1
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34 + Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis. Proteomes 2025; 13:11. [PMID: 39982321 PMCID: PMC11843884 DOI: 10.3390/proteomes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell transplantation. We compared the pretreatment proteomic profiles of AML cells derived from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A comparison based on all AML and CD34+ normal cell populations identified 121 differentially abundant proteins that showed at least 2-fold differences, and these proteins included several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX, and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However, the expression of these 121 proteins varied between patients, and a subset of 28 patients was characterized by increased long-term AML-free survival, signs of myeloid AML cell differentiation, and favorable genetic abnormalities. These two main patient subsets (28 with differentiation versus 22 with fewer signs of differentiation) also differed with regard to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also classified our patients based on their expression of 16 proteins involved in the regulation of iron metabolism/ferroptosis and showing differential expression when comparing AML cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we could then identify a genetically heterogeneous subset characterized by adverse prognosis (i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles differ between AML and normal CD34+ cells; especially, proteomic differences reflecting differentiation and regulation of iron metabolism/ferroptosis are associated with risk of relapse after intensive conventional therapy.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
2
|
Xu B, He Q, Sun D, Li X, Fan J, Yan X, Ruan R, Wang N, Cheng P. Inhibition mechanism of leukemia cells HL-60 by exopolysaccharides from Botryococcus braunii in response to high-concentration cobalt. Int J Biol Macromol 2025; 290:139092. [PMID: 39716694 DOI: 10.1016/j.ijbiomac.2024.139092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The influence of metal elements on the biomedical activity of microalgal exopolysaccharides (EPS) remains underexplored. This study examined the antitumor properties of Botryococcus braunii EPS under high cobalt conditions and the role of exogenous 3-indole acetic acid (IAA) in enhancing its activity. Results showed that IAA mitigated cobalt-induced inhibition of B. braunii growth and improved its antioxidant capacity. Notably, EPS obtained from B. braunii treated with IAA under high cobalt conditions (HC-IAA-EPS) exhibited a 98.06 % inhibition of human promyelocytic leukemia cells (HL-60), significantly higher than the control (83.86 %). HC-IAA-EPS induced mitochondrial damage in HL-60 cells, evidenced by a decrease in mitochondrial transmembrane potential (observed via fluorescence microscopy) and a 1.5-fold increase in reactive oxygen species (ROS) levels compared to the control, ultimately triggering endogenous apoptosis. Proteomic analysis revealed that HC-IAA-EPS caused significant changes in apoptosis and cell cycle-related protein changes in HL-60. Gene Ontology (GO) analysis indicated enrichment in pathways such as neutrophil degranulation, Toll-like receptor (TLR) signaling, and vesicle binding complexes. This study concludes that HC-IAA-EPS inhibits HL-60 cell proliferation by inducing mitochondrial dysfunction, reducing transmembrane potential, and increasing ROS production, providing valuable insights into the antitumor potential of microalgal EPS under metal stress conditions.
Collapse
Affiliation(s)
- Baoyu Xu
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qilin He
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Danni Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Rathe SK, White JP, Sachs Z, Largaespada DA. DEAPR: Differential Expression and Pathway Ranking Tool Demonstrates NRASG12V and NRASG12D Mutations Have Differing Effects in THP-1 Cells. Cancers (Basel) 2025; 17:467. [PMID: 39941834 PMCID: PMC11816133 DOI: 10.3390/cancers17030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: NRAS mutations are found in approximately 10% of patients with acute myeloid leukemia (AML), with nearly half of those occurring at codon 12, but little is known about how differing G12 mutants affect cancer cell activity. Methods: A novel bioinformatic technique, differential expression and pathway ranking (DEAPR), was used to identify the most prominent changes in terms of both individual genes and associated pathways when comparing AML THP-1 cells containing an NRASG12D mutation with B11 cells, which are THP-1-derived cells with the NRASG12D allele removed and a dox-inducible NRASG12V allele introduced. Results: In total, 1456 differentially expressed (DE) protein-coding genes were uniquely associated to the NRASG12D mutation, while 585 DE protein-coding genes were specific to the NRASG12V mutation. The innate immune system pathway was prominent in both mutant-specific lists, even though the genes involved were not in both lists. Furthermore, the two calprotectin genes (S100A8 and S100A9), also associated with innate immunity, were upregulated in the NRASG12D mutant and downregulated in the NRASG12V mutant. Conclusions: This study, using the DEAPR strategy, clearly demonstrates the dramatic changes associated with two seemingly similar NRAS mutations, suggesting the deployment of different treatment strategies based on the type of NRAS mutation present.
Collapse
Affiliation(s)
- Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeremy P. White
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zohar Sachs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Gao J, Yan X, Fan D, Li Y. Single-cell data revealed the function of natural killer cells and macrophage cells in chemotherapy tolerance in acute myeloid leukemia. PeerJ 2024; 12:e18521. [PMID: 39583114 PMCID: PMC11586048 DOI: 10.7717/peerj.18521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background Acute myeloid leukemia (AML) is highly prevalent and heterogeneous among adult acute leukemias. Current chemotherapeutic approaches for AML often face the challenge of drug resistance, and AML immune cells play an important role in the regulation of AML drug resistance. Thus, it is of key significance to explore the regulatory mechanisms of immune cells in AML to alleviate chemotherapy resistance in AML. Methods Based on AML single-cell transcriptomic data, this study revealed the differences in the expression of immune cell subpopulations and marker genes in AML patients in the complete remission group (CR) compared to AML patients in the non-complete remission group (non-CR) after chemotherapy. Functional enrichment by clusterprofiler revealed the regulatory functions of differentially expressed genes (DEGs) in AML. AUCell enrichment scores were used to assess the immunoregulatory functions of immune cells. Pseudotime analysis was used to construct immune cell differentiation trajectories. CellChat was used for cellular communication analysis to elucidate the interactions between immune cells. Survival analysis with the R package "survival" revealed the role of immune cell marker genes on AML prognosis. Finally, the wound healing and trans-well assay were performed. Results Single-cell clustering analysis revealed that NK/T cells and macrophage cells subpopulations were significantly higher in non-CR AML patients than in CR AML. AUCell enrichment analysis revealed that FCAR+ and FCGR3A+ macrophages were significantly more active in the non-CR group and correlated with processes regulating cellular energy metabolism and immune cell activity. Differentially expressed NK cell marker genes between CR and non-CR groups mainly included HBA1, S100A8, and S100A9, which were associated with cancer drug resistance regulation, these marker genes of (FCAR, FCGR3A, PREX1, S100A8 and S100A9) were upregulated in human chronic myeloid leukemia cells (HAP1) and silencing of S100A8 affected migration and invasion of HAP1 cells. In particular, the differentiation pathways of macrophages and NK cells in non-CR differed from those of patients in the CR group. Cellular communication analyses showed that ligand-receptor pairs between NK cells and macrophage cells mainly included HLA-E-KLRK1, HLA-E-KLRC1, HLA-E-CD94:NKG2A, CLEC2B-KLRB1. In addition, LGALS9-CD45, CCL3L1- CCR1, CCL3-CCR1 between these two immune cells mainly regulate secreted signaling to mediate AML progression. Marker genes in NK/T cells and macrophage cells were significantly associated with AML prognosis. Conclusion This study reveals the potential role of NK cells and macrophages in AML chemoresistance through the analysis of single-cell RNA sequencing data. This provides new ideas and insights into the key mechanisms of immune cells in AML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Single-Cell Analysis
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Tolerance
- Transcriptome/drug effects
- Prognosis
Collapse
Affiliation(s)
- Jing Gao
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xueqian Yan
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Dan Fan
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yuanchun Li
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
He G, Han W, Zhu Z, Wei R, Lin C. The role of S100A8 and S100A9 in external auditory canal cholesteatoma. Front Immunol 2024; 15:1457163. [PMID: 39575241 PMCID: PMC11578731 DOI: 10.3389/fimmu.2024.1457163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024] Open
Abstract
Background Studies indicated that diverse cellular mechanisms including epithelial migration and hyper-proliferation, inflammatory responses, and enzymatic bone erosion were involved in the pathogenesis of cholesteatoma. S100A8 and S100A9, which are Ca2+-binding proteins belonging to the S100 family, can trigger the signaling pathways involved in the inflammatory processes, and a variety of cellular processes includes cell cycle progression, proliferation, and cell migration. However, the role of S100A8 and S100A9 and their associated inflammation and other signaling pathways in cholesteatoma have not been investigated yet. This study aimed to investigate the role of S100A8 and S100A9 in external auditory canal cholesteatoma and their potential pathological mechanisms. Methods The study conducted histological staining, immunostaining, PCR, and Western blot to investigate the expression of S100A8/A9 and its related pathways in clinic EACC and the murine model of EACC. Results Our data showed that there were increased mRNA and protein levels of S100A8 and S100A9 in clinical and animal models of EACC and the S100A8/A9 heterodimer protein was increased in the EACC model. Our study further demonstrated that the increased S100A8 and S100A9 were associated with apoptosis as well as inflammatory (TGF-β, IFN-γ, and IL-10) and angiogenetic (VEGF, HGF/SF, and c-Met) molecular pathways. The correlation analysis indicated that S100A8 and S100A9 were correlated with clinic staging, apoptosis, and inflammatory and angiogenetic factors. Conclusion This study provided novel insight into the role of S100A8 and S100A9 associated with pathological mechanisms of EACC.
Collapse
Affiliation(s)
- Guanwen He
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Ningde Normal University, Ningde, Fujian, China
| | - Weijing Han
- Department of Pathology, Heze Medical College, Heze, Shandong, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Ningde Normal University, Ningde, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Rifu Wei
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Ningde Normal University, Ningde, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Chang Lin
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Park H, Miyano S. Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow. J Comput Biol 2024; 31:1158-1178. [PMID: 39239711 DOI: 10.1089/cmb.2024.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
We focus on characterizing cell lines from young and aged-healthy and -AML (acute myeloid leukemia) cell lines, and our goal is to identify the key markers associated with the progression of AML. To characterize the age-related phenotypes in AML cell lines, we consider eigenCell analysis that effectively encapsulates the primary expression level patterns across the cell lines. However, earlier investigations utilizing eigenGenes and eigenCells analysis were based on linear combination of all features, leading to the disturbance from noise features. Moreover, the analysis based on a fully dense loading matrix makes it challenging to interpret the results of eigenCells analysis. In order to address these challenges, we develop a novel computational approach termed network-constrained eigenCells profile estimation, which employs a sparse learning strategy. The proposed method estimates eigenCell based on not only the lasso but also network constrained penalization. The use of the network-constrained penalization enables us to simultaneously select neighborhood genes. Furthermore, the hub genes and their regulator/target genes are easily selected as crucial markers for eigenCells estimation. That is, our method can incorporate insights from network biology into the process of sparse loading estimation. Through our methodology, we estimate sparse eigenCells profiles, where only critical markers exhibit expression levels. This allows us to identify the key markers associated with a specific phenotype. Monte Carlo simulations demonstrate the efficacy of our method in reconstructing the sparse structure of eigenCells profiles. We employed our approach to unveil the regulatory system of immunogenes in both young/aged-healthy and -AML cell lines. The markers we have identified for the age-related phenotype in both healthy and AML cell lines have garnered strong support from previous studies. Specifically, our findings, in conjunction with the existing literature, indicate that the activities within this subnetwork of CD79A could be pivotal in elucidating the mechanism driving AML progression, particularly noting the significant role played by the diminished activities in the CD79A subnetwork. We expect that the proposed method will be a useful tool for characterizing disease-related subsets of cell lines, encompassing phenotypes and clones.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- The Institute of Medical Science, Human Genome Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Tian Q, Li Z, Yan Z, Jiang S, Zhao X, Wang L, Li M. Inflammatory role of S100A8/A9 in the central nervous system non-neoplastic diseases. Brain Res Bull 2024; 218:111100. [PMID: 39396712 DOI: 10.1016/j.brainresbull.2024.111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
S100A8 (MRP8) and S100A9 (MRP14) are critical mediators of the inflammatory response; they are usually present as heterodimers because of the instability of homodimers. Studies have demonstrated that S100A8/A9 expression is significantly upregulated in several central nervous system (CNS) diseases. S100A8/A9 is actively released by neutrophils and monocytes; it plays a key role in regulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion during inflammation. Additionally, S100A8/A9 can be used as a diagnostic biomarker for several CNS diseases and as a predictor of therapeutic response to inflammation-related diseases. In this work, we reviewed our current understanding of S100A8/A9 overexpression in inflammation and its importance in the development and progression of CNS inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, and the functional roles and therapeutic applications of S100A8/A9 in these diseases. Finally, we discussed the current barriers and future research directions of S100A8/A9 in CNS diseases.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ziang Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Shengming Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xincan Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, China; Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
8
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
9
|
Benjamin ESB, Vinod E, Illangeswaran RSS, Rajamani BM, Vidhyadharan RT, Bagchi A, Maity A, Mohan A, Parasuraman G, Amirtham SM, Abraham A, Velayudhan SR, Balasubramanian P. Immortalised chronic myeloid leukemia (CML) derived mesenchymal stromal cells (MSCs) line retains the immunomodulatory and chemoprotective properties of CML patient-derived MSCs. Cell Signal 2024; 116:111067. [PMID: 38281615 DOI: 10.1016/j.cellsig.2024.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of Tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), leukemic stem cells (LSCs) persist, contributing to relapse and resistance. CML Mesenchymal Stromal Cells (MSCs) help in LSC maintenance and protection from TKIs. However, the limited passage and self-differentiation abilities of primary CML MSCs hinder extensive research. To overcome this, we generated and characterized an immortalised CML patient-derived MSC (iCML MSC) line and assessed its role in LSC maintenance. We also compared the immunophenotype and differentiation potential between primary CML MSCs at diagnosis, post-treatment, and with normal bone marrow MSCs. Notably, CML MSCs exhibited enhanced chondrogenic differentiation potential compared to normal MSCs. The iCML MSC line retained the trilineage differentiation potential and was genetically stable, enabling long-term investigations. Functional studies demonstrated that iCML MSCs protected CML CD34+ cells from imatinib-induced apoptosis, recapitulating the bone marrow microenvironment-mediated resistance observed in patients. iCML MSC-conditioned media enabled CML CD34+ and AML blast cells to proliferate rapidly, with no impact on healthy donor CD34+ cells. Gene expression profiling revealed dysregulated genes associated with calcium metabolism in CML CD34+ cells cocultured with iCML MSCs, providing insights into potential therapeutic targets. Further, cytokine profiling revealed that the primary CML MSC lines abundantly secreted 25 cytokines involved in immune regulation, supporting the hypothesis that CML MSCs create an immune modulatory microenvironment that promotes growth and protects against TKIs. Our study establishes the utility of iCML MSCs as a valuable model to investigate leukemic-stromal interactions and study candidate genes involved in mediating TKI resistance in CML LSCs.
Collapse
Affiliation(s)
- Esther Sathya Bama Benjamin
- Department of Haematology, Christian Medical College, Ranipet campus, India; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Elizabeth Vinod
- Department of Physiology, Christain Medical College, Vellore, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | | | - Abhirup Bagchi
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | - Arnab Maity
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Ajith Mohan
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | | | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Shaji R Velayudhan
- Department of Haematology, Christian Medical College, Ranipet campus, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | |
Collapse
|
10
|
Peng M, Ye F, Fan C, Dong J, Chai W, Deng W, Zhang H, Yang L. Endogenous S100P-mediated autophagy regulates the chemosensitivity of leukemia cells through the p53/AMPK/mTOR pathway. Am J Cancer Res 2024; 14:1121-1138. [PMID: 38590396 PMCID: PMC10998763 DOI: 10.62347/nwxe8730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Autophagy, a highly regulated lysosome-dependent catabolic pathway, has garnered increasing attention because of its role in leukemia resistance. Among the S100 family of small calcium-binding proteins, S100P is differentially expressed in various tumor cell lines, thereby influencing tumor occurrence, invasion, metastasis, and drug resistance. However, the relationship between S100P and autophagy in determining chemosensitivity in leukemia cells remains unexplored. Our investigation revealed a negative correlation between S100P expression and the clinical status in childhood leukemia, with its presence observed in HL-60 and Jurkat cell lines. Suppression of S100P expression resulted in increased cell proliferation and decreased chemosensitivity in leukemia cells, whereas enhancement of S100P expression inhibited cell proliferation and increased chemosensitivity. Additionally, S100P knockdown drastically promoted autophagy, which was subsequently suppressed by S100P upregulation. Moreover, the p53/AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was found to be functionally associated with S100P-mediated autophagy. Knockdown of S100P expression led to a decrease in p53 and p-mTOR levels and an increase in p-AMPK expression, ultimately promoting autophagy. This effect was reversed by administration of Tenovin-6 (a p53 activator) and Compound C (an AMPK inhibitor). The findings of our in vivo experiments provide additional evidence supporting the aforementioned data. Specifically, S100P inhibition significantly enhanced the growth of HL-60 tumor xenografts and increased the expression of microtubule-associated protein 1 light chain 3 and p-AMPK in nude mice. Consequently, it can be concluded that S100P plays a regulatory role in the chemosensitivity of leukemia cells by modulating the p53/AMPK/mTOR pathway, which controls autophagy in leukemia cells.
Collapse
Affiliation(s)
- Min Peng
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Chenying Fan
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Jiajia Dong
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Hui Zhang
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| |
Collapse
|
11
|
Zhu Z, Mao R, Liu B, Liu H, Shi Z, Zhang K, Liu H, Zhang D, Liu J, Zhao Z, Li K, Yang F, Cao W, Zhang X, Shen C, Sun D, Wang L, Tian H, Ru Y, Feng T, He J, Guo J, Zhang K, Tang Z, Zhang S, Ding C, Han J, Zheng H. Single-cell profiling of African swine fever virus disease in the pig spleen reveals viral and host dynamics. Proc Natl Acad Sci U S A 2024; 121:e2312150121. [PMID: 38412127 PMCID: PMC10927503 DOI: 10.1073/pnas.2312150121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.
Collapse
Affiliation(s)
- Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Ruoqing Mao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Baohong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| | - Kunpeng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Danyang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Jia Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Zhenxiang Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Kangli Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Xiangle Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| | - Dehui Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Liyuan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518124, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| | - Jianhong Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518124, China
| | - Shilei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai200241, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou730046, China
| |
Collapse
|
12
|
Yang Y, Zhang X, Jing L, Xiao Y, Gao Y, Hu Y, Jia S, Zhou G, Xiong H, Dong G. MDSC-derived S100A8/9 contributes to lupus pathogenesis by promoting TLR7-mediated activation of macrophages and dendritic cells. Cell Mol Life Sci 2024; 81:110. [PMID: 38429401 PMCID: PMC10907481 DOI: 10.1007/s00018-024-05155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Lina Jing
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Shujiao Jia
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Guangxi Zhou
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
13
|
Lin Q, Su J, Fang Y, Zhong Z, Chen J, Zhang C. S100A8 is a prognostic signature and associated with immune response in diffuse large B-cell lymphoma. Front Oncol 2024; 14:1344669. [PMID: 38361783 PMCID: PMC10867108 DOI: 10.3389/fonc.2024.1344669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Background S100A8, a calcium-binding protein belonging to the S100 family, is involved in immune responses and multiple tumor pathogens. Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of B-cell lymphoma and remains incurable in 40% of patients. However, the role of S100A8 and its regulation of the immune response in DLBCL remain unclear. Methods The differential expression of S100A8 was identified via the GEO and TCGA databases. The prognostic role of S100A8 in DLBCL was calculated using the Kaplan-Meier curve. The function enrichment of differentially expressed genes (DEGs) was explored through GO, KEGG, GSEA, and PPI analysis. In our cohort, the expression of S100A8 was verified. Meanwhile, the biological function of S100A8 was applied after the inhibition of S100A8 in an in vitro experiment. The association between S100A8 and immune cell infiltration and treatment response in DLBCL was analyzed. Results S100A8 was significantly overexpressed and related to a poor prognosis in DLBCL patients. Function enrichment analysis revealed that DEGs were mainly enriched in the IL-17 signaling pathway. Our cohort also verified this point. In vitro experiments suggested that inhibition of S100A8 should promote cell apoptosis and suppress tumor growth. Single-cell RNA sequence analysis indicated that S100A8 might be associated with features of the tumor microenvironment (TME), and immune infiltration analyses discovered that S100A8 expression was involved in TME. In terms of drug screening, we predicted that many drugs were associated with preferable sensitivity. Conclusion Elevated S100A8 expression is associated with a poor prognosis and immune infiltration in DLBCL. Inhibition of S100A8 could promote cell apoptosis and suppress tumor growth. Meanwhile, S100A8 has the potential to be a promising immunotherapeutic target for patients with DLBCL.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Jianlin Su
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Yuanyuan Fang
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Zhihao Zhong
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Jie Chen
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Chaofeng Zhang
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
14
|
Meng M, Wang J, Li H, Wang J, Wang X, Li M, Gao X, Li W, Ma C, Wei L. Eliminating the invading extracellular and intracellular FnBp + bacteria from respiratory epithelial cells by autophagy mediated through FnBp-Fn-Integrin α5β1 axis. Front Cell Infect Microbiol 2024; 13:1324727. [PMID: 38264727 PMCID: PMC10803403 DOI: 10.3389/fcimb.2023.1324727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5β1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5β1 axis a common event in respiratory epithelial cells? Methods We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5β1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin β1 chain, is highly expressed upon activation of integrin α5β1, which in turn up-regulates autophagy. Conclusions Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5β1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5β1 in this autophagy pathway.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
- Clinical Laboratory, the Second Hospital of Hebei Medical University, Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, China
| | - Miao Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Wang W, Hwang S, Park D, Park YD. The Features of Shared Genes among Transcriptomes Probed in Atopic Dermatitis, Psoriasis, and Inflammatory Acne: S100A9 Selection as the Target Gene. Protein Pept Lett 2024; 31:356-374. [PMID: 38766834 DOI: 10.2174/0109298665290166240426072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases. OBJECTIVE To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA. METHODS Microarray data from AD, PS, and IA patients were downloaded from Gene Expression Omnibus (GEO), and identification of differentially expressed genes from microarrays of AD, PS, and IA was conducted. Subsequently, gene ontology and gene set enrichment analysis, detection of disease modules with known disease-associated genes, construction of the protein-protein interaction (PPI) network, and PPI sub-mapping analysis of shared genes were performed. Finally, the computational docking simulations between the selected target gene and inhibitors were conducted. RESULTS We identified 50 shared genes (36 up-regulated and 14 down-regulated) and disease modules for each disease. Among the shared genes, 20 common genes in PPI network were detected such as LCK, DLGAP5, SELL, CEP55, CDC20, RRM2, S100A7, S100A9, MCM10, AURKA, CCNB1, CHEK1, BTC, IL1F7, AGTR1, HABP4, SERPINB13, RPS6KA4, GZMB, and TRIP13. Finally, S100A9 was selected as the target gene for therapeutics. Docking simulations between S100A9 and known inhibitors indicated several key binding residues, and based on this result, we suggested several cannabinoids such as WIN-55212-2, JZL184, GP1a, Nabilone, Ajulemic acid, and JWH-122 could be potential candidates for a clinical study for AD, PS, and IA via inhibition of S100A9-related pathway. CONCLUSION Overall, our approach may become an effective strategy for discovering new disease candidate genes for inflammatory skin diseases with a reevaluation of clinical data.
Collapse
Affiliation(s)
- Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
| | - Sungbo Hwang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
16
|
Fan R, Satilmis H, Vandewalle N, Verheye E, De Bruyne E, Menu E, De Beule N, De Becker A, Ates G, Massie A, Kerre T, Törngren M, Eriksson H, Vanderkerken K, Breckpot K, Maes K, De Veirman K. Targeting S100A9 protein affects mTOR-ER stress signaling and increases venetoclax sensitivity in Acute Myeloid Leukemia. Blood Cancer J 2023; 13:188. [PMID: 38110349 PMCID: PMC10728073 DOI: 10.1038/s41408-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a heterogeneous disease with limited treatment options and a high demand for novel targeted therapies. Since myeloid-related protein S100A9 is abundantly expressed in AML, we aimed to unravel the therapeutic impact and underlying mechanisms of targeting both intracellular and extracellular S100A9 protein in AML cell lines and primary patient samples. S100A9 silencing in AML cell lines resulted in increased apoptosis and reduced AML cell viability and proliferation. These therapeutic effects were associated with a decrease in mTOR and endoplasmic reticulum stress signaling. Comparable results on AML cell proliferation and mTOR signaling could be observed using the clinically available S100A9 inhibitor tasquinimod. Interestingly, while siRNA-mediated targeting of S100A9 affected both extracellular acidification and mitochondrial metabolism, tasquinimod only affected the mitochondrial function of AML cells. Finally, we found that S100A9-targeting approaches could significantly increase venetoclax sensitivity in AML cells, which was associated with a downregulation of BCL-2 and c-MYC in the combination group compared to single agent therapy. This study identifies S100A9 as a novel molecular target to treat AML and supports the therapeutic evaluation of tasquinimod in venetoclax-based regimens for AML patients.
Collapse
Affiliation(s)
- Rong Fan
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Hatice Satilmis
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Niels Vandewalle
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Emma Verheye
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Pleinlaan 2, 1050, Brussels, Belgium
| | - Elke De Bruyne
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Eline Menu
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Nathan De Beule
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Ann De Becker
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Gamze Ates
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Marie Törngren
- Active Biotech AB, Lund, Sweden. Scheelevägen 22, 22363, Lund, Sweden
| | - Helena Eriksson
- Active Biotech AB, Lund, Sweden. Scheelevägen 22, 22363, Lund, Sweden
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium.
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium.
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium.
| |
Collapse
|
17
|
Wang J, Lu L, Zou G, Ye Z, Jin F, Wang L, Ke G, Dong K, Tao L. Transcriptomic Analysis of Retinal Gene in Experimental Retinal Detachment Rats and Exploration of S100A9 and TLR4 in Human Vitreous. Curr Eye Res 2023; 48:1170-1178. [PMID: 37846082 DOI: 10.1080/02713683.2023.2254016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE To screen for the differentially expressed genes in experimental retinal detachment rats, and to explore the expression of S100 calcium-binding protein A9 and Toll-like receptor 4 in the vitreous of rhegmatogenous retinal detachment patients. METHODS Three rats of experimental retinal detachment and three normal rats were enrolled in the study. Transcriptomics (RNAseq) sequencing technology was used to screen differentially expressed genes in the retinas of the experimental retinal detachment group and the normal group. The selected differentially expressed genes for gene ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis were performed. In addition, the vitreous of 15 patients with rhegmatogenous retinal detachment and six patients with the control group were collected. The expressions of S100 calcium-binding protein A9 and Toll-like receptor 4 were detected by Elisa, and the differences in expression levels were analyzed statistically. RESULTS A total of 198 differentially expressed genes were screened by RNAseq sequencing, including 118 upregulated genes and 80 downregulated genes. Kyoto Encyclopedia of Genes and Genomes analysis confirmed that the most enriched pathway was the mitogen-activated protein kinase signaling pathway. Compared to the normal group, the expressions of suppressor of cytokine signaling-3, Storkhead box-2, S100 calcium-binding protein A9, Spi-1 proto-oncogene, phosphodiesterase 1B, and kinesin-light chain 1 mRNA in the retinas of the experimental retinal detachment rats were up-regulated, and the expressions of Max interacting protein 1 and the voltage-gated sodium 1 were down-regulated. Compared to the control group, the expressions of S100 calcium-binding protein A9 and Toll-like receptor 4 were upregulated by Elisa in the vitreous humor of rhegmatogenous retinal detachment patients with a statistically significant difference (p all <.05). CONCLUSION The differentially expressed genes of experimental retinal detachment rats were suppressor of cytokine signaling-3, Storkhead box-2, S100 calcium-binding protein A9, Spi-1 proto-oncogene, phosphodiesterase 1B, kinesin-light chain 1, Max interacting protein 1, voltage-gated sodium 1, etc. The differences of S100 calcium-binding protein A9 and Toll-like receptor 4 expressions between the rhegmatogenous retinal detachment patients and the control group were statistically significant, indicating that they may play a potential role in the inflammatory process of rhegmatogenous retinal detachment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Li Lu
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Gaocheng Zou
- Department of Ophthalmology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ziyang Ye
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Feiyu Jin
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lin Wang
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Genjie Ke
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Kai Dong
- Department of Ophthalmology, Division of Life Sciences and Medicine, Eye Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Zhi X, Shi S, Li Y, Ma M, Long Y, Li C, Hao H, Liu H, Wang X, Wang L. S100a9 inhibits Atg9a transcription and participates in suppression of autophagy in cardiomyocytes induced by β 1-adrenoceptor autoantibodies. Cell Mol Biol Lett 2023; 28:74. [PMID: 37723445 PMCID: PMC10506287 DOI: 10.1186/s11658-023-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Cardiomyocyte death induced by autophagy inhibition is an important cause of cardiac dysfunction. In-depth exploration of its mechanism may help to improve cardiac dysfunction. In our previous study, we found that β1-adrenergic receptor autoantibodies (β1-AAs) induced a decrease in myocardial autophagy and caused cardiomyocyte death, thus resulting in cardiac dysfunction. Through tandem mass tag (TMT)-based quantitative proteomics, autophagy-related S100a9 protein was found to be significantly upregulated in the myocardial tissue of actively immunized mice. However, whether S100a9 affects the cardiac function in the presence of β1-AAs through autophagy and the specific mechanism are currently unclear. METHODS In this study, the active immunity method was used to establish a β1-AA-induced mouse cardiac dysfunction model, and RT-PCR and western blot were used to detect changes in gene and protein expression in cardiomyocytes. We used siRNA to knockdown S100a9 in cardiomyocytes. An autophagy PCR array was performed to screen differentially expressed autophagy-related genes in cells transfected with S100a9 siRNA and negative control siRNA. Cytoplasmic nuclear separation, co-immunoprecipitation (Co-IP), and immunofluorescence were used to detect the binding of S100a9 and hypoxia inducible factor-1α (HIF-1α). Finally, AAV9-S100a9-RNAi was injected into mice via the tail vein to knockdown S100a9 in cardiomyocytes. Cardiac function was detected via ultrasonography. RESULTS The results showed that β1-AAs induced S100a9 expression. The PCR array indicated that Atg9a changed significantly in S100a9siRNA cells and that β1-AAs increased the binding of S100a9 and HIF-1α in cytoplasm. Knockdown of S100a9 significantly improved autophagy levels and cardiac dysfunction. CONCLUSION Our research showed that β1-AAs increased S100a9 expression in cardiomyocytes and that S100a9 interacted with HIF-1α, which prevented HIF-1α from entering the nucleus normally, thus inhibiting the transcription of Atg9a. This resulted in autophagy inhibition and cardiac dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Zhi
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Shu Shi
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yang Li
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Mingxia Ma
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yaolin Long
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Chen Li
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Haihu Hao
- Department of Orthopaedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiaohui Wang
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
19
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Fu D, Zhang B, Wu S, Feng J, Jiang H. Molecular subtyping of acute myeloid leukemia through ferroptosis signatures predicts prognosis and deciphers the immune microenvironment. Front Cell Dev Biol 2023; 11:1207642. [PMID: 37691822 PMCID: PMC10483833 DOI: 10.3389/fcell.2023.1207642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most aggressive hematological malignancies with a low 5-year survival rate and high rate of relapse. Developing more efficient therapies is an urgent need for AML treatment. Accumulating evidence showed that ferroptosis, an iron-dependent form of programmed cell death, is closely correlated with cancer initiation and clinical outcome through reshaping the tumor microenvironment. However, understanding of AML heterogeneity based on extensive profiling of ferroptosis signatures remains to be investigated yet. Herein, five independent AML transcriptomic datasets (TCGA-AML, GSE37642, GSE12417, GSE10358, and GSE106291) were obtained from the GEO and TCGA databases. Then, we identified two ferroptosis-related molecular subtypes (C1 and C2) with distinct prognosis and tumor immune microenvironment (TIME) by consensus clustering. Patients in the C1 subtype were associated with favorable clinical outcomes and increased cytotoxic immune cell infiltration, including CD8+/central memory T cells, natural killer (NK) cells, and non-regulatory CD4+ T cells while showing decreased suppressive immune subsets such as M2 macrophages, neutrophils, and monocytes. Functional enrichment analysis of differentially expressed genes (DEGs) implied that cell activation involved in immune response, leukocyte cell-cell adhesion and migration, and cytokine production were the main biological processes. Phagosome, antigen processing and presentation, cytokine-cytokine receptor interaction, B-cell receptor, and chemokine were identified as the major pathways. To seize the distinct landscape in C1 vs. C2 subtypes, a 5-gene prognostic signature (LSP1, IL1R2, MPO, CRIP1, and SLC24A3) was developed using LASSO Cox stepwise regression analysis and further validated in independent AML cohorts. Patients were divided into high- and low-risk groups, and decreased survival rates were observed in high- vs. low-risk groups. The TIME between high- and low-risk groups has a similar scenery in C1 vs. C2 subtypes. Single-cell-level analysis verified that LSP1 and CRIP1 were upregulated in AML and exhausted CD8+ T cells. Dual targeting of these two markers might present a promising immunotherapeutic for AML. In addition, potential effective chemical drugs for AML were predicted. Thus, we concluded that molecular subtyping using ferroptosis signatures could characterize the TIME and provide implications for monitoring clinical outcomes and predicting novel therapies.
Collapse
Affiliation(s)
- Denggang Fu
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Biyu Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan, Wuhan, China
| | - Shiyong Wu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Hua Jiang
- Department of Radiation Oncology, School of Medicine, Stanford University, San Francisco, CA, United States
| |
Collapse
|
21
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
22
|
Wang YH, Chen YJ, Lai YH, Wang MC, Chen YY, Wu YY, Yang YR, Tsou HY, Li CP, Hsu CC, Huang CE, Chen CC. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1 CALR-Mutated MPN. Int J Mol Sci 2023; 24:8747. [PMID: 37240094 PMCID: PMC10217897 DOI: 10.3390/ijms24108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous pathogenic CALR exon 9 mutations have been identified in myeloproliferative neoplasms (MPN), with type 1 (52bp deletion; CALRDEL) and type 2 (5bp insertion; CALRINS) being the most prevalent. Despite the universal pathobiology of MPN driven by various CALR mutants, it is unclear why different CALR mutations result in diverse clinical phenotypes. Through RNA sequencing followed by validation at the protein and mRNA levels, we found that S100A8 was specifically enriched in CALRDEL but not in CALRINS MPN-model cells. The expression of S100a8 could be regulated by STAT3 based on luciferase reporter assay complemented with inhibitor treatment. Pyrosequencing demonstrated relative hypomethylation in two CpG sites within the potential pSTAT3-targeting S100a8 promoter region in CALRDEL cells as compared to CALRINS cells, suggesting that distinct epigenetic alteration could factor into the divergent S100A8 levels in these cells. The functional analysis confirmed that S100A8 non-redundantly contributed to accelerated cellular proliferation and reduced apoptosis in CALRDEL cells. Clinical validation showed significantly enhanced S100A8 expression in CALRDEL-mutated MPN patients compared to CALRINS-mutated cases, and thrombocytosis was less prominent in those with S100A8 upregulation. This study provides indispensable insights into how different CALR mutations discrepantly drive the expression of specific genes that contributes to unique phenotypes in MPN.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yi-Hua Lai
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ming-Chung Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
23
|
Post-translational modifications on the metal-sequestering protein calprotectin. Biometals 2023:10.1007/s10534-023-00493-x. [PMID: 36826733 PMCID: PMC10393864 DOI: 10.1007/s10534-023-00493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer) is an abundant neutrophil protein that contributes to innate immunity by sequestering nutrient metal ions in the extracellular space. This process starves invading microbial pathogens of essential metal nutrients, which can inhibit growth and colonization. Over the past decade, fundamental and clinical studies have revealed that the S100A8 and S100A9 subunits of CP exhibit a variety of post-translational modifications (PTMs). This review summarizes PTMs on the CP subunits that have been detected and highlights two recent studies that evaluated the structural and functional consequences of methionine and cysteine oxidation on CP. Collectively, these investigations indicate that the molecular speciation of extracellular CP is complex and composed of multiple proteoforms. Moreover, PTMs may impact biological function and the lifetime of the protein. It is therefore important that post-translationally modified CP species receive consideration and integration into the current working model for how CP functions in nutritional immunity.
Collapse
|
24
|
Wang Y, Sun Y, Zheng Y, Yang Y, He L, Qu P, Zhou F, Xu X, Bai X, Chen X, Yuan Y, Liu M, Pan Q. Bacillus Calmette-Guérin-induced interleukin-10 inhibits S100A8/A9 production and hinders development of T helper type 1 memory in mice. Eur J Immunol 2023; 53:e2250204. [PMID: 36681386 DOI: 10.1002/eji.202250204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (M.tb) is one of the main causes of human death in the world. Bacillus Calmette-Guérin (BCG) provides limited protection in adolescents and adults. To explore the factors reducing efficacy of BCG vaccine, we assess the impacts of interleukin (IL)-10 and alarmins S100A8/A9 on T-cell memory. We found that BCG-induced IL-10 inhibited production of S100A8/A9 in human peripheral blood mononuclear cells (PBMCs) and murine splenocytes. S100A9 deficiency inhibited IFN-γ production by CD4+ T cells in the early phase of BCG immunization and hindered the development of effector memory T helper type 1 (Th1) cells, while IL-10 deficiency promoted Th1 memory and blocking IL-10 signaling enhanced Th1 protective recall response against M.tb. IL-10 inhibited the binding of transcription factor CCAAT enhancer binding protein beta to S100a8/a9 promoter leading to S100A8/A9 reduction. S100A8/A9 heterodimer enhanced the IFN-γ production via receptor for advanced glycation end products signaling in CD4+ T cells. Our results demonstrate a hurdle to development of Th1 memory after BCG immunization and clarify the mechanism of the regulation of Th1 memory by IL-10 and S100A8/A9.
Collapse
Affiliation(s)
- Yaping Wang
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.,Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yuehua Sun
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yong Zheng
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuling Yang
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Liu He
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Peijie Qu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Fangting Zhou
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - XiaoXu Xu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xuanchang Bai
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xin Chen
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yangxuan Yuan
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Min Liu
- Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Qin Pan
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| |
Collapse
|
25
|
Wang CY, Shih SR, Chen KY, Huang PJ. Urinary Exosomal Tissue TIMP and Angiopoietin-1 Are Preoperative Novel Biomarkers of Well-Differentiated Thyroid Cancer. Biomedicines 2022; 11:biomedicines11010024. [PMID: 36672532 PMCID: PMC9856081 DOI: 10.3390/biomedicines11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Finding non-invasive and sensitive biomarkers for early screening of high-risk patients remains important in clinical practice. A higher concentration of urine exosomal thyroglobulin protein was found in late-stage patients with thyroid carcinoma compared to those with early stage in our previous study. This prospective study aims to find new prognostic biomarkers before surgery for decision-making with this platform. We enrolled patients newly diagnosed with papillary and follicular cancer from 2017 to 2018. Preoperative urine samples were collected and the exosomal proteins were analyzed. The association of the concentration of urine exosomal proteins with lymph node metastasis and MACIS score (metastasis, age, completeness of resection, invasion, and size) was analyzed with multiple logistic regression. In total, 21 patients were included, with a mean age of 51.29 ± 10.29 years and a majority of female patients (85.71%). The concentration of urine exosomal TIMP (tissue inhibitor of metalloproteinase) was significantly higher in patients with lymph node metastasis (p = 0.01). Multiple logistic regression analysis showed association of urine exosomal TIMP (adjusted odds ratio (aOR): 3.09, 95% confidence interval (CI): 0.99-9.6, p = 0.052), angiopoietin-1 (aOR: 2.24, 95% CI: 0.97-5.15, p = 0.058) with lymph node metastasis. However, no association was noted between MACIS score and various urine exosomal protein candidates. Preoperative urine exosomal data could suggest certain peptides having the potential as prognostic indicators for screening patients with high-risk before surgery. Further study with a large cohort and long follow-up is needed to identify the application of urine exosomal proteins on prognostic prediction.
Collapse
Affiliation(s)
- Chih-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 265371)
| | - Shyang-Rong Shih
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Pei-Jie Huang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
| |
Collapse
|
26
|
Ivermectin Affects Neutrophil-Induced Inflammation through Inhibition of Hydroxylysine but Stimulation of Cathepsin G and Phenylalanine Secretion. Biomedicines 2022; 10:biomedicines10123284. [PMID: 36552040 PMCID: PMC9775137 DOI: 10.3390/biomedicines10123284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.
Collapse
|
27
|
Abd El Meged Nage S, Esmail A. Calprotectin as a Biomarker for Diagnosis and Severity of Acute Noninfectious Anterior Uveitis in Egyptian Patients. Clin Ophthalmol 2022; 16:4109-4120. [PMID: 36536923 PMCID: PMC9759012 DOI: 10.2147/opth.s389780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 09/01/2023] Open
Abstract
PURPOSE To study the relation between serum calprotectin level and acute noninfectious anterior uveitis in Egyptian patients. METHODS An observational prospective study carried out at Menoufia University Hospital during the period from March 2021 till June 2022, after informed consent from all studied patients. This study included 20 eyes of patients with Acute Anterior Uveitis (AAU) and 20 eyes healthy individuals matched sex and age as the control group. Full history taking, ophthalmological examination and serum calprotectin levels were performed for both patients and controls. RESULTS Serum calprotectin levels were substantially higher in patients' eyes with acute anterior uveitis than in healthy eyes (61.45±7.89 vs 32.50±11.64; 95% CI: 22.58-35.32; P < 0.001). ROC curve analysis showed that the cut-off point of serum calprotectin in severity detection of AAU was ≥58.0, with sensitivity of 95%, specificity of 43% at AUC of 0.986, with reached to significant level (p < 0.001). CONCLUSION Serum calprotectin levels were significantly elevated with positive previous uveitis and marked grade indicating a possible role of calprotectin in the pathogenesis of non-infectious AAU. The serum calprotectin cut-off points for severity detection of AAU were 58.0, with sensitivity of 95% and specificity of 43%. Finally, we identified serum calprotectin as a potential biomarker for detection of anterior uveitis severity and patients' morbidity risk. Further investigation with large sample size is needed to assess the relationship between calprotectin and uveitis activity.
Collapse
Affiliation(s)
| | - Ahmed Esmail
- Ophthalmology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
28
|
Jiang Y, Dai S, Jia L, Qin L, Zhang M, Liu H, Wang X, Pang R, Zhang J, Peng G, Li W. Single-cell transcriptomics reveals cell type-specific immune regulation associated with anti-NMDA receptor encephalitis in humans. Front Immunol 2022; 13:1075675. [PMID: 36544777 PMCID: PMC9762154 DOI: 10.3389/fimmu.2022.1075675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a rare autoimmune disease, and the peripheral immune characteristics associated with anti-NMDARE antibodies remain unclear. Methods Herein, we characterized peripheral blood mononuclear cells from patients with anti-NMDARE and healthy individuals by single-cell RNA sequencing (scRNA-seq). Results The transcriptional profiles of 129,217 cells were assessed, and 21 major cell clusters were identified. B-cell activation and differentiation, plasma cell expansion, and excessive inflammatory responses in innate immunity were all identified. Patients with anti-NMDARE showed higher expression levels of CXCL8, IL1B, IL6, TNF, TNFSF13, TNFSF13B, and NLRP3. We observed that anti-NMDARE patients in the acute phase expressed high levels of DC_CCR7 in human myeloid cells. Moreover, we observed that anti-NMDARE effects include oligoclonal expansions in response to immunizing agents. Strong humoral immunity and positive regulation of lymphocyte activation were observed in acute stage anti-NMDARE patients. Discussion This high-dimensional single-cell profiling of the peripheral immune microenvironment suggests that potential mechanisms are involved in the pathogenesis and recovery of anti-NMDAREs.
Collapse
Affiliation(s)
- Yushu Jiang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Wei Li, ; Yushu Jiang,
| | - Shuhua Dai
- Department of Neurology, Henan Provincial People’s Hospital, Xinxiang Medical University, Zhengzhou, Henan, China
| | - Linlin Jia
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingzhi Qin
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Milan Zhang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huiqin Liu
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojuan Wang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Pang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gongxin Peng
- China Center for Bioinformatics, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Wei Li
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Wei Li, ; Yushu Jiang,
| |
Collapse
|
29
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
30
|
All-trans retinoic acid enhanced the antileukemic efficacy of ABT-199 in acute myeloid leukemia by downregulating the expression of S100A8. Int Immunopharmacol 2022; 112:109182. [PMID: 36058034 DOI: 10.1016/j.intimp.2022.109182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022]
Abstract
Acute myeloid leukemia (AML) is prone to relapse. Targeted therapy with a specific inhibitor of the anti-apoptotic protein Bcl-2 ABT-199 is an effective method for relapsed and refractory patients, but drug resistance is likely, which is primarily related to high Mcl-1 and S100A8 expression. All-trans retinoic acid (ATRA) can inhibit Bcl-2 and Mcl-1 expression. The study purpose was to determine whether ATRA can enhance the antileukemia effect of ABT-199 on AML cells. Our data showed that ATRA combined with ABT-199 exerts a synergistic antileukemic effect by inducing apoptosis and cell cycle arrest in AML. In vivo, combination therapy prolonged the survival of AML xenograft mice. The possible mechanism involves promoting apoptosis through downregulation of S100A8 expression by inhibiting the PI3K/AKT signaling pathway. This study provides a potential treatment strategy and theoretical support for overcoming the clinical ABT-199 resistance problem in AML patients.
Collapse
|
31
|
Targeting Redox Regulation as a Therapeutic Opportunity against Acute Leukemia: Pro-Oxidant Strategy or Antioxidant Approach? Antioxidants (Basel) 2022; 11:antiox11091696. [PMID: 36139768 PMCID: PMC9495346 DOI: 10.3390/antiox11091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Redox adaptation is essential for human health, as the physiological quantities of non-radical reactive oxygen species operate as the main second messengers to regulate normal redox reactions by controlling several sensors. An abnormal increase reactive oxygen species, called oxidative stress, induces biological injury. For this reason, variations in oxidative stress continue to receive consideration as a possible approach to treat leukemic diseases. However, the intricacy of redox reactions and their effects might be a relevant obstacle; consequently, and alongside approaches aimed at increasing oxidative stress in neoplastic cells, antioxidant strategies have also been suggested for the same purpose. The present review focuses on the molecular processes of anomalous oxidative stress in acute myeloid and acute lymphoblastic leukemias as well as on the oxidative stress-determined pathways implicated in leukemogenic development. Furthermore, we review the effect of chemotherapies on oxidative stress and the possibility that their pharmacological effects might be increased by modifying the intracellular redox equilibrium through a pro-oxidant approach or an antioxidant strategy. Finally, we evaluated the prospect of varying oxidative stress as an efficacious modality to destroy chemoresistant cells using new methodologies. Altering redox conditions may be advantageous for inhibiting genomic variability and the eradication of leukemic clones will promote the treatment of leukemic disease.
Collapse
|
32
|
Wang J, Zhao Y, Zhang X, Tu W, Wan R, Shen Y, Zhang Y, Trivedi R, Gao P. Type II alveolar epithelial cell aryl hydrocarbon receptor protects against allergic airway inflammation through controlling cell autophagy. Front Immunol 2022; 13:964575. [PMID: 35935956 PMCID: PMC9355649 DOI: 10.3389/fimmu.2022.964575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rationale Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered as an important regulator for immune diseases. We have previously shown that AhR protects against allergic airway inflammation. The underlying mechanism, however, remains undetermined. Objectives We sought to determine whether AhR specifically in type II alveolar epithelial cells (AT2) modulates allergic airway inflammation and its underlying mechanisms. Methods The role of AhR in AT2 cells in airway inflammation was investigated in a mouse model of asthma with AhR conditional knockout mice in AT2 cells (Sftpc-Cre;AhRf/f ). The effect of AhR on allergen-induced autophagy was examined by both in vivo and in vitro analyses. The involvement of autophagy in airway inflammation was analyzed by using autophagy inhibitor chloroquine. The AhR-regulated gene profiling in AT2 cells was also investigated by RNA sequencing (RNA-seq) analysis. Results Sftpc-Cre;AhRf/f mice showed exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, an increased allergen-induced autophagy was observed in the lung tissues of Sftpc-Cre;AhRf/f mice when compared with wild-type mice. Further analyses suggested a functional axis of AhR-TGF-β1 that is critical in driving allergic airway inflammation through regulating allergen-induced cellular autophagy. Furthermore, inhibition of autophagy with autophagy inhibitor chloroquine significantly suppressed cockroach allergen-induced airway inflammation, Th2 cytokines in BALFs, and expression of autophagy-related genes LC3 and Atg5 in the lung tissues. In addition, RNA-seq analysis suggests that autophagy is one of the major pathways and that CALCOCO2/NDP52 and S1009 are major autophagy-associated genes in AT2 cells that may contribute to the AhR-mediated cockroach allergen-induced airway inflammation and, subsequently, allergic asthma. Conclusion These results suggest that AhR in AT2 cells functions as a protective mechanism against allergic airway inflammation through controlling cell autophagy.
Collapse
Affiliation(s)
- Ji Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Yilin Zhao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruchik Trivedi
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Peisong Gao,
| |
Collapse
|
33
|
Lin ZL, Liu YC, Gao YL, Chen XS, Wang CL, Shou ST, Chai YF. S100A9 and SOCS3 as diagnostic biomarkers of acute myocardial infarction and their association with immune infiltration. Gene 2022; 97:67-79. [PMID: 35675985 DOI: 10.1266/ggs.21-00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death globally, with a mortality rate of over 20%. However, the diagnostic biomarkers frequently used in current clinical practice have limitations in both sensitivity and specificity, likely resulting in delayed diagnosis. This study aimed to identify potential diagnostic biomarkers for AMI and explored the possible mechanisms involved. Datasets were retrieved from the Gene Expression Omnibus. First, we identified differentially expressed genes (DEGs) and preserved modules, from which we identified candidate genes by LASSO (least absolute shrinkage and selection operator) regression and the SVM-RFE (support vector machine-recursive feature elimination) algorithm. Subsequently, we used ROC (receiver operating characteristic) analysis to evaluate the diagnostic accuracy of the candidate genes. Thereafter, functional enrichment analysis and an analysis of immune infiltration were implemented. Finally, we assessed the association between biomarkers and biological processes, infiltrated cells, clinical traits, tissues and time points. We identified nine preserved modules containing 1,016 DEGs and managed to construct a diagnostic model with high accuracy (GSE48060: AUC = 0.923; GSE66360: AUC = 0.973) incorporating two genes named S100A9 and SOCS3. Functional analysis revealed the pivotal role of inflammation; immune infiltration analysis indicated that eight cell types (monocytes, epithelial cells, neutrophils, CD8+ T cells, Th2 cells, NK cells, NKT cells and platelets) were likely involved in AMI. Furthermore, we observed that S100A9 and SOCS3 were correlated with inflammation, variably infiltrated cells, clinical traits of patients, sampling tissues and sampling time points. In conclusion, we suggested S100A9 and SOCS3 as diagnostic biomarkers of AMI and discovered their association with inflammation, infiltrated immune cells and other factors.
Collapse
Affiliation(s)
- Ze-Liang Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Xin-Sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Chao-Lan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| |
Collapse
|
34
|
Gu W, Shen H, Xie L, Zhang X, Yang J. The Role of Feedback Loops in Targeted Therapy for Pancreatic Cancer. Front Oncol 2022; 12:800140. [PMID: 35651786 PMCID: PMC9148955 DOI: 10.3389/fonc.2022.800140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related deaths worldwide, with limited treatment options and low long-term survival rates. The complex and variable signal regulation networks are one of the important reasons why it is difficult for pancreatic cancer to develop precise targeted therapy drugs. Numerous studies have associated feedback loop regulation with the development and therapeutic response of cancers including pancreatic cancer. Therefore, we review researches on the role of feedback loops in the progression of pancreatic cancer, and summarize the connection between feedback loops and several signaling pathways in pancreatic cancer, as well as recent advances in the intervention of feedback loops in pancreatic cancer treatment, highlighting the potential of capitalizing on feedback loops modulation in targeted therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Weigang Gu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - HongZhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaofeng Zhang, ; Jianfeng Yang,
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaofeng Zhang, ; Jianfeng Yang,
| |
Collapse
|
35
|
Garcia V, Perera YR, Chazin WJ. A Structural Perspective on Calprotectin as a Ligand of Receptors Mediating Inflammation and Potential Drug Target. Biomolecules 2022; 12:519. [PMID: 35454108 PMCID: PMC9026754 DOI: 10.3390/biom12040519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Calprotectin, a heterodimer of S100A8 and S100A9 EF-hand calcium-binding proteins, is an integral part of the innate immune response. Calprotectin (CP) serves as a ligand for several pattern recognition cell surface receptors including the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and cluster of differentiation 33 (CD33). The receptors initiate kinase signaling cascades that activate inflammation through the NF-kB pathway. Receptor activation by CP leads to upregulation of both receptor and ligand, a positive feedback loop associated with specific chronic inflammatory syndromes. Hence, CP and its two constituent homodimers have been viewed as potential targets to suppress certain chronic inflammation pathologies. A variety of inhibitors of CP and other S100 proteins have been investigated for more than 30 years, but no candidates have advanced significantly into clinical trials. Here, current knowledge of the interactions of CP with its receptors is reviewed along with recent progress towards the development of CP-directed chemotherapeutics.
Collapse
Affiliation(s)
- Velia Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA;
| | - Yasiru Randika Perera
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Walter Jacob Chazin
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
36
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
37
|
Bhattacharya S. The Incredible Potential of Exosomes as Biomarkers in the Diagnosis of Colorectal Cancer. Curr Drug Res Rev 2022; 14:188-202. [PMID: 35490434 DOI: 10.2174/2665998002666220501164429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Colorectal cancer (CRC) is common cancer that is one of the leading causes of cancerrelated deaths around the world. The creation of new biomarkers for this disease is an important public health strategy for lowering the disease's mortality rate. According to new research, exosomes may be important sources of biomarkers in CRC. Exosomes are nanometer-sized membrane vesicles (30-200 nm) secreted by normal and cancer cells that transport RNA and proteins between cells and are thought to help with intercellular communication. Exosomes have been linked to CRC initiation and progression, and some differentially expressed RNAs and proteins in exosomes have been identified as potential cancer detection candidates. As a result, studying the relationship between exosomes and CRC may aid in the development of new biomarkers for the disease. This article discusses the importance of exosomes as biomarkers in the diagnosis of CRC, as well as their use in the treatment of CRC metastasis, chemoresistance, and recrudescence. The benefits and drawbacks of using exosomes as tumour markers are also discussed.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, NMIM'S School of Pharmacy & Technology Management, Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
38
|
Gilteritinib-induced upregulation of S100A9 is mediated through BCL6 in acute myeloid leukemia. Blood Adv 2021; 5:5041-5046. [PMID: 34614509 PMCID: PMC9153019 DOI: 10.1182/bloodadvances.2021005614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
S100A9 overexpression promotes gilteritinib resistance in FLT3-ITD+ AML cells. Gilteritinib-induced upregulation of S100A9 is mediated through loss of BCL6 enrichment at the S100A9 promoter.
Drug resistance and relapse are common challenges in acute myeloid leukemia (AML), particularly in an aggressive subset bearing internal tandem duplications (ITDs) of the FLT3 receptor (FLT3-ITD+). The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet resistance to gilteritinib remains a clinical concern, and the underlying mechanisms remain incompletely understood. Using transcriptomic analyses and functional validation studies, we identified the calcium-binding proteins S100A8 and S100A9 (S100A8/A9) as contributors to gilteritinib resistance in FLT3-ITD+ AML. Exposure of FLT3-ITD+ AML cells to gilteritinib increased S100A8/A9 expression in vivo and in vitro and decreased free calcium levels, and genetic manipulation of S100A9 was associated with altered sensitivity to gilteritinib. Using a transcription factor screen, we identified the transcriptional corepressor BCL6, as a regulator of S100A9 expression and found that gilteritinib decreased BCL6 binding to the S100A9 promoter, thereby increasing S100A9 expression. Furthermore, pharmacological inhibition of BCL6 accelerated the growth rate of gilteritinib-resistant FLT3-ITD+ AML cells, suggesting that S100A9 is a functional target of BCL6. These findings shed light on mechanisms of resistance to gilteritinib through regulation of a target that can be therapeutically exploited to enhance the antileukemic effects of gilteritinib.
Collapse
|
39
|
Identification S100A9 as a potential biomarker in neuroblastoma. Mol Biol Rep 2021; 48:7743-7753. [PMID: 34689294 PMCID: PMC8604885 DOI: 10.1007/s11033-021-06783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/15/2021] [Indexed: 10/29/2022]
Abstract
BACKGROUND More than half of Neuroblastoma (NB) patients presented with distant metastases and the relapse of metastatic patients was up to 90%. It is urgent to explore a biomarker that could facilitate the prediction of metastasis in NB patients. METHODS AND RESULTS In the present study, we systematically analyzed Gene Expression Omnibus datasets and focused on identifying the critical molecular networks and novel key hub genes implicated in NB metastasis. In total, 176 up-regulated and 19 down-regulated differentially expressed genes (DEGs) were identified. Based on these DEGs, a PPI network composed of 150 nodes and 452 interactions was established. Through PPI network identification combined with qRT-PCR, ELISA and IHC, S100A9 was screened as an outstanding gene. Furthermore, in vitro tumorigenesis assays demonstrated that S100A9 overexpression enhanced the proliferation, migration and invasion of NB cells. CONCLUSIONS Taken together, our findings suggested that S100A9 could participate in NB tumorigenesis and progression. In addition, S100A9 has the potential to be used as a promising clinical biomarker in the prediction of NB metastasis.
Collapse
|
40
|
Liu M, Wang Y, Miettinen JJ, Kumari R, Majumder MM, Tierney C, Bazou D, Parsons A, Suvela M, Lievonen J, Silvennoinen R, Anttila P, Dowling P, O'Gorman P, Tang J, Heckman CA. S100 Calcium Binding Protein Family Members Associate With Poor Patient Outcome and Response to Proteasome Inhibition in Multiple Myeloma. Front Cell Dev Biol 2021; 9:723016. [PMID: 34485305 PMCID: PMC8415228 DOI: 10.3389/fcell.2021.723016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Despite several new therapeutic options, multiple myeloma (MM) patients experience multiple relapses and inevitably become refractory to treatment. Insights into drug resistance mechanisms may lead to the development of novel treatment strategies. The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated expression of S100 family members is associated with tumor initiation, progression and inflammation. However, the relationship between the S100 family and MM pathogenesis and drug response is unknown. In this study, the roles of S100 members were systematically studied at the copy number, transcriptional and protein level with patients’ survival and drug response. Copy number analysis revealed a predominant pattern of gains occurring in S100 genes clustering in the 1q21 locus. In general, gains of genes encoding S100 family members associated with worse patient survival. However, S100 gene copy number and S100 gene expression did not necessarily correlate, and high expression of S100A4 associated with poor patient survival. Furthermore, integrated analysis of S100 gene expression and ex vivo drug sensitivity data showed significant negative correlation between expression of S100 family members (S100A8, S100A9, and S100A12) and sensitivity to some drugs used in current MM treatment, including proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) and histone deacetylase inhibitor panobinostat. Combined proteomic and pharmacological data exhibited significant negative association of S100 members (S100A4, S100A8, and S100A9) with proteasome inhibitors and panobinostat. Clinically, the higher expression of S100A4 and S100A10 were significantly linked to shorter progression free survival in patients receiving carfilzomib-based therapy. The results indicate an association and highlight the potential functional importance of S100 members on chromosome 1q21 in the development of MM and resistance to established myeloma drugs, including proteasome inhibitors.
Collapse
Affiliation(s)
- Minxia Liu
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Yinyin Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Romika Kumari
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Muntasir Mamun Majumder
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Ciara Tierney
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland.,Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alun Parsons
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Minna Suvela
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Juha Lievonen
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Raija Silvennoinen
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Pekka Anttila
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Xu N, Zhang BB, Huang XN, Yi X, Yan XM, Cai Y, He Q, Han ZJ, Huang YJ, Liu W, Jiao AJ. S100A8/A9 Molecular Complexes Promote Cancer Migration and Invasion via the p38 MAPK Pathway in Nasopharyngeal Carcinoma. Bioinorg Chem Appl 2021; 2021:9913794. [PMID: 34257632 PMCID: PMC8245251 DOI: 10.1155/2021/9913794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one type of malignancy associated with migration and invasion through a currently unclear mechanism. We previously discovered S100A8/A9 levels were roughly elevated in the plasma of NPC patients as the promising biomarkers. However, their expressions and underlying functions in NPC tissues are still unknown. In the present study, we analyzed 49 NPC tissues and 20 chronic pharyngitis (CP) tissues. Immunohistochemical staining was performed in different tissues and analyzed by the Mann-Whitney U test statistically. Transwell migration and invasion experiments were further performed to determine S100A8/A9 effects on NPC. Our results showed that S100A8/A9 in NPC tissues were significantly higher than those in CP tissues, closely associated with NPC clinical stages. Intriguingly, exogenous S100A8/A9 protein stimulation could dramatically enhance NPC migration and invasion abilities. In addition, p38 MAPK pathway blockade could diminish the migration and invasion of NPC cells stimulated by S100A8/A9 proteins. The downstream tumor invasion and migration associated proteins (e.g., MMP7) were also elevated in NPC tissues, consistent with S100A8/A9 overexpression. Taken together, our present findings suggest that the secreted soluble inflammatory factors S100A8/A9 might promote cancer migration and invasion via the p38 MAPK signaling pathway along with invasion/migration associated proteins overexpression in the tumor microenvironment of NPC. This may shed light on the mechanism understanding of NPC prognosis and provide more novel clues for NPC diagnosis and therapy.
Collapse
Affiliation(s)
- Ning Xu
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bei-Bei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Xia-Ning Huang
- Wuming Hospital of Guangxi Mediacal University, Nanning, China
| | - Xiang Yi
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue-Min Yan
- Graduate School of Guangxi Medical University, Nanning, China
| | - Yan Cai
- Graduate School of Guangxi Medical University, Nanning, China
| | - Qin He
- Graduate School of Guangxi Medical University, Nanning, China
| | - Zi-Jian Han
- Graduate School of Guangxi Medical University, Nanning, China
| | - Yuan-Jiao Huang
- Life Science Institute, Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Wei Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ai-Jun Jiao
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
Otazu GK, Dayyani M, Badie B. Role of RAGE and Its Ligands on Inflammatory Responses to Brain Tumors. Front Cell Neurosci 2021; 15:770472. [PMID: 34975408 PMCID: PMC8716782 DOI: 10.3389/fncel.2021.770472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Gliomas, the most common form of brain cancer, can range from relatively slow-growing low-grade to highly aggressive glioblastoma that has a median overall survival of only 15 months despite multimodal standard therapy. Although immunotherapy with checkpoint inhibitors has significantly improved patient survival for some cancers, to date, these agents have not shown consistent efficacy against malignant gliomas. Therefore, there is a pressing need to better understand the impact of host inflammatory responses on the efficacy of emerging immunotherapy approaches for these resistant tumors. RAGE is a multi-ligand pattern recognition receptor that is activated in various inflammatory states such as diabetes, Alzheimer's disease, cystic fibrosis, and cancer. Low levels of RAGE can be found under normal physiological conditions in neurons, immune cells, activated endothelial, and vascular smooth muscle cells, but it is over-expressed under chronic inflammation due to the accumulation of its ligands. RAGE binds to a range of damage-associated molecular pattern molecules (DAMPs) including AGEs, HMGB1, S100s, and DNA which mediate downstream cellular responses that promote tumor growth, angiogenesis, and invasion. Both in vitro and in vivo studies have shown that inhibition of RAGE signaling can disrupt inflammation and cancer progression and metastasis. Here, we will review our current understanding of the role of RAGE pathway on glioma progression and how it could be exploited to improve the efficacy of immunotherapy approaches.
Collapse
Affiliation(s)
- Griffith Kyle Otazu
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Mojtaba Dayyani
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| |
Collapse
|