1
|
Helmy NM, Parang K. The Role of Peptides in Combatting HIV Infection: Applications and Insights. Molecules 2024; 29:4951. [PMID: 39459319 PMCID: PMC11510642 DOI: 10.3390/molecules29204951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Peptide-based inhibitors represent a promising approach for the treatment of HIV-1, offering a range of potential advantages, including specificity, low toxicity, and the ability to target various stages of the viral lifecycle. This review outlines the current state of research on peptide-based anti-HIV therapies, highlighting key advancements and identifying future research directions. Over the past few years, there has been significant progress in developing synthetic peptide-based drugs that target various stages of the viral life cycle, including entry and replication. These approaches aim to create effective anti-HIV therapies. Additionally, peptides have proven valuable in the development of anti-HIV vaccines. In the quest for effective HIV vaccines, discovering potent antigens and designing suitable vaccine strategies are crucial for overcoming challenges such as low immunogenicity, safety concerns, and increased viral load. Innovative strategies for vaccine development through peptide research are, therefore, a key focus area for achieving effective HIV prevention. This review aims to explore the strategies for designing peptides with anti-HIV activity and to highlight their role in advancing both therapeutic and preventive measures against HIV.
Collapse
Affiliation(s)
- Naiera M. Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 3751134, Egypt;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| |
Collapse
|
2
|
Bi W, Tang K, Chen G, Xie Y, Polizzi NF, DeGrado WF, Yuan S, Dang B. An enhanced broad-spectrum peptide inhibits Omicron variants in vivo. Cell Rep Med 2024; 5:101418. [PMID: 38340726 PMCID: PMC10897629 DOI: 10.1016/j.xcrm.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) poses a major challenge to vaccines and antiviral therapeutics due to their extensive evasion of immunity. Aiming to develop potent and broad-spectrum anticoronavirus inhibitors, we generated A1-(GGGGS)7-HR2m (A1L35HR2m) by introducing an angiotensin-converting enzyme 2 (ACE2)-derived peptide A1 to the N terminus of the viral HR2-derived peptide HR2m through a long flexible linker, which showed significantly improved antiviral activity. Further cholesterol (Chol) modification at the C terminus of A1L35HR2m greatly enhanced the inhibitory activities against SARS-CoV-2, SARS-CoV-2 VOCs, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses, with IC50 values ranging from 0.16 to 5.53 nM. A1L35HR2m-Chol also potently inhibits spike-protein-mediated cell-cell fusion and the replication of authentic Omicron BA.2.12.1, BA.5, and EG.5.1. Importantly, A1L35HR2m-Chol distributed widely in respiratory tract tissue and had a long half-life (>10 h) in vivo. Intranasal administration of A1L35HR2m-Chol to K18-hACE2 transgenic mice potently inhibited Omicron BA.5 and EG.5.1 infection both prophylactically and therapeutically.
Collapse
Affiliation(s)
- Wenwen Bi
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Frontier Biotechnology Laboratory, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China.
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guilin Chen
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yubin Xie
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nicholas F Polizzi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Bobo Dang
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China.
| |
Collapse
|
3
|
Sabzian-Molaei F, Ahmadi MA, Nikfarjam Z, Sabzian-Molaei M. Inactivation of cell-free HIV-1 by designing potent peptides based on mutations in the CD4 binding site. Med Biol Eng Comput 2024; 62:423-436. [PMID: 37889430 DOI: 10.1007/s11517-023-02950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a major global health problem, with over 38 million people infected worldwide. Current anti-HIV-1 drugs are limited in their ability to prevent the virus from replicating inside host cells, making them less effective as preventive measures. In contrast, viral inhibitors that inactivate the virus before it can bind to a host cell have great potential as drugs. In this study, we aimed to design mutant peptides that could block the interaction between gp120 and the CD4 receptor on host cells, thus preventing HIV-1 infection. We designed a 20-amino-acid peptide that mimicked the amino acids of the CD4 binding site and docked it to gp120. Molecular dynamics simulations were performed to calculate the energy of MMPBSA (Poisson-Boltzmann Surface Area) for each residue of the peptide, and unfavorable energy residues were identified as potential mutation points. Using MAESTRO (Multi AgEnt STability pRedictiOn), we measured ΔΔG (change in the change in Gibbs free energy) for mutations and generated a library of 240 mutated peptides using OSPREY software. The peptides were then screened for allergenicity and binding affinity. Finally, molecular dynamics simulations (via GROMACS 2020.2) and control docking (via HADDOCK 2.4) were used to evaluate the ability of four selected peptides to inhibit HIV-1 infection. Three peptides, P3 (AHRQIRQWFLTRGPNRSLWQ), P4 (VHRQIRQWFLTRGPNRSLWQ), and P9 (AHRQIRQMFLTRGPNRSLWQ), showed practical and potential as HIV inhibitors, based on their binding affinity and ability to inhibit infection. These peptides have the ability to inactivate the virus before it can bind to a host cell, thus representing a promising approach to HIV-1 prevention. Our findings suggest that mutant peptides designed to block the interaction between gp120 and the CD4 receptor have potential as HIV-1 inhibitors. These peptides could be used as preventive measures against HIV-1 transmission, and further research is needed to evaluate their safety and efficacy in clinical settings.
Collapse
Affiliation(s)
| | - Mohammad Amin Ahmadi
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Nikfarjam
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Mohammad Sabzian-Molaei
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
4
|
Luo H, Zhao Y, Ma Y, Liang G, Ga L, Meng Z. Design of Artificial C-Peptides as Potential Anti-HIV-1 Inhibitors Based on 6-HB Formation Mechanism. Protein Pept Lett 2024; 31:447-457. [PMID: 38910421 DOI: 10.2174/0109298665312274240530060233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The six-helix bundle (6-HB) is a core structure formed during the membrane fusion process of viruses with the Class I envelope proteins. Peptide inhibitors, including the marketed Enfuvirtide, blocking the membrane fusion to exert inhibitory activity were designed based on the heptads repeat interactions in 6-HB. However, the drawbacks of Enfuvirtide, such as drug resistance and short half-life in vivo, have been confirmed in clinical applications. Therefore, novel design strategies are pivotal in the development of next-generation peptide-based fusion inhibitors. OBJECTIVE The de novo design of α-helical peptides against MERS-CoV and IAVs has successfully expedited the development of fusion inhibitors. The reported sequences were completely nonhomologous with natural peptides, which can provide some inspirations for the antiviral design against other pathogenic viruses with class I fusion proteins. Here, we design a series of artificial C-peptides based on the similar mechanism of 6-HB formation and general rules of heptads repeat interaction. METHODS The inhibitory activity of peptides against HIV-1 was assessed by HIV-1 Env-mediated cell-cell fusion assays. Interaction between artificial C-peptides and target peptides was evaluated by circular dichroism, polyacrylamide gel electrophoresis, size-exclusion chromatography, and sedimentation velocity analysis. Molecular docking studies were performed by using Schrödinger molecular modelling software. RESULTS The best-performing artificial C-peptide, 1SR, was highly active against HIV-1 env-mediated cell-cell fusion. 1SR binds to the gp41 NHR region, assembling polymer to prevent endogenous 6-HB formation. CONCLUSION We have found an artificial C-lipopeptide lead compound with inhibitory activity against HIV-1. Also, this paper enriched both N- and C-teminal heptads repeat interaction rules in 6-HB and provided an effective idea for next-generation peptide-based fusion inhibitors against HIV-1.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| |
Collapse
|
5
|
Xue S, Xu W, Wang L, Xu L, Calcul L, Teng P, Lu L, Jiang S, Cai J. Rational Design of Sulfonyl-γ-AApeptides as Highly Potent HIV-1 Fusion Inhibitors with Broad-Spectrum Activity. J Med Chem 2023; 66:13319-13331. [PMID: 37706450 DOI: 10.1021/acs.jmedchem.3c01412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The HIV-1 epidemic has significant social and economic implications for public health. Developing new antivirus drugs to eradicate drug resistance is still urgently needed. Herein, we demonstrated that sulfonyl-γ-AApeptides could be designed to mimic MTSC22EK, one potent HIV fusion inhibitor derived from CHR. The best two sequences revealed comparable activity to MTSC22EK in an authentic HIV-1 infection assay and exhibited broad-spectrum anti-HIV-1 activity to many HIV-1 clinical isolates. Furthermore, sulfonyl-γ-AApeptides show remarkable resistance to proteolysis and favorable permeability in PAMPA-GIT and PAMPA-BBB assays, suggesting that both sequences could control HIV-1 within the central nervous system and possess promising oral bioavailability. Mechanistic investigations suggest that these sulfonyl-γ-AApeptides function by mimicking the CHR of gp41 and tightly bind with NHR, thereby inhibiting the formation of the 6-HB structure necessary for HIV-1 fusion. Overall, our results suggest that sulfonyl-γ-AApeptides represent a new generation of anti-HIV-1 fusion inhibitors. Moreover, this design strategy could be adopted to modulate many of the PPIs.
Collapse
Affiliation(s)
- Songyi Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
6
|
Su X, Huang Z, Xu W, Wang Q, Xing L, Lu L, Jiang S, Xia S. IgG Fc-Binding Peptide-Conjugated Pan-CoV Fusion Inhibitor Exhibits Extended In Vivo Half-Life and Synergistic Antiviral Effect When Combined with Neutralizing Antibodies. Biomolecules 2023; 13:1283. [PMID: 37759683 PMCID: PMC10526447 DOI: 10.3390/biom13091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating EK1 with human immunoglobulin G Fc-binding peptide (IBP), which can exploit the long half-life advantage of IgG in vivo. The newly engineered peptide IBP-EK1 showed potent and broad-spectrum inhibitory activity against SARS-CoV-2 and its variants, including various Omicron sublineages and other human coronaviruses (HCoVs) with low cytotoxicity. In mouse models, IBP-EK1 possessed potent prophylactic and therapeutic efficacy against lethal HCoV-OC43 challenge, and it showed good safety profile and low immunogenicity. More importantly, IBP-EK1 exhibited a significantly extended in vivo half-life in rhesus monkeys of up to 37.7 h, which is about 20-fold longer than that reported for EK1. Strikingly, IBP-EK1 displayed strong in vitro or ex vivo synergistic anti-HCoV effect when combined with monoclonal neutralizing antibodies, including REGN10933 or S309, suggesting that IBP-conjugated EK1 can be further developed as a long-acting, broad-spectrum anti-HCoV agent, either alone or in combination with neutralizing antibodies, to combat the current COVID-19 pandemic or future outbreaks caused by emerging and re-emerging highly pathogenic HCoVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai 200032, China; (X.S.); (Z.H.); (W.X.); (Q.W.); (L.X.); (L.L.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai 200032, China; (X.S.); (Z.H.); (W.X.); (Q.W.); (L.X.); (L.L.)
| |
Collapse
|
7
|
Xu L, Wang C, Xu W, Xing L, Zhou J, Pu J, Fu M, Lu L, Jiang S, Wang Q. A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies. Int J Mol Sci 2023; 24:ijms24119779. [PMID: 37298729 DOI: 10.3390/ijms24119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Xu W, Cong Z, Duan Q, Wang Q, Su S, Wang R, Lu L, Xue J, Jiang S. A Protein-Based, Long-Acting HIV-1 Fusion Inhibitor with an Improved Pharmacokinetic Profile. Pharmaceuticals (Basel) 2022; 15:ph15040424. [PMID: 35455421 PMCID: PMC9025429 DOI: 10.3390/ph15040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, a series of highly effective peptide- or protein-based HIV fusion inhibitors have been identified. However, due to their short half-life, their clinical application is limited. Therefore, the development of long-acting HIV fusion inhibitors is urgently needed. Here, we designed and constructed a protein-based, long-acting HIV fusion inhibitor, termed FLT (FN3-L35-T1144), consisting of a monobody, FN3, which contains an albumin-binding domain (ABD), a 35-mer linker (L35), and a peptide-based HIV fusion inhibitor, T1144. We found that FLT bound, via its FN3 component, with human serum albumin (HSA) in a reversible manner, thus maintaining the high efficiency of T1144 against infection by both HIV-1 IIIB (X4) and Bal (R5) strains with IC50 of 11.6 nM and 15.3 nM, respectively, and remarkably prolonging the half-life of T1144 (~27 h in SD rats). This approach affords protein-based HIV fusion inhibitors with much longer half-life compared to enfuvirtide, a peptide-based HIV fusion inhibitor approved for use in clinics. Therefore, FLT is a promising candidate as a new protein-based anti-HIV drug with an improved pharmacokinetic profile.
Collapse
Affiliation(s)
- Wei Xu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Zhe Cong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Qianyu Duan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Qian Wang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Shan Su
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Rui Wang
- Beijing Prosperous Biopharm Company, Beijing 100021, China;
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
- Correspondence: (L.L.); (J.X.); (S.J.)
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
- Correspondence: (L.L.); (J.X.); (S.J.)
| | - Shibo Jiang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
- Correspondence: (L.L.); (J.X.); (S.J.)
| |
Collapse
|
9
|
A Modified Fibronectin Type III Domain-Conjugated, Long-Acting Pan-Coronavirus Fusion Inhibitor with Extended Half-Life. Viruses 2022; 14:v14040655. [PMID: 35458385 PMCID: PMC9028128 DOI: 10.3390/v14040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by infection of SARS-CoV-2 and its variants has posed serious threats to global public health, thus calling for the development of potent and broad-spectrum antivirals. We previously designed and developed a peptide-based pan-coronavirus (CoV) fusion inhibitor, EK1, which is effective against all human CoVs (HCoV) tested by targeting the HCoV S protein HR1 domain. However, its relatively short half-life may limit its clinical use. Therefore, we designed, constructed, and expressed a recombinant protein, FL-EK1, which consists of a modified fibronectin type III domain (FN3) with albumin-binding capacity, a flexible linker, and EK1. As with EK1, we found that FL-EK1 could also effectively inhibit infection of SARS-CoV-2 and its variants, as well as HCoV-OC43. Furthermore, it protected mice from infection by the SARS-CoV-2 Delta variant and HCoV-OC43. Importantly, the half-life of FL-EK1 (30 h) is about 15.7-fold longer than that of EK1 (1.8 h). These results suggest that FL-EK1 is a promising candidate for the development of a pan-CoV fusion inhibitor-based long-acting antiviral drug for preventing and treating infection by current and future SARS-CoV-2 variants, as well as other HCoVs.
Collapse
|
10
|
The Analogs of Furanyl Methylidene Rhodanine Exhibit Broad-Spectrum Inhibitory and Inactivating Activities against Enveloped Viruses, including SARS-CoV-2 and Its Variants. Viruses 2022; 14:v14030489. [PMID: 35336896 PMCID: PMC8954792 DOI: 10.3390/v14030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, infectious diseases caused by viral infections have seriously endangered human health, especially COVID-19, caused by SARS-CoV-2, which continues to spread worldwide. The development of broad-spectrum antiviral inhibitors is urgently needed. Here, we report a series of small-molecule compounds that proved effective against human coronaviruses (HCoV), such as SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), SARS-CoV, MERS-CoV, HCoV-OC43, and other viruses with class I viral fusion proteins, such as influenza virus, Ebola virus (EBOV), Nipah virus (NiV), and Lassa fever virus (LASV). They are also effective against class II enveloped viruses represented by ZIKV and class III enveloped viruses represented by vesicular stomatitis virus (VSV). Further studies have shown that these compounds may exert antiviral effects through a variety of mechanisms, including inhibiting the formation of the six-helix bundle, which is a typical feature of enveloped virus fusion with cell membranes, and/or targeting viral membrane to inactivate cell-free virions. These compounds are expected to become drug candidates against SARS-CoV-2 and other enveloped viruses.
Collapse
|
11
|
Su S, Xu W, Jiang S. Virus Entry Inhibitors: Past, Present, and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:1-13. [DOI: 10.1007/978-981-16-8702-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Peptide-Based HIV Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:15-26. [DOI: 10.1007/978-981-16-8702-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Huhmann S, Nyakatura EK, Rohrhofer A, Moschner J, Schmidt B, Eichler J, Roth C, Koksch B. Systematic Evaluation of Fluorination as Modification for Peptide-Based Fusion Inhibitors against HIV-1 Infection. Chembiochem 2021; 22:3443-3451. [PMID: 34605595 PMCID: PMC9297971 DOI: 10.1002/cbic.202100417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Indexed: 01/01/2023]
Abstract
With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Susanne Huhmann
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Elisabeth K. Nyakatura
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
- Antibody Engineering Tri-Institutional Therapeutics Discovery Institute417 East 68th Street, 19 Floor North, P: 646-888-2003New YorkNY 10021USA
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Johann Moschner
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Jutta Eichler
- Friedrich-Alexander-Universität Erlangen-NürnbergDepartment Chemie und PharmazieNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Christian Roth
- Max Planck Institute of Colloids and InterfacesBiomolecular SystemsArnimallee 2214195BerlinGermany
| | - Beate Koksch
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| |
Collapse
|
14
|
Pu J, Zhou JT, Liu P, Yu F, He X, Lu L, Jiang S. Viral Entry Inhibitors Targeting Six-Helical Bundle Core Against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins. Curr Med Chem 2021; 29:700-718. [PMID: 33992055 DOI: 10.2174/0929867328666210511015808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
TypeⅠ enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis. They also initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.
Collapse
Affiliation(s)
- Jing Pu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Joey Tianyi Zhou
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Ping Liu
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Synergistic Effect by Combining a gp120-Binding Protein and a gp41-Binding Antibody to Inactivate HIV-1 Virions and Inhibit HIV-1 Infection. Molecules 2021; 26:molecules26071964. [PMID: 33807292 PMCID: PMC8036483 DOI: 10.3390/molecules26071964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) has prevailed over the last 30 years. Although highly active antiretroviral therapy (HAART) has decreased mortality and efficiently controlled the progression of disease, no vaccine or curative drugs have been approved until now. A viral inactivator is expected to inactivate cell-free virions in the absence of target cells. Previously, we identified a gp120-binding protein, mD1.22, which can inactivate laboratory-adapted HIV-1. In this study, we have found that the gp41 N-terminal heptad repeat (NHR)-binding antibody D5 single-chain variable fragment (scFv) alone cannot inactivate HIV-1 at the high concentration tested. However, D5 scFv in the combination could enhance inactivation activity of mD1.22 against divergent HIV-1 strains, including HIV-1 laboratory-adapted strains, primary HIV-1 isolates, T20- and AZT-resistant strains, and LRA-reactivated virions. Combining mD1.22 and D5 scFv exhibited synergistic effect on inhibition of infection by divergent HIV-1 strains. These results suggest good potential to develop the strategy of combining a gp120-binding protein and a gp41-binding antibody for the treatment of HIV-1 infection.
Collapse
|
16
|
Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Netw 2021; 21:e8. [PMID: 33728101 PMCID: PMC7937506 DOI: 10.4110/in.2021.21.e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.
Collapse
Affiliation(s)
- Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu 42472, Korea
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Yeo-Ok Choi
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Afeisha S. Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Suyoung Bae
- Department of Bioequivalence Division for Drug Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Chang-seon Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
17
|
Chan SW. Current and Future Direct-Acting Antivirals Against COVID-19. Front Microbiol 2020; 11:587944. [PMID: 33262747 PMCID: PMC7688518 DOI: 10.3389/fmicb.2020.587944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023] Open
Abstract
The coronavirus disease of 2019 (COVID-19) has caused an unprecedented global crisis. The etiological agent is a new virus called the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). As of October, 2020 there have been 45.4 million confirmed cases with a mortality rate of 2.6% globally. With the lack of a vaccine and effective treatments, the race is on to find a cure for the virus infection using specific antivirals. The viral RNA-dependent RNA polymerase, proteases, spike protein-host angiotensin-converting enzyme 2 binding and fusion have presented as attractive targets for pan-coronavirus and broad spectrum direct-acting antivirals (DAAs). This review presents a perspective on current re-purposing treatments and future DAAs.
Collapse
|
18
|
Outlaw VK, Bovier FT, Mears MC, Cajimat MN, Zhu Y, Lin MJ, Addetia A, Lieberman NAP, Peddu V, Xie X, Shi PY, Greninger AL, Gellman SH, Bente DA, Moscona A, Porotto M. Inhibition of Coronavirus Entry In Vitro and Ex Vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. mBio 2020; 11:e01935-20. [PMID: 33082259 PMCID: PMC7587434 DOI: 10.1128/mbio.01935-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Victor K Outlaw
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Francesca T Bovier
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| | - Megan C Mears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria N Cajimat
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yun Zhu
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Michelle J Lin
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amin Addetia
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vikas Peddu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xuping Xie
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Dennis A Bente
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| |
Collapse
|
19
|
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020; 52:1207-1226. [PMID: 32945974 PMCID: PMC7544725 DOI: 10.1007/s00726-020-02890-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
With the development of modern chemistry and biology, non-proteinogenic amino acids (NPAAs) have become a powerful tool for developing peptide-based drug candidates. Drug-like properties of peptidic medicines, due to the smaller size and simpler structure compared to large proteins, can be changed fundamentally by introducing NPAAs in its sequence. While peptides composed of natural amino acids can be used as drug candidates, the majority have shown to be less stable in biological conditions. The impact of NPAA incorporation can be extremely beneficial in improving the stability, potency, permeability, and bioavailability of peptide-based therapies. Conversely, undesired effects such as toxicity or immunogenicity should also be considered. The impact of NPAAs in the development of peptide-based therapeutics is reviewed in this article. Further, numerous examples of peptides containing NPAAs are presented to highlight the ongoing development in peptide-based therapeutics.
Collapse
Affiliation(s)
- Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
20
|
Wang X, Xia S, Wang Q, Xu W, Li W, Lu L, Jiang S. Broad-Spectrum Coronavirus Fusion Inhibitors to Combat COVID-19 and Other Emerging Coronavirus Diseases. Int J Mol Sci 2020; 21:E3843. [PMID: 32481690 PMCID: PMC7311999 DOI: 10.3390/ijms21113843] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
In the past 17 years, three novel coronaviruses have caused severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the coronavirus disease 2019 (COVID-19). As emerging infectious diseases, they were characterized by their novel pathogens and transmissibility without available clinical drugs or vaccines. This is especially true for the newly identified COVID-19 caused by SARS coronavirus 2 (SARS-CoV-2) for which, to date, no specific antiviral drugs or vaccines have been approved. Similar to SARS and MERS, the lag time in the development of therapeutics is likely to take months to years. These facts call for the development of broad-spectrum anti-coronavirus drugs targeting a conserved target site. This review will systematically describe potential broad-spectrum coronavirus fusion inhibitors, including antibodies, protease inhibitors, and peptide fusion inhibitors, along with a discussion of their advantages and disadvantages.
Collapse
Affiliation(s)
- Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission, (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China;
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
- Key Laboratory of Reproduction Regulation of National Health Commission, (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China;
| |
Collapse
|
21
|
Bi W, Xu W, Cheng L, Xue J, Wang Q, Yu F, Xia S, Wang Q, Li G, Qin C, Lu L, Su L, Jiang S. IgG Fc-binding motif-conjugated HIV-1 fusion inhibitor exhibits improved potency and in vivo half-life: Potential application in combination with broad neutralizing antibodies. PLoS Pathog 2019; 15:e1008082. [PMID: 31805154 PMCID: PMC6894747 DOI: 10.1371/journal.ppat.1008082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
Abstract
The clinical application of conventional peptide drugs, such as the HIV-1 fusion inhibitor enfuvirtide, is limited by their short half-life in vivo. To overcome this limitation, we developed a new strategy to extend the in vivo half-life of a short HIV-1 fusion inhibitory peptide, CP24, by fusing it with the human IgG Fc-binding peptide (IBP). The newly engineered peptide IBP-CP24 exhibited potent and broad anti-HIV-1 activity with IC50 values ranging from 0.2 to 173.7 nM for inhibiting a broad spectrum of HIV-1 strains with different subtypes and tropisms, including those resistant to enfuvirtide. Most importantly, its half-life in the plasma of rhesus monkeys was 46.1 h, about 26- and 14-fold longer than that of CP24 (t1/2 = 1.7 h) and enfuvirtide (t1/2 = 3 h), respectively. IBP-CP24 intravenously administered in rhesus monkeys could not induce significant IBP-CP24-specific antibody response and it showed no obvious in vitro or in vivo toxicity. In the prophylactic study, humanized mice pretreated with IBP-CP24 were protected from HIV-1 infection. As a therapeutic treatment, coadministration of IBP-CP24 and normal human IgG to humanized mice with chronic HIV-1 infection resulted in a significant decrease of plasma viremia. Combining IBP-CP24 with a broad neutralizing antibody (bNAb) targeting CD4-binding site (CD4bs) in gp120 or a membrane proximal external region (MPER) in gp41 exhibited synergistic effect, resulting in significant dose-reduction of the bNAb and IBP-CP24. These results suggest that IBP-CP24 has the potential to be further developed as a new HIV-1 fusion inhibitor-based, long-acting anti-HIV drug that can be used alone or in combination with a bNAb for treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Wenwen Bi
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (LL); (LS); (SJ)
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (LL); (LS); (SJ)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail: (LL); (LS); (SJ)
| |
Collapse
|
22
|
Hua C, Zhu Y, Wu C, Si L, Wang Q, Sui L, Jiang S. The Underlying Mechanism of 3-Hydroxyphthalic Anhydride-Modified Bovine Beta-Lactoglobulin to Block Human Papillomavirus Entry Into the Host Cell. Front Microbiol 2019; 10:2188. [PMID: 31611852 PMCID: PMC6775479 DOI: 10.3389/fmicb.2019.02188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
We have previously demonstrated that 3-hydroxyphthalic anhydride (3HP)-modified bovine beta-lactoglobulin (3HP-β-LG) is highly effective in inhibiting entry of pseudovirus (PsV) of high- and low-risk human papillomavirus (HPV) into the target cell. Intravaginally applied 3HP-β-LG-containing vaginal gel could significantly inhibit HPV infection and reduce viral load in the cervical region. However, we still do not understand the underlying molecular mechanism by which 3HP-β-LG is able to inhibit HPV infection. Here, though, we showed that 3HP-β-LG did not inactivate HPV PsV, but rather blocked entry of HPV PsV into the target cell via its interaction with virus, not cell. It bound to the positively charged region in the HPV L1 protein, suggesting that 3HP-β-LG binds to HPV L1 protein through the interaction between the negatively charged region in 3HP-β-LG and the positively charged region in HPV L1 protein, thus competitively blocking the binding of HPV to the receptor on the basement membrane in vaginal mucosa. Although 3HP-modified chicken ovalbumin (3HP-OVA) also carries high net negative charges, it exhibited no anti-HPV activity, suggesting that the interaction between 3HP-modified protein and HPV L1 protein relies on both electrostatic and matchable conformation of the binding sites in both proteins. When topically applied, 3HP-β-LG did not enter the host cell or blood circulation. These findings suggest that 3HP-β-LG targets HPV L1 protein and blocks HPV entry into the host cell, thus being safe and effective for topical application in the treatment of HPV infection.
Collapse
Affiliation(s)
- Chen Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Congquan Wu
- Medical Center for Diagnosis and Treatment of Cervical Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lulu Si
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai, China
| | - Long Sui
- Medical Center for Diagnosis and Treatment of Cervical Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Functional Protein Joint Research Center, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Wang C, Cheng S, Zhang Y, Ding Y, Chong H, Xing H, Jiang S, Li X, Ma L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses 2019; 11:v11090811. [PMID: 31480738 PMCID: PMC6784077 DOI: 10.3390/v11090811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
The clinical application of HIV fusion inhibitor, enfuvirtide (T20), was limited mainly because of its short half-life. Here we designed and synthesized two PEGylated C34 peptides, PEG2kC34 and PEG5kC34, with the PEG chain length of 2 and 5 kDa, respectively, and evaluated their anti-HIV-1 activity and mechanisms of action. We found that these two PEGylated peptides could bind to the HIV-1 peptide N36 to form high affinity complexes with high α-helicity. The peptides PEG2kC34 and PEG5kC34 effectively inhibited HIV-1 Env-mediated cell-cell fusion with an effective concentration for 50% inhibition (EC50) of about 36 nM. They also inhibited infection of the laboratory-adapted HIV-1 strain NL4-3 with EC50 of about 4-5 nM, and against 47 HIV-1 clinical isolates circulating in China with mean EC50 of PEG2kC34 and PEG5kC34 of about 26 nM and 32 nM, respectively. The plasma half-life (t1/2) of PEG2kC34 and PEG5kC34 was 2.6 h and 5.1 h, respectively, and the t1/2 of PEGylated C34 was about 2.4-fold and 4.6-fold longer than C34 (~1.1 h), respectively. These findings suggest that PEGylated C34 with broad-spectrum anti-HIV-1 activity and prolonged half-life can be further developed as a peptide fusion inhibitor-based long-acting anti-HIV drug for clinical use to treat HIV-infected patients who have failed to respond to current anti-retrovirus drugs.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yibo Ding
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
24
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|