AtCERK1 is responsible for AOS recognition. This study laid a theoretical foundation for the broad application of AOS.
Collapse
Affiliation(s)
- Chune Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Xu
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xipan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yumeng Zhao
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Qingbin Wang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Xinkun Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rathna Silviya Lodi
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaodan Dong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Boulogne I, Mirande‐Ney C, Bernard S, Bardor M, Mollet J, Lerouge P, Driouich A. Glycomolecules: from "sweet immunity" to "sweet biostimulation"? PHYSIOLOGIA PLANTARUM 2024; 176:e14640. [PMID: 39618250 PMCID: PMC11609761 DOI: 10.1111/ppl.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Climate changes and environmental contaminants are daunting challenges that require an urgent change from current agricultural practices to sustainable agriculture. Biostimulants are natural solutions that adhere to the principles of organic farming and are believed to have low impacts on the environment and human health. Further, they may contribute to reducing the use of chemical inputs while maintaining productivity in adverse environments. Biostimulants are generally defined as formulated substances and microorganisms showing benefits for plant growth, yield, rhizosphere function, nutrient-use efficiency, quality of harvested products, or abiotic stress tolerance. These biosolutions are categorized in different subclasses. Several of them are enriched in glycomolecules and their oligomers. However, very few studies have considered them as active molecules in biostimulation and as a subclass on their own. Herein, we describe the structure and the functions of complex polysaccharides, glycoproteins, and glycolipids in relation to plant defense or biostimulation. We also discuss the parallels between sugar-enhanced plant defense and biostimulation with glycomolecules and introduce the concept of sweet biostimulation or glycostimulation.
Collapse
Affiliation(s)
- I. Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
- ECOTERCA ‐ ÉCOlogie TERrestre CAribéenneUniversité des Antilles, Faculté des Sciences Exactes et NaturellesPointe‐à‐Pitre CedexFrance
| | - C. Mirande‐Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - S. Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - J.‐C. Mollet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - A. Driouich
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| |
Collapse
|
3
|
Miranda MM, Miranda PHCD, Pinto Rodrigues AC, Pinto FG, Silva GH, Tronto J, Macedo WR. Enhancing garlic propagation through functional biopolymer-based propagules coatings: A bio-nanotechnological strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109049. [PMID: 39151366 DOI: 10.1016/j.plaphy.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Integrating agricultural, chemical, and technological knowledge is crucial for developing bio-nanotechnologies to improve agricultural production. This study explores the innovative use of biopolymeric coatings, based on sodium alginate and sodium alginate + Laponite® (nanoclay), containing biostimulants (tryptophol and thymol) or not, on garlic cloves. These coatings were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy (SEM). Greenhouse bioassays showed improvements in garlic shoot plant biomass with both treatments: sodium alginate biopolymer and sodium alginate biopolymer plus Laponite®. In the field experiment, garlic plants treated with sodium alginate, in combination with conventional pesticide treatments, resulted in better quality garlic bulbs, where larger garlics were harvested in this treatment, reducing commercial losses. In tropical garlic crops, obtaining plants with greater initial vigor is essential. Our results highlight the potential of these bio-nanotechnological strategies to enhance garlic propagation, ensuring environmental protection and food security.
Collapse
Affiliation(s)
- Milena Malta Miranda
- Institute of Agricultural Sciences, Federal University of Viçosa, Campus Rio Paranaíba, MG 230 Rd, 38.810-000, Brazil
| | | | - Ana Cristina Pinto Rodrigues
- Institute of Agricultural Sciences, Federal University of Viçosa, Campus Rio Paranaíba, MG 230 Rd, 38.810-000, Brazil
| | - Frederico Garcia Pinto
- Institute of Exact Sciences, Federal University of Viçosa, Campus Rio Paranaíba, MG 230 Rd, 38.810-000, Brazil
| | - Geraldo Humberto Silva
- Institute of Exact Sciences, Federal University of Viçosa, Campus Rio Paranaíba, MG 230 Rd, 38.810-000, Brazil
| | - Jairo Tronto
- Institute of Exact Sciences, Federal University of Viçosa, Campus Rio Paranaíba, MG 230 Rd, 38.810-000, Brazil.
| | - Willian Rodrigues Macedo
- Coordenadoria Especial de Ciências Agrárias e Biológicas, Federal University of Santa Catarina, Campus Curitibanos, Ulysses Gaboardi Rd., Km 3, 89520-000, Brazil.
| |
Collapse
|
4
|
Iqbal Y, Amin F, Aziz MH, Wahab R. In-situ fabrication of resveratrol loaded sodium alginate coated silver nanoparticles for in vitro studies of mitochondrial-targeted anticancer treatment against MCF-7 cell lines. Int J Biol Macromol 2024; 280:135656. [PMID: 39278436 DOI: 10.1016/j.ijbiomac.2024.135656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The study aims to improve the viability and stability of resveratrol by encapsulating metal-based biocompatible nanocarrier for mitochondrial-targeted delivery and breast cancer treatment. For this purpose, sodium alginate coated silver nanoparticles were synthesized by in-situ reduction of silver nitrate using sodium borohydride. The prepared nanoparticles and resveratrol-loaded nanoparticles were characterized by utilizing the following instruments including X-ray diffraction (XRD), UV visible spectroscopy, Photoluminescence (PL) spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared (FTIR), Raman spectroscopy, Zeta potential. The dialysis method revealed increased resveratrol release in pH 5 phosphate buffer. The incorporation of resveratrol significantly stimulated the antioxidant activity of sodium alginate coated silver nanoparticles. MTT assay was employed to evaluate the biocompatibility and anticancer potential of developed sodium alginate coated silver nanoparticles and resveratrol-loaded nanoparticles with increasing concentrations against normal HaCaT and breast cancer MCF-7 cell lines respectively. Further, the apoptotic morphology of MCF-7 cells treated with sodium alginate coated nanoparticles and resveratrol loaded nanoparticles was evaluated by AO/EtBr staining and apoptosis was demonstrated in the form of green and red fluorescence. Mitochondrial staining with Mito-Tracker Red evaluated the targeted delivery of RES into mitochondria leading to apoptosis of cancer cells.
Collapse
Affiliation(s)
- Yasir Iqbal
- Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Faheem Amin
- Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Muhammad Hammad Aziz
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Rizwan Wahab
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of Horseradish Peroxidase on Ca Alginate-Starch Hybrid Support: Biocatalytic Properties and Application in Biodegradation of Phenol Red Dye. Appl Biochem Biotechnol 2024; 196:4759-4792. [PMID: 37950796 DOI: 10.1007/s12010-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Jéssica Samara Herek Dos Santos
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Av. Avelino Talini, 171, Lajeado, RS, ZIP CODE 95914-014, Brazil.
| |
Collapse
|
6
|
Tritean N, Trică B, Dima ŞO, Capră L, Gabor RA, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. FRONTIERS IN PLANT SCIENCE 2024; 15:1349573. [PMID: 38835865 PMCID: PMC11148368 DOI: 10.3389/fpls.2024.1349573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.
Collapse
Affiliation(s)
- Naomi Tritean
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Ştefan-Ovidiu Dima
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Luiza Capră
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Raluca-Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | | |
Collapse
|
7
|
Rajib MMR, Sultana H, Gao J, Wang W, Yin H. Curd, seed yield and disease resistance of cauliflower are enhanced by oligosaccharides. PeerJ 2024; 12:e17150. [PMID: 38549777 PMCID: PMC10977091 DOI: 10.7717/peerj.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/03/2024] [Indexed: 04/02/2024] Open
Abstract
Background Oligosaccharides have been demonstrated as promoters for enhancing plant growth across several crops by elevating their secondary metabolites. However, the exploration of employing diverse oligosaccharides for qualitative trait improvements in cauliflower largely unknown. This study was intended to uncover the unexplored potential, evaluating the stimulatory effects of three oligosaccharides on cauliflower's curd and seed production. Methods Two experiments were initiated in the early (15 September) and mid-season (15 October). Four treatments were implemented, encompassing a control (water) alongside chitosan oligosaccharide (COS 50 mg.L-1) with a degree of polymerization (DP) 2-10, oligo galacturonic acid (OGA 50 mg.L-1) with DP 2-10 and alginate oligosaccharide (AOS 50 mg.L-1) with DP 2-7. Results Oligosaccharides accelerated plant height (4-17.6%), leaf number (17-43%), curd (5-14.55%), and seed yield (17.8-64.5%) in both early and mid-season compared to control. These enhancements were even more pronounced in the mid-season (7.6-17.6%, 21.37-43%, 7.27-14.55%, 25.89-64.5%) than in the early season. Additionally, three oligosaccharides demonstrated significant disease resistance against black rot in both seasons, outperforming the control. As a surprise, the early season experienced better growth parameters than the mid-season. However, performance patterns remained more or less consistent in both seasons under the same treatments. COS and OGA promoted plant biomass and curd yield by promoting Soil Plant Analysis Development (SPAD) value and phenol content. Meanwhile, AOS increased seed yield (56.8-64.5%) and elevated levels of chlorophyll, ascorbic acid, flavonoids, while decreasing levels of hydrogen per oxide (H2O2), malondialdehyde (MDA), half maximal inhibitory concentration (IC50), and disease index. The correlation matrix and principal component analysis (PCA) supported these relations and findings. Therefore, COS and OGA could be suggested for curd production and AOS for seed production in the early season, offering resistance to both biotic and abiotic stresses for cauliflower cultivation under field conditions.
Collapse
Affiliation(s)
- Md. Mijanur Rahman Rajib
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hasina Sultana
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jin Gao
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Wenxia Wang
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Heng Yin
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Aly AA, Eliwa NE, Safwat G. Role of gamma-irradiated sodium alginate on growth, physiological and active components of iceberg lettuce (Lactuca sativa) plant. BMC PLANT BIOLOGY 2024; 24:185. [PMID: 38475707 DOI: 10.1186/s12870-024-04853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND One of the most widely recognized biostimulators of plant development; is oligoalginate, which regulates the biological processes of plants and was used in horticultural fields as a plant growth regulator. The plan of the current research was to study, however, the foliar application of un-irradiated and irradiated Na-alginate (UISA and ISA) to improve the growth, physiological activity, and other active components of the Egyptian iceberg lettuce plant. Degraded Na-alginate is equipped with exposure of sodium alginate in its solid state to gamma-rays at different dose levels (0.0, 25, 50, 75, and 100 kGy). The characterization of the oligo-alginates achieved by γ-radiation deprivation at different dose levels was performed by FTIR, XRD, TGA, SEM, and TEM. Different concentrations of irradiated sodium alginate at dose levels of 100 kGy (200, 400, 600, and 800 ppm, as well as deionized water used as a control) were sprayed with a hand sprayer every week after transplanting the iceberg lettuce seedlings in the field until the harvest stage. Morphological traits were evaluated, as well as pigments, ascorbic acid, phenols, flavonoids, soluble proteins, and antioxidant activity. RESULTS Irradiated Na-alginate resulted in the depolymerization of Na-alginate into small molecular-weight oligosaccharides, and the best dose to use was 100 kGy. Certain chemical modifications in the general structure were observed by FTIR analysis. Two absorbed bands at 3329 cm-1 and 1599 cm-1, were recognized that are assigned to O-H and C-O stretching, respectively, and peaks achieved at 1411 cm-1 represent the COO-stretching group connected to the sodium ion. The peak obtained at 1028 cm-1 was owing to the stretching vibration of C-O. The results of TGA provided that the minimum weight reminder was in the ISA at 100 kGy (28.12%) compared to the UISA (43.39%). The images of TEM pointed out that the Na-alginate was globular in shape, with the particle distribution between 12.8 and 21.7 nm in ISA at 100 kGy. Irradiated sodium alginate caused a noteworthy enhancement in the vegetative growth traits (leaf area, stem length, head weight, and leaf number). By spraying 400 ppm, ISA showed a maximum increase in total pigments (2.209 mg/g FW), ascorbic acid (3.13 mg/g fresh weight), phenols (1.399 mg/g FW), flavonoids (0.775 mg/g FW), and antioxidant activities (82.14. %). Also, there were correlation coefficients (R values) between leaf area, stem length, head weight, and leaf number values with total pigment content, antioxidant activity, total soluble proteins, and ascorbic acid. CONCLUSIONS The outcomes of the recent investigation demonstrated that the application of spraying irradiated Na-alginate (100 kGy) resulted in an improvement of the considered characters.
Collapse
Affiliation(s)
- Amina A Aly
- Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Noha E Eliwa
- Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
9
|
Chen C, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z, Long J. Advances in alginate lyases and the potential application of enzymatic prepared alginate oligosaccharides: A mini review. Int J Biol Macromol 2024; 260:129506. [PMID: 38244735 DOI: 10.1016/j.ijbiomac.2024.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Alginate is mainly a linear polysaccharide composed of randomly arranged β-D-mannuronic acid and α-L-guluronic acid linked by α, β-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a β-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.
Collapse
Affiliation(s)
- Chen Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
11
|
Arel I, Ay A, Wang J, Gil-Herrera LK, Dumanli AG, Akbulut O. Encapsulation of Carbon Dots in a Core-Shell Mesh through Coaxial Direct Ink Writing for Improved Crop Growth. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:13939-13949. [PMID: 37771763 PMCID: PMC10523578 DOI: 10.1021/acssuschemeng.3c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Through coaxial direct ink writing, we fabricated a core-shell mesh system for the controlled release of carbon dots (C-dots). In the core ink, we developed an ink formulation with tuned viscosity using hydroxypropyl cellulose and polyethylene glycol to host C-dots. Polycaprolactone was employed as the main shell material, in combination with sodium alginate, to control the degradation rate of the shell. We investigated the degradation profile of the 3D-printed meshes and tracked the weekly release of C-dots in an aqueous medium by spectrofluorometry. We tested the efficacy of the C-dot release on plants by placing the meshes in transparent soil with Triticum aestivum L. seeds. We observed the in vivo translocation of the C-dots in the plant using confocal microscopy. We measured the root elongation and shoot length to assess the effect of C-dots on plant growth. Our study revealed that the plants exposed to C-dots grew 2.5-fold faster than the control group, indicating that C-dots are promising nanofertilizers for aggrotech and non-toxic fluorescent biolabels for in vivo applications.
Collapse
Affiliation(s)
- Isik Arel
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Ayse Ay
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Jingyi Wang
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Luz Karime Gil-Herrera
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ahu Gümrah Dumanli
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ozge Akbulut
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
12
|
Du Y, Zhang Q, Yu M, Yin M, Chen F. Effect of sodium alginate-gelatin-polyvinyl pyrrolidone microspheres on cucumber plants, soil, and microbial communities under lead stress. Int J Biol Macromol 2023; 247:125688. [PMID: 37423439 DOI: 10.1016/j.ijbiomac.2023.125688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Lead is highly persistent and toxic in soil, hindering plant growth. Microspheres are a novel, functional, and slow-release preparation commonly used for controlled release of agricultural chemicals. However, their application in the remediation of Pb-contaminated soil has not been studied; furthermore, the remediation mechanism involved has not been systematically assessed. Herein, we evaluated the Pb stress mitigation ability of sodium alginate-gelatin-polyvinyl pyrrolidone composite microspheres. Microspheres effectively attenuated the Pb toxic effect on cucumber seedlings. Furthermore, they boosted cucumber growth, increased peroxidase activity, and chlorophyll content, while reducing malondialdehyde content in leaves. Microspheres promoted Pb enrichment in cucumber, especially in roots (about 4.5 times). They also improved soil physicochemical properties, promoted enzyme activity, and increased soil available Pb concentration in the short term. In addition, microspheres selectively enriched functional (heavy metal-tolerating and plant growth promoting) bacteria to adapt to and resist Pb stress by improving soil properties and nutrients. These results indicated that even a small amount (0.025-0.3 %) of microspheres can significantly reduce the adverse effects of Pb on plants, soil, and bacterial communities. Composite microspheres have shown great value in Pb remediation, and their application potential in phytoremediation is also worth evaluating to expand the application.
Collapse
Affiliation(s)
- Yu Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qizhen Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manli Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingming Yin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuliang Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. Int J Biol Macromol 2023; 246:125723. [PMID: 37419265 DOI: 10.1016/j.ijbiomac.2023.125723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, horseradish peroxidase (HRP) was immobilized for the first time on Ca alginate-starch hybrid beads and employed for the biodegradation of phenol red dye. The optimal protein loading was 50 mg/g of support. Immobilized HRP demonstrated improved thermal stability and maximum catalytic activity at 50 °C and pH 6.0, with an increase in half-life (t1/2) and enzymatic deactivation energy (Ed) compared to free HRP. After 30 days of storage at 4 °C, immobilized HRP retained 109% of its initial activity. Compared to free HRP, the immobilized enzyme exhibited higher potential for phenol red dye degradation, as evidenced by the removal of 55.87% of initial phenol red after 90 min, which was 11.5 times greater than free HRP. In sequential batch reactions, the immobilized HRP demonstrated good potential efficiency for the biodegradation of phenol red dye. The immobilized HRP was used for a total of 15 cycles, degrading 18.99% after 10 cycles and 11.69% after 15 cycles, with a residual enzymatic activity of 19.40% and 12.34%, respectively. Overall, the results suggest that HRP immobilized on Ca alginate-starch hybrid supports shows promise as a biocatalyst for industrial and biotechnological applications, particularly for the biodegradation of recalcitrant compounds such as phenol red dye.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | | | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
14
|
Li L, Zhu B, Yao Z, Jiang J. Directed preparation, structure-activity relationship and applications of alginate oligosaccharides with specific structures: A systematic review. Food Res Int 2023; 170:112990. [PMID: 37316063 DOI: 10.1016/j.foodres.2023.112990] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
The alginate oligosaccharides (AOS) possess versatile activities (such as antioxidant, anti-inflammatory, antitumor, and immune-regulatory activities) and have been the research topic in marine bioresource utilization fields. The degree of polymerization (DP) and the β-D-mannuronic acid (M)/α-L-guluronic acid (G)-units ratio strongly affect the functionality of AOS. Therefore, directed preparation of AOS with specific structures is essential for expanding the applications of alginate polysaccharides and has been the research topic in the marine bioresource field. Alginate lyases could efficiently degrade alginate and specifically produce AOS with specific structures. Therefore, enzymatic preparation of AOS with specific structures has drawn increasing attention. Herein, we systematically summarized the current research progress on the structure-function relation of AOS and focuses on the application of the enzymatic properties of alginate lyase to the specific preparation of various types of AOS. At the same time, current challenges and opportunities for AOS applications are presented to guide and improve the preparation and application of AOS in the future.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao 266400, China
| |
Collapse
|
15
|
Nesic A, De Bonis MV, Dal Poggetto G, Ruocco G, Santagata G. Microwave Assisted Extraction of Raw Alginate as a Sustainable and Cost-Effective Method to Treat Beach-Accumulated Sargassum Algae. Polymers (Basel) 2023; 15:2979. [PMID: 37514369 PMCID: PMC10383502 DOI: 10.3390/polym15142979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11 000 Belgrade, Serbia
| | - Maria Valeria De Bonis
- College of Engineering, Campus Macchia Romana, University of Basilicata, 85100 Potenza, Italy
| | - Giovanni Dal Poggetto
- National Council of Research, Institute for Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Gianpaolo Ruocco
- College of Engineering, Campus Macchia Romana, University of Basilicata, 85100 Potenza, Italy
| | - Gabriella Santagata
- National Council of Research, Institute for Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
16
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
17
|
Kardava K, Tetz V, Vecherkovskaya M, Tetz G. Seed dressing with M451 promotes seedling growth in wheat and reduces root phytopathogenic fungi without affecting endophytes. FRONTIERS IN PLANT SCIENCE 2023; 14:1176553. [PMID: 37265634 PMCID: PMC10229829 DOI: 10.3389/fpls.2023.1176553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Fungal plant infections result in substantial losses to the agricultural sector. A range of fungicide seed dressings are available to control seed-borne fungal diseases; however, they lack sufficient efficacy because of intrinsic tolerance and acquired resistance. Moreover, many fungicide seed dressings can also penetrate plants, negatively affecting plant growth owing to their toxic effects on endophytes, as well as contributing to the spread of antibiotic resistance. Here, we evaluated the efficacy of M451, a member of a new class of antimicrobial agents that are not relevant to human healthcare. As a seed dressing for wheat seeds, M451 exhibited significant antifungal activity against one of the most devastating plant fungal pathogens, Fusarium spp. Furthermore, M451 was more active than the commercially used fungicide Maxim XL against both seed-borne and soil-borne F. oxysporum infection. Importantly, and unlike other antifungals, M451 seed dressing did not inhibit any of the major characteristics of wheat grains and seedlings, such as germination percentage, germination time, grain vigor, shoot- and root weight and length, but rather improved some of these parameters. The results also demonstrated that M451 had no negative impacts on endophytes and did not accumulate in grains. Thus, M451 may have potential applications as an antifungal agent in wheat cultivation.
Collapse
Affiliation(s)
| | | | | | - G. Tetz
- Department of Systems Biology, Human Microbiology Institute, New York, NY, United States
| |
Collapse
|
18
|
Gomaa M, Aldaby ESE. Macroalgal-derived alginate/wastepaper hydrogel to alleviate sunflower drought stress. PLANTA 2023; 257:112. [PMID: 37162583 PMCID: PMC10172250 DOI: 10.1007/s00425-023-04152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
MAIN CONCLUSION Alginate/wastepaper hydrogel mitigated sunflower drought stress by increasing the water holding capacity of the soil and decreasing phosphate leaching. The hydrogel promoted sunflower growth and decreased stress related biomarkers. There is a growing interest in the development of biodegradable hydrogels for the alleviation of drought stress on plants. A novel hydrogel based on brown algal-derived alginate and wastepaper was developed and tested as a soil supplement for sunflower growth under moderate (75% field capacity (FC)) and extreme (50% FC) water-deficit stress. The hydrogel showed fast swelling in water, which obeyed the pseudo-first order kinetics. Besides, it increased the water holding capacity of the soil and exhibited a good phosphate adsorption (37 mg PO4- g-1 hydrogel after 6 days) in the soil, and more than 67% of the adsorbed phosphate was desorbed after 20 days. Thus, the phosphate leaching from the hydrogel-amended soil in a column experiment was only 2.77 mg after 4 times of over-irrigation, compared to 11.91 mg without the hydrogel. The hydrogel application promoted various root traits such as fresh and dry biomass, area, and length by > 2-, > 1.6-, > 1.35-, and > 1.3-folds under both water regimes in relation to the no-hydrogel treatments at the same conditions. Furthermore, the sunflower shoots exhibited similar proline contents to the well-watered control (100% FC), with > 50% reduction in relation to the drought-stressed plants under the same conditions. Similarly, the malondialdehyde contents were lowered by > 15%. The analysis of the antioxidant enzymes also indicated a marked reduction in the specific activities of catalase and ascorbate peroxidase under both 75 and 50% FC compared to the respective controls. Additionally, the hydrogel promoted the uptake of phosphate by sunflower roots. These results implied that the developed biodegradable hydrogel could be effectively applied as a soil additive to alleviate drought stress on crops.
Collapse
Affiliation(s)
- Mohamed Gomaa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
19
|
Kamat S, Kumari M, Sajna KV, Singh SK, Kumar A, Jayabaskaran C. Improved Chrysin Production by a Combination of Fermentation Factors and Elicitation from Chaetomium globosum. Microorganisms 2023; 11:microorganisms11040999. [PMID: 37110422 PMCID: PMC10146793 DOI: 10.3390/microorganisms11040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Flavonoids encompass a heterogeneous group of secondary metabolites with exceptional health benefits. Chrysin, a natural dihydroxyflavone, possesses numerous bioactive properties, such as anticancer, antioxidative, antidiabetic, anti-inflammatory, etc. However, using traditional sources of chrysin involves extracting honey from plants, which is non-scalable, unsustainable, and depends on several factors, including geography, climatic conditions, and the season, which limits its production at a larger scale. Recently, microbial production of desirable metabolites has garnered attention due to the cost-effectiveness, easy scale-up, sustainability, and low emission of waste. We previously reported for the first time the chrysin-producing marine endophytic fungus Chaetomium globosum, associated with a marine green alga. To extend our understanding of chrysin biosynthesis in C. globosum, in the present study, we have assessed the presence of flavonoid pathway intermediates in C. globosum extracts using LC-MS/MS. The presence of several key metabolites, such as dihydrokaempferol, chalcone, galangin, baicalein, chrysin, p-Coumaroyl-CoA, and p-Cinnamoyl-CoA, indicates the role of flavonoid biosynthesis machinery in the marine fungus. Further, we have aimed to enhance the production of chrysin with three different strategies: (1) optimizing the fermentation parameters, namely, growth medium, incubation time, pH, and temperature; (2) feeding key flavonoid pathway intermediates, i.e., phenylalanine and cinnamic acid; (3) elicitation with biotic elicitors, such as polysaccharide, yeast extract, and abiotic elicitors that include UV radiation, salinity, and metal stress. The combined effect of the optimized parameters resulted in a 97-fold increase in the chrysin yield, resulting in a fungal cell factory. This work reports the first approach for enhanced production of chrysin and can serve as a template for flavonoid production enhancement using marine endophytic fungi.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kuttuvan Valappil Sajna
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Celignis Biomass Analysis Laboratory, V94 7Y42 Limerick, Ireland
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Kanthaliya B, Joshi A, Arora J, Alqahtani MD, Abd_Allah EF. Effect of Biotic Elicitors on the Growth, Antioxidant Activity and Metabolites Accumulation in In Vitro Propagated Shoots of Pueraria tuberosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1300. [PMID: 36986988 PMCID: PMC10053785 DOI: 10.3390/plants12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Pueraria tuberosa contains a wide range of bioactive compounds, including polyphenols, alkaloids, and phytosterols, which make it valuable to the pharmaceutical and food industries. Elicitor compounds trigger the defense mechanisms in plants and are widely used to increase the yield of bioactive molecules in in vitro cultures. The present study was conducted to evaluate the effects of different concentrations of biotic elicitors such as yeast extract (YE), pectin (PEC), and alginate (ALG) on growth, antioxidant activity, and metabolite accumulation in in vitro propagated shoots of P. tuberosa. The elicitors applied to shoot cultures of P. tuberosa significantly increased biomass (shoot number, fresh weight, and dry weight), and metabolites such as protein, carbohydrates, chlorophyll, total phenol (TP), and total flavonoid (TF) contents, as well as antioxidant activity compared to untreated control. Biomass, TP, and TF contents, as well as antioxidant activity, were most significant in cultures treated with 100 mg/L PEC. In contrast, chlorophyll, protein, and carbohydrate increased most in cultures treated with 200 mg/L ALG. Application of 100 mg/L of PEC led to the accumulation of high amounts of isoflavonoids including puerarin (220.69 μg/g), daidzin (2935.55 μg/g), genistin (5612 μg/g), daidzein (479.81 μg/g), and biochanin-A (111.511 μg/g) as analyzed by high-performance liquid chromatography (HPLC). Total isoflavonoids content of 100 mg/L PEC treated shoots was obtained as 9359.56 μg/g, 1.68-fold higher than in vitro propagated shoots without elicitors (5573.13 μg/g) and 2.77-fold higher than shoots of the mother plant (3380.17 μg/g). The elicitor concentrations were optimized as 200 mg/L YE, 100 mg/L PEC, and 200 mg/L ALG. Overall, this study showed that the application of different biotic elicitors resulted in better growth, antioxidant activity, and accumulation of metabolites in P. tuberosa, which could lead to obtaining phytopharmaceutical advantages in the future.
Collapse
Affiliation(s)
- Bhanupriya Kanthaliya
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Improvement of ovarian insufficiency from alginate oligosaccharide in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Škoro N, Živković S, Jevremović S, Puač N. Treatment of Chrysanthemum Synthetic Seeds by Air SDBD Plasma. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070907. [PMID: 35406888 PMCID: PMC9003063 DOI: 10.3390/plants11070907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Herein, we present the effect of surface dielectric barrier discharge (SDBD) air cold plasma on regrowth of chrysanthemum synthetic seeds (synseeds) and subsequent plantlet development. The plasma system used in this study operates in air at the frequency of 50 Hz. The detailed electrical characterization of SDBD was shown, as well as air plasma emission spectra obtained by optical emission spectroscopy. The chrysanthemum synseeds (encapsulated shoot tips) were treated in air plasma for different treatment times (0, 5 or 10 min). Plasma treatment significantly improved the regrowth and whole plantlet development of chrysanthemum synseeds under aseptic (in vitro) and non-aseptic (ex vitro) conditions. We evaluated the effect of SDBD plasma on synseed germination of four chrysanthemum cultivars after direct sowing in soil. Germination of synseeds directly sowed in soil was cultivar-dependent and 1.6-3.7 fold higher after plasma treatment in comparison with untreated synseeds. The study showed a highly effective novel strategy for direct conversion of simple monolayer alginate chrysanthemum synseeds into entire plantlets by plasma pre-conversion treatment. This treatment reduced contamination and displayed a considerable ex vitro ability to convert clonally identical chrysanthemum plants.
Collapse
Affiliation(s)
- Nikola Škoro
- Institute of Physics-National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Suzana Živković
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Boulevard 142, 11000 Belgrade, Serbia
| | - Slađana Jevremović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Boulevard 142, 11000 Belgrade, Serbia
| | - Nevena Puač
- Institute of Physics-National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
23
|
Drira M, Hentati F, Babich O, Sukhikh S, Larina V, Sharifian S, Homai A, Fendri I, Lemos MFL, Félix C, Félix R, Abdelkafi S, Michaud P. Bioactive Carbohydrate Polymers-Between Myth and Reality. Molecules 2021; 26:7068. [PMID: 34885655 PMCID: PMC8659292 DOI: 10.3390/molecules26237068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.
Collapse
Affiliation(s)
- Maroua Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Faiez Hentati
- INRAE, URAFPA, Université de Lorraine, F-54000 Nancy, France;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Stanislas Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Ahmad Homai
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Carina Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Rafael Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Exogenous Application of Chitosan Alleviate Salinity Stress in Lettuce (Lactuca sativa L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soil salinity is one of the major factors that affect plant growth and decrease agricultural productivity worldwide. Chitosan (CTS) has been shown to promote plant growth and increase the abiotic stress tolerance of plants. However, it still remains unknown whether the application of exogenous CTS can mitigate the deleterious effects of salt stress on lettuce plants. Therefore, the current study investigated the effect of foliar application of exogenous CTS to lettuce plants grown under 100 mM NaCl saline conditions. The results showed that exogenous CTS increased the lettuce total leaf area, shoot fresh weight, and shoot and root dry weight, increased leaf chlorophyll a, proline, and soluble sugar contents, enhanced peroxidase and catalase activities, and alleviated membrane lipid peroxidation, in comparison with untreated plants, in response to salt stress. Furthermore, the application of exogenous CTS increased the accumulation of K+ in lettuce but showed no significant effect on the K+/Na+ ratio, as compared with that of plants treated with NaCl alone. These results suggested that exogenous CTS might mitigate the adverse effects of salt stress on plant growth and biomass by modulating the intracellular ion concentration, controlling osmotic adjustment, and increasing antioxidant enzymatic activity in lettuce leaves.
Collapse
|
25
|
The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Appl Microbiol Biotechnol 2021; 105:7201-7213. [PMID: 34519854 DOI: 10.1007/s00253-021-11552-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Due to their interesting properties for human health, medicinal plants are of worldwide interest, including Iran. More has yet to be investigated and analyzed on the use of methods affecting medicinal plant growth and biochemical properties under stress. The important question about medicinal plants is the purpose of their plantation, determining their growth conditions. The present review article is about the effects of salinity stress on the growth and production of secondary metabolites (SM) in medicinal plants. In stressful conditions including salinity, while the growth of medicinal plants decreases, the production of secondary metabolites (SM) may increase significantly affecting plant medicinal properties. SMs are self-protective substances that medicinal plants quickly accumulate to resist changes in the external environment. Although previous research has indicated the effects of salt stress on the growth and yield of medicinal plants, more has yet to be indicated on how the use of biological methods including plant growth regulators (PGR) and soil microbes (mycorrhizal fungi and plant growth-promoting rhizobacteria, PGPR) may affect the physiology of medicinal plants and the subsequent production of SM in salt stress conditions. The use of modern omics has become significantly important for the identification and characterization of new SM, transcriptomics, genomics, and proteomics of medicinal plants, as well as for the high production of plant-derived medicines. Accordingly, the possible biological mechanisms, which may affect such properties, have been presented. Future research perspectives for the production of medicinal plants in saline fields, using biological methods, have been suggested. KEY POINTS: • The important question about medicinal plants is the purpose of their plantation. • Secondary metabolites (SM) may significantly increase under salinity stress. • Biological methods, affecting the production of SM by stressed medicinal plants.
Collapse
|
26
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
MubarakAli D, Lee M, Manzoor MA, Lee SY, Kim JW. Production of Oligoalginate via Solution Plasma Process and Its Capability of Biological Growth Enhancement. Appl Biochem Biotechnol 2021; 193:4097-4112. [PMID: 34449041 DOI: 10.1007/s12010-021-03640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
The objective of the study was to depolymerize alginate into short-length oligoalginates, adopting the simple solution plasma process (SPP) technique, for successful use in free radical scavenging and growth promotion in cell culture and agricultural practices. Alginate at various concentrations was depolymerized to oligoalginates using SPP by discharging for various times. The depolymerization into oligoalginates was proved by DNS, TLC, FT-IR, and HPAEC analyses and caused decrease in viscosity. Oligoalginates derived from 0.5% alginate (100 mg∙mL-1) showed the highest antioxidant activities in vitro. The oligoalginates enhanced growth of the human embryonic kidney (HEK293) cells to significant levels in a concentration-dependent manner without any extent of toxicity. The oligoalginates also promoted growth of lettuce. Thus, SPP is a powerful technique to break down alginate into oligoalginates that can be utilized as a free radical scavenger and as a growth promoter of animal cells and agricultural plants.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
- Center for Surface Technology and Applications (CeSTA), Department of Material Engineering, Korea Aerospace University, Goyang, Republic of Korea
| | - Minho Lee
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | | | - Sang-Yul Lee
- Center for Surface Technology and Applications (CeSTA), Department of Material Engineering, Korea Aerospace University, Goyang, Republic of Korea.
| | - Jung-Wan Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea.
- Center for Surface Technology and Applications (CeSTA), Department of Material Engineering, Korea Aerospace University, Goyang, Republic of Korea.
| |
Collapse
|
28
|
Naeem M, Aftab T, Ansari AA, Khan MMA. Carrageenan oligomers and salicylic acid act in tandem to escalate artemisinin production by suppressing arsenic uptake and oxidative stress in Artemisia annua (sweet wormwood) cultivated in high arsenic soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42706-42721. [PMID: 33818725 DOI: 10.1007/s11356-021-13241-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The present study is aimed to elucidate the effects of concomitant application of irradiated carrageenan (IC) oligomers and salicylic acid (SA) on Artemisia annua L. varieties, viz. "CIM-Arogya" (tolerant) and "Jeevan Raksha" (sensitive) exposed to arsenic (As) stress. Artemisia annua has been known for its sesqui-terpene molecule artemisinin, which is useful in curing malaria. The two compounds, IC and SA, have been established as effective plant growth-promoting molecules for several agricultural and horticultural crops. To test the stress tolerance providing efficacy of IC and SA, the characterization of various physiological and biochemical parameters, growth as well as yield attributes was done in the present experiment. A. annua plants were given various treatments viz. (i) Control (0) (ii) 45 mg As kg-1 of soil (iii) 80 mg L-1 IC+45 mg As kg-1 of soil (iv) 10-6 M SA+45 mg As kg-1 of soil (vi) 45 mg As kg-1 soil+80 mg L-1 IC+10-6 M SA. Plants of A. annua suffered from prominent injuries due to oxidative stress generated by As. At 90 and 120 days after planting (DAP), As toxicity was manifested in reduction of most of the studied growth parameters. However, antioxidant activities such as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were enhanced in As-stressed conditions and their activities were further enhanced in IC+SA-treated plants. Application of As significantly produced the highest artemisinin content and yield in "CIM-Arogya" over "Jeevan Raksha." Noticeably, the selected plant growth regulators (PGRs) (IC and SA) applied individually through foliage were found efficient, though, the concomitant effect of PGRs was much pronounced compared to their alone application in countering the toxicity of As. The interactive action of PGRs escalated the overall production (yield) of artemisinin (58.7% and 53.8%) in tolerant and sensitive varieties of A. annua in the presence of soil As. Conclusively, the concomitant application of IC and SA proved much effective and successful over their individual use in exploring the overall development of A. annua subjected to As stress.
Collapse
Affiliation(s)
- Muhammad Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abid Ali Ansari
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | |
Collapse
|
29
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
31
|
Tecson MG, Abad LV, Ebajo VD, Camacho DH. Ultrasound-assisted depolymerization of kappa-carrageenan and characterization of degradation product. ULTRASONICS SONOCHEMISTRY 2021; 73:105540. [PMID: 33812249 PMCID: PMC8053803 DOI: 10.1016/j.ultsonch.2021.105540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 05/24/2023]
Abstract
Degradation of polysaccharides to afford low-molecular-weight oligosaccharides have been shown to produce new bioactivities that are not present in the starting material. The simplicity of ultrasonic treatment in the degradation of a polysaccharide, such as κ-carrageenan, offers practical advantage in producing degraded products with lower molecular weight that may have new interesting potential activities. This study embarked on investigating the effects in molecular weights and structural changes of κ-carrageenan under varying ultrasonic conditions. Molecular weight (MW) monitoring of ultrasonically-treated κ-carrageenan at various conditions were done by gel permeation chromatography. The product formed using the optimized condition was characterized using FTIR and NMR. The decrease in MW has been shown to be dependent on low concentration (5.0 mg mL-1), high amplitude (85%), and long treatment time (180 mins) to afford a degraded κ-carrageenan with average molecular weight (AMW) of 41,864 Da, which is a 96.33% reduction from the raw sample with initial AMW of 1,139,927 Da. Structural analysis reveals that most of the peaks of the raw κ-carrageenan was retained with minor change. 1D and 2D NMR analyses showed that the sonic process afforded a product where the sulfate group at the G4S-4 position was cleaved forming a methylene in the G4S ring. The results would be useful in the structure-activity relationship of κ-carrageenan oligosaccharides and in understanding the effect in the various potential applications of degraded κ-carrageenan.
Collapse
Affiliation(s)
- Mariel G Tecson
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Lucille V Abad
- Philippine Nuclear Research Institute, Department of Science and Technology, Commonwealth Avenue, Quezon City 1101, Philippines
| | - Virgilio D Ebajo
- Central Instrumentation Facility, De La Salle University Laguna Campus, LTI Spine Road, Barangays Biñan and Malamig, Biñan, Laguna 4024, Philippines
| | - Drexel H Camacho
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines; Central Instrumentation Facility, De La Salle University Laguna Campus, LTI Spine Road, Barangays Biñan and Malamig, Biñan, Laguna 4024, Philippines; Organic Materials and Interfaces Unit, CENSER, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines.
| |
Collapse
|
32
|
Chitosan-, alginate- carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydr Res 2021; 503:108298. [PMID: 33831669 DOI: 10.1016/j.carres.2021.108298] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023]
Abstract
During the last 20 years, the mechanisms involved in the stimulation of defense against pathogens, and growth triggered by chitosan-, alginate- and carrageenan-derived oligosaccharides have been studied in plants. Oligo-chitosan stimulate protection against pathogens by activation of salicylic acid (SA) or jasmonic acid/ethylene (JA/ET)-dependent pathways, protection against abiotic stress through abscisic acid (ABA)-dependent pathway, and growth by increasing photosynthesis, auxin and gibberellin content, C and N assimilation, and synthesis of secondary metabolites with antipathogenic and medicinal properties. Oligo-alginates stimulate protection against pathogens through SA-dependent pathway, abiotic stress via ABA-dependent pathway, and growth by increasing photosynthesis, auxin and gibberellins contents, C and N assimilation, and synthesis of secondary metabolites with antipathogenic and medicinal properties. Oligo-carrageenan increased protection against pathogens through JA/ET, SA- and Target of Rapamycin (TOR)-dependent pathways, and growth by activation of TOR-dependent pathway leading to an increase in expression of genes involved in photosynthesis, C, N, S assimilation, and enzymes that synthesize phenolic compounds and terpenes having antipathogenic activities. Thus, the latter oligosaccharides induce similar biological effects, but through different signaling pathways in plants.
Collapse
|
33
|
Evaluation of Carrageenan, Xanthan Gum and Depolymerized Chitosan Based Coatings for Pineapple Lily Plant Production. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Some natural polysaccharides and their derivatives are used in horticulture to stimulate plant growth. This study investigated the effects of coating bulbs with carrageenan-depolymerized chitosan (C-DCh) or xanthan-depolymerized chitosan (X-DCh) on growth, flowering, and bulb yield as well as physiological and biochemical attributes of pineapple lily (Eucomis autumnalis). The results showed that treatment with C-DCh or X-DCh significantly increased all growth parameters, bulb yield, greenness index, stomatal conductance, total N, total K, and total sugar content of bulbs and accelerated anthesis as compared with untreated bulbs. The positive impact of coatings on plant growth and physiological attributes depended on the type of biopolymer complexes. The X-DCh treatment exhibited the greatest plant height, fresh weight, daughter bulb number, greenness index, stomatal conductance, total N, K, and sugar content. However, this treatment induced a significant decrease in L-ascorbic acid, total polyphenol content and antioxidant activity. Overall, the results of this study indicated high suitability of C-DCh and X-DCh as bulb coatings for pineapple lily plant production.
Collapse
|
34
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
35
|
Alginate-Derived Elicitors Enhance β-Glucan Content and Antioxidant Activities in Culinary and Medicinal Mushroom, Sparassis latifolia. J Fungi (Basel) 2020; 6:jof6020092. [PMID: 32630366 PMCID: PMC7344979 DOI: 10.3390/jof6020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the elicitation effects of alginate oligosaccharides extracted from brown algae (Sargassum species) on β-glucan production in cauliflower mushroom (Sparassis latifolia). Sodium alginate was refined from Sargassum fulvellum, S. fusiforme, and S. horneri, and characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), resulting mannuronic acid to guluronic acid (M/G) rationes from 0.64 to 1.38. Three oligosaccharide fractions, ethanol fraction (EF), solid fraction (SF), and liquid fraction (LF), were prepared by acid hydrolysis and analyzed by Fourier transform infrared (FT-IR) spectra and high-performance anion-exchange chromatography with a pulsed amperometric detector (HPAEC-PAD). The samples of S. fusiforme resulted in the highest hydrolysate in SF and the lowest in LF, which was consistent with its highest M/G ratio. The SF of S. fusiforme and LF of S. horneri were chosen for elicitation on S. latifolia, yielding the highest β-glucan contents of 56.01 ± 3.45% and 59.74 ± 4.49% in the stalk, respectively. Total polyphenol content (TPC) and antioxidant activities (2,2’-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging and Superoxide dismutase (SOD)-like activity) of aqueous extracts of S. latifolia were greatly stimulated by alginate elicitation. These results demonstrate that alginate oligosaccharides extracted from brown algae may be useful as an elicitor to enhance the nutritional value of mushrooms.
Collapse
|
36
|
Naeem M, Nabi A, Aftab T, Khan MMA. Oligomers of carrageenan regulate functional activities and artemisinin production in Artemisia annua L. exposed to arsenic stress. PROTOPLASMA 2020; 257:871-887. [PMID: 31873815 DOI: 10.1007/s00709-019-01475-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Recently, a promising technique has come forward in field of radiation-agriculture in which the natural polysaccharides are modified into useful oligomers after depolymerization. Ionizing radiation technology is a simple, pioneering, eco-friendly, and single step degradation process which is used in exploiting the efficiency of the natural polysaccharides as plant growth promoters. Arsenic (As) is a noxious and toxic to growth and development of medicinal plants. Artemisinin is obtained from the leaves of Artemisia annua L., which is effective in the treatment of malaria. The present study was undertaken to find out possible role of oligomers of irradiated carrageenan (IC) on two varieties viz. 'CIM-Arogya' (As-tolerant) and 'Jeevan Raksha' (As-sensitive) of A. annua exposed to As. The treatments applied were 0 (control), 40 IC (40 mg L-1 IC), 80 IC (80 mg L-1 IC), 45 As (45 mg kg-1 soil As), 40 IC + 45 As (40 mg L-1 IC + 45 mg kg-1 soil As), and 80 IC + 45 As (80 mg L-1 IC + 45 mg kg-1 soil As). The present study was based on various parameters namely plant fresh weight (FW), dry weight (DW), leaf area index (LAI), leaf yield (LY), chlorophyll and carotenoid content, net photosynthetic rate (PN), stomatal conductance (Gs), carbonic anhydrase activity (CA), proline content (PRO), lipid peroxidation (TBARS), endogenous ROS production (H2O2 content), catalase activity (CAT), peroxidase activity (POX), superoxide dismutase activity (SOD), ascorbate peroxidase activity (APX), As content, and artemisinin content in leaves. Plant growth and other physiological and biochemical parameters including enzymatic activities, photosynthetic activity, and its related pigments were negatively affected under As stress. Leaf-applied IC overcame oxidative stress generated due to As in plants by activating antioxidant machinery. Interestingly, leaf-applied IC enhanced the production (content and yield) of artemisinin under high As stress regardless of varieties. The oligomers of IC and As were found to be responsible for the production of endogenous H2O2 which has a pivotal role in the biosynthesis of artemisinin in A. annua.
Collapse
Affiliation(s)
- M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
37
|
Purification and Characterization of a Novel Endolytic Alginate Lyase from Microbulbifer sp. SH-1 and Its Agricultural Application. Mar Drugs 2020; 18:md18040184. [PMID: 32244418 PMCID: PMC7230735 DOI: 10.3390/md18040184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Alginate, an important acidic polysaccharide in marine multicellular algae, has attracted attention as a promising biomass resource for the production of medical and agricultural chemicals. Alginate lyase is critical for saccharification and utilization of alginate. Discovering appropriate and efficient enzymes for depolymerizing alginate into fermentable fractions plays a vital role in alginate commercial exploitation. Herein, a unique alginate lyase, AlgSH7, belonging to polysaccharide lyase 7 family is purified and characterized from an alginate-utilizing bacterium Microbulbifer sp. SH-1. The purified AlgSH7 shows a specific activity of 12,908.26 U/mg, and its molecular weight is approximately 66.4 kDa. The optimal temperature and pH of AlgSH7 are 40 °C and pH 9.0, respectively. The enzyme exhibits stability at temperatures below 30 °C and within an extensive pH range of 5.0-9.0. Metal ions including Na+, K+, Al3+, and Fe3+ considerably enhance the activity of the enzyme. AlgSH7 displays a preference for poly-mannuronic acid (polyM) and a very low activity towards poly-guluronic acid (polyG). TLC and ESI-MS analysis indicated that the enzymatic hydrolysates mainly include disaccharides, trisaccharides, and tetrasaccharides. Noteworthy, the alginate oligosaccharides (AOS) prepared by AlgSH7 have an eliciting activity against chilling stress in Chinese flowering cabbage (Brassica parachinensis L.). These results suggest that AlgSH7 has a great potential to design an effective process for the production of alginate oligomers for agricultural applications.
Collapse
|
38
|
Carmody N, Goñi O, Łangowski Ł, O’Connell S. Ascophyllum nodosum Extract Biostimulant Processing and Its Impact on Enhancing Heat Stress Tolerance During Tomato Fruit Set. FRONTIERS IN PLANT SCIENCE 2020; 11:807. [PMID: 32670315 PMCID: PMC7330804 DOI: 10.3389/fpls.2020.00807] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 05/13/2023]
Abstract
The application of biostimulants derived from extracts of the brown seaweed Ascophyllum nodosum has long been accepted by growers to have productivity benefits in stressed crops. The impact of the processing method of the A. nodosum biomass is also known to affect compositional and physicochemical properties. However, the identification of the mechanisms by which processing parameters of Ascophyllum nodosum extracts (ANEs) affect biostimulant performance in abiotically stressed crops is still poorly understood. In this study, we performed a comparative analysis of two carbohydrate-rich formulations derived from A. nodosum: C129, an ANE obtained at low temperatures through a gentle extraction and the novel proprietary PSI-494 extracted under high temperatures and alkaline conditions. We tested the efficiency of both ANEs in unstressed conditions as well as in mitigating long-term moderate heat stress in tomato (Lycopersicon esculentum, cv. Micro Tom) during the reproductive stage. Both ANEs showed significant effects on flower development, pollen viability, and fruit production in both conditions. However, PSI-494 significantly surpassed the heat stress tolerance effect of C129, increasing fruit number by 86% compared to untreated plants growing under heat stress conditions. The variation in efficacy was associated with different molecular mass distribution profiles of the ANEs. Specific biochemical and transcriptional changes were observed with enhanced thermotolerance. PSI-494 was characterized as an ANE formulation with lower molecular weight constituents, which was associated with an accumulation of soluble sugars, and gene transcription of protective heat shock proteins (HSPs) in heat stressed tomato flowers before fertilization. These findings suggest that specialized ANE biostimulants targeting the negative effects of periods of heat stress during the important reproductive stage can lead to significant productivity gains.
Collapse
Affiliation(s)
- Nicholas Carmody
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
| | - Łukasz Łangowski
- Research and Development Department, Brandon Bioscience, Tralee, Ireland
| | - Shane O’Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland
- *Correspondence: Shane O’Connell,
| |
Collapse
|
39
|
Zhang C, Howlader P, Liu T, Sun X, Jia X, Zhao X, Shen P, Qin Y, Wang W, Yin H. Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Carbohydr Polym 2019; 225:115221. [PMID: 31521273 DOI: 10.1016/j.carbpol.2019.115221] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture.
Collapse
Affiliation(s)
- Chunguang Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Prianka Howlader
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongmei Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xue Sun
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaochen Jia
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoming Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peili Shen
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Brightmoon Seaweed Group Co Ltd., Qingdao, China
| | - Yimin Qin
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Brightmoon Seaweed Group Co Ltd., Qingdao, China
| | - Wenxia Wang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
40
|
Effects of Gellan Oligosaccharide and NaCl Stress on Growth, Photosynthetic Pigments, Mineral Composition, Antioxidant Capacity and Antimicrobial Activity in Red Perilla. Molecules 2019; 24:molecules24213925. [PMID: 31671710 PMCID: PMC6864638 DOI: 10.3390/molecules24213925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022] Open
Abstract
The growing market demand for plant raw materials with improved biological value promotes the extensive search for new elicitors and biostimulants. Gellan gum derivatives may enhance plant growth and development, but have never been used under stress conditions. Perilla (Perilla frutescens, Lamiaceae) is a source of valuable bioproducts for the pharmaceutical, cosmetic, and food industries. However, there is not much information on the use of biostimulators in perilla cultivation. In this work we investigated the effects of oligo-gellan and salt (100 mM NaCl) on the yield and quality of red perilla (P. frutescens var. crispa f. purpurea) leaves. Plants grown under stress showed inhibited growth, smaller biomass, their leaves contained less nitrogen, phosphorus, potassium, total polyphenol and total anthocyanins, and accumulated considerably more sodium than control plants. Treatment with oligo-gellan under non-saline conditions stimulated plant growth and the fresh weight content of the above-ground parts, enhanced the accumulation of nitrogen, potassium, magnesium and total polyphenols, and increased antioxidant activity as assessed by DPPH and ABTS assays. Oligo-gellan applied under saline conditions clearly alleviated the stress effects by limiting the loss of biomass, macronutrients, and total polyphenols. Additionally, plants pretreated with oligo-gellan and then exposed to 100 mM NaCl accumulated less sodium, produced greater amounts of photosynthetic pigments, and had greater antioxidant activity than NaCl-stressed plants. Irrespective of the experimental treatment, 50% extract effectively inhibited growth of Escherichia coli and Staphylococcus aureus. Both microorganisms were the least affected by 25% extract obtained from plants untreated with either NaCl or oligo-gellan. In conclusion, oligo-gellan promoted plant growth and enhanced the quality of red perilla leaves and efficiently alleviated the negative effects of salt stress.
Collapse
|