1
|
Ponce-García V, Bautista-Llamas MJ, García-Romera MC. Influence of Dietary Habits on Macular Pigment in Childhood. J Clin Med 2025; 14:2668. [PMID: 40283498 PMCID: PMC12027799 DOI: 10.3390/jcm14082668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: To analyze the macular pigment optical density (MPOD) values in a child population and to evaluate the relation between MPOD and adherence to the Mediterranean diet using a validated questionnaire specially created for children. Eighty-eight children were included in this cross-sectional study from two primary education schools of Seville (Spain). Methods: MPOD values were measured using Macular Pigment Screener II ®. Lutein and Zeaxanthin intake was evaluated by KIDMED questionnaire, which classifies children according to adherence to the Mediterranean diet. A whole ocular exam with slit-lamp biomicroscopy was conducted by a specialized optometrist. Results: The mean age ranged between 6 and 8 years. The mean MPOD value was 0.46 ± 0.18. The mean score of the KIDMED questionnaire was 7.19 ± 1.85. No statistically significant differences were found as a function of gender or among Mediterranean diet adherence groups. No significant differences in MPOD values between answers were found in any KIDMED questions. No correlations were found for MPOD with several variables, such as Mediterranean diet adherence and KIDMED score. Conclusions: MPOD levels in children could not be correlated with Mediterranean Diet adherence and, thus, good dietary habits. Genetic characteristics, mother's diet habits, oxidative stress, and body fat composition in children could be the main factors influencing MPOD levels.
Collapse
Affiliation(s)
| | | | - Marta-C. García-Romera
- Vision Research Group (CIVIUS), Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (V.P.-G.); (M.-J.B.-L.)
| |
Collapse
|
2
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
3
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
4
|
Liang S, Yang M, Zhang L, Fang X, Zhang X, Wei C, Dai Z, Yang Z, Wang C, Liu B, Luan F, Liu S. Identification and characterization of ClAPRR2, a key candidate gene controlling watermelon stripe color. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112383. [PMID: 39755261 DOI: 10.1016/j.plantsci.2024.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F2 generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping. Genes controlling stripe color were located in an 85.284 kb region on chromosome 9, which contained five candidate genes. Combined with parental phenotypes, chlorophyll contents of rinds and stripes were assayed. Gene sequence alignment and transcriptional level analysis of parental lines predicted Cla97C09G175170 (encoding a two-component response regulator-like protein, APRR2) as the best candidate gene for stripe color trait. Two SNPs in the ClAPRR2 coding region caused amino acid substitutions, but were not located in the conserved domain, while a 12 bp insertion caused premature translation termination and a 35 amino acid deletion in the conserved domain and may have affected ClAPRR2 function in ZXG1555. Subcellular localization analysis showed that ClAPRR2 was expressed in the ZXG1555 cell membrane but was located in the nucleus and cell membrane of COS. Nucleotide polymorphisms and deletions were also detected in the promoter region between parental lines and caused cis-acting element variations. Luciferase activity suggested that promoter variations may not be the main factor in the regulation of ClAPRR2 expression.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Miaomiao Yang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Linlin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xufeng Fang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xian Zhang
- College of Horticulture, Northwest of A&F University, Yangling 712100, China.
| | - Chunhua Wei
- College of Horticulture, Northwest of A&F University, Yangling 712100, China.
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei 230031, China.
| | - Zhongzhou Yang
- Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei 230031, China.
| | - Chaonan Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Singh H, Kamal YT, Pandohee J, Mishra AK, Biswas A, Mohanto S, Kumar A, Nag S, Mishra A, Singh M, Gupta H, Chopra H. Dietary phytochemicals alleviate the premature skin aging: A comprehensive review. Exp Gerontol 2025; 199:112660. [PMID: 39694450 DOI: 10.1016/j.exger.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Skin aging, often called as premature skin aging, is the hastened deterioration of the skin resulting from multiple factors, including UV radiation, environmental contaminants, inadequate nutrition, stress, etc. Dietary phytochemicals, present in fruits, vegetables, and other plant-derived meals, have gained interest due to their efficiency to eradicate free radicals and lowering the release of inflammatory mediators which accounts for premature skin aging. Several dietary phytochemicals, i.e., carotenoids, polyphenols, flavonoids, terpenes, alkaloids, phytosterols, etc., exhibited potential anti-oxidant, anti-inflammatory, suppression of UV damage, and promote collagen synthesis. In addition, dietary phytochemicals include sulfur, present in various foods safeguard the skin against oxidative stress and inflammation. Thus, this article delves into the comprehension of various dietary phytochemicals investigated to alleviate the premature skin aging. The article further highlights specific phytochemicals and their sources, bioavailability, mechanisms, etc., in the context of safeguarding the skin against oxidative stress and inflammation. The present manuscript is a systematic comprehension of the available literature on dietary phytochemicals and skin aging in various database, i.e., PubMed, ScienceDirect, Google Scholar using the keywords, i.e., "dietary phytochemicals", "nutraceuticals", "skin aging" etc., via Boolean operator, i.e., "AND". The dietary guidelines presented in the manuscript is a unique summarization for a broad reader to understand the inclusion of various functional foods, nutrients, supplements, etc., to prevent premature skin aging. Thus, the utilization of dietary phytochemicals has shown a promising avenue in preventing skin aging, however, the future perspectives and challenges of such phytochemicals should be comprehended via clinical investigations.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Y T Kamal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia
| | - Jessica Pandohee
- Sydney Mass Spectrometry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal 700118, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
6
|
Sarker M, Chowdhury N, Bristy AT, Emran T, Karim R, Ahmed R, Shaki MM, Sharkar SM, Sayedur Rahman GM, Reza HM. Astaxanthin protects fludrocortisone acetate-induced cardiac injury by attenuating oxidative stress, fibrosis, and inflammation through TGF-β/Smad signaling pathway. Biomed Pharmacother 2024; 181:117703. [PMID: 39586138 DOI: 10.1016/j.biopha.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Hypertensive rats serve as a good experimental model for studying the pathophysiology of cardiac hypertrophy and remodeling leading to heart failure. In this study, we aimed to analyze the effect of astaxanthin and possible mechanisms involved in alleviating oxidative stress, fibrosis and inflammation that triggers cardiac remodeling using male uninephrectomized Long Evans rats. Cardiac hypertrophy and hypertension were induced in rats termed as 'FCA-Salt rats' by an oral administration of fludrocortisone acetate (FCA) and 1 % NaCl in drinking water. Biochemical assays showed that FCA-Salt rats exhibited an upregulation of oxidative stress markers AOPP, MDA and downregulation of NO in heart and kidney, which was reversed by astaxanthin treatment. Astaxanthin further regularized the reduced activities of antioxidant enzymes GSH, SOD and CAT in these tissues. ELISA revealed that astaxanthin significantly reduced the inflammatory response by reducing the elevated levels of IL-1β, IL-17a, and TNF-α and pro-fibrotic marker TGF-β1 in plasma. Real-time qPCR depicted an upregulation of TNF-α, IL-1β, IL-6, IL-17A as well as signaling molecules TGF-β1, Smad2 and Smad3 in heart of FCA-Salt rats, which was reduced significantly by astaxanthin. Sirius red staining showed that the cardiac and renal fibrosis was significantly improved by astaxanthin treatment. Together, our results suggest that astaxanthin treatment is beneficial in protecting cardio-renal damage in hypertension through TGF-β/Smad signaling pathway, hence, this molecule may be considered for the maintenance of cardio-renal health.
Collapse
Affiliation(s)
- Manoneeta Sarker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nowreen Chowdhury
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Reatul Karim
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Mostaid Shaki
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharkar
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh.
| |
Collapse
|
7
|
Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, Lisińska W, Rysz J, Franczyk B. The Role of Antioxidants in the Therapy of Cardiovascular Diseases-A Literature Review. Nutrients 2024; 16:2587. [PMID: 39203723 PMCID: PMC11357572 DOI: 10.3390/nu16162587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Antioxidants are endogenous and exogenous substances with the ability to inhibit oxidation processes by interacting with reactive oxygen species (ROS). ROS, in turn, are small, highly reactive substances capable of oxidizing a wide range of molecules in the human body, including nucleic acids, proteins, lipids, carbohydrates, and even small inorganic compounds. The overproduction of ROS leads to oxidative stress, which constitutes a significant factor contributing to the development of disease, not only markedly diminishing the quality of life but also representing the most common cause of death in developed countries, namely, cardiovascular disease (CVD). The aim of this review is to demonstrate the effect of selected antioxidants, such as coenzyme Q10 (CoQ10), flavonoids, carotenoids, and resveratrol, as well as to introduce new antioxidant therapies utilizing miRNA and nanoparticles, in reducing the incidence and progression of CVD. In addition, new antioxidant therapies in the context of the aforementioned diseases will be considered. This review emphasizes the pleiotropic effects and benefits stemming from the presence of the mentioned substances in the organism, leading to an overall reduction in cardiovascular risk, including coronary heart disease, dyslipidaemia, hypertension, atherosclerosis, and myocardial hypertrophy.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| |
Collapse
|
8
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
9
|
Acosta-Vega L, Moreno DA, Cuéllar Álvarez LN. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods 2024; 13:2310. [PMID: 39123500 PMCID: PMC11311875 DOI: 10.3390/foods13152310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arazá is a fruit native to the Amazonian region with characteristic properties such as aroma, texture, color, and marked acidity. Additionally, the fruit is rich in bioactive compounds in its three fractions (seed, pulp, and peel), such as ascorbic acid, phenolic compounds (and their derivatives), and carotenoids, which have been extensively investigated in the literature for their beneficial properties for human health. However, it is a little-known fruit, and the role it can play in health-promoting activities related to the treatment and prevention of non-communicable diseases (NCDs) when incorporated into the diet is also unknown. Therefore, it is necessary to know the profile of bioactive compounds and the biological properties Arazá possesses, which is the aim of this review.
Collapse
Affiliation(s)
- Luis Acosta-Vega
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia;
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain;
| | - Liceth N. Cuéllar Álvarez
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia;
| |
Collapse
|
10
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
11
|
Bas TG. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int J Mol Sci 2024; 25:7603. [PMID: 39062844 PMCID: PMC11277215 DOI: 10.3390/ijms25147603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This article presents a groundbreaking perspective on carotenoids, focusing on their innovative applications and transformative potential in human health and medicine. Research jointly delves deeper into the bioactivity and bioavailability of carotenoids, revealing therapeutic uses and technological advances that have the potential to revolutionize medical treatments. We explore pioneering therapeutic applications in which carotenoids are used to treat chronic diseases such as cancer, cardiovascular disease, and age-related macular degeneration, offering novel protective mechanisms and innovative therapeutic benefits. Our study also shows cutting-edge technological innovations in carotenoid extraction and bioavailability, including the development of supramolecular carriers and advanced nanotechnology, which dramatically improve the absorption and efficacy of these compounds. These technological advances not only ensure consistent quality but also tailor carotenoid therapies to each patient's health needs, paving the way for personalized medicine. By integrating the latest scientific discoveries and innovative techniques, this research provides a prospective perspective on the clinical applications of carotenoids, establishing a new benchmark for future studies in this field. Our findings underscore the importance of optimizing carotenoid extraction, administration, bioactivity, and bioavailability methods to develop more effective, targeted, and personalized treatments, thus offering visionary insight into their potential in modern medical practices.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Catolica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
12
|
Rocha HR, Pintado ME, Gomes AM, Coelho MC. Carotenoids and Intestinal Harmony: Exploring the Link for Health. Foods 2024; 13:1599. [PMID: 38890828 PMCID: PMC11171705 DOI: 10.3390/foods13111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Carotenoids, prominent lipid-soluble phytochemicals in the human diet, are responsible for vibrant colours in nature and play crucial roles in human health. While they are extensively studied for their antioxidant properties and contributions to vitamin A synthesis, their interactions with the intestinal microbiota (IM) remain poorly understood. In this study, beta (β)-carotene, lutein, lycopene, a mixture of these three pigments, and the alga Osmundea pinnatifida were submitted to simulated gastrointestinal digestion (GID) and evaluated on human faecal samples. The results showed varying effects on IM metabolic dynamics, organic acid production, and microbial composition. Carotenoid exposure influenced glucose metabolism and induced the production of organic acids, notably succinic and acetic acids, compared with the control. Microbial composition analysis revealed shifts in phyla abundance, particularly increased Pseudomonadota. The α-diversity indices demonstrated higher diversity in β-carotene and the pigments' mixture samples, while the β-diversity analysis indicated significant dissimilarity between the control and the carotenoid sample groups. UPLC-qTOF MS analysis suggested dynamic changes in carotenoid compounds during simulated fermentation, with lutein exhibiting distinct mass ion fragmentation patterns. This comprehensive research enhances our understanding of carotenoid-IM interactions, shedding light on potential health implications and the need for tailored interventions for optimal outcomes.
Collapse
Affiliation(s)
| | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (H.R.R.); (M.E.P.); (A.M.G.)
| |
Collapse
|
13
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
14
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Viglianisi G, Polizzi A, Grippaudo C, Cocuzza S, Leonardi R, Isola G. Chemopreventive and Biological Strategies in the Management of Oral Potentially Malignant and Malignant Disorders. Bioengineering (Basel) 2024; 11:65. [PMID: 38247942 PMCID: PMC10813134 DOI: 10.3390/bioengineering11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) represent a significant global health burden due to their potential for malignant transformation and the challenges associated with their diagnosis and treatment. Chemoprevention, an innovative approach aimed at halting or reversing the neoplastic process before full malignancy, has emerged as a promising avenue for mitigating the impact of OPMD and OSCC. The pivotal role of chemopreventive strategies is underscored by the need for effective interventions that go beyond traditional therapies. In this regard, chemopreventive agents offer a unique opportunity to intercept disease progression by targeting the molecular pathways implicated in carcinogenesis. Natural compounds, such as curcumin, green tea polyphenols, and resveratrol, exhibit anti-inflammatory, antioxidant, and anti-cancer properties that could make them potential candidates for curtailing the transformation of OPMD to OSCC. Moreover, targeted therapies directed at specific molecular alterations hold promise in disrupting the signaling cascades driving OSCC growth. Immunomodulatory agents, like immune checkpoint inhibitors, are gaining attention for their potential to harness the body's immune response against early malignancies, thus impeding OSCC advancement. Additionally, nutritional interventions and topical formulations of chemopreventive agents offer localized strategies for preventing carcinogenesis in the oral cavity. The challenge lies in optimizing these strategies for efficacy, safety, and patient compliance. This review presents an up to date on the dynamic interplay between molecular insights, clinical interventions, and the broader goal of reducing the burden of oral malignancies. As research progresses, the synergy between early diagnosis, non-invasive biomarker identification, and chemopreventive therapy is poised to reshape the landscape of OPMD and OSCC management, offering a glimpse of a future where these diseases are no longer insurmountable challenges but rather preventable and manageable conditions.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Cristina Grippaudo
- Head and Neck Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, Via S. Sofia 68, 95124 Catania, Italy;
| | - Rosalia Leonardi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| |
Collapse
|
16
|
Liu S, Zhang Z, Wang X, Ma Y, Ruan H, Wu X, Li B, Mou X, Chen T, Lu Z, Zhao W. Biosynthetic potential of the gut microbiome in longevous populations. Gut Microbes 2024; 16:2426623. [PMID: 39529240 PMCID: PMC11559365 DOI: 10.1080/19490976.2024.2426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Gut microbiome plays a pivotal role in combating diseases and facilitating healthy aging, and natural products derived from biosynthetic gene clusters (BGCs) of the human microbiome exhibit significant biological activities. However, the natural products of the gut microbiome in long-lived populations remain poorly understood. Here, we integrated six cohorts of long-lived populations, encompassing a total of 1029 fecal metagenomic samples, and employed the metagenomic single sample assembled BGCs (MSSA-BGCs) analysis pipeline to investigate the natural products and their associated species. Our findings reveal that the BGC composition of the extremely long-lived group differed significantly from that of younger elderly and young individuals across five cohorts. Terpene and Type I PKS BGCs were enriched in the extremely long-lived, whereas cyclic-lactone-autoinducer BGCs were more prevalent in the young. Association analysis indicated that terpene BGCs were strongly associated with the abundance of Akkermansia muciniphila, which was also more abundant in the long-lived elderly across at least three cohorts. We assembled 18 A. muciniphila draft genomes using metagenomic data from the extremely long-lived group across six cohorts and discovered that they all harbor two classes of terpene BGCs, which aligns with the 97 complete genomes of A. muciniphila strains retrieved from the NCBI database. The core domains of these two BGC classes are squalene/phytoene synthases involved in the biosynthesis of tri- and tetraterpenes. Furthermore, the abundance of fecal A. muciniphila was significantly associated with eight types of triterpenoids. Targeted terpenoid metabolomic analysis revealed that two triterpenoids, Holstinone C and colubrinic acid, were enriched in the A. muciniphila culture solution compared to the medium, thereby confirming the production of triterpenoids by A. muciniphila. The natural products derived from the gut of long-lived populations provide intriguing indications of their potential beneficial roles in regulating health.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhao Zhang
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xudong Wang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Ma
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Wu
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Baoxia Li
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tao Chen
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Wang P, Zheng X, Du R, Xu J, Li J, Zhang H, Liang X, Liang H. Astaxanthin Protects against Alcoholic Liver Injury via Regulating Mitochondrial Redox Balance and Calcium Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19531-19550. [PMID: 38038704 DOI: 10.1021/acs.jafc.3c05529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing evidence points to the critical role of calcium overload triggered by mitochondrial dysfunction in the development of alcoholic liver disease (ALD). As an important organelle for aerobic respiration with a double-layered membrane, mitochondria are pivotal targets of alcohol metabolism-mediated lipid peroxidation, wherein mitochondria-specific phospholipid cardiolipin oxidation to 4-hydroxynonenal (4-HNE) ultimately leads to mitochondrial integrity and function impairment. Therefore, it is absolutely essential to identify effective nutritional intervention targeting mitochondrial redox function for an alternative therapy of ALD, in order to compensate for the difficulty in achieving alcohol withdrawal due to addiction. In this study, we confirmed the significant advantages of astaxanthin (AX) against alcohol toxicity among various carotenoids via cell experiments and identified the potential in mitochondrion morphogenesis and calcium signaling pathway by bioinformatics analysis. The ALD model of Sprague-Dawley (SD) rats was also generated to investigate the effectiveness of AX on alcohol-induced liver injury, and the underlying mechanisms were further explored. AX intervention attenuated alcohol-induced oxidative stress and lipid peroxidation as well as mitochondrial dysfunction characterized by degenerative morphology changes and collapsed membrane potential. Also, AX reduced the production of 4-HNE by activating the Nrf2-ARE signaling pathway, which is closely associated with the redox balance of mitochondria. In addition, relieved mitochondrial Ca2+ accumulation caused by AX was observed both in vivo and in vitro. Furthermore, we revealed the structure-activity relationship of AX and mitochondrial membrane channel proteins MCU and VDAC1, implying potential acting targets. Altogether, our data indicated a new mechanism of AX intervention which protects against alcohol-induced liver injury through restoring redox balance and Ca2+ homeostasis in mitochondria, as well as provided novel insights into the development of AX as a therapeutic option for the management of ALD.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jinghan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| |
Collapse
|
18
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
19
|
Siddiqui SA, Khan S, Mehdizadeh M, Bahmid NA, Adli DN, Walker TR, Perestrelo R, Câmara JS. Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon 2023; 9:e21196. [PMID: 37954257 PMCID: PMC10632435 DOI: 10.1016/j.heliyon.2023.e21196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Designing and manufacturing functional bioactive ingredients and pharmaceuticals have grown worldwide. Consumers demand for safe ingredients and concerns over harmful synthetic additives have prompted food manufacturers to seek safer and sustainable alternative solutions. In recent years the preference by consumers to natural bioactive agents over synthetic compounds increased exponentially, and consequently, naturally derived phytochemicals and bioactive compounds, with antimicrobial and antioxidant properties, becoming essential in food packaging field. In response to societal needs, packaging needs to be developed based on sustainable manufacturing practices, marketing strategies, consumer behaviour, environmental concerns, and the emergence of new technologies, particularly bio- and nanotechnology. This critical systematic review assessed the role of antioxidant and antimicrobial compounds from natural resources in food packaging and consumer behaviour patterns in relation to phytochemical and biologically active substances used in the development of food packaging. The use of phytochemicals and bioactive compounds inside packaging materials used in food industry could generate unpleasant odours derived from the diffusion of the most volatile compounds from the packaging material to the food and food environment. These consumer concerns must be addressed to understand minimum concentrations that will not affect consumer sensory and aroma negative perceptions. The research articles were carefully chosen and selected by following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Iran
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
- Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene, 90311, Indonesia
| | - Danung Nur Adli
- Faculty of Animal Science, University of Brawijaya, Malang, East Java, 65145, Indonesia
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, B3H, 4R2, Canada
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
20
|
Wang X, Liu X, Wang X, Wang H, Zhang LH, Yu H, Yang W, Wu HH. Carotenoid-derived norsesquiterpenoids and sesquiterpenoids from Tagetes erecta L. PHYTOCHEMISTRY 2023; 215:113860. [PMID: 37714249 DOI: 10.1016/j.phytochem.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Tagetes erecta L. (marigold), a common landscaping flower widely cultivated in America, Africa, Asia and Europe, is the fundamental source of carotenoids (especially lutein) in food and pharmaceutical industry. Carotenoids are well-known to possess various healthy and beneficial biological activities such as eye protection, anti-aging, and anti-inflammatory. In our exploitation of carotenoid-derived products from T. erecta, nine previously undescribed compounds including seven megastigmane-type norsesquiterpenoids (1-7), one carotenoid-derived sesquiterpenoid (8), and one natural 3-hydroxyl-α-ionylideneacetic acid derivative (9), along with twelve known compounds (10-21), were afforded from the 95% ethanol extract of the petals of T. erecta. Their planar chemical structures and the absolute configurations were established by analysis of the extensive spectroscopic data including HRESI-MS, 1D/2D NMR and the simulation of ECD. Further, a plausible biosynthesis pathway for compounds 1-20 is proposed.
Collapse
Affiliation(s)
- Xiangdong Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaojie Liu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaowen Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Haiying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Li-Hua Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Huijuan Yu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Hong-Hua Wu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
21
|
He X, Yin X, Chen X, Chen X. Aging and antioxidants: the impact of dietary carotenoid intakes on soluble klotho levels in aged adults. Front Endocrinol (Lausanne) 2023; 14:1283722. [PMID: 37955004 PMCID: PMC10637857 DOI: 10.3389/fendo.2023.1283722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Objectives The association between dietary carotenoid intake and Soluble Klotho (S-Klotho) levels among the elderly population requires further evaluation. The purpose of this study is to evaluate the relationship between the dietary carotenoid intake and the S-Klotho plasma levels in older adults. Methods Eligible participants aged 60 years or above were selected from the National Health and Nutrition Examination Surveys (NHANES) data, collected between 2007 and 2016. The consumption of carotenoids was determined through two 24-hour dietary recall assessments. Moreover, the S-Klotho levels in the serum were measured using an Enzyme-Linked Immuno-Sorbent Assay (ELISA). Results A total of 5,056 participants were included in the study having a median total carotenoid intake of 9775.25 μg (95% confidence interval (CI): 8971.30-10579.21) and a median S-Klotho concentration of 815.59 pg/mL (95% CI: 802.59-828.60). The multivariable regression analysis showed that a single standard deviation increase in total carotenoid intake was significantly associated with an 8.40 pg/mL increase in S-Klotho levels (95% CI: 0.48-16.31). When the carotenoids were divided into quartiles, participants in the third ((4963.5μg/day,11662.5μg/day]) and fourth quartiles ((11662.5μg/day,377178μg/day]) showed higher S-Klotho levels compared to those in the first quartile. Among carotenoid subtypes, increased intake of α-carotene, β-carotene, and lutein with zeaxanthin was associated with elevated S-Klotho levels. These observed associations between carotenoid subtypes and S-Klotho levels remained consistent across male participants, having a normal weight, and a moderate physical activity based on stratified analysis. Conclusion The total carotenoid intake was positively related to plasma levels of S-Klotho in the elderly population, particularly for α-carotene, β-carotene, and lutein with zeaxanthin. However, further research is needed to confirm these findings and explore the underlying mechanisms behind this relationship.
Collapse
Affiliation(s)
- Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xin Yin
- Department of Radiation Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xiaoli Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
22
|
Bakac ER, Percin E, Gunes-Bayir A, Dadak A. A Narrative Review: The Effect and Importance of Carotenoids on Aging and Aging-Related Diseases. Int J Mol Sci 2023; 24:15199. [PMID: 37894880 PMCID: PMC10607816 DOI: 10.3390/ijms242015199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is generally defined as a time-dependent functional decline that affects most living organisms. The positive increase in life expectancy has brought along aging-related diseases. Oxidative stress caused by the imbalance between pro-oxidants and antioxidants can be given as one of the causes of aging. At the same time, the increase in oxidative stress and reactive oxygen species (ROS) is main reason for the increase in aging-related diseases such as cardiovascular, neurodegenerative, liver, skin, and eye diseases and diabetes. Carotenoids, a natural compound, can be used to change the course of aging and aging-related diseases, thanks to their highly effective oxygen-quenching and ROS-scavenging properties. Therefore, in this narrative review, conducted using the PubMed, ScienceDirect, and Google Scholar databases and complying with the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines, the effects of carotenoids on aging and aging-related diseases were analyzed. Carotenoids are fat-soluble, highly unsaturated pigments that occur naturally in plants, fungi, algae, and photosynthetic bacteria. A large number of works have been conducted on carotenoids in relation to aging and aging-related diseases. Animal and human studies have found that carotenoids can significantly reduce obesity and fatty liver, lower blood sugar, and improve liver fibrosis in cirrhosis, as well as reduce the risk of cardiovascular disease and erythema formation, while also lowering glycated hemoglobin and fasting plasma glucose levels. Carotenoid supplementation may be effective in preventing and delaying aging and aging-related diseases, preventing and treating eye fatigue and dry eye disease, and improving macular function. These pigments can be used to stop, delay, or treat aging-related diseases due to their powerful antioxidant, restorative, anti-proliferative, anti-inflammatory, and anti-aging properties. As an increasingly aging population emerges globally, this review could provide an important prospective contribution to public health.
Collapse
Affiliation(s)
- Elif Rabia Bakac
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ece Percin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ayse Gunes-Bayir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Agnes Dadak
- Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
23
|
Lis K, Bartuzi Z. Plant Food Dyes with Antioxidant Properties and Allergies-Friend or Enemy? Antioxidants (Basel) 2023; 12:1357. [PMID: 37507897 PMCID: PMC10376437 DOI: 10.3390/antiox12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Color is an important food attribute which increases its attractiveness, thus influencing consumer preferences and acceptance of food products. The characteristic color of fresh, raw food is due to natural dyes present in natural food sources. Food loses its natural color during processing or storage. Loss of natural color (e.g., graying) often reduces the appeal of a product to consumers. To increase the aesthetic value of food, natural or synthetic dyes are added to it. Interestingly, the use of food coloring to enhance food attractiveness and appetizing appearance has been practiced since antiquity. Food coloring can also cause certain health effects, both negative and positive. Dyes added to food, both natural and synthetic, are primarily chemical substances that may not be neutral to the body. Some of these substances have strong antioxidant properties. Thanks to this activity, they can also perform important pro-health functions, including antiallergic ones. On the other hand, as foreign substances, they can also cause various adverse food reactions, including allergic reactions of varying severity and anaphylactic shock. This article discusses food dyes of plant origins with antioxidant properties (anthocyanins, betanins, chlorophylls, carotenoids, and curcumin) and their relationship with allergy, both as sensitizing agents and immunomodulatory agents with potential antiallergic properties.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
24
|
Coelho MC, Rodrigues AS, Teixeira JA, Pintado ME. Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chem 2023; 410:135319. [PMID: 36634564 DOI: 10.1016/j.foodchem.2022.135319] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
The tomato processing industry is one of the world's most important markets. This industry aims to optimise production, minimise energy costs and waste streams while ensuring high-quality products. This sector produces substantial amounts of by-products frequently disposed of as waste rather than reintroducing them with a new intent into the supply chain. However, these by-products are rich in bioactive compounds (BC), including carotenoids, fibre, which exhibit antioxidant, anti-inflammatory and chemopreventive properties, and cardiovascular protection. Reusing these compounds is favourable to reducing the environmental impact and enables the development of added-value products with various possible uses such as food and feed additives, nutraceuticals, cosmeceuticals, etc. This review summarises relevant issues towards the recovery and valorisation of BC from industrial tomato by-products within a circular economy context.
Collapse
Affiliation(s)
- M C Coelho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - A S Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - J A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - M E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
25
|
Rocha HR, Coelho MC, Gomes AM, Pintado ME. Carotenoids Diet: Digestion, Gut Microbiota Modulation, and Inflammatory Diseases. Nutrients 2023; 15:nu15102265. [PMID: 37242148 DOI: 10.3390/nu15102265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Several epidemiologic studies have found that consuming fruits and vegetables lowers the risk of getting a variety of chronic illnesses, including several types of cancers, cardiovascular diseases (CVDs), and bowel diseases. Although there is still debate over the bioactive components, various secondary plant metabolites have been linked to these positive health benefits. Many of these features have recently been connected to carotenoids and their metabolites' effects on intracellular signalling cascades, which influence gene expression and protein translation. Carotenoids are the most prevalent lipid-soluble phytochemicals in the human diet, are found in micromolar amounts in human serum, and are very susceptible to multiple oxidation and isomerisation reactions. The gastrointestinal delivery system, digestion processes, stability, and functionality of carotenoids, as well as their impact on the gut microbiota and how carotenoids may be effective modulators of oxidative stress and inflammatory pathways, are still lacking research advances. Although several pathways involved in carotenoids' bioactivity have been identified, future studies should focus on the carotenoids' relationships, related metabolites, and their effects on transcription factors and metabolism.
Collapse
Affiliation(s)
- Helena R Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta C Coelho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M Gomes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
26
|
Variations in BCO2 Coding Sequence Causing a Difference in Carotenoid Concentration in the Skin of Chinese Indigenous Chicken. Genes (Basel) 2023; 14:genes14030671. [PMID: 36980942 PMCID: PMC10048632 DOI: 10.3390/genes14030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Carotenoid consumption decreases the risk of cancer, osteoporosis, or neurodegenerative diseases through interrupting the formation of free radicals. The deposition of carotenoids in chicken skin makes the skin color turn from white into yellow. The enzyme β-carotene oxygenase 2 (BCO2) plays a key role during the degradation process of carotenoids in skin. How the BCO2 affects the skin color of the chicken and whether it is the key factor that results in the phenotypic difference between yellow- and white-skin chickens are still unclear. In this research, the measurement of the concentration of carotenoids in chicken skin by HPLC showed that the carotenoid concentration in chickens with a yellow skin was significantly higher than that in white-skin chickens. Moreover, there were significant differences in BCO2 gene expression in the back skin between yellow- and white-skin chickens. Scanning the SNPs in BCO2 gene revealed a G/A mutation in exon 6 of the BCO2 gene in white and yellow skin chicken. Generally, one SNP c.890A>G was found to be associated with the chicken skin color and may be used as a genetic marker in breeding for yellow skin in Chinese indigenous chickens.
Collapse
|
27
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
28
|
Zheng W, Yu S, Zhang W, Zhang S, Fu J, Ying H, Pingcuo G, Liu S, Zhao F, Wu Q, Xu Q, Ma Z, Zeng X. The content and diversity of carotenoids associated with high-altitude adaptation in Tibetan peach fruit. Food Chem 2023; 398:133909. [DOI: 10.1016/j.foodchem.2022.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
|
29
|
Jin Y, Arroo R. The protective effects of flavonoids and carotenoids against diabetic complications-A review of in vivo evidence. Front Nutr 2023; 10:1020950. [PMID: 37032781 PMCID: PMC10080163 DOI: 10.3389/fnut.2023.1020950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder caused either by inadequate insulin secretion, impaired insulin function, or both. Uncontrolled diabetes is characterized by hyperglycemia which over time leads to fatal damage to both macro-and microvascular systems, causing complications such as cardiovascular diseases, retinopathy and nephropathy. Diabetes management is conventionally delivered through modifications of diet and lifestyle and pharmacological treatment, using antidiabetic drugs, and ultimately insulin injections. However, the side effects and financial cost of medications often reduce patient compliance to treatment, negatively affecting their health outcomes. Natural phytochemicals from edible plants such as fruits and vegetables (F&V) and medicinal herbs have drawn a growing interest as potential therapeutic agents for treating diabetes and preventing the onset and progression of diabetic complications. Flavonoids, the most abundant polyphenols in the human diet, have shown antidiabetic effects in numerous in vitro and preclinical studies. The underlying mechanisms have been linked to their antioxidant, anti-inflammatory and immunomodulatory activities. Carotenoids, another major group of dietary phytochemicals, have also shown antidiabetic potential in recent in vitro and in vivo experimental models, possibly through a mechanism of action similar to that of flavonoids. However, scientific evidence on the efficacy of these phytochemicals in treating diabetes or preventing the onset and progression of its complications in clinical settings is scarce, which delays the translation of animal study evidence to human applications and also limits the knowledge on their modes of actions in diabetes management. This review is aimed to highlight the potential roles of flavonoids and carotenoids in preventing or ameliorating diabetes-related complications based on in vivo study evidence, i.e., an array of preclinical animal studies and human intervention trials. The current general consensus of the underlying mechanisms of action exerted by both groups of phytochemicals is that their anti-inflammatory action is key. However, other potential mechanisms of action are considered. In total, 50 in vivo studies were selected for a review after a comprehensive database search via PubMed and ScienceDirect from January 2002 to August 2022. The key words used for analysis are type-2 diabetes (T2DM), diabetic complications, flavonoids, carotenoids, antioxidant, anti-inflammatory, mechanisms of prevention and amelioration, animal studies and human interventions.
Collapse
Affiliation(s)
- Yannan Jin
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
- *Correspondence: Yannan Jin,
| | - Randolph Arroo
- Leicester School of Pharmacy, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
30
|
Kumar G, Upadhyay S, Yadav DK, Malakar S, Dhurve P, Suri S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Srishti Upadhyay
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Department of Food Technology Rajiv Gandhi University Doimukh India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh Noida India
| |
Collapse
|
31
|
Chen X, Yu J, Zheng L, Deng Z, Li H. Quercetin and lycopene co-administration prevents oxidative damage induced by d-galactose in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Vilas-Boas AA, Magalhães D, Campos DA, Porretta S, Dellapina G, Poli G, Istanbullu Y, Demir S, San Martín ÁM, García-Gómez P, Mohammed RS, Ibrahim FM, El Habbasha ES, Pintado M. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022; 11:foods11233859. [PMID: 36496667 PMCID: PMC9735808 DOI: 10.3390/foods11233859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The food industries are interested in developing functional products due to their popularity within nutritional and healthy circles. Functional fruit-based beverages represent one of the fast-growing markets due to the high concentrations of bioactive compounds (BCs), which can be health promoters. Hence, functional beverages based on citrus fruits are a potential way to take advantage of their nutritional and bioactive properties that could attract the interest of consumers. In order to ensure microbial and quality stability, the beverages are subjected to preservation treatment; however, the application of high temperatures leads to the loss of thermolabile BCs. Nowadays, innovative processing technologies (IPT) such as pulsed electric field (PEF), high-pressure processing (HPP), ultrasound processing (US), ohmic heating (OH), and microwave (MW) are a promising alternative due to their efficiency and low impact on juice BCs. The available literature concerning the effects of these technologies in functional fruit-based beverages is scarce; thus, this review gathers the most relevant information about the main positive and negative aspects of the IPT in functional properties, safety, and consumer acceptance of functional citrus-based beverages, as well as the use of citrus by-products to promote the circular economy in citrus processing.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Daniela Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Débora A. Campos
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Sebastiano Porretta
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Dellapina
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Poli
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Yildiray Istanbullu
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Sema Demir
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Ángel Martínez San Martín
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Presentación García-Gómez
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Reda S. Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
- Correspondence:
| |
Collapse
|
33
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
34
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14091852. [PMID: 36145601 PMCID: PMC9501598 DOI: 10.3390/pharmaceutics14091852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are natural lipid-soluble pigments that produce yellow to red colors in plants as well as providing bright coloration in vegetables and fruits. Lutein belongs to the xanthophyll subgroup of the carotenoid family, which plays an essential role in photosynthesis and photoprotection in nature. In the human body, lutein, together with its isomer zeaxanthin and its metabolite meso-zeaxanthin, accumulates in the macula of the eye retina, which is responsible for central, high-resolution, and color vision. As a bioactive phytochemical, lutein has essential physiological functions, providing photoprotection against damaging blue light, along with the neutralization of oxidants and the preservation of the structural and functional integrity of cellular membranes. As a potent antioxidant and anti-inflammatory agent, lutein unfortunately has a low bioavailability because of its lipophilicity and a low stability as a result of its conjugated double bonds. In order to enhance lutein stability and bioavailability and achieve its controlled delivery to a target, nanoscale delivery systems, which have great potential for the delivery of bioactive compounds, are starting to be employed. The current review highlights the advantages and innovations associated with incorporating lutein within promising nanoscale delivery systems, such as liposomes, nanoemulsions, polymer nanoparticles, and polymer–lipid hybrid nanoparticles, as well as their unique physiochemical properties.
Collapse
|
36
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
37
|
Nouchi R, Hu Q, Ushida Y, Suganuma H, Kawashima R. Effects of sulforaphane intake on processing speed and negative moods in healthy older adults: Evidence from a randomized controlled trial. Front Aging Neurosci 2022; 14:929628. [PMID: 35966784 PMCID: PMC9372582 DOI: 10.3389/fnagi.2022.929628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have reported that sulforaphane (SFN) intake with cognitive training had positive effects on cognitive functions. However, it is still unknown whether SFN intake alone has beneficial effects on cognition as well as mood. We investigated whether a SFN intake intervention improved cognitive performance and mood states in healthy older adults. Methods In a 12-week, double-blinded, randomized controlled trial (RCT), we randomly assigned 144 older adults to a SFN group or a placebo group. We asked the participants to take a supplement (SFN or placebo) for 12 weeks. We measured several cognitive functions, mood states, and biomarkers before and after the intervention period. Results The SFN group showed improvement in processing speed and a decrease in negative mood compared to the placebo group. In addition, the SFN group exhibited a higher SFN-N-acetyl-L-cysteine (NAC) level compared to the placebo group. However, there were no significant results in other biomarkers of oxidant stress, inflammation, or neural plasticity. Discussion These results indicate that nutrition interventions using SFN can have positive effects on cognitive functioning and mood in healthy older adults.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- *Correspondence: Rui Nouchi,
| | - Qingqiang Hu
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | | | - Ryuta Kawashima
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Pelosi B. Developing a bioinformatics pipeline for comparative protein classification analysis. BMC Genom Data 2022; 23:43. [PMID: 35668373 PMCID: PMC9172112 DOI: 10.1186/s12863-022-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Protein classification is a task of paramount importance in various fields of biology. Despite the great momentum of modern implementation of protein classification, machine learning techniques such as Random Forest and Neural Network could not always be used for several reasons: data collection, unbalanced classification or labelling of the data.As an alternative, I propose the use of a bioinformatics pipeline to search for and classify information from protein databases. Hence, to evaluate the efficiency and accuracy of the pipeline, I focused on the carotenoid biosynthetic genes and developed a filtering approach to retrieve orthologs clusters in two well-studied plants that belong to the Brassicaceae family: Arabidopsis thaliana and Brassica rapa Pekinensis group. The result obtained has been compared with previous studies on carotenoid biosynthetic genes in B. rapa where phylogenetic analysis was conducted. RESULTS The developed bioinformatics pipeline relies on commercial software and multiple databeses including the use of phylogeny, Gene Ontology terms (GOs) and Protein Families (Pfams) at a protein level. Furthermore, the phylogeny is coupled with "population analysis" to evaluate the potential orthologs. All the steps taken together give a final table of potential orthologs. The phylogenetic tree gives a result of 43 putative orthologs conserved in B. rapa Pekinensis group. Different A. thaliana proteins have more than one syntenic ortholog as also shown in a previous finding (Li et al., BMC Genomics 16(1):1-11, 2015). CONCLUSIONS This study demonstrates that, when the biological features of proteins of interest are not specific, I can rely on a computational approach in filtering steps for classification purposes. The comparison of the results obtained here for the carotenoid biosynthetic genes with previous research confirmed the accuracy of the developed pipeline which can therefore be applied for filtering different types of datasets.
Collapse
Affiliation(s)
- Benedetta Pelosi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
39
|
Ilahy R, Tlili I, Pék Z, Montefusco A, Daood H, Azam M, Siddiqui MW, R'him T, Durante M, Lenucci MS, Helyes L. Effect of Individual and Selected Combined Treatments With Saline Solutions and Spent Engine Oil on the Processing Attributes and Functional Quality of Tomato (Solanum lycopersicon L.) Fruit: In Memory of Professor Leila Ben Jaballah Radhouane (1958–2021). Front Nutr 2022; 9:844162. [PMID: 35571925 PMCID: PMC9097875 DOI: 10.3389/fnut.2022.844162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
The results showed that soil electrical conductivity, (EC2: 7 dS/m) increased soluble solids, lycopene content, total phenolic content, hydrophilic and lipophilic radical scavenging activities (HRSA and LRSA) by 14.2, 149, 20, 46.4, and 19.0%, respectively, compared with control. Under 0.5% spent engine oil (SEO), flavonoid content decreased by 21.7% compared with the control. HRSA and LRSA of fruits subjected to EC2/SEO1 treatment were, respectively, 45.9 and 35.5% lower than control. The a*/b* ratio was positively and significantly (P < 0.01) correlated with β-carotene (R = 0.78), lycopene (R = 0.68), total vitamin C (R = 0.71), α-tocopherol (R = 0.83), γ-tocopherol (R = 0.66), HRSA (R = 0.93), LRSA (R = 0.80), and soluble solids (R = 0.84) suggesting that it may be a promising indicator of fruit quality in areas affected by such constraints. The research revealed that combined stresses induce responses markedly different from those of individual treatments, which strain the need to focus on how the interaction between stresses may affect the functional quality of tomato fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Zoltán Pék
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, Gödöllo, Hungary
| | - Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Hussein Daood
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, Gödöllo, Hungary
| | - Mohamed Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Thouraya R'him
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Miriana Durante
- Istituto di Scienze Delle Produzioni Alimentari (ISPA)-CNR, Lecce, Italy
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
- *Correspondence: Marcello Salvatore Lenucci
| | - Lajos Helyes
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, Gödöllo, Hungary
| |
Collapse
|
40
|
Zhuang C, Yuan J, Du Y, Zeng J, Sun Y, Wu Y, Gao XH, Chen HD. Effects of Oral Carotenoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Studies in the Recent 20 Years. Front Nutr 2022; 9:754707. [PMID: 35571897 PMCID: PMC9094493 DOI: 10.3389/fnut.2022.754707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Carotenoids protect organs, tissues, and cells from the damaging action of singlet oxygen, oxygen radicals, and lipid peroxides. This systematic review was sought to evaluate the influence of oral carotenoids on antioxidant/oxidative markers, blood carotenoids levels, and lipid/lipoprotein parameters in human subjects. A comprehensive review of relevant literature was conducted in PubMed, Web of Sciences, and the Cochrane library, from 2000 to December 2020. Randomized controlled trials, case-controlled trials, or controlled trials were identified. A total of eighteen trials were included, with the target populations being healthy subjects in 16 studies, athletes in 1 study, and pregnant women in 1 study. The meta-analysis results showed that carotenoids complex supplementation significantly increased the levels of antioxidative parameters ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) [standardized mean difference (SMD) = 0.468; 95% CI: 0.159-0.776, p = 0.003; SMD = 0.568; 95% CI: 0.190-0.947, p = 0.003] and decreased the blood triglyceride (TG) level (SMD = -0.410, 95% CI: -0.698 to -0.122, p = 0.005). Oral carotenoids supplement significantly increased the blood levels of β-carotene (SMD = 0.490, 95% CI: 0.123-0.858, p = 0.009), α-tocopherol (SMD = 0.752, 95%CI: 0.020-1.485, p = 0.044), and the intaking durations were 8 weeks. The levels of antioxidative enzymes and other lipid/lipoprotein parameters were not different between subjects receiving carotenoids and controls (p > 0.05). In conclusion, our systematic review showed that the carotenoids complex is beneficial for alleviating potential oxidative stress via interacting with free radicals or decreasing blood TG levels. The intaking duration of carotenoids should be 8 weeks to reach enough concentration for function.
Collapse
Affiliation(s)
- Chengfei Zhuang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jinping Yuan
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Zeng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Monjotin N, Amiot MJ, Fleurentin J, Morel JM, Raynal S. Clinical Evidence of the Benefits of Phytonutrients in Human Healthcare. Nutrients 2022; 14:nu14091712. [PMID: 35565680 PMCID: PMC9102588 DOI: 10.3390/nu14091712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Phytonutrients comprise many different chemicals, including carotenoids, indoles, glucosinolates, organosulfur compounds, phytosterols, polyphenols, and saponins. This review focuses on the human healthcare benefits of seven phytochemical families and highlights the significant potential contribution of phytonutrients in the prevention and management of pathologies and symptoms in the field of family health. The structure and function of these phytochemical families and their dietary sources are presented, along with an overview of their potential activities across different health and therapeutic targets. This evaluation has enabled complementary effects of the different families of phytonutrients in the same area of health to be recognized.
Collapse
Affiliation(s)
- Nicolas Monjotin
- Institut de Recherche Pierre Fabre, Pierre Fabre Medical Care, 81100 Castres, France;
| | - Marie Josèphe Amiot
- Montpellier Interdisciplinary Center on Sustainable Agri-Food Systems, INRAE, Agro Institute, Université de Montpellier, CIHEAM-IAMM, CIRAD, IRD, 34000 Montpellier, France;
| | | | | | - Sylvie Raynal
- Direction Médicale Patients et Consommateurs, Pierre Fabre Medical Care, 81100 Castres, France
- Correspondence:
| |
Collapse
|
42
|
Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel) 2022; 11:795. [PMID: 35453480 PMCID: PMC9025559 DOI: 10.3390/antiox11040795] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Natural carotenoids (CARs), viz. β-carotene, lutein, astaxanthin, bixin, norbixin, capsanthin, lycopene, canthaxanthin, β-Apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester, are being studied as potential candidates in fields such as food, feed, nutraceuticals, and cosmeceuticals. CAR research is advancing in the following three major fields: (1) CAR production from natural sources and optimization of its downstream processing; (2) encapsulation for enhanced physical and chemical properties; and (3) preclinical, clinical, and epidemiological studies of CARs' health benefits. This review critically discusses the recent developments in studies of the chemistry and antioxidant activity, marketing trends, dietary sources, extraction, bioaccessibility and bioavailability, encapsulation methods, dietary intake, and health benefits of CARs. Preclinical, clinical, and epidemiological studies on cancer, obesity, type 2 diabetes (T2D), cardiovascular diseases (CVD), osteoporosis, neurodegenerative disease, mental health, eye, and skin health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Veeresh Lokesh
- Biocontrol Laboratory, University of Horticultural Sciences, Bagalkote 587104, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| |
Collapse
|
43
|
Dietary Supplements and the Skin: Focus on Photoprotection and Antioxidant Activity—A Review. Nutrients 2022; 14:nu14061248. [PMID: 35334905 PMCID: PMC8953599 DOI: 10.3390/nu14061248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Skin health is not only significantly affected by ageing, but also by other lifestyle-related factors, such as sun exposure, exercise and eating habits, smoking or alcohol intake. It is known that the cutaneous tissue can exhibit visible signs of senescence, in the form of, for example, dull complexion, loss of firmness, or changes in pigmentation. Consumers attempt to improve skin health and appearance not only by cosmetic products, but also with the consumption of food supplements. Recently, there has been an increase in the amount of food supplements with claims that are related to skin and hair health. Nevertheless, the literature is still scarce in evidence of the efficacy of this type of products. Considering this scenario, we aim in this review to assemble studies and methodologies that are directed at the substantiation of the cutaneous health claims of food supplements. For example, we reviewed those that were indicative of antioxidant properties, improvement in pigmentation disorders, increased hydration or protection against the damages caused by ultraviolet radiation.
Collapse
|
44
|
Sadeer NB, Zengin G, Mahomoodally MF. Biotechnological applications of mangrove plants and their isolated compounds in medicine-a mechanistic overview. Crit Rev Biotechnol 2022; 43:393-414. [PMID: 35285350 DOI: 10.1080/07388551.2022.2033682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mangrove plants, also known as halophytes, are ecologically important plants that grow in various tropical and subtropical intertidal regions. Owing to the extreme abiotic and biotic stressful conditions they thrive in, these plants produce unique compounds with promising pharmacological propensities. Mangroves are inhabited by an astronomical number of fungal communities which produce a diverse array of extracellular degradative enzymes, namely: amylase, cellulase, xylanase, pectinase, cholesterol oxidase, etc. Such enzymes can be isolated from the mangrove fungi and harnessed for different biotechnological applications, for example, as replacements for chemical catalysts. Mangrove microbes attract considerable attention as they shelter the largest group of marine microorganisms that are resistant to extreme conditions and can produce novel biogenic substances. Vaccines developed from mangrove microbes may promise a safe future by developing effective immunization procedures with a minimum of economic burden. Interestingly, mangroves offer an exciting opportunity for synthesizing nanoparticles in a greener way as these plants are naturally rich in phytochemicals. Rhizophora mucronata Lam., Avicennia officinalis L. and Excoecaria agallocha L. are capable of synthesizing nanoparticles which have evolved recently as an alternative in various industries and are used for their biomedical application. Besides, the phytoconstituents isolated from mangrove plants, such as: gallic acid, galactose, lupeol, catechins, carotenoids, etc., were explored for various biological activities. These compounds are used in the pharmaceutical and nutraceutical industries to produce antimicrobial, antioxidant, anticancer, antidiabetic, and other therapeutic agents. The present review provides information on the biotechnological potentials of mangrove plants and their bioactive compounds as a new source of novel drugs, enzymes, nanoparticles and therapeutically important microbial pigments. Thus, this review forms a base of support and hasten the urgent research on biomedical applications of mangroves.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
45
|
Mubeen S, Shahzadi I, Akram W, Saeed W, Yasin NA, Ahmad A, Shah AA, Siddiqui MH, Alamri S. Calcium Nanoparticles Impregnated With Benzenedicarboxylic Acid: A New Approach to Alleviate Combined Stress of DDT and Cadmium in Brassica alboglabra by Modulating Bioacummulation, Antioxidative Machinery and Osmoregulators. FRONTIERS IN PLANT SCIENCE 2022; 13:825829. [PMID: 35356123 PMCID: PMC8959818 DOI: 10.3389/fpls.2022.825829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
At present, the alleviation of stress caused by climate change and environmental contaminants is a crucial issue. Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant (POP) and an organochlorine, which causes significant health problems in humans. The stress caused by cadmium (Cd) and the toxicity of DDT have direct effects on the growth and yield of crop plants. Ultimately, the greater uptake and accumulation of DDT by edible plants affects human health by contaminating the food chain. The possible solution to this challenging situation is to limit the passive absorption of POPs into the plants. Calcium (Ca) is an essential life component mandatory for plant growth and survival. This study used impregnated Ca (BdCa) of benzenedicarboxylic acid (Bd) to relieve abiotic stress in plants of Brassica alboglabra. BdCa mitigated the deleterious effects of Cd and reduced DDT bioaccumulation. By increasing the removal efficacy (RE) up to 256.14%, BdCa greatly decreased pollutant uptake (Cd 82.37% and DDT 93.64%) and supported photosynthetic machinery (86.22%) and antioxidant enzyme defenses (264.73%), in applied plants. Exogenously applied Bd also successfully improved the antioxidant system and the physiochemical parameters of plants. However, impregnation with Ca further enhanced plant tolerance to stress. This novel study revealed that the combined application of Ca and Bd could effectively relieve individual and combined Cd stress and DDT toxicity in B. alboglabra.
Collapse
Affiliation(s)
- Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Iqra Shahzadi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymersbased Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Waheed Akram
- Department of Plant Pathology, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Wajid Saeed
- Key Laboratory of Crop Cultivation and Farming System, Agriculture College, Guangxi University, Nanning, China
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Rontani JF. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules 2022; 27:1629. [PMID: 35268730 PMCID: PMC8911584 DOI: 10.3390/molecules27051629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
This paper reviews applications of gas chromatography-mass spectrometry techniques for the characterization of photooxidation and autoxidation products of lipids of senescent phototrophic organisms. Particular attention is given to: (i) the selection of oxidation products that are sufficiently stable under environmental conditions and specific to each lipid class and degradation route; (ii) the description of electron ionization mass fragmentation of trimethylsilyl derivatives of these compounds; and (iii) the use of specific fragment ions for monitoring the oxidation of the main unsaturated lipid components of phototrophs. The techniques best geared for this task were gas chromatography-quadrupole-time of flight to monitor fragment ions with very high resolution and accuracy, and gas chromatography-tandem mass spectrometry to monitor very selective transitions in multiple reaction monitoring mode. The extent of the degradation processes can only be estimated if the oxidation products are unaffected by fast secondary oxidation reactions, as it is notably the case of ∆5-sterols, monounsaturated fatty acids, chlorophyll phytyl side-chain, and di- and triterpenoids. In contrast, the primary degradation products of highly branched isoprenoid alkenes possessing more than one trisubstituted double bond, alkenones, carotenoids and polyunsaturated fatty acids, appear to be too unstable with respect to secondary oxidation or other reactions to serve for quantification in environmental samples.
Collapse
Affiliation(s)
- Jean-François Rontani
- Mediterranean Institute of Oceanography (MIO), Aix Marseille University, Université de Toulon, CNRS, IRD, UM 110, 13288 Marseille, France
| |
Collapse
|
47
|
Santamarina AB, de Souza Mesquita LM, Casagrande BP, Sertorio MN, Vitor de Souza D, Mennitti LV, Ribeiro DA, Estadella D, Ventura SP, de Rosso VV, Pisani LP. Supplementation of carotenoids from peach palm waste (Bactris gasipaes) obtained with an ionic liquid mediated process displays kidney anti-inflammatory and antioxidant outcomes. Food Chem X 2022; 13:100245. [PMID: 35499011 PMCID: PMC9040030 DOI: 10.1016/j.fochx.2022.100245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023] Open
Abstract
Carotenoid’s supplementation can control weight gain even in the HFD model. Carotenoids extracted with ionic liquids displayed antioxidant activity on the kidney. Carotenoids extracted with ionic liquids display an anti-inflammatory effect. Carotenoids extracted with acetone increase pro-inflammatory cytokines on the kidney. Carotenoids extracted with acetone display oxidative stress on the kidney.
Sustainable extraction processes based on alternative solvents to recover bioactive compounds of different raw materials have been highlighted as excellent alternatives to supply the needs of society towards a bioeconomy strategy. Little is known about the safety and biological effect of compounds extracted by these processes. In this work, carotenoids from Bactris gasipaes wastes obtained by an IL-based process were investigated in terms of safety, anti-inflammatory and, antioxidant activity in a high-fat-diet animal model on the kidney. Wistar rats were supplemented or not by carotenoids extracted with IL or VOS. The animals supplemented with carotenoids had lower weight than control and high-fat diets. In the animals supplemented with carotenoids, the group IL improved anti-inflammatory and antioxidant activity compared with carotenoids obtained by VOS. Also, the group HFD-VOS showed moderate-severe injuries on the kidney. Then, ILs could represent a novel tool for natural pigments safely applied to food industry.
Collapse
Affiliation(s)
- Aline B. Santamarina
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Leonardo M. de Souza Mesquita
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Breno P. Casagrande
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Marcela N. Sertorio
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Daniel Vitor de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Laís V. Mennitti
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Daniel A. Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Sónia P.M. Ventura
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veridiana V. de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
| | - Luciana P. Pisani
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, Brazil
- Corresponding author.
| |
Collapse
|
48
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
49
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
50
|
de Andrades EO, da Costa JMAR, de Lima Neto FEM, de Araujo AR, de Oliveira Silva Ribeiro F, Vasconcelos AG, de Jesus Oliveira AC, Sobrinho JLS, de Almeida MP, Carvalho AP, Dias JN, Silva IGM, Albuquerque P, Pereira IS, do Amaral Rabello D, das Graças Nascimento Amorim A, de Souza de Almeida Leite JR, da Silva DA. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int J Biol Macromol 2021; 191:1026-1037. [PMID: 34563578 DOI: 10.1016/j.ijbiomac.2021.09.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles. The antioxidant activity was determinated and cell viability was evaluated in the human breast cancer cells (MCF-7) and human keratinocytes (HaCaT) by MTT assay. The toxic effect was evaluated by hemolysis test and by Galleria mellonella model. NFGa showed higher stability than NGa, having a size of 162.10 ± 3.21 nm, polydispersity of 0.348 ± 0.019, zeta potential -30.70 ± 0.53 mV, concentration of 6.4 × 109 nanoparticles/mL and 60% LEG encapsulation. Microscopic analysis revealed a spherical and smooth shape of NFGa. NFGa showed antioxidant capacity by ABTS method and ORAC assay. The NFGa presented significant cytotoxicity against MCF-7 from the lowest concentration tested (6.25-200 μg/mL) and did not affect the cell viability of the HaCaT. NFGa showed non-toxic effect in the in vitro and in vivo models. Therefore, NFGa may have a promising application in LEG stabilization for antioxidant and antitumor purposes.
Collapse
Affiliation(s)
- Eryka Oliveira de Andrades
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | | | - Alyne Rodrigues de Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Fabio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Antônia Carla de Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ana P Carvalho
- LAQV/REQUIMTE-GRAQ, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal; Centro de Biotecnologia e Química Fina, CBQF, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Jhones Nascimento Dias
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - Patrícia Albuquerque
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Ildinete Silva Pereira
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Doralina do Amaral Rabello
- Laboratório de Patologia Molecular do Câncer, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil; Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Durcilene Alves da Silva
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil.
| |
Collapse
|