1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Dong G, Ye Q, Li W, Zhang S, Yang Z, Zhang R, Deng T, Li H, Zhang Y, Zhang X, He S, Zhou D, Zhang J, He P, Yu Z, Li Y. Discovery and Evaluation of DA-302168S as an Efficacious Oral Small-Molecule Glucagon-Like Peptide-1 Receptor Agonist. J Med Chem 2025. [PMID: 40257122 DOI: 10.1021/acs.jmedchem.5c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) holds pivotal importance as a therapeutic target for type 2 diabetes (T2D) and obesity. Several oral small-molecule agonists targeting GLP-1R have been developed to date. Nevertheless, these agonists suffer from several limitations, including low potency, poor pharmacokinetics, and unfavorable safety profiles. Here, we report the discovery of compound 29 (DA-302168S), which exhibits higher potency both in vitro/in vivo while mitigating the risk of drug-drug interaction compared to other reported candidate compounds. Preclinical studies show full efficacy in cAMP activation, glucose reduction, and appetite suppression. Safety assessments reveal minimal risks with hERG IC50 > 30 μM and no significant off-target toxicity. Its favorable pharmacokinetics support once-daily oral dosing, improving patient compliance. These findings suggest that compound 29 offers a promising therapeutic option for the management of T2D and obesity. Notably, it has successfully completed phase I clinical trials and is currently undergoing phase II clinical trials.
Collapse
Affiliation(s)
- Guangxin Dong
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Qijun Ye
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Wenwen Li
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Shaofeng Zhang
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Zhenyu Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Ta Deng
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Haiyan Li
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Yong Zhang
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Xiaojie Zhang
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Shucheng He
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Daoheng Zhou
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Juan Zhang
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Peng He
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Zhou Yu
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| | - Yi Li
- Chengdu DIAO Pharmaceutical Group Co., Ltd., Chengdu 610041, China
| |
Collapse
|
3
|
Jing W, Peng L, Song S, Liu J, Tai W. A New Protractor Potentiates Glucagon-Like Peptide 1 with Slow-Release Depot and Long-Term Action. J Med Chem 2025; 68:7341-7352. [PMID: 40118774 DOI: 10.1021/acs.jmedchem.4c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Bioactive peptides display a number of favorable features as therapeutics, but their usage is challenging due to the low metabolic stability and rapid renal clearance. The small-molecule protractor, which functions by the noncovalent binding with serum albumin and protection against systemic clearance, is an attractive tool to elongate peptides' half-life. Herein, we investigated coomassie brilliant blue (CBB) as a new protractor for the half-life extension of clinically relevant glucagon-like peptide 1 (GLP-1). A series of GLP-1 analogues differentiating with CBB linkers and acylation positions are described. One particularly interesting analogue (coomatide 13) exhibits sub-picomolar potency in vitro and long-term control of glucose homeostasis in mice. A protraction mechanism study reveals that CBB has a high affinity to albumin and pan-interaction with other matrix proteins, enabling to protract peptides in both systemic circulation and the subcutaneous depot. Our study demonstrates that the specific affinity to albumin is not a prerequisite for peptide protraction, and pan-binders might be advantageous.
Collapse
Affiliation(s)
- Weina Jing
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Lei Peng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Shiwei Song
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Jiaqi Liu
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
4
|
Pu W, Pan Y, Yang K, Gao J, Tian F, Song J, Huang Y, Li Y. Therapeutic effects and mechanisms of Xinmaitong formula for type 2 diabetes mellitus via GLP-1R signaling. Front Pharmacol 2025; 16:1575450. [PMID: 40271065 PMCID: PMC12014693 DOI: 10.3389/fphar.2025.1575450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Traditional Chinese Medicine (TCM) theory posits that type 2 diabetes mellitus (T2DM) characterized by Qi and Yin deficiency, is associated with elevated blood lipid levels. The Xinmaitong formula (XMT) is a folk remedy believed to lower blood lipid levels. However, the functional components and molecular mechanisms through which XMT exerts its anti-diabetic effects remain to be elucidated. This study aimed to investigate the therapeutic effects and potential mechanisms of XMT in the treatment of T2DM, focusing on the glucagon-like peptide-1 receptor (GLP-1R) signaling pathway. Methods A TCM formula that promotes GLP-1R expression was screened using a GLP-1R promoter-dependent luciferase reporter gene vector (PGL3-GLP-1R-luc). The T2DM mouse model was established using a high-fat diet and streptozotocin (STZ). Blood glucose levels were measured using a glucometer and oral glucose tolerance test (OGTT). Serum biochemical parameters and insulin levels were also assessed. Organ pathology in mice was evaluated using hematoxylin and eosin (H&E) staining. Immunofluorescence (IF) was employed to observe changes in insulin and GLP-1R expression in the pancreas of mice. The effects of medicated serum on Min6 cell growth were examined using a methyl thiazolyl tetrazolium (MTT) assay. A Min6 cell injury model was established to detect cAMP and Ca2+ concentrations. Ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to identify blood-absorbed components of XMT. Results Luciferase reporter constructs driven by GLP-1R promoter response elements analysis identified that TCM formula XMT promoted GLP-1R expression. In vivo experiments demonstrated that XMT significantly reduced fasting blood glucose levels in T2DM mice and improved OGTT results. It also exhibited protective effects on islet tissues, notably increasing GLP-1R expression and insulin secretion in the pancreas. Biochemical markers indicated no significant adverse effects on liver or kidney function following XMT administration. After treatment with palmitic acid (PA), GLP-1R expression in Min6 cells was significantly decreased. However, treatment with XMT upregulated GLP-1R expression. Additionally, cyclic adenosine monophosphate (cAMP) and Ca2+ exhibited substantial improvements, and the key pancreatic growth protein PDX1 was activated. Conclusion XMT exerts hypoglycemic effects by upregulating GLP-1R gene expression, enhancing GLP-1R protein synthesis, and subsequently promoting cAMP release. This process activates Ca2+ influx in pancreatic β-cells, triggering insulin exocytosis from islet cells.
Collapse
Affiliation(s)
- Weidong Pu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Yang Pan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Kang Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Jian Gao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Fen Tian
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| | - Jingrui Song
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yubing Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yanmei Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
6
|
Li H, Fang Y, Wang D, Shi B, Thompson GJ. Impaired brain glucose metabolism in glucagon-like peptide-1 receptor knockout mice. Nutr Diabetes 2024; 14:86. [PMID: 39389952 PMCID: PMC11466955 DOI: 10.1038/s41387-024-00343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Quantitative mapping of the brain's metabolism is a critical tool in studying and diagnosing many conditions, from obesity to neurodegenerative diseases. In particular, noninvasive approaches are urgently required. Recently, there have been promising drug development approaches for the treatment of disorders related to glucose metabolism in the brain and, therefore, against obesity-associated diseases. One of the most important drug targets to emerge has been the Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R). GLP and GLP-1R play an important role in regulating blood sugar and maintaining energy homeostasis. However, the macroscopic effects on brain metabolism and function due to the presence of GLP-1R are unclear. METHODS To explore the physiological role of GLP-1R in mouse brain glucose metabolism, and its relationship to brain function, we used three methods. We used deuterium magnetic resonance spectroscopy (DMRS) to provide quantitative information about metabolic flux, fluorodeoxyglucose positron emission tomography (FDG-PET) to measure brain glucose metabolism, and resting state-functional MRI (rs-fMRI) to measure brain functional connectivity. We used these methods in both mice with complete GLP-1R knockout (GLP-1R KO) and wild-type C57BL/6N (WT) mice. RESULTS The metabolic rate of GLP-1R KO mice was significantly slower than that of WT mice (p = 0.0345, WT mice 0.02335 ± 0.057 mM/min, GLP-1R KO mice 0.01998 ± 0.07 mM/min). Quantification of the mean [18F]FDG signal in the whole brain also showed significantly reduced glucose uptake in GLP-1R KO mice versus control mice (p = 0.0314). Observing rs-fMRI, the functional brain connectivity in GLP-1R KO mice was significantly lower than that in the WT group (p = 0.0032 for gFCD, p = 0.0002 for whole-brain correlation, p < 0.0001 for ALFF). CONCLUSIONS GLP-1R KO mice exhibit impaired brain glucose metabolism to high doses of exogenous glucose, and they also have reduced functional connectivity. This suggests that the GLP-1R KO mouse model may serve as a model for correlated metabolic and functional connectivity loss.
Collapse
Affiliation(s)
- Hui Li
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Yujiao Fang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Da Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bowen Shi
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | |
Collapse
|
7
|
Rhea EM, Babin A, Thomas P, Omer M, Weaver R, Hansen K, Banks WA, Talbot K. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer's and Parkinson's diseases. Tissue Barriers 2024; 12:2292461. [PMID: 38095516 PMCID: PMC11583597 DOI: 10.1080/21688370.2023.2292461] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics. METHODS We quantitatively measure the ability of four IRAs to cross the BBB. We injected adult male CD-1 mice intravenously with 125I- or 14C-labeled albiglutide, dulaglutide, DA5-CH, or tirzepatide and used multiple-time regression analyses to measure brain kinetics up to 1 hour. For those IRAs failing to enter the brain 1 h after intravenous injection, we also investigated their ability to enter over a longer time frame (i.e., 6 h). RESULTS Albiglutide and dulaglutide had the fastest brain uptake rates within 1 hour. DA5-CH appears to enter the brain rapidly, reaching equilibrium quickly. Tirzepatide does not appear to cross the BBB within 1 h after iv injection but like albumin, did so slowly over 6 h, presumably via the extracellular pathways. CONCLUSIONS We find that IRAs can cross the BBB by two separate processes; one that is fast and one that is slow. Three of the four IRAs investigated here have fast rates of transport and should be taken into consideration for testing as AD and PD therapeutics as they would have the ability to act quickly and directly on the brain as a whole.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Peter Thomas
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Mohamed Omer
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
8
|
Aksu H, Demirbilek A, Uba AI. Insights into the structure and activation mechanism of some class B1 GPCR family members. Mol Biol Rep 2024; 51:966. [PMID: 39240462 DOI: 10.1007/s11033-024-09876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Crystallography, X-Ray/methods
- Protein Conformation
- Animals
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Glucagon-Like Peptide 1/metabolism
- Models, Molecular
- Protein Binding
- Signal Transduction
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/chemistry
Collapse
Affiliation(s)
- Hayrunisa Aksu
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Ayşenur Demirbilek
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| |
Collapse
|
9
|
Zhang H, Wu T, Wu Y, Peng Y, Wei X, Lu T, Jiao Y. Binding sites and design strategies for small molecule GLP-1R agonists. Eur J Med Chem 2024; 275:116632. [PMID: 38959726 DOI: 10.1016/j.ejmech.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.
Collapse
Affiliation(s)
- Haibo Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tianxiao Wu
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Yuran Peng
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Xian Wei
- Department of Pharmacy, Youjiang Medical University for Nationalities, 98 ChengXiang Road, Baise, 533000, China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
10
|
Delrue C, Speeckaert MM. Mechanistic Pathways and Clinical Implications of GLP-1 Receptor Agonists in Type 1 Diabetes Management. Int J Mol Sci 2024; 25:9351. [PMID: 39273299 PMCID: PMC11395482 DOI: 10.3390/ijms25179351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
GLP-1 receptor agonists, which were initially intended to treat type 2 diabetes patients, have demonstrated promise as an adjuvant therapy for type 1 diabetes (T1D). These medications can manage T1D by improving β-cell function, reducing glucose fluctuation, and providing cardioprotective effects. Recent research suggests that boosting cell proliferation and lowering apoptosis can help maintain the bulk of β-cells. Furthermore, GLP-1 receptor agonists have potent anti-inflammatory characteristics, improving immunological control and lowering systemic inflammation, both of which are critical for reducing autoimmune damage in T1D. Beyond glucose control, these agonists have neuroprotective qualities and aid in weight management. Combining these medications with insulin could significantly change how T1D is managed. The clinical data and biological mechanisms discussed in this review support the potential use of GLP-1 receptor agonists in T1D.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
11
|
Akcabag E, Aksoyalp ZS, Oner F, Bayram Z, Ozbey G, Nacitarhan C, Ozdem S, Tasatargil A, Ozdem SS. Chronotropic Responses to GLP-1 Receptor Agonists and Sitagliptin in Atria From Diabetic Rats. J Cardiovasc Pharmacol 2024; 83:621-634. [PMID: 38547520 DOI: 10.1097/fjc.0000000000001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/03/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT Type 2 diabetes mellitus increases the risk of cardiovascular diseases. Therefore, elucidation of the cardiovascular effects of antidiabetics is crucial. Incretin-based therapies are increasingly used for type 2 diabetes mellitus treatment as monotherapy and in combination. We aimed to study the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sitagliptin on beating rates in isolated atria from diabetic rats. The chronotropic responses to GLP-1 RAs and sitagliptin as monotherapy and in combinations with metformin, pioglitazone, and glimepiride in isolated atria from control and diabetic rats were determined. GLP-1 (7-36), GLP-1 (9-36), and exendin-4 (1-39) produced increases in beating rates in both control and diabetic rat atria. However, sitagliptin increased the beating frequency only in the diabetic group. Exendin (9-39), nitro- l -arginine methyl ester hydrochloride, and indomethacin blocked responses to GLP-1 RAs but not the response to sitagliptin. Glibenclamide, 4-aminopyridine, apamin, charybdotoxin, superoxide dismutase, and catalase incubations did not change responses to GLP-1 RAs and sitagliptin. GLP-1 RAs increase beating rates in isolated rat atrium through GLP-1 receptor, nitric oxide, and cyclooxygenase pathways but not potassium channels and reactive oxygen radicals.
Collapse
Affiliation(s)
- Esra Akcabag
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | - Feride Oner
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Zeliha Bayram
- Turkish Medicines and Medical Devices Agency, Ankara, Turkey; and
| | - Gul Ozbey
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Cahit Nacitarhan
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Sebahat Ozdem
- Department of Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Arda Tasatargil
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Sadi S Ozdem
- Department of Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
12
|
Conroy LJ, McCann A, Zhang N, de Gaetano M. The role of nanosystems in the delivery of glucose-lowering drugs for the preemption and treatment of diabetes-associated atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C1398-C1409. [PMID: 38525540 DOI: 10.1152/ajpcell.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Diabetes is one of the most prevalent diseases worldwide. In recent decades, type-2 diabetes has become increasingly common, particularly in younger individuals. Diabetes leads to many vascular complications, including atherosclerosis. Atherosclerosis is a cardiovascular disease characterized by lipid-rich plaques within the vasculature. Plaques develop over time, restricting blood flow, and can, therefore, be the underlying cause of major adverse cardiovascular events, including myocardial infarction and stroke. Diabetes and atherosclerosis are intrinsically linked. Diabetes is a metabolic syndrome that accelerates atherosclerosis and increases the risk of developing other comorbidities, such as diabetes-associated atherosclerosis (DAA). Gold standard antidiabetic medications focus on attenuating hyperglycemia. Though recent evidence suggests that glucose-lowering drugs may have broader applications, beyond diabetes management. This review mainly evaluates the role of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as liraglutide and semaglutide in DAA. These drugs mimic gut hormones (incretins), which inhibit glucagon secretion while stimulating insulin secretion, thus improving insulin sensitivity. This facilitates delayed gastric emptying and increased patient satiety; hence, they are also indicated for the treatment of obesity. GLP-1 RAs have significant cardioprotective effects, including decreasing low-density lipoprotein (LDL) cholesterol and triglycerides levels. Liraglutide and semaglutide have specifically been shown to decrease cardiovascular risk. Liraglutide has displayed a myriad of antiatherosclerotic properties, with the potential to induce plaque regression. This review aims to address how glucose-lowering medications can be applied to treat diseases other than diabetes. We specifically focus on how nanomedicines can be used for the site-specific delivery of antidiabetic medicines for the treatment of diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Luke James Conroy
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alyssa McCann
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
14
|
Cong Z, Zhao F, Li Y, Luo G, Mai Y, Chen X, Chen Y, Lin S, Cai X, Zhou Q, Yang D, Wang MW. Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with G s proteins. Cell Discov 2024; 10:18. [PMID: 38346960 PMCID: PMC10861504 DOI: 10.1038/s41421-024-00649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP). They trigger a cascade of signaling events leading to the formation of an active agonist-receptor-G protein complex. However, intracellular signal transducers can also activate the receptor independent of extracellular stimuli, suggesting an intrinsic role of G proteins in this process. Here, we report cryo-electron microscopy structures of the human GLP-1 receptor (GLP-1R), GCG receptor (GCGR), and GIP receptor (GIPR) in complex with Gs proteins without the presence of cognate ligands. These ligand-free complexes share a similar intracellular architecture to those bound by endogenous peptides, in which, the Gs protein alone directly opens the intracellular binding cavity and rewires the extracellular orthosteric pocket to stabilize the receptor in a state unseen before. While the peptide-binding site is partially occupied by the inward folded transmembrane helix 6 (TM6)-extracellular loop 3 (ECL3) juncture of GIPR or a segment of GCGR ECL2, the extracellular portion of GLP-1R adopts a conformation close to the active state. Our findings offer valuable insights into the distinct activation mechanisms of these three important receptors. It is possible that in the absence of a ligand, the intracellular half of transmembrane domain is mobilized with the help of Gs protein, which in turn rearranges the extracellular half to form a transitional conformation, facilitating the entry of the peptide N-terminus.
Collapse
Affiliation(s)
- Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiting Mai
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Yanyan Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
15
|
Sun HY, Lin XY. Analysis of the management and therapeutic performance of diabetes mellitus employing special target. World J Diabetes 2023; 14:1721-1737. [PMID: 38222785 PMCID: PMC10784800 DOI: 10.4239/wjd.v14.i12.1721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized predominantly by hyperglycemia. The most common causes contributing to the pathophysiology of diabetes are insufficient insulin secretion, resistance to insulin's tissue-acting effects, or a combination of both. Over the last 30 years, the global prevalence of diabetes increased from 4% to 6.4%. If no better treatment or cure is found, this amount might climb to 430 million in the coming years. The major factors of the disease's deterioration include age, obesity, and a sedentary lifestyle. Finding new therapies to manage diabetes safely and effectively without jeopardizing patient compliance has always been essential. Among the medications available to manage DM on this journey are glucagon-like peptide-1 agonists, thiazolidinediones, sulphonyl urease, glinides, biguanides, and insulin-targeting receptors discovered more than 10 years ago. Despite the extensive preliminary studies, a few clinical observations suggest this process is still in its early stages. The present review focuses on targets that contribute to insulin regulation and may be employed as targets in treating diabetes since they may be more efficient and secure than current and traditional treatments.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
16
|
Liu C, Bao X, Tian Y, Xue P, Wang Y, Li Y. Polymorphisms in the glucagon-like peptide-1 receptor gene and their interactions on the risk of osteoporosis in postmenopausal Chinese women. PLoS One 2023; 18:e0295451. [PMID: 38096145 PMCID: PMC10721101 DOI: 10.1371/journal.pone.0295451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent form of primary osteoporosis, affecting over 40% of postmenopausal women. Previous studies have suggested a potential association between single nucleotide polymorphisms (SNPs) in glucagon-like peptide-1 receptor (GLP-1R) and PMOP in postmenopausal Chinese women. However, available evidence remains inconclusive. Therefore, this study aimed to investigate the possible association between GLP-1R SNPs and PMOP in Han Chinese women. Thus, we conducted a case-control study with 152 postmenopausal Han Chinese women aged 45-80 years, including 76 women with osteoporosis and 76 without osteoporosis. Seven SNPs of the GLP-1R were obtained from the National Center of Biotechnology Information and Genome Variation Server. We employed three genetic models to assess the association between GLP-1R genetic variants and osteoporosis in postmenopausal women, while also investigating SNP-SNP and SNP-environment interactions with the risk of PMOP. In this study, we selected seven GLP-1R SNPs (rs1042044, rs2268641, rs10305492, rs6923761, rs1126476, rs2268657, and rs2295006). Of these, the minor allele A of rs1042044 was significantly associated with an increased risk of PMOP. Genetic model analysis revealed that individuals carrying the A allele of rs1042044 had a higher risk of developing osteoporosis in the dominant model (P = 0.029, OR = 2.76, 95%CI: 1.09-6.99). Furthermore, a multiplicative interaction was found between rs1042044 and rs2268641 that was associated with osteoporosis in postmenopausal women (Pinteraction = 0.034). Importantly, this association remained independent of age, menopausal duration, family history of osteoporosis, and body mass index. However, no significant relationship was observed between GLP-1R haplotypes and PMOP. In conclusion, this study suggests a close association between the A allele on the GLP-1R rs1042044 and an increased risk of PMOP. Furthermore, this risk was significantly augmented by an SNP-SNP interaction with rs2268641. These results provide new scientific insights into the development of personalized prevention strategies and treatment approaches for PMOP.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yawei Tian
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
17
|
Luo S, Zuo Y, Cui X, Zhang M, Jin H, Hong L. Effects of liraglutide on ANP secretion and cardiac dynamics. Endocr Connect 2023; 12:e230176. [PMID: 37681442 PMCID: PMC10563649 DOI: 10.1530/ec-23-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4-/- mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 μg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9-39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9-39. Exendin9-39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9-39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9-39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4-/- mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.
Collapse
Affiliation(s)
- Shenghe Luo
- College of Pharmacy, Yanbian University, Yanji, China
| | - Yunhui Zuo
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Xiaotian Cui
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Meiping Zhang
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Honghua Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
18
|
Lui A, Patel RS, Krause-Hauch M, Sparks RP, Patel NA. Regulation of Human Sortilin Alternative Splicing by Glucagon-like Peptide-1 (GLP1) in Adipocytes. Int J Mol Sci 2023; 24:14324. [PMID: 37762628 PMCID: PMC10531797 DOI: 10.3390/ijms241814324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease with no cure. Adipose tissue is a major site of systemic insulin resistance. Sortilin is a central component of the glucose transporter -Glut4 storage vesicles (GSV) which translocate to the plasma membrane to uptake glucose from circulation. Here, using human adipocytes we demonstrate the presence of the alternatively spliced, truncated sortilin variant (Sort_T) whose expression is significantly increased in diabetic adipose tissue. Artificial-intelligence-based modeling, molecular dynamics, intrinsically disordered region analysis, and co-immunoprecipitation demonstrated association of Sort_T with Glut4 and decreased glucose uptake in adipocytes. The results show that glucagon-like peptide-1 (GLP1) hormone decreases Sort_T. We deciphered the molecular mechanism underlying GLP1 regulation of alternative splicing of human sortilin. Using splicing minigenes and RNA-immunoprecipitation assays, the results show that GLP1 regulates Sort_T alternative splicing via the splice factor, TRA2B. We demonstrate that targeted antisense oligonucleotide morpholinos reduces Sort_T levels and improves glucose uptake in diabetic adipocytes. Thus, we demonstrate that GLP1 regulates alternative splicing of sortilin in human diabetic adipocytes.
Collapse
Affiliation(s)
- Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
| | - Rekha S. Patel
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
| | - Meredith Krause-Hauch
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
| | - Robert P. Sparks
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
- Department of Medicine, Division of Gastroenterology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Niketa A. Patel
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.L.); (M.K.-H.)
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (R.S.P.); (R.P.S.)
| |
Collapse
|
19
|
Abstract
The term 'diabetic foot disease' (DFD) often signifies the presence of foot ulceration and infection, but one must also be wary of the rarer occurrence of Charcot foot disease. The worldwide prevalence of DFD is 6.3% (95%CI: 5.4-7.3%). Foot complications present a major challenge to both patients and healthcare systems, with increased rates of hospitalisation and an almost trebled 5-year mortality. The Charcot foot often occurs in patients with long-standing diabetes, presenting as an inflamed or swollen foot or ankle, following unrecognised minor trauma. This review focuses on the prevention and early identification of the 'at-risk' foot. DFD is best managed by a multi-disciplinary foot clinic team consisting of podiatrists and healthcare professionals. This ensures a combination of expertise and provision of a multi-faceted evidence-based treatment plan. Current research using endothelial progenitor cells (EPC) and mesenchymal stem cells (MSC) offers a new dimension in wound management.
Collapse
Affiliation(s)
| | | | - David V Coppini
- University Hospitals Dorset NHS Trust, Dorset, UK, and visiting fellow, Bournemouth University, Bournemouth, UK
| |
Collapse
|