1
|
Lee DY, Noren Hooten N, O'Connell JF, Lee BY, Kim Y. The Role of Ginseng and Its Bioactive Compounds in Aging: Cells and Animal Studies. Annu Rev Food Sci Technol 2025; 16:333-354. [PMID: 39971378 DOI: 10.1146/annurev-food-111523-121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aging is an inevitable process that is characterized by physiological deterioration and increased vulnerability to stressors. Therefore, the interest in hallmarks, mechanisms, and ways to delay or prevent aging has grown for decades. Natural plant products and their bioactive compounds have been studied as a promising strategy to overcome aging. Ginseng, a traditional herbal medicine, and its bioactive compound, the ginsenosides, have increasingly gained attention because of various pharmacological functions. This review introduces the species, useful parts, characteristics, and active components of ginseng. It primarily focuses on the bioconversion of ginsenosides through the unique steaming and drying process. More importantly, this review enumerates the antiaging mechanisms of ginseng, ginsenosides, and other bioactive compounds, highlighting their potential to extend the health span and mitigate age-related diseases based on twelve representative hallmarks of aging.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, Maryland, USA
| | - Jennifer F O'Connell
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, USA
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea;
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA;
| |
Collapse
|
2
|
Zeng G, Zou W, Liu C, Chen Y, Wen T. Ginsenoside Re suppresses high glucose-induced apoptosis of placental trophoblasts through endoplasmic reticulum stress-related CHOP/GADD153. Hum Exp Toxicol 2025; 44:9603271241307835. [PMID: 39798073 DOI: 10.1177/09603271241307835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Background: Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. Purpose: This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153. Research Design: Human trophoblast cells HTR-8/SVneo were treated with HG to simulate the HG environment in vitro, while normal glucose (NG) was used as the control. Study Sample: NG (5 mM) or HG (25 mM)-cultured HTR-8/SVneo cells were treated with 10, 20 or 40 μM Re. HG-cultured cells were treated with 5 mM ERS inducer 2-Deoxy-D-glucose (2-DG) and transfected with oe- CHO. Data Collection and/or Analysis: Cell viability and apoptosis were detected by CCK-8 and flow cytometry; LDH release, superoxide dismutase (SOD), malonaldehyde (MDA) and glutathione (GSH) levels were detected using kits; the apoptosisrelated proteins and ERS-related proteins were assessed by western blot. Results: Re (10, 20 or 40 μM) had no significant effect on NG-treated HTR-8/SVneo cell viability. Re (20 or 40 μM) could enhance the viability of HG-treated trophoblasts. Re (40 μM) inhibited apoptosis of HGtreated trophoblasts, ERS and alleviated oxidative stress evidenced by suppressed phosphorylation of PERK, IRE1α, reduced protein expression of ATF6, CHOP/GADD153, and inhibited MDA accumulation, GSH and SOD loss. ERS activation or CHOP/GADD153 overexpression reversed Re's inhibition on HG-induced apoptosis of trophoblasts. Conclusions: Re repressed HG-induced placental trophoblast apoptosis by mediating ERS-related protein CHOP/GADD153.
Collapse
Affiliation(s)
- Guihong Zeng
- Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China
| | - Weiyang Zou
- Department of Clinical Laboratory, Fuyong People's Hospital, Shenzhen, China
| | - Changdi Liu
- Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China
| | - Yulan Chen
- Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China
| | - Tingmei Wen
- Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Li L, Sun J, Chen F, Xiong L, She L, Hao T, Zeng Y, Li L, Wang W, Zhao X, Liang G. Pedunculoside alleviates cognitive deficits and neuronal cell apoptosis by activating the AMPK signaling cascade. Chin Med 2024; 19:163. [PMID: 39574131 PMCID: PMC11583384 DOI: 10.1186/s13020-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction emerges as an early pathological hallmark of Alzheimer's disease (AD). The reduction in mitochondrial membrane potential and the elevation of reactive oxygen species (ROS) production are pivotal in the initiation of neuronal cell apoptosis. Pedunculoside(Ped), a novel triterpene saponin derived from the dried barks of Ilex rotunda Thunb, exhibits a potent anti-inflammatory effect. In the course of drug screening, we discovered that Ped offers significant protection against apoptosis induced by Aβ1-42. Nevertheless, the role and mechanism of Ped in AD are yet to be elucidated. METHODS Oxidative stress was evaluated by measuring mitochondrial membrane potential and intracellular ROS production. The expression of proteins associated with apoptosis was determined using western blot analysis and flow cytometry. In vivo, the pathological characteristics of AD were investigated through Western blot and tissue immunofluorescence techniques. Cognitive function was assessed using the Morris Water Maze and Novel Object Recognition tests. RESULTS We demonstrated that Ped decreased apoptosis in PC12 cells, reduced the generation of intracellular ROS, and restored mitochondrial membrane potential. Mechanistically, we found that the protective effect of Ped against Aβ-induced neurotoxicity was associated with activation of the AMPK/GSK-3β/Nrf2 signaling pathway. In vivo, Ped alleviated memory deficits and inhibited neuronal apoptosis, inflammation, and oxidative stress in the hippocampus of 3 × Tg AD mice, along with the activation of the AMPK signaling pathway. CONCLUSION The findings indicate that Ped exerts its neuroprotective effects against oxidative stress and apoptosis through the AMPK signaling cascade. The results demonstrate that Ped is a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Liwei Li
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinfeng Sun
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Fan Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Li Xiong
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Tang Hao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yuqing Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, 321399, Zhejiang, China
| | - Xia Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
4
|
Li X, Zheng K, Chen H, Li W. Ginsenoside Re Regulates Oxidative Stress through the PI3K/Akt/Nrf2 Signaling Pathway in Mice with Scopolamine-Induced Memory Impairments. Curr Issues Mol Biol 2024; 46:11359-11374. [PMID: 39451557 PMCID: PMC11506191 DOI: 10.3390/cimb46100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
While Ginsenoside Re has been shown to protect the central nervous system, reports of its effects on memory in the model of scopolamine-induced memory impairment are rare. The aim of this study was to investigate the effects of Ginsenoside Re on scopolamine (SCOP)-induced memory damage and the mechanism of action. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days and with or without Ginsenoside Re for 14 days. As evidenced by behavioral studies (escape latency and cross platform position), brain tissue morphology, and oxidative stress indicators after Ginsenoside Re treatment, the memory damage caused by SCOP was significantly ameliorated. Further mechanism research indicated that Ginsenoside Re inhibited cell apoptosis by regulating the PI3K/Akt/Nrf2 pathway, thereby exerting a cognitive impairment improvement effect. This research suggests that Ginsenoside Re could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | | | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Litwiniuk A, Kalisz M, Domańska A, Chmielowska M, Martyńska L, Baranowska-Bik A, Bik W. Nicotinic acid attenuates amyloid β 1-42-induced mitochondrial dysfunction and inhibits the mitochondrial pathway of apoptosis in differentiated SH-SY5Y cells. Neurochem Int 2024; 178:105772. [PMID: 38789043 DOI: 10.1016/j.neuint.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive memory loss and behavioral disorders. The excessive accumulation of amyloid β (Aβ) and the formation of neurofibrillary tangles (NFTs) damage synaptic connections and the death of neurons. However, the underlying mechanisms of pathogenesis of AD remain unclear. Growing evidence indicates that impaired mitochondrial function may play a crucial role in the development of AD. In the current study, we investigated whether nicotinic acid (NA) could protect against amyloid β1-42-induced cytotoxicity in differentiated SH-SY5Y cells. Our results revealed the neuroprotective effects of NA on the differentiated SH-SY5Y cells treated with Aβ1-42. In detail, the 1-h pre-incubation with NA increased cell viability and lowered LDH levels. NA pre-incubation abolished Aβ1-42 treatment-associated alterations of mRNA levels of synaptic genes and enhanced the relative β3 Tubulin fluorescence intensity. NA eliminated the Aβ1-42-induced mitochondrial dysfunction by increasing the potential of mitochondrial membranes and maintaining a balance between the fusion and fission of mitochondria. Moreover, Aβ1-42 decreased mRNA levels of anti-apoptotic bcl2 and increased mRNA levels of pro-apoptotic: bim, bak, cytochrome c, and caspase 9. At the same time, the NA pre-treatment reduced Aβ1-42-dependent apoptotic death of differentiated SH-SY5Y cells. The above data suggest that NA presents a protective activity against Aβ1-42-induced cytotoxicity in differentiated SH-SY5Y cells by inhibiting the mitochondrial pathway of apoptosis and restoring the proper function of mitochondria.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland.
| | - Małgorzata Kalisz
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Magdalena Chmielowska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Agnieszka Baranowska-Bik
- Department of Endocrinology, Centre of Postgraduate Medical Education, Cegłowska 80, 01-809, Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| |
Collapse
|
6
|
Liu Y, Mou L, Yi Z, Lin Q, Banu K, Wei C, Yu X. Integrative informatics analysis identifies that ginsenoside Re improves renal fibrosis through regulation of autophagy. J Nat Med 2024; 78:722-731. [PMID: 38683298 DOI: 10.1007/s11418-024-01800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
We previously demonstrated that ginsenoside Re (G-Re) has protective effects on acute kidney injury. However, the underlying mechanism is still unclear. In this study, we conducted a meta-analysis and pathway enrichment analysis of all published transcriptome data to identify differentially expressed genes (DEGs) and pathways of G-Re treatment. We then performed in vitro studies to measure the identified autophagy and fibrosis markers in HK2 cells. In vivo studies were conducted using ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) models to evaluate the effects of G-Re on autophagy and kidney fibrosis. Our informatics analysis identified autophagy-related pathways enriched for G-Re treatment. Treatment with G-Re in HK2 cells reduced autophagy and mRNA levels of profibrosis markers with TGF-β stimulation. In addition, induction of autophagy with PP242 neutralized the anti-fibrotic effects of G-Re. In murine models with UUO and AAN, treatment with G-Re significantly improved renal function and reduced the upregulation of autophagy and profibrotic markers. A combination of informatics analysis and biological experiments confirmed that ginsenoside Re could improve renal fibrosis and kidney function through the regulation of autophagy. These findings provide important insights into the mechanisms of G-Re's protective effects in kidney injuries.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qisheng Lin
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengguo Wei
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xiaoxia Yu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| |
Collapse
|
7
|
He S, Shi J, Ma L, Pei H, Zhang P, Shi D, Li H. Total ginsenosides decrease Aβ production through activating PPARγ. Biomed Pharmacother 2024; 174:116577. [PMID: 38593704 DOI: 10.1016/j.biopha.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION Total ginsenosides (TG), the major active constituents of ginseng, have been proven to be beneficial in treatment of Alzheimer's disease (AD). However, the underlying mechanism of TG remains unclear. METHODS APP/PS1 mice and N2a/APP695 cells were used as in vivo and in vitro model, respectively. Morris water maze (MWM) was used to investigate behavioral changes of mice; neuronal pathological changes were assessed by hematoxylin and eosin (H&E) and nissl staining; immunofluorescence staining was used to examine amyloid beta (Aβ) deposition; Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of relative amyloidogenic genes and proteins. Moreover, the antagonist of PPARγ, GW9662, was used to determine whether the effects of TG on Aβ production were associated with PPARγ activity. RESULTS TG treatment increased the spatial learning and memory abilities of APP/PS1 mice while decreasing the Aβ accumulation in the cortex and hippocampus. In N2a/APP695 cells, TG treatment attenuated the secretion of Aβ1-40 and Aβ1-42 acting as an PPARγ agonist by inhibiting the translocation of NF-κB p65. Additionally, TG treatment also decreased the expression of amyloidogenic pathway related gene BACE1, PS1 and PS2. CONCLUSIONS TG treatment reduced the production of Aβ both in vivo and in vitro. Activating PPARγ might be a potential therapeutic target of TG in facilitating Aβ clearance and ameliorating cognitive deficiency in APP/PS1 mice.
Collapse
Affiliation(s)
- Shan He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
He S, Shi J, Chai H, Ma L, Pei H, Zhang P, Shi D, Li H. Mechanisms with network pharmacology approach of Ginsenosides in Alzheimer's disease. Heliyon 2024; 10:e26642. [PMID: 38434355 PMCID: PMC10906400 DOI: 10.1016/j.heliyon.2024.e26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive disorder, language dysfunction, and mental disability. The main neuropathological changes in AD mainly include amyloid plaque deposition, neurofibrillary tangles, synapse loss, and neuron reduction. However, the current anti-AD drugs do not demonstrate a favorable effect in altering the pathological course of AD. Moreover, long-term use of these drugs is usually accompanied with various side effects. Ginsenosides are the major active constituents of ginseng and have protective effects on AD through various mechanisms in both in vivo and in vitro studies. In this review, we focused on discussing the therapeutic potential effects and the mechanisms of pharmacological activities of ginsenosides in AD, to provide new insight for further research and clinical application of ginsenosides in the future. Recent studies on the pharmacological effects and mechanisms of ginsenosides were retrieved from Chinese National Knowledge Infrastructure, National Science and Technology Library, Wanfang Data, Elsevier, ScienceDirect, PubMed, SpringerLink, and the Web of Science database up to April 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of ginsenosides against AD. Ginsenosides presented a wide range of therapeutic and biological activities, including alleviating Aβ deposition, decreasing tau hyperphosphorylation, regulating the cholinergic system, resisting oxidative stress, modulating Ca2+ homeostasis, as well as anti-inflammation and anti-apoptosis in neurons, respectively. For further developing the therapeutic potential as well as clinical applications, the network pharmacology approach was combined with a summary of published studies.
Collapse
Affiliation(s)
- Shan He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Chai
- Hepingli Hospital, Beijing, China
| | - Lina Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Jeong JS, Kim JW, Kim JH, Kim CY, Ko JW, Kim TW. Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy. J Ginseng Res 2024; 48:52-58. [PMID: 38223821 PMCID: PMC10785417 DOI: 10.1016/j.jgr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in in vivo and in vitro. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated. Methods We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation. Results KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis. Conclusion Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.
Collapse
Affiliation(s)
- Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
11
|
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root's Chemical Composition and Immunomodulatory Effects. Molecules 2023; 29:111. [PMID: 38202694 PMCID: PMC10780104 DOI: 10.3390/molecules29010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1β, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.
Collapse
Affiliation(s)
- Hong Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Hang Chi
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China;
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| |
Collapse
|
12
|
Zhou JC, Li HL, Zhou Y, Li XT, Yang ZY, Tohda C, Komatsu K, Piao XH, Ge YW. The roles of natural triterpenoid saponins against Alzheimer's disease. Phytother Res 2023; 37:5017-5040. [PMID: 37491018 DOI: 10.1002/ptr.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.
Collapse
Affiliation(s)
- Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Jiang H, Qin H, Sun M, Lin S, Yang J, Liu M. Effect of blue light on the cell viability of A549 lung cancer cells and investigations into its possible mechanism. JOURNAL OF BIOPHOTONICS 2023; 16:e202300047. [PMID: 37265005 DOI: 10.1002/jbio.202300047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Blue light has attracted extensive attention as a new potential cancer therapy. Recent studies have indicated that blue light has a significant inhibition effect on A459 cells. However, the effect of light parameters on the treatment of A549 cells and the mechanism of how blue light made the effect was still unclear. This study aimed to investigate A549 cells responses to blue light with varying irradiance and dose-dense, and tried to find out the mechanism of the effects blue light made. The results suggested that the responses of A549 cells to blue light with different irradiance and dose-dense were different and the decrease of cell viability reached saturation when the irradiance reached 3 mW/cm2 and the dose-dense reached 3.6 J/cm2 . It was assumed that blue light suppressed PI3K/AKT pathway and promoted the expression of JNK and p53 to affect the proliferation of A549 cells.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Miao Sun
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Jiali Yang
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
14
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
15
|
Sidiropoulou GA, Metaxas A, Kourti M. Natural antioxidants that act against Alzheimer's disease through modulation of the NRF2 pathway: a focus on their molecular mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1217730. [PMID: 37465125 PMCID: PMC10351420 DOI: 10.3389/fendo.2023.1217730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 07/20/2023] Open
Abstract
Characterized by a complex pathophysiology that includes the intraneuronal formation of neurofibrillary tangles and the extracellular deposition of β-amyloid plaques, Alzheimer's disease (AD) is a terminal neurodegenerative disease that causes dementia in older adults. Oxidative stress in the brain is considered as one of the contributing factors to the pathogenesis of AD, and thus, antioxidants have attracted much interest as potential therapeutic agents against the disorder. Natural antioxidants are typically characterized by low acute and chronic toxicity, which facilitates their potential therapeutic application. One important molecular target for the beneficial effects of natural antioxidants is the nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/NRF2). NRF2 is a key transcription factor that orchestrates the cellular antioxidant response through regulating the expression of oxidative stress-related genes harboring the antioxidant response element (ARE) in their promoters. Indeed, in the case of excessive oxidative damage, NRF2 migrates to the nucleus and binds to ARE, activating the transcription of antioxidant protector genes. There is increasing evidence that NRF2 is implicated in AD pathology through dysfunction and altered localization, which renders it as a potential therapeutic target for AD. Thus, this review summarizes the most recent (2018-2023) advances on the NRF2-modulating activity of natural antioxidants observed in vitro and in AD animal models. This information will help elucidate the molecular mechanisms governing the antioxidant activity of such phytochemicals to highlight their therapeutic potential against common neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Grammatiki Alexandra Sidiropoulou
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, European University Cyprus, Nicosia, Cyprus
| | - Athanasios Metaxas
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, European University Cyprus, Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
16
|
Park JY, Kim KT, Paik HD. Neuroprotective effects of hydroponic ginseng fermented by Lactococcus lactis KC24 in oxidatively stressed SH-SY5Y cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4413-4420. [PMID: 36806249 DOI: 10.1002/jsfa.12515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Panax ginseng Meyer, a traditional herb in Asia, contains bioactive compounds such as polyphenolic compounds, flavonoids, and ginsenosides. Furthermore, fermentation with probiotics can promote the biofunctional activities of ginseng. This study's object was to investigate the neuroprotective effect of hydroponic ginseng against hydrogen peroxide (H2 O2 )-induced cytotoxicity and its effect on the fermentation time. RESULTS Nonfermented hydroponic ginseng (HNF) was fermented with Lactococcus lactis KC24 at 37 °C for 12 h (H12F) or 24 h (H24F). As fermentation progressed, the content of ginsenosides Rd and F2 increased slightly. The viability of cells pretreated with H2 O2 -exposed nonfermented soil-cultivated ginseng (SNF), HNF, H12F, and H24F gradually improved. In addition, a similar cytotoxicity trend was observed for the level of lactate dehydrogenase released. Fermentation with L. lactis KC24 also enhanced the protective effect of HNF in all assays related to the neuroprotective pathway. In other words, superoxide dismutase and catalase messenger RNA (mRNA) expression levels were upregulated in H24F-treated cells. Similarly, H24F also upregulated the mRNA and protein expression of brain-derived neurotrophic factor to the highest observed concentration. Moreover, the Bax/Bcl-2 ratio was the lowest after H24F pretreatment in H2 O2 -induced SH-SY5Y cells. Attenuating the cytotoxicity in H2 O2 -induced SH-SY5Y cells, H24F markedly reduced caspase-3 and -9 mRNA expression and caspase-3 activity. CONCLUSION These results suggest that HNF exhibited higher neuroprotection than SNF, which was enhanced after fermentation. This study demonstrates that H12F and H24F can be potential ingredients for developing healthy functional foods and pharmaceutical materials. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Zhang R, Zeng M, Zhang X, Zheng Y, Lv N, Wang L, Gan J, Li Y, Jiang X, Yang L. Therapeutic Candidates for Alzheimer's Disease: Saponins. Int J Mol Sci 2023; 24:10505. [PMID: 37445682 DOI: 10.3390/ijms241310505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yawen Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
18
|
Lee N, Youn K, Yoon JH, Lee B, Kim DH, Jun M. The Role of Fucoxanthin as a Potent Nrf2 Activator via Akt/GSK-3β/Fyn Axis against Amyloid-β Peptide-Induced Oxidative Damage. Antioxidants (Basel) 2023; 12:antiox12030629. [PMID: 36978877 PMCID: PMC10045033 DOI: 10.3390/antiox12030629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Increasing evidence is suggesting that amyloid-β peptide (Aβ), a characteristic of Alzheimer’s disease (AD), induces oxidative stress and mitochondrial dysfunction, leading to neuronal death. This study aimed to demonstrate the antioxidant and anti-apoptotic effects of fucoxanthin, a major marine carotenoid found in brown algae, against neuronal injury caused by Aβ. Non-toxic dose range of fucoxanthin (0.1–5 µM) were selected for the neuroprotective study against Aβ25–35. The PC12 cells were pretreated with different concentrations of fucoxanthin for 1 h before being exposed to 10 µM Aβ25–35 for another 24 h. The present results showed that fucoxanthin inhibited Aβ25-35-induced cell death by recovering cell cycle arrest and decreasing intracellular reactive oxygen species (ROS) level. The compound enhanced mitochondrial recovery and regulated apoptosis related proteins including B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) from Aβ25-35-induced oxidative stress. Concomitantly, fucoxanthin increased the expression of nuclear factor E2-related factor 2 (Nrf2) and its downstream phase II detoxifying enzymes including NADPH: quinone oxidoreductase-1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLm), and thioredoxin reductase 1 (TrxR1), whereas it decreased the expression of cytoplasmic Kelch-like ECH-associated protein 1 (Keap1). Moreover, pretreatment of fucoxanthin reduced Fyn phosphorylation via protein kinase B (Akt)-mediated inhibition of glycogen synthase kinase-3β (GSK-3β), which increased the nuclear localization of Nrf2, suggesting that the compound enhanced Nrf2 expression by the activation of upstream kinase as well as the dissociation of the Nrf2-Keap1 complex. Further validation with a specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 demonstrated that the fucoxanthin-mediated Nrf2 antioxidant defense system was directly associated with the Akt/GSK-3β/Fyn signaling pathway. In silico simulation revealed that the oxygen groups of fucoxanthin participated in potent interactions with target markers in the Nrf2 signaling pathway, which may affect the biological activity of target markers. Taken together, the present results demonstrated that the preventive role of fucoxanthin on Aβ-stimulated oxidative injury and apoptosis via Akt/GSK-3β/Fyn signaling pathway. This study would provide a useful approach for potential intervention for AD prevention.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (D.H.K.); (M.J.)
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
- Correspondence: (D.H.K.); (M.J.)
| |
Collapse
|
19
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
20
|
Chen TW, Wu PY, Wen YT, Desai TD, Huang CT, Liu PK, Tsai RK. Vitamin B3 Provides Neuroprotection via Antioxidative Stress in a Rat Model of Anterior Ischemic Optic Neuropathy. Antioxidants (Basel) 2022; 11:antiox11122422. [PMID: 36552630 PMCID: PMC9774344 DOI: 10.3390/antiox11122422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Supplementing with vitamin B3 has been reported to protect against retinal ganglion cell (RGC) damage events and exhibit multiple neuroprotective properties in a mouse model of optic nerve injury. In this study, a rat model of anterior ischemic optic neuropathy was used to assess the neuroprotective benefits of vitamin B3 (rAION). Vitamin B3 (500 mg/kg/day) or phosphate-buffered saline (PBS) was administered to the rAION-induced rats every day for 28 days. The vitamin B3-treated group had significantly higher first positive and second negative peak (P1-N2) amplitudes of flash visual-evoked potentials and RGC densities than the PBS-treated group (p < 0.05). A terminal deoxynucleotidyl transferase dUTP nick end labeling assay conducted on vitamin B3-treated rats revealed a significant reduction in apoptotic cells (p < 0.05). Superoxide dismutase and thiobarbituric acid reactive substance activity showed that vitamin B3 treatment decreased reactive oxygen species (p < 0.05). Therefore, vitamin B3 supplementation preserves vision in rAION-induced rats by reducing oxidative stress, neuroinflammation, and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Tu-Wen Chen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Po-Ying Wu
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tushar Dnyaneshwar Desai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chin-Te Huang
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Kang Liu
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
21
|
Shi Z, Chen H, Zhou X, Yang W, Lin Y. Pharmacological effects of natural medicine ginsenosides against Alzheimer's disease. Front Pharmacol 2022; 13:952332. [PMID: 36467099 PMCID: PMC9708891 DOI: 10.3389/fphar.2022.952332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 08/04/2023] Open
Abstract
Ginsenosides are the most important pharmacological active ingredient of ginseng, with multiple biological therapeutic targets, mild action and no side effects. It is having shown beneficial effects in vitro and in vivo models of AD. In this review, we analyze large literature, summarize the inhibition of ginsenosides fibrous extracellular deposition of β-amyloid (Aβ) and neurofibrillary tangles (NFTs) of possible mechanisms, and explain the effects of ginsenosides on AD neuroprotection from the aspects of antioxidant, anti-inflammatory, and anti-apoptosis, prove the potential of ginsenosides as a new class of drugs for the treatment of AD. In addition, according to the current clinical application status of natural drugs, this paper analysis the delivery route and delivery mode of ginsenosides from the perspective of pharmacokinetics, providing a deeper insight into the clinical application of ginsenosides in the treatment of AD.
Collapse
Affiliation(s)
- Zhikun Shi
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xu Zhou
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Hoffmann LF, Martins A, Majolo F, Contini V, Laufer S, Goettert MI. Neural regeneration research model to be explored: SH-SY5Y human neuroblastoma cells. Neural Regen Res 2022; 18:1265-1266. [PMID: 36453406 PMCID: PMC9838160 DOI: 10.4103/1673-5374.358621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Lavynia Ferreira Hoffmann
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, Rio Grande do Sul, Brazil
| | - Alexandre Martins
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, Rio Grande do Sul, Brazil
| | - Fernanda Majolo
- Graduate Program in Medical Sciences - PPGCM, University of Vale do Taquari - Univates, Lajeado/RS, Brazil
| | - Verônica Contini
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, Rio Grande do Sul, Brazil,Graduate Program in Medical Sciences - PPGCM, University of Vale do Taquari - Univates, Lajeado/RS, Brazil
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tűbingen Center for Academic Drug Discovery - TÜCADD, Eberhard Karls University Tűbingen, Tűbingen, Germany
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, Rio Grande do Sul, Brazil,Graduate Program in Medical Sciences - PPGCM, University of Vale do Taquari - Univates, Lajeado/RS, Brazil,Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tűbingen Center for Academic Drug Discovery - TÜCADD, Eberhard Karls University Tűbingen, Tűbingen, Germany,Correspondence to: Márcia Inês Goettert, or .
| |
Collapse
|
23
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
24
|
Liu S, Ju AQ, Duan AY, Zhan CL, Gao LP, Ma X, Yang SB. Presence of Ginsenoside Re during in vitro maturation protects porcine oocytes from heat stress. Reprod Domest Anim 2022; 57:1572-1583. [PMID: 36001037 DOI: 10.1111/rda.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
Heat stress (HS) affects the development of porcine gametes and embryos negatively, induces the decrease of reproductive ability significantly, threatens global pig production. Ginsenoside Re (GRe), is a main bioactive component of ginseng, shows very specific anti-apoptotic, antioxidant and anti-inflammatory activities. To investigate the alleviating effect of GRe on the in vitro maturation of porcine oocyte under the HS, the polar body extrusion rate, intracellular levels of reactive oxygen species (ROS) and glutathione (GSH), ATP content, mitochondrial membrane potential (MMP) were assessed. For the current study, porcine cumulus-oocyte complexes (COCs) randomly divided into four groups: the control, GRe, HS and HS+GRe group. The results showed that HS inhibited the cumulus cell expansion and polar body extrusion rate, the levels of GSH and MMP, the ATP content, the gene expression of Nrf2 of porcine oocytes and the parthenogenetic activation (PA) embryo development competence, but GRe treatment could partly neutralize these adverse effects. Moreover, HS increased the ROS formation and percentage of apoptosis, the gene expression of HSP90, CASP3 and CytoC of porcine oocytes, but GRe could weaken the effect on Cyto C and BAX expression induced by HS. Taken together, these results showed that the presence of GRe during in vitro maturation protects porcine oocytes from HS. These findings lay a foundation for GRe may be used as a potential protective drug to protect porcine oocytes against HS damage.
Collapse
Affiliation(s)
- Shuang Liu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - An-Qi Ju
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Ao-Yi Duan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Cheng-Lin Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Le-Peng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Xin Ma
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, China
| | - Shu-Bao Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
25
|
Cai J, Huang K, Han S, Chen R, Li Z, Chen Y, Chen B, Li S, Xinhua L, Yao H. A comprehensive system review of pharmacological effects and relative mechanisms of Ginsenoside Re: Recent advances and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154119. [PMID: 35617888 DOI: 10.1016/j.phymed.2022.154119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginsenoside Re (Re) belongs to protopanaxatriol saponins and exists in Panax ginseng, Panax quinquefolium, Panax notoginseng, and other plants in the Araliaceae family. Re has recently become a research focus owing to its pharmacological activities and benefits to human bodies. PURPOSE To summarize recent findings regarding the pharmacological effects and mechanisms of Re and highlight and predict the potential therapeutic effects and systematic mechanism of Re. METHODS Recent studies (2011-2021) on the pharmacological effects and mechanisms of Re were retrieved from Web of Science, PubMed, Google Scholar, Scopus, and Embase up to December 2021 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of Re against potential diseases. RESULTS Re presented a wide range of therapeutic and biological activities, including neuroprotective, cardiovascular, antidepressant, antitumorigenic, and others effects. The related pharmacological mechanisms of Re include the regulation of cholinergic and antioxidant systems in the brain; the induction of tumor cell apoptosis; the inhibition of tau protein hyperphosphorylation and oxidative stress; the activation of p38MAPK, ERK1/2, and JNK signals; the improvement of lipid metabolism; and the reduction of endothelial cell dysfunction. CONCLUSION This paper summarizes comprehensively the current research progress of Re and provides new research insights into the therapeutic effects and mechanisms of Re against potential diseases.
Collapse
Affiliation(s)
- Jiasong Cai
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijun Li
- Center of Chemistry Experiment, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Lin Xinhua
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
26
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
27
|
Qiao J, Zhao Y, Liu Y, Zhang S, Zhao W, Liu S, Liu M. Neuroprotective effect of Ginsenoside Re against neurotoxin‑induced Parkinson's disease models via induction of Nrf2. Mol Med Rep 2022; 25:215. [PMID: 35543148 PMCID: PMC9133950 DOI: 10.3892/mmr.2022.12731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to examine the neuroprotective effects of a panel of active components of ginseng and to explore their molecular mechanisms of action in two rotenone (Rot)-induced models of Parkinson's disease: An in vitro model using the human neuroblastoma cell line SH-SY5Y and an in vivo model using Drosophila. Ginsenoside Re (Re) was identified as the most potent inhibitor of Rot-induced cytotoxicity in SH-SY5Y cells by Cell Counting kit-8 assay and lactate dehydrogenase release assay. Flow cytometry, Hoechst staining, Rhodamine 123 staining, ATP and cytochrome c release revealed that Re rescue of Rot-induced mitochondrial dysfunction and inhibition of the mitochondrial apoptotic pathway. Western blot analysis demonstrated that Re alleviated Rot-induced oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) anti-oxidant pathway, and these effects were abolished by RNA interference-mediated knockdown of Nrf2. Re enhanced phosphorylation of components of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and extracellular regulated protein kinase (ERK) pathways, and pharmacological inhibition of these pathways reduced Re-mediated Nrf2 activation and neuroprotection. In the Drosophila model, Immunofluorescence microscopy, reactive oxygen species (ROS), hydrogen peroxide and knockdown analysis revealed that Re reversed Rot-induced motor deficits and dopaminergic neuron loss while concomitantly alleviating Rot-induced oxidative damage. The findings of the present study suggest that Re protects neurons against Rot-induced mitochondrial dysfunction and oxidative damage, at least in part, by inducing Nrf2/heme oxygenase-1 expression and activation of the dual PI3K/AKT and ERK pathways.
Collapse
Affiliation(s)
- Juhui Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yuchu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Siyu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Wenxue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shichao Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
28
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
29
|
Gao XY, Liu GC, Zhang JX, Wang LH, Xu C, Yan ZA, Wang A, Su YF, Lee JJ, Piao GC, Yuan HD. Pharmacological Properties of Ginsenoside Re. Front Pharmacol 2022; 13:754191. [PMID: 35462899 PMCID: PMC9019721 DOI: 10.3389/fphar.2022.754191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem, flower bud, and root of Panax ginseng. In recent years, ginsenoside Re (Re) has been attracting attention as a dietary phytochemical. In this review, studies on Re were compiled by searching a combination of keywords, namely “pharmacology,” “pharmacokinetics,” and “toxicology,” in the Google Scholar, NCBI, PubMed, and Web of Science databases. The aim of this review was to provide an exhaustive overview of the pharmacological activities, pharmacokinetics, and toxicity of Re, focusing on clinical evidence that has shown effectiveness in specific diseases, such as diabetes mellitus, nervous system diseases, inflammation, cardiovascular disease, and cancer. Re is also known to eliminate virus, enhance the immune response, improve osteoporosis, improve skin barrier function, enhance intracellular anti-oxidant actions, regulate cholesterol metabolism, alleviate allergic responses, increase sperm motility, reduce erectile dysfunction, promote cyclic growth of hair follicles, and reduce gastrointestinal motility dysfunction. Furthermore, this review provides data on pharmacokinetic parameters and toxicological factors to examine the safety profile of Re. Such data will provide a theoretical basis and reference for Re-related studies and future applications.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | | | | | - Ling-He Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Chang Xu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zi-An Yan
- College of Integration Science, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yi-Fei Su
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jung-Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Guang-Chun Piao
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| | - Hai-Dan Yuan
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| |
Collapse
|
30
|
Shou JW, Shaw PC. Therapeutic Efficacies of Berberine against Neurological Disorders: An Update of Pharmacological Effects and Mechanisms. Cells 2022; 11:cells11050796. [PMID: 35269418 PMCID: PMC8909195 DOI: 10.3390/cells11050796] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Neurological disorders are ranked as the leading cause of disability and the second leading cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies. Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR has attracted much interest for its broad range of pharmacological actions in treating and/or managing neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on neurological disorders in the last decade have provided novel evidence to support the potential therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the pharmacological properties and therapeutic applications of BBR against neurological disorders in the last decade. We also emphasized the major pathways modulated by BBR, which provides firm evidence for BBR as a promising drug candidate for neurological disorders.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- Correspondence:
| |
Collapse
|
31
|
Chan HH, Leong CO, Lim CL, Koh RY. Roles of receptor-interacting protein kinase 1 in SH-SY5Y cells with beta amyloid-induced neurotoxicity. J Cell Mol Med 2022; 26:1434-1444. [PMID: 35106914 PMCID: PMC8899176 DOI: 10.1111/jcmm.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor‐interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain‐like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta‐amyloid (Aβ)‐induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH‐SY5Y human neuroblastoma cells treated with Aβ 1–40 or Aβ 1–42. We showed that Aβ‐induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL‐dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aβ‐induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aβ can potentially drive necroptosis in an RIPK1‐MLKL‐dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Hong-Hao Chan
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi-Ling Lim
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Rhun-Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Zeng Y, Chen Y, Zhang S, Ren H, Xia J, Liu M, Shan B, Ren Y. Natural Products in Modulating Methamphetamine-Induced Neuronal Apoptosis. Front Pharmacol 2022; 12:805991. [PMID: 35058785 PMCID: PMC8764133 DOI: 10.3389/fphar.2021.805991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH), an amphetamine-type psychostimulant, is highly abused worldwide. Chronic abuse of METH causes neurodegenerative changes in central dopaminergic neurons with numerous neuropsychiatric consequences. Neuronal apoptosis plays a critical role in METH-induced neurotoxicity and may provide promising pharmacological targets for preventing and treating METH addiction. In recent years, accumulating evidence has revealed that natural products may possess significant potentials to inhibit METH-evoked neuronal apoptosis. In this review, we summarized and analyzed the improvement effect of natural products on METH-induced neuronal apoptosis and their potential molecular mechanisms on modulating dopamine release, oxidative stress, mitochondrial-dependent apoptotic pathway, endoplasmic reticulum stress-mediated apoptotic pathway, and neuroinflammation. Hopefully, this review may highlight the potential value of natural products in modulating METH-caused neuronal apoptosis and provide useful information for future research and developments of novel and efficacious pharmacotherapies in this field.
Collapse
Affiliation(s)
- Yiwei Zeng
- College of Acupuncture-moxibustion and Tuina, College of Basic Medicine, College of Nursing, College of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhui Chen
- College of Acupuncture-moxibustion and Tuina, College of Basic Medicine, College of Nursing, College of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- College of Acupuncture-moxibustion and Tuina, College of Basic Medicine, College of Nursing, College of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Ren
- College of Acupuncture-moxibustion and Tuina, College of Basic Medicine, College of Nursing, College of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialin Xia
- College of Acupuncture-moxibustion and Tuina, College of Basic Medicine, College of Nursing, College of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengnan Liu
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Baozhi Shan
- School of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yulan Ren
- College of Acupuncture-moxibustion and Tuina, College of Basic Medicine, College of Nursing, College of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
34
|
Kojima K, Ichijo H, Naguro I. Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. J Biochem 2021; 169:395-407. [PMID: 33377973 DOI: 10.1093/jb/mvaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
VCells are constantly exposed to various types of stress, and disruption of the proper response leads to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focussing on upstream stimuli that regulate ASK family members.
Collapse
Affiliation(s)
- Kazuki Kojima
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Tian D, Guo Y, Zhang D, Gao Q, Liu G, Lin J, Chang Z, Wang Y, Su R, Han Z. Shenzhi Jiannao formula ameliorates vascular dementia in vivo and in vitro by inhibition glutamate neurotoxicity via promoting clathrin-mediated endocytosis. Chin Med 2021; 16:65. [PMID: 34321050 PMCID: PMC8317332 DOI: 10.1186/s13020-021-00477-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Synaptic damage and glutamate excitotoxicity have been implicated in the pathogenesis of vascular dementia (VD). Clathrin, RAB5B and N-methyl-D-aspartic acid receptor 1 (NMDAR1) proteins play a vital role in endocytosis of synaptic vesicles in neurons and glutamate over accumulation. Previous researches have been confirmed that Shenzhi Jiannao (SZJN) formula has an anti-apoptotic and neuroprotective effect in VD, but the underlying mechanisms are still unclear. In this study, we aimed to explore the effect of SZJN formula on cognitive impairment and glutamate excitotoxicity via clathrin-mediated endocytosis (CME) in vivo and in vitro. METHODS SZJN formula consists of Panax ginseng C.A.Mey., Anemarrhena asphodeloides Bunge, and Paeonia anomala subsp. veitchii (Lynch) D.Y.Hong & K.Y.Pan. All herbs were prepared into granules. Both common carotid arteries were permanent occluded (2-vessel occlusion, 2VO) in male Sprague Dawley (SD) rats to model VD. One day after operation, the rats began daily treatment with SZJN formula for 2 weeks. The neuroprotective effects of SZJN formula was subsequently assessed by the novel object recognition test, Morris water maze, hematoxylin-eosin (HE) staining and Nissl staining. Glutamate cytotoxicity was assessed by detecting cell viability and cell death of PC12 cells. Immunohistochemistry, immunofluorescence, Western blot, and quantitative real-time PCR were used to detect the expression levels of clathrin, RAB5B, and NMDAR1. RESULTS Administration of SZJN formula effectively improved short-term memory and spatial memory. SZJN formula treatment significantly reduced hippocampal neuronal loss, and recovered the arrangement and morphology of neurons and Nissl bodies. Moreover, SZJN formula promoted the proliferation of PC12 cells and inhibited glutamate-induced cell death. The down-regulation of clathrin and RAB5B, as well as the upregulation of NMDAR1 in the brain induced by 2VO or glutamate was also notably reversed by SZJN formula at both the protein and mRNA levels, which may contribute to SZJN formula induced improved neurological function. CONCLUSIONS Taken together, our findings provide evidence that the neuroprotective effects of SZJN formula in experimental VD maybe mediated through promoting the expression of clathrin-mediated endocytosis and reducing NMDARs-associated glutamate excitotoxicity. SZJN formula serves as a promising alternative therapy and may be a useful herbal medicine for preventing progression of VD.
Collapse
Affiliation(s)
- Danfeng Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yangyang Guo
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dandan Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Gao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ganlu Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingfeng Lin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze Chang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuchun Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Su
- Department of Scientific Research, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhenyun Han
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), No. 1 Dayun Road, Longgang District, Shenzhen, 518172, China.
| |
Collapse
|
36
|
Shin EJ, Jeong JH, Nguyen BT, Sharma N, Nah SY, Chung YH, Lee Y, Byun JK, Nabeshima T, Ko SK, Kim HC. Ginsenoside Re Protects against Serotonergic Behaviors Evoked by 2,5-Dimethoxy-4-iodo-amphetamine in Mice via Inhibition of PKCδ-Mediated Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22137219. [PMID: 34281274 PMCID: PMC8268959 DOI: 10.3390/ijms22137219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju 28644, Korea;
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju 12106, Korea;
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan;
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon 27136, Korea
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| |
Collapse
|
37
|
Yun-Liang X, Bo Z. Protective Effect of Patchouli Alcohol Against SH-SY5Y Cell Injury Induced by Aβ 25-35 via the Reduction of Oxidative Stress and Apoptosis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Patchouli alcohol (PA) has multiple pharmacological activities, but its protective effect against SH-SY5Y cell injury induced by Aβ25-35 has not been reported. It has been recorded that phosphatidylinositol 3-hydroxykinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays an important role in neuroprotection. The purpose of this study was to investigate the protective effect of PA against SH-SY5Y cell injury induced by Aβ25-35 and its underlying mechanism. The results showed that compared with that in the Aβ25-35-induced injury group, the survival rate of SH-SY5Y cells increased ( P < .01) in the different PA-treated groups and the lactic dehydrogenase activity decreased significantly ( P < .01) in the 10, 20, and 40 μg/mL PA groups; compared with those in the Aβ25-35-induced injury group, the malonyldialdehyde contents in SH-SY5Y cells decreased ( P < .05 or P < .01), while the superoxide dismutase, glutathione peroxidase, and catalase activities increased significantly ( P < .05 or P < .01) in the different PA-treated groups; compared with those in the Aβ25-35-induced injury group, the apoptosis rates, and the mRNA and protein levels of Caspase-3 and Bax in SH-SY5Y cells decreased ( P < .05 or P < .01), while the mRNA and protein levels of Bcl-2, and phosphorylated Akt (p-Akt) and phosphorylated mTOR protein levels increased significantly ( P < .05 or P < .01) in the different PA-treated groups. The above results indicate that PA can inhibit the oxidative stress and apoptosis of SH-SY5Y cells induced by Aβ25-35 by regulating the PI3K/Akt/mTOR pathway, to protect the SH-SY5Y cells from the injury induced by Aβ25-35.
Collapse
Affiliation(s)
- Xie Yun-Liang
- People’s Hospital of Suzhou New District, Suzhou, P. R. China
| | - Zhang Bo
- Affiliated Hospital of Beihua University, Jilin City, P. R. China
| |
Collapse
|
38
|
Kwan KKL, Yun H, Dong TTX, Tsim KWK. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide. J Ginseng Res 2021; 45:473-481. [PMID: 34295207 PMCID: PMC8282498 DOI: 10.1016/j.jgr.2020.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. METHODS The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. RESULTS Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. CONCLUSION In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.
Collapse
Affiliation(s)
- Kenneth Kin Leung Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huang Yun
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Ting Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
39
|
Liu Y, Yang X, Liu Y, Jiang T, Ren S, Chen J, Xiong H, Yuan M, Li W, Machens H, Chen Z. NRF2 signalling pathway: New insights and progress in the field of wound healing. J Cell Mol Med 2021; 25:5857-5868. [PMID: 34145735 PMCID: PMC8406474 DOI: 10.1111/jcmm.16597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
As one of the most common pathological processes in the clinic, wound healing has always been an important topic in medical research. Improving the wound healing environment, shortening the healing time and promoting fast and effective wound healing are hot and challenging issues in clinical practice. The nuclear factor-erythroid-related factor 2 (NFE2L2 or NRF2) signalling pathway reduces oxidative damage and participates in the regulation of anti-oxidative gene expression in the process of oxidative stress and thus improves the cell protection. Activation of the NRF2 signalling pathway increases the resistance of the cell to chemical carcinogens and inflammation. The signal transduction pathway regulates anti-inflammatory and antioxidant effects by regulating calcium ions, mitochondrial oxidative stress, autophagy, ferroptosis, pyroptosis and apoptosis. In this article, the role of the NRF2 signalling pathway in wound healing and its research progress in recent years are reviewed. In short, the NRF2 signalling pathway has crucial clinical significance in wound healing and is worthy of further study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaofan Yang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yutian Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Ren
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hewei Xiong
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng Yuan
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenqing Li
- Department of Hand and Foot SurgeryHuazhong University of Science and Technology Union ShenZhen HospitalShenzhenChina
| | - Hans‐Günther Machens
- Department of Plastic and Hand SurgeryTechnical University of MunichMunichGermany
| | - Zhenbing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
40
|
Kim HJ, Jin BR, An HJ. Psoralea corylifolia L. extract ameliorates benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113844. [PMID: 33485982 DOI: 10.1016/j.jep.2021.113844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. seed (PCL), commonly known as "Poguzhi" or "BuguZhi", has been widely used to treat kidney yang deficiency in traditional Chinese medicine (TCM) where tonifying the yang deficiency is a representative understanding for treatment of hormonal deficiency disorders such as enuresis, oliguria, and prostatic diseases. Although PCL has been commonly used to treat problems of the urinary system, its efficacy against benign prostatic hyperplasia (BPH) has not yet been reported. AIM OF THE STUDY In the present study, we aimed to assess the in vitro and in vivo efficacy of PCL against BPH, a condition which negatively impacts quality of life in men. MATERIALS AND METHODS Normal human prostate cell lines, RWPE-1 and WPMY-1 cells, were stimulated with 10 nM dihydrotestosterone (DHT) to establish an in vitro BPH model. Subsequently, cells were treated with 100 or 200 μg/ml PCL, which inhibited cell proliferation without cytotoxicity, to evaluate the anti-BPH effect of PCL. Eight-week-old male Wistar rats were castrated, except for those in the control group (Con), and BPH was induced by subcutaneous injection of 10 mg/kg testosterone propionate (TP). Concurrent with daily TP injections, 5 mg/kg of finasteride (Fina) and 50 or 100 mg/kg PCL were orally administrated daily for four weeks, excluding the weekends. RESULTS In DHT-stimulated RWPE-1 and WPMY-1 cells, expression of androgen receptor (AR) androgen signaling-related markers such as 5α-reductase 2 (5AR2), AR, and prostate-specific antigen (PSA) was upregulated, whereas 100 or 200 μg/ml of PCL treatment downregulated these markers. Furthermore, PCL significantly reduced the mRNA expression of anti-apoptotic genes and increased the mRNA expression of pro-apoptotic gene. In vivo, administration of PCL reduced prostate size and weight in TP-induced BPH rats. Moreover, histological alterations in epithelium thickness were significantly restored by the administration of PCL. Immunohistochemical analysis revealed increased expression of AR and proliferating cell nuclear antigen (PCNA) in TP-induced BPH prostates; these changes were suppressed by administration of 50 or 100 mg/kg PCL. CONCLUSIONS We demonstrated the effect of PCL against BPH, mediated by the regulation of prostate cell proliferation and apoptosis, in DHT-stimulated normal human prostate cell lines and TP-induced BPH rats. These findings suggest that PCL could be a potential therapeutic agent against BPH.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
41
|
Li J, Huang Q, Chen J, Qi H, Liu J, Chen Z, Zhao D, Wang Z, Li X. Neuroprotective Potentials of Panax Ginseng Against Alzheimer's Disease: A Review of Preclinical and Clinical Evidences. Front Pharmacol 2021; 12:688490. [PMID: 34149431 PMCID: PMC8206566 DOI: 10.3389/fphar.2021.688490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
42
|
Wang H, Lv J, Jiang N, Huang H, Wang Q, Liu X. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res 2021; 35:2523-2535. [PMID: 33783035 DOI: 10.1002/ptr.6947] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
Exposure to chronic stress negatively affects the development of cognition, characterized by learning and memory decline. Ginsenoside Re (GRe), an active compound derived from Panax ginseng, exhibited neuroprotective activity in various neurological diseases. In this study, the protective effect of GRe on chronic restraint stress (CRS)-induced memory deficit was investigated. The mice were experienced 35 days of the CRS induction. The GRe was administered daily orally (10, 20, or 40 mg/kg) during the next 3 weeks stress session and the behavior test period. The CRS-induced memory impairment mice were subjected to behavioral tasks, such as the Y-maze, novel objects recognition, and step-through passive avoidance tests. Nissl staining was used to examine the neuron numbers. The levels of antioxidant enzymes, malondialdehyde, and proinflammatory factor were determined by kits and ELISA assays. The expressions of brain-derived neurotrophic factor (BDNF), NOD-like receptor protein 3 (NLRP3), nuclear factor erythroid-2 related factor 2 (Nrf2) and synapse-associated proteins (synaptophysin, SYP, and postsynaptic density 95, PSD95) were measured by Western blotting. Behavioral assessments indicated that GRe could ameliorate the cognitive impairment of CRS-induced mice, as indicated by increased responses in Y-maze (p < .05), novel objects recognition (p < .01), and step-through passive avoidance tests (p < .01). In addition, GRe treatment significantly decreased the neuronal loss in CRS mice in histological examination. Moreover, chronic GRe treatment significantly ameliorated the down-regulated the expressions of BDNF, Nrf2, heme oxygenase (HO)-1, SYP, and PSD95, as well as up-regulated NLRP3, the adaptor protein ASC, and Caspase-1 protein expression in the hippocampus of CRS-treated mice. Taken together, these findings suggest that GRe has a potential therapeutic effect on memory impairment in C57BL/6J mice exposed to CRS paradigm.
Collapse
Affiliation(s)
- Haixia Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021; 26:molecules26041016. [PMID: 33671866 PMCID: PMC7918973 DOI: 10.3390/molecules26041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.
Collapse
|
44
|
Huang Q, Gao S, Zhao D, Li X. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives. J Ginseng Res 2020; 45:371-379. [PMID: 34025130 PMCID: PMC8134842 DOI: 10.1016/j.jgr.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction contributes to the pathogenesis and prognosis of many common disorders, including neurodegeneration, stroke, myocardial infarction, tumor, and metabolic diseases. Ginsenosides, the major bioactive constituents of Panax ginseng (P. ginseng), have been reported to play beneficial roles in the molecular pathophysiology of these diseases by targeting mitochondrial dysfunction. In this review, we first introduce the types of ginsenosides and basic mitochondrial functions. Then, recent findings are summarized on different ginsenosides targeting mitochondria and their key signaling pathways for the treatment of multiple diseases, including neurological disorders, cancer, heart disease, hyperglycemia, and inflammation are summarized. This review may explain the common targets of ginsenosides against multiple diseases and provide new insights into the underlying mechanisms, facilitating research on the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Qingxia Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd, Changchun, Jilin, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Corresponding author. Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, 130117, Changchun, Jilin, China.
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Corresponding author. Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin, China.
| |
Collapse
|
45
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
46
|
Hei X, Xie M, Xu J, Li J, Liu T. β-Asarone Exerts Antioxidative Effects on H 2O 2-Stimulated PC12 Cells by Activating Nrf2/HO-1 Pathway. Neurochem Res 2020; 45:1953-1961. [PMID: 32623664 DOI: 10.1007/s11064-020-03060-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress-mediated neuron damage is considered an important contributor to the pathogenesis and development of neurodegenerative diseases. Although β-asarone is widely known for its neuroprotective pharmacological properties, the exact mechanism of β-asarone against oxidative stress has not been fully elucidated. The aim of the present study was to investigate underlying mechanisms of β-asarone against oxidative damage in PC12 cells. Our results demonstrated that the treatment of β-asarone significantly alleviated the reduction in cell viability and the excessive accumulation of lactate dehydrogenase (LDH), malondialdehyde (MDA) and reactive oxygen species (ROS) by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). Moreover, β-asarone pretreatment also activated nuclear factor 2 erythroid-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1), which was involved in quenching reactive oxygen to inhibit oxidative stress. Furthermore, when silenced by Nrf2 siRNA, the protective effect of β-asarone was reduced and the oxidative stress induced by H2O2 was enhanced. In conclusion, our findings revealed that β-asarone could reduce oxidative stress via activating Nrf2/HO-1 pathway in PC12 cells, highlighting the potential therapeutic role of β-asarone in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinxin Hei
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Liyang City Hospital of TCM, Changzhou, China
| | - Miao Xie
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingqian Xu
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjin Li
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Liu
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
47
|
Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection Against Oxidative Stress: Phytochemicals Targeting TrkB Signaling and the Nrf2-ARE Antioxidant System. Front Mol Neurosci 2020; 13:116. [PMID: 32714148 PMCID: PMC7346762 DOI: 10.3389/fnmol.2020.00116] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) plays a critical role in the pathophysiology of several brain-related disorders, including neurodegenerative diseases and ischemic stroke, which are the major causes of dementia. The Nrf2-ARE (nuclear factor erythroid 2-related factor 2/antioxidant responsive element antioxidant) system, the primary cellular defense against OS, plays an essential role in neuroprotection by regulating the expressions of antioxidant molecules and enzymes. However, simultaneous events resulting in the overproduction of reactive oxygen species (ROS) and deregulation of the Nrf2-ARE system damage essential cell components and cause loss of neuron structural and functional integrity. On the other hand, TrkB (tropomyosin-related kinase B) signaling, a classical neurotrophin signaling pathway, regulates neuronal survival and synaptic plasticity, which play pivotal roles in memory and cognition. Also, TrkB signaling, specifically the TrkB/PI3K/Akt (TrkB/phosphatidylinositol 3 kinase/protein kinase B) pathway promotes the activation and nuclear translocation of Nrf2, and thus, confers neuroprotection against OS. However, the TrkB signaling pathway is also known to be downregulated in brain disorders due to lack of neurotrophin support. Therefore, activations of TrkB and the Nrf2-ARE signaling system offer a potential approach to the design of novel therapeutic agents for brain disorders. Here, we briefly overview the development of OS and the association between OS and the pathogenesis of neurodegenerative diseases and brain injury. We propose the cellular antioxidant defense and TrkB signaling-mediated cell survival systems be considered pharmacological targets for the treatment of neurodegenerative diseases, and review the literature on the neuroprotective effects of phytochemicals that can co-activate these neuronal defense systems.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| |
Collapse
|
48
|
Calabrese EJ. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects. Molecules 2020; 25:E2719. [PMID: 32545419 PMCID: PMC7321326 DOI: 10.3390/molecules25112719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
This paper demonstrates that ginseng mixtures and individual ginseng chemical constituents commonly induce hormetic dose responses in numerous biological models for endpoints of biomedical and clinical relevance, typically providing a mechanistic framework. The principal focus of ginseng hormesis-related research has been directed toward enhancing neuroprotection against conditions such as Alzheimer's and Parkinson's Diseases, stroke damage, as well as enhancing spinal cord and peripheral neuronal damage repair and reducing pain. Ginseng was also shown to reduce symptoms of diabetes, prevent cardiovascular system damage, protect the kidney from toxicities due to immune suppressant drugs, and prevent corneal damage, amongst other examples. These findings complement similar hormetic-based chemoprotective reports for other widely used dietary-type supplements such as curcumin, ginkgo biloba, and green tea. These findings, which provide further support for the generality of the hormetic dose response in the biomedical literature, have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
49
|
Habaike A, Yakufu M, Cong Y, Gahafu Y, Li Z, Abulizi P. Neuroprotective effects of Fomes officinalis Ames polysaccharides on Aβ 25-35-induced cytotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway. Cytotechnology 2020; 72:539-549. [PMID: 32430659 DOI: 10.1007/s10616-020-00400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Aggregation of Aβ is a pathological hallmark of Alzheimer's disease (AD). The purpose of this study was to identify the protective roles of different polysaccharide components in Fomes officinalis Ames polysaccharides (FOAPs) against Aβ25-35-induced neurotoxicity in PC12 cells. Different doses of FOAPs components (i.e. FOAPs-a and FOAPs-b) were added to PC12 cells about 2 h before β-amyloid protein fragment 25-35 (Aβ25-35) exposure. The AD cellular model of PC12 cells was established using Aβ25-35. Then the PC12 cells were divided into 9 groups including: control group, Donepezil hydrochloride (DHCL) group, model group treated using 40 μM Aβ25-35, followed by FOAPs-a and FOAPs-b interference (50, 100 and 200 μg/mL). The mitochondrial reactive oxygen species (ROS), ATP, superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH) and mitochondrial membrane potential (MMP) were determined by commercial kits. The Cytochrome C, Bcl-2 and Bax expressions in the mitochondria and cytosol was determined by using Western blot analysis. FOAPs-a and FOAPs-b could significantly inhibit the LDH release, MDA level and the over accumulation of ROS induced by Aβ25-35 in PC12 cells in a dose-dependent manner. They could also effectively prevent Aβ25-35-stimulated cytotoxicity, which involved in attenuating cell apoptosis, increasing the ratio of Bcl-2/Bax and inhibiting Cytochrome C release from mitochondria to cytosol in PC12 cells. Moreover, FOAPs-a and FOAPs-b significantly alleviated mitochondrial dysfunction by regulating the MMP, as well as promoting the mitochondrial ATP synthesis. FOAPs-a and FOAPs-b played neuroprotective roles against Aβ25-35-induced cytotoxicity in PC12 cells through suppressing the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ayijiang Habaike
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mirensha Yakufu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yuanyuan Cong
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yimin Gahafu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhen Li
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Palida Abulizi
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
50
|
Effect of Quercetin on PC12 Alzheimer's Disease Cell Model Induced by A β 25-35 and Its Mechanism Based on Sirtuin1/Nrf2/HO-1 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8210578. [PMID: 32420373 PMCID: PMC7201675 DOI: 10.1155/2020/8210578] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Objective This study is aimed at studying the effect of quercetin on the Alzheimer disease cell model induced by Aβ25-35 in PC12 cells and its mechanism of action. Methods The AD cell model was established by Aβ25-35. Quercetin was used at different concentrations (0, 10, 20, 40, and 80 μmol/L). The morphology of cells was observed, and the effect on cell survival rate was detected by the MTT method. Cell proliferation was detected by the SRB method. The contents of LDH, SOD, MDA, GSH-Px, AChE, CAT, and T-AOC were detected by kits. The expression of sirtuin1/Nrf2/HO-1 was detected by RT-qPCR and Western blot. Results PC12 cells in the control group grew quickly and adhered well to the wall, most of which had extended long axons and easily grew into clusters. In the model group, cells were significantly damaged and the number of cells was significantly reduced. It was found that PC12 cells were swollen, rounded, protruding, and retracting, with reduced adherent function and floating phenomenon. Quercetin could increase the survival rate and proliferation rate of PC12 cells; reduce the levels of LDH, AChE, MDA, and HO-1 protein; and increase the levels of SOD, GSH-Px, CAT, T-AOC, sirtuin1, and Nrf2 protein. Conclusion Quercetin can increase the survival rate of PC12 injured by Aβ25-35, promote cell proliferation, and antagonize the toxicity of Aβ; it also has certain neuroprotective effects. Therefore, quercetin is expected to become a drug for the treatment of AD.
Collapse
|