1
|
Patel N, Mishra R, Rajput D, Gupta A. A comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and green nanotechnological significance of Boerhavia diffusa Linn. Fitoterapia 2025; 184:106599. [PMID: 40334820 DOI: 10.1016/j.fitote.2025.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
A comprehensive study of Boerhavia diffusa Linn., an important medicinal herb in India's Ayurvedic tradition known as Punarnava. The herb, which thrives in tropical and subtropical areas, has long been prized for its amazing medicinal powers. A literature search was conducted using PubMed, Web of Science, Google Scholar, Springer, and Elsevier with the search term "Boerhavia diffusa" phytochemical makeup comprises alkaloids, flavonoids, glycosides, phenolics, and saponins, all of which contribute to its various pharmacological properties. These chemicals have a variety of biological actions, including anti-inflammatory, anticancer, hepatoprotective, antidiabetic, and antibacterial effects. Boerhavia diffusa has long been used to treat illnesses such as liver disease, arthritis, asthma, and kidney problems. The paper goes into the pharmacokinetic problems of Boerhavia diffusa's bioactive chemicals, including their low bioavailability. It demonstrates the growing interest in using green nanotechnology to improve the transport and efficacy of these substances. Environmentally friendly nanocarriers are being created to transport Boerhavia diffusa chemicals more efficiently, especially in cancer therapies, wound healing, and antibacterial treatments. These nanocarriers improve targeted medication delivery, reduce toxicity, and increase bioavailability, resulting in a sustainable and friendly solution. Combining green nanotechnology with Boerhavia diffusa opens up new possibilities for modern medical applications, providing a more efficient, safe, and environmentally responsible solution. This review emphasizes Boerhavia diffusa's enormous potential as both a traditional medicine and a component of modern therapeutic breakthroughs, integrating millennia of Indigenous knowledge with cutting-edge scientific advances.
Collapse
Affiliation(s)
- Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017 Jaipur, India.
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017 Jaipur, India
| | - Devyani Rajput
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, MP, India
| | - Aditi Gupta
- Department of Pharmacognosy, Institute of Pharmacy, Nirma University, S.G. Highway, Ahemdabad, Gujarat 382481, India
| |
Collapse
|
2
|
El Deeb BA, Faheem GG, Bakhit MS. Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation. Sci Rep 2025; 15:13750. [PMID: 40258887 PMCID: PMC12012204 DOI: 10.1038/s41598-025-95899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
The study investigated the capacity of the endophytic fungus Talaromyces funiculosus to biosynthesize extracellular AgNPs and assess their safety. The fungus was identified through morphological and phylogenetic analyses. The biosynthesized AgNPs were spherical crystalline, stable (6 months), and mono-dispersed (PDI: 0.007), exhibiting SPR at 422.5 nm, average diameter of 34.32 nm, and Zeta potential of -18.41 mV. The optimal biosynthesis conditions are 1 mM AgNO3, 5 g biomass, pH 5.5, and a reaction temperature of 60 °C. Escherichia coli (bacterial strains) and Candida tropicalis (yeast strains) exhibited the highest susceptibility with inhibition zones of 26.3 mm and 22.3 mm, respectively, at 50 µg/mL of AgNPs, and MICs of 3.7 µg/mL and 6.3 µg/mL, respectively. AgNPs exhibited cytotoxicity with IC50 values of 48.11 ppm for HEK-293 and 35.88 ppm for Hep-G2 cells, showing selective toxicity toward cancer cells. They demonstrated antioxidant activity by increasing GSH (10.29 to 14.76 mmol/g) and reducing MDA (40.57 to 26.28 nmol/ml) at 48.11 ppm. AgNPs also enhanced IL-10 production (96.47 to 177.0 pg/mL) and reduced TNF-α levels (55.77 to 41.06 pg/mL), indicating their anti-inflammatory properties. These results support the safe use of low-dose AgNPs, however, further studies are needed to evaluate AgNPs for clinical uses.
Collapse
Affiliation(s)
- Bahig A El Deeb
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
- Higher Technological Institute of Applied Health Science in Sohag, Ministry of Higher Education, Cairo, Egypt.
| | - Gerges G Faheem
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mahmoud S Bakhit
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
3
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
4
|
Rajkumar M, Presley SID, Govindaraj P, Kirubakaran D, Farahim F, Ali T, Shkir M, Latha S. Synthesis of chitosan/PVA/copper oxide nanocomposite using Anacardium occidentale extract and evaluating its antioxidant, antibacterial, anti-inflammatory and cytotoxic activities. Sci Rep 2025; 15:3931. [PMID: 39890965 PMCID: PMC11785806 DOI: 10.1038/s41598-025-87932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Nanotechnology has witnessed remarkable advancements in recent years, capturing considerable attention in diverse biomedical applications. Using the green precipitation method, this study aims to synthesize and characterize chitosan/polyvinyl alcohol-copper oxide nanocomposites (CS/PVA/CuONCs) using Anacardium occidentale plant fruit extract. The CS/PVA/CuONCs were further evaluated in antioxidant, antibacterial and biological activities. In our study results, UV-Vis spectrum analysis of CS/PVA/CuONCs revealed a peak at 430 nm. FTIR analyses confirmed the presence of different functional groups, while the XRD study confirmed the crystalline structure of the synthesized nanocomposites. FESEM-EDAX analysis demonstrated that the CS/PVA/CuONCs exhibited a spherical and rod-like shape, with an average particle size of 48.6 to 96.2 nm. Notably, CS/PVA/CuONCs exhibited higher antioxidant activity, as evidenced by their ABTS activity (83.79 ± 1.57%) and SOD activity (86.17 ± 1.28%). In antibacterial assays, CS/PVA/CuONCs demonstrated inhibition in Escherichia coli at 20.52 ± 0.85 mm and Bacillus subtilis at 19.64 ± 0.87 mm, displaying a zone of inhibition. The CS/PVA/CuONCs exhibited excellent anti-inflammatory potency against COX-1 (67.10 ± 0.58%) and COX-2 (76.39 ± 0.65%). The antidiabetic assay revealed excellent α-amylase inhibition (80.25 ± 1.29%) and α-glucosidase inhibition (84.74 ± 1.42%) activities. Anti-cholinergic activity of AChE was 65.35 ± 0.98% and BuChE was 82.46 ± 1.15% are observed. CS/PVA/CuONCs was shown to have strong cytotoxicity against MCF-7 cell lines. It also had the highest cell viability inhibition, at 13.66 ± 0.58%. The hemolysis activity was found to be 5.38 ± 0.34%. Overall, the study demonstrated that CS/PVA/CuONCs possess remarkably excellent biological activities.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India
| | - S I Davis Presley
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India.
| | - Prabha Govindaraj
- Department of Chemistry, St. Joseph's Institute of Technology, Chennai, Tamil Nadu, 636 119, India
| | - Dharmalingam Kirubakaran
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Farha Farahim
- Department of Community, Psychiatric and Mental Health Nursing, King Khalid University, 61421, Abha, Kingdom of Saudi Arabia
| | - Talat Ali
- Department of Basic Medical Science, King Khalid University, 61421, Abha, Kingdom of Saudi Arabia
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, 61421, Abha, Kingdom of Saudi Arabia
| | - Sellapillai Latha
- Department of Biotechnology, Vinayaka Mission's Kirupanada Variyar Engineering College, Ariyanur, Salem, Tamil Nadu, 636 308, India
| |
Collapse
|
5
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
6
|
Docrat TF, Eltahir AOE, Hussein AA, Marnewick JL. Green synthesis of metal nanocarriers: A perspective for targeting glioblastoma. Drug Discov Today 2024; 29:104219. [PMID: 39476945 DOI: 10.1016/j.drudis.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 11/11/2024]
Abstract
Glioblastoma, the most aggressive brain cancer, is challenging to treat owing to the difficulty of crossing the blood-brain barrier, high recurrence rates and significant mortality. This review highlights the potential of green synthesis methods in developing metal nanoparticles (MNPs) as a sustainable solution for drug delivery systems targeting glioblastoma. We explore the unique properties and modes of action of MNPs synthesised through eco-friendly processes by focusing on their bioavailability and precision in brain targeting, and discuss the potential of MNPs to target glioblastoma at the molecular level. Integrating green synthesis into cancer therapeutics represents a novel paradigm shift towards treatments with higher efficacy and lower environmental impact, offering hope in the fight against glioblastoma.
Collapse
Affiliation(s)
- Taskeen F Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Ali O E Eltahir
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa; Permanent address: Department of Chemistry, Omdurman Islamic University, Omdurman, P.O. Box 382, Khartoum, Sudan
| | - Ahmed A Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
7
|
An L, Yu Y, He L, Xiao X, Li P. Ginsenoside Rb1 Deters Cell Proliferation, Induces Apoptosis, Alleviates Oxidative Stress, and Antimetastasis in Oral Squamous Carcinoma Cells. Appl Biochem Biotechnol 2024; 196:7642-7656. [PMID: 38530541 DOI: 10.1007/s12010-024-04880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
There are numerous therapeutic applications for ginsenoside Rb1 (GRb1), the primary saponin derived from ginseng root. According to earlier research, ginsenoside Rb1 causes apoptosis and reduces the cell cycle. Its adverse effects, especially those on the development of the embryo, still need to be thoroughly studied. A host's lifestyle choices, including smoking, drinking too much alcohol, using tobacco products, and having an HPV infection, can increase the risk of oral squamous cell carcinoma (OSCC), one of the most prevalent malignancies of the oral cavity. To address this challenge, this investigation focuses on the design of GRb1 for treating OSCC. In vitro cytotoxicity studies confirmed that GRb1 was more effective in PCI-9A and PCI-13 cells, with reduced toxicity in non-cancerous cells. Further verification of cellular morphology was achieved through various biochemical staining methods. The mechanism of cell death was investigated by Annexin V-FITC and PI methods. Additionally, the antimetastatic attributes of GRb1 have been evaluated using both migration scratch and Transwell migration assays, which have collectively revealed excellent antimetastatic potential. The DNA fragmentation of the PCI-9A and PCI-13 cells was assessed using a comet assay. Ginsenoside Rb1 improved ROS levels and caused mitochondrial membrane potential alterations and DNA damage, which resulted in apoptosis. OSCC administration significantly reduced the levels of SOD, GSH, GPx, and CAT, increasing the levels of PCI-9A and PCI-13 cells, while GRb1 improved this situation. Therefore, we propose that Ginsenoside Rb1 could be an alternative therapeutic strategy for OSCC therapy.
Collapse
Affiliation(s)
- Le An
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China
| | - Yang Yu
- Department of Oral Anatomy and Physiology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Long He
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China
| | - Xu Xiao
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China
| | - Pengcheng Li
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China.
| |
Collapse
|
8
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Fatima S, Shahid H, Zafar S, Arooj I, Ijaz S, Elahi A. Ocimum basilicum seed-mediated green synthesis of silver nanoparticles: characterization and evaluation of biological properties. DISCOVER NANO 2024; 19:172. [PMID: 39466512 PMCID: PMC11519253 DOI: 10.1186/s11671-024-04130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles synthesized from green sources have attracted great recognition in the present times, which can be ascribed to their distinctive attributes and diversified applicability. Therefore, the present study employed Ocimum basilicum seed extract to synthesize silver nanoparticles. UV-vis spectrophotometry revealed strenuous peaks for different concentrations of silver nanoparticles ranging between 400 and 430 nm. The average crystal size calculated using X-ray diffraction analysis was 6.7 nm. Energy-dispersive X-ray analysis clearly displayed the presence of silver ions in the elemental structure of the synthesized nanoparticles. The morphology of synthesized nanoparticles revealed by scanning electron microscopy was documented in terms of spherical shape surrounded by an organic layer and nanoparticle size was estimated to be in between 10 and 80 nm. The nanoparticles exhibited substantial antibacterial activity against 46 foodborne bacterial isolates and 15 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zones measuring 24 and 13 mm, respectively. Minimum inhibitory concentration values ranged between 500 and 800 µl/ml for various isolates. The antibacterial effect of all antibiotics revealed considerable enhancement when combined with nanoparticles. The calculated fractional inhibitory concentration index values were < 1 validating excellent synergism between nanoparticles and all antibiotics except ciprofloxacin against the majority of bacterial isolates. Interestingly, the biogenic nanoparticles showed significant antioxidant potential with IC50 value of 165 µg/ml as well as anti-inflammatory activity with an IC50 value of 82 µg/ml. Conclusively, the seed extract of Ocimum basilicum can be prospected for the development of antibacterial silver nanoparticles against pathogenic bacteria.
Collapse
Affiliation(s)
- Seerat Fatima
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Hamna Shahid
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Saba Zafar
- Department of Biochemistry & Biotechnology, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Iqra Arooj
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan.
| | - Saadia Ijaz
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Amina Elahi
- Institute of Microbiology & Molecular Genetics, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
10
|
Rafi AS, Sheikh AA, Chaion MH, Chakrovarty T, Islam MT, Kundu CK. A multi-functional coating on cotton fabric to incorporate electro-conductive, anti-bacterial, and flame-retardant properties. Heliyon 2024; 10:e37120. [PMID: 39296117 PMCID: PMC11408796 DOI: 10.1016/j.heliyon.2024.e37120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Multi-functional textiles have become a growing trend among smart customers who dream of having multiple functionalities in a single product. Thus, this study aimed to develop a multi-functional textile from a common textile substrate like cotton equipped with electrically conductive, anti-bacterial, and flame-retardant properties. Herein, a bunch of compounds from various sources like petro-based poly-aniline (PANI), phosphoric acid (H3PO4), inorganic silver nanoparticles (Ag-NPs), and biomass-sourced fish scale protein (FSP) were used. The coating was prepared via in-situ polymerization of PANI with the cotton substrate, followed by the dipping in AGNPs solution, layer-by-layer deposition of FSP and sodium alginate, and finally, a dip-dry-cure technique after immersing the modified cotton substrate into the H3PO4 and citric acid solution. The key results indicated that the fabric treated with PANI/Ag-NPs/FSP/P-compound exhibited a balanced improvement in all three desired properties as the electrical resistance was reduced by 44.44 % while showing superior bacterial inhibition against gram-positive bacteria (S. aureus) and gram-negative bacteria (E. coli), and produced dense-black carbonaceous char residues, indicating its flame retardant properties as well. Thus, such amicable developments made the cotton textile substrate a multi-functional textile, which showed potential to be used in medical textiles, wearable electronics, fire-fighter suits, etc.
Collapse
Affiliation(s)
- Abu Sayed Rafi
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Textile Engineering, University of Scholars, Dhaka, 1213, Bangladesh
| | - Al Amin Sheikh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mehedi Hasan Chaion
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tanay Chakrovarty
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Tanvir Islam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Chanchal Kumar Kundu
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, PR China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| |
Collapse
|
11
|
Rudrappa M, Hiremath H, Chauhan S, Gunagambhire PV, Swamy PS, Kumar RS, Almansour AI, Nayaka S. Comprehensive in vitro evaluation of Indigofera hochstetteri Baker extract: Effect of chemicals in antimicrobial, anticancer, anti-inflammatory, and anti-diabetic activities. ENVIRONMENTAL RESEARCH 2024; 257:119288. [PMID: 38823619 DOI: 10.1016/j.envres.2024.119288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The study aimed to analyze the pharmacological properties of medicinal plant Indigofera hochstetteri Baker extracts. Preliminary phytochemical analysis revealed a diverse range of secondary metabolites present in it. TLC analysis detected numerous phytochemicals with varying Rf values, aiding in different solvent systems. GC-MS analysis revealed the presence of 29 bioactive compounds with diverse pharmacological activities, including anti-inflammatory, antioxidant, analgesic and antimicrobial properties. Antimicrobial effect of I. hochstetteri Baker methanolic extract showed significant inhibitory effects against E. coli, E. aerogenes, S. flexneri, P. aeruginosa, S. aureus, E. faecalis, B. cereus, and fungal strain C. albicans. The methanol extract also showed significant antifungal activity by inhibiting the growth of Sclerotium rolfsii in food poisoning method. MTT assays revealed significant cytotoxic activity of methanolic extract against human leukemia HL-60 cancer cells with IC50 of 116.01 μg/mL. In apoptotic study, I. hochstetteri Baker methanolic extract showed 28.84% viable cells, 30.2% early apoptosis, 35.54% late apoptosis, and 5.86% necrosis comparatively similar with standard used. The extract showed significant anti-inflammatory effect on HRBC stabilization, and protein denaturation of BSA and egg albumin denaturation with IC50 of 193.62 μg/mL, 113.94 μg/mL respectively. In anti-diabetic assays like α-amylase, α-glucosidase, and Glucose uptake assay, I. hochstetteri extract showed good anti-diabetic effect with IC50 of 60.64 μg/mL, 169.34 μg/mL, and 205.63 μg/mL respectively. In conclusion I. hochstetteri Baker have promising bioactive metabolites with significant biological activities, it can be good substitute for the chemical drugs after successful clinical studies.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Sindhushri Chauhan
- P.G. Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Pallavi Sathyanarayana Swamy
- Department of P.G. Studies in Botany, P.G. Centre, Jnanagangothri campus, Davangere University, G. R. halli, Chitradurga, Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
12
|
Agrawal M, Saxena AK, Agrawal SK. Vallaris solanacea induces mitochondrial mediated apoptosis in HL-60 human promyelocytic leukemia cells. Food Chem Toxicol 2024; 189:114743. [PMID: 38763500 DOI: 10.1016/j.fct.2024.114743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
In the present study, the apoptosis-inducing potential of a chloroform fraction from an alcoholic extract of Vallaris solanacea aerial parts (VS) was examined using human promyelocytic leukemia HL-60 cells. We discovered a concentration and time-dependent decrease in cell growth using MTT assay. Scanning electron micrographs and fluorescence microscopy were used to observe several well-documented morphological and nuclear alterations, such as reduction in cell size, chromatin condensation, fragmentation, and the creation of cell surface blebs. A considerable rise in the Sub-G0 population was revealed by cell cycle analysis. Additionally, a dose-dependent rise in cells positive for Annexin V was observed. DCFH-DA test on VS-treated HL-60 cells showed an increase in endogenous ROS generation of up to 4.3 fold. Additionally, suppression in Bcl-2 levels and increased mitochondrial membrane depolarization in treated cells were also associated with a rise in cytosolic cytochrome-c levels that was consequently followed by the activation of the caspase cascade. Further, the DNA fragmentation assay exhibited a typical ladder formation at 25 μg/ml, which became prominent in a concentration-dependent manner. Our study revealed that VS has apoptosis-inducing potential towards HL-60 cells in vitro and is an effective candidate for further anti-cancer studies.
Collapse
Affiliation(s)
- Madhunika Agrawal
- Cellsinvitro Lifesciences Pvt. Ltd., SAS Nagar (Mohali), 140308, Punjab, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - A K Saxena
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - Satyam Kumar Agrawal
- Centre for in Vitro Studies and Translational Research, Chitkara School of Health Sciences, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
13
|
Khattak M, Khan TA, Nazish M, Ishaq MS, Hameed H, Kamal A, Elshikh MS, Al Farraj DA, Anees M. Exploration of reducing and stabilizing phytoconstituents in Arisaema dracontium extract for the effective synthesis of Silver nanoparticles and evaluation of their antibacterial and toxicological proprties. Microb Pathog 2024; 192:106711. [PMID: 38788810 DOI: 10.1016/j.micpath.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Medicinal plants have been widely used for their antimicrobial properties against various microorganisms. Arisaema dracontium a familiar medicinal plant, was analyzed and silver nanoparticles (AgNPs) were synthesized using extracts of different parts of its shoot including leaves and stem. Further, the antimicrobial activity of different solvent extracts such as ethyl acetate, n-hexane, ethanol, methanol, and chloroform extracts were analyzed. AgNPs were prepared using aqueous silver nitrate solution and assessed their antibacterial activity against multidrug-resistant (MDR) and Non-multidrug-resistant bacteria. The characterization of AgNPs was done by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV-visible spectroscopy, Fourier Transform Infrared (FTI), and X-ray Diffraction approaches. The leaf extract contained Tannins, Flavonoids, Terpenoids, and Steroids while Alkaloids, Saponins, and Glycosides were undetected. The stem extract contained Alkaloids, Tannins, Flavonoids, Saponins, Steroids, and Glycosides while Terpenoids were not observed. The AgNPs synthesized from stem and leaf extracts in the current study had spherical shapes and ranged in size from 1 to 50 nm and 20-500 nm respectively as were visible in TEM. The leaf extract-prepared AgNPs showed significantly higher activities i.e., 27.75 mm ± 0.86 against the MDR strains as compared to the stem-derived nanoparticles i.e., 24.33 ± 0.33 by comparing the zones of inhibitions which can be attributed to the differences in their phytochemical constituents. The acute toxicity assay confirmed that no mortality was noticed when the dosage was 100 mg per kg which confirms that the confirms that the AgNPs are not toxic when used in low quantities. It is concluded that leaf extract from A. dracontium could be used against pathogenic bacteria offering economic and health benefits compared to the chemical substances.
Collapse
Affiliation(s)
- Mahrukh Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| | - Moona Nazish
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060 China
| | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh-11451, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh-11451, Saudi Arabia
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| |
Collapse
|
14
|
Ismail E, Mohamed A, Elzwawy A, Maboza E, Dhlamini MS, Adam RZ. Comparative Study of Callistemon citrinus (Bottlebrush) and Punica granatum (Pomegranate) Extracts for Sustainable Synthesis of Silver Nanoparticles and Their Oral Antimicrobial Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:974. [PMID: 38869599 PMCID: PMC11173488 DOI: 10.3390/nano14110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
A comparative study was applied to investigate the potential of Callistemon citrinus (bottlebrush) flower extract (BBE) and Punica granatum (pomegranate) peel extracts (PPE) for the sustainable synthesis of the silver nanoparticles, Ag-BBE and Ag-PPE, respectively. The synthesis process of Ag NPs using the selected extracts was applied under optimized conditions. Hence, the effect of the selected plant's type on the different characteristics of the synthesized green Ag NPs was investigated. The UV-Vis spectroscopy revealed the presence of the characteristic silver peaks at 419 and 433 nm of the Ag-BBE and Ag-PPE, respectively. The XRD spectra reported the fcc phase formation of Ag NPs. The TEM results highlighted the morphological features of the synthesized Ag NPs. with a size range of 20-70 nm, and with 10-30 nm for Ag-BBE and Ag-PPE, correspondingly. The Raman spectra revealed characteristic silver bands in the Ag-PPE and reflected some bands related to the natural extract in the Ag-BBE sample. The antimicrobial activity and statistical analysis investigation were conducted against four selected oral pathogens (Staphylococcus aureus (SA), Candida albicans (CA), Staphylococcus epidermidis (S. epi), and Enterococcus faecalis (EF)). Both tested extracts, BBE, and PPE, revealed potential effectivity as reducing and capping agents for Ag NP green synthesis. However, the synthesized NPs demonstrated different features, depending on the used extract, reflecting the influence of the plant's biomolecules on the nanoparticles' properties.
Collapse
Affiliation(s)
- Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
- Physics Department, Faculty of Science (Girl’s Branch), Al Azhar University, Nasr City 11884, Cairo, Egypt
| | - Abubaker Mohamed
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC), 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Ernest Maboza
- Oral and Dental Research Laboratory, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | | | - Razia Z. Adam
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| |
Collapse
|
15
|
Vaid P, Saini AK, Gupta RK, Sinha ES, Sharma D, Alsanie WF, Thakur VK, Saini RV. Sustainable Nanoparticles from Stephania glabra and Analysis of Their Anticancer Potential on 2D and 3D Models of Prostate Cancer. Appl Biochem Biotechnol 2024; 196:3511-3533. [PMID: 37682510 DOI: 10.1007/s12010-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
In pursuit of a novel effective treatment for prostate cancer, methanolic extract of Stephania glabra tubers (Sg-ME) was utilized to fabricate silver (Sg-AgNP), copper oxide (Sg-CuONP), and silver-copper bimetallic nanoparticles (Sg-BNP). The characterization of the nanoparticles confirmed spherical shape with average diameters of 30.72, 32.19, and 25.59 nm of Sg-AgNP, Sg-CuONP, and Sg-BNP, respectively. Interestingly, these nanoparticles exhibited significant cytotoxicity toward the prostate cancer (PC3) cell line while being non-toxic toward normal cells. The nanoparticles were capable of inducing apoptosis in PC3 cells by enhancing reactive oxygen species (ROS) generation and mitochondrial depolarization. Furthermore, the shrinkage of 3D prostate tumor spheroids was observed after 4 days of treatment with these green nanoparticles. The 3D model system was less susceptible to nanoparticles as compared to the 2D model system. Sg-BNP showed the highest anticancer potential on 2D and 3D prostate cancer models.
Collapse
Affiliation(s)
- Prachi Vaid
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, 173229, H, Solan, .P, India
| | - Adesh K Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, U, Kanpur, .P, India
| | - Eshu Singhal Sinha
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
16
|
Mohammad Amooie A, Zarrinpour V, Sadat Shandiz SA, Salehzadeh A. Apoptosis Induction by ZnFe 2O 4-Ag Biosynthesized by Chlorella vulgaris in MCF-7 Breast Cancer Cell Line. Biol Trace Elem Res 2024; 202:2022-2035. [PMID: 37642811 DOI: 10.1007/s12011-023-03814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The incidence and mortality of breast cancer are growing which indicates the inefficiency of the current chemotherapy drugs. Due to the anticancer potential of Zn and Ag and the magnetic feature of iron oxide, in this work, we synthesized ZnFe2O4-Ag nanocomposite using Chlorella vulgaris and investigated its anticancer effect on breast cancer cell line. Physicochemical characterization was performed by FT-IR, XRD, SEM, TEM, VSM, EDS mapping, UV, and zeta potential assays. Cell cytotoxicity and apoptosis frequency were studied by the MTT and flow cytometry assays. Also, cell cycle analysis, Hoechst staining, and measuring ROS (reactive oxygen species) level were performed. The synthesized particles were almost spherical with a size range of 14-52 nm. The FT-IR and XRD assays confirmed the proper synthesis of the particles and VSM analysis showed that particles had magnetic property and the maximum saturation magnetization was 0.8 Emu/g. Also, the EDS mapping of the nanocomposite showed the Zn, Fe, O, and Ag elements. The MTT assay showed that the 50% inhibitory concentration (IC50) of ZnFe2O4-Ag for breast cancer and normal cells were 28 and 154 µg/mL, respectively, and the nanocomposite had stronger anticancer activity than cisplatin (IC50 = 84 µg/mL). Flow cytometry analysis showed that the exposure to the nanocomposite induced cell apoptosis by 77.5% and significantly induced ROS generation. Also, treating breast cancer cells with the nanocomposite induced cell cycle arrest and apoptotic features, including chromatin condensation and fragmentation. In conclusion, ZnFe2O4-Ag nanocomposite synthesized by C. vulgaris could suppress the proliferation of breast cancer cells by the generation of oxidative stress, apoptosis induction, and cell cycle arrest.
Collapse
Affiliation(s)
| | - Vajiheh Zarrinpour
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
17
|
Bishoyi AK, Sahoo CR, Samal P, Mishra NP, Jali BR, Khan MS, Padhy RN. Unveiling the antibacterial and antifungal potential of biosynthesized silver nanoparticles from Chromolaena odorata leaves. Sci Rep 2024; 14:7513. [PMID: 38553574 PMCID: PMC10980689 DOI: 10.1038/s41598-024-57972-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
This research investigates the biogenic synthesis of silver nanoparticles (AgNPs) using the leaf extract of Chromolaena odorata (Asteraceae) and their potential as antibacterial and antifungal agents. Characterization techniques like ultraviolet-visible, Fourier transform infrared (FTIR), Dynamic light scattering and zeta potential (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy (FESEM-EDX) confirmed the formation of spherical (AgNPs). UV-vis spectroscopy reaffirms AgNP formation with a peak at 429 nm. DLS and zeta potential measurements revealed an average size of 30.77 nm and a negative surface charge (- 0.532 mV). Further, XRD analysis established the crystalline structure of the AgNPs. Moreover, the TEM descriptions indicate that the AgNPs are spherical shapes, and their sizes ranged from 9 to 22 nm with an average length of 15.27 nm. The X-ray photoelectron spectroscopy (XPS) analysis validated the formation of metallic silver and elucidated the surface state composition of AgNPs. Biologically, CO-AgNPs showed moderate antibacterial activity but excellent antifungal activity against Candida tropicalis (MCC 1559) and Trichophyton rubrum (MCC 1598). Low MIC values (0.195 and 0.390 mg/mL) respectively, suggest their potential as effective antifungal agents. This suggests potential applications in controlling fungal infections, which are often more challenging to treat than bacterial infections. Molecular docking results validated that bioactive compounds in C. odorata contribute to antifungal activity by interacting with its specific domain. Further research could pave the way for the development of novel and safe antifungal therapies based on biogenic nanoparticles.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Priyanka Samal
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | | | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India.
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
18
|
Balamurugan V, Ragavendran C, Arulbalachandran D. Eco-friendly green synthesis of AgNPs from Elaeocarpus serratus fruit extract: potential to antibacterial, antioxidant, cytotoxic effects of colon cancerous cells (HT-29) and its toxicity assessments of marine microcrustacean Artemia nauplii. Mol Biol Rep 2024; 51:418. [PMID: 38483678 DOI: 10.1007/s11033-024-09335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The present work demonstrated the green synthesis and characterization of silver nanoparticles (AgNPs) utilizing Elaeocarpus serratus fruit extract. The study examined the effectiveness of phytocompounds in fruit extract in reducing Ag+ to Ag° ions. METHODS The water-soluble biobased substance production from silver ions to AgNPs in 45 min at room temperature. Surface plasmon resonance (SPR) peak was seen in the UV-visible absorption spectrum of the biologically altered response mixture. Examination with X-ray diffraction (XRD) showed that AgNPs are strong and have a face-centered cubic shape. Scanning electron microscope (SEM) investigation proved the production of AgNPs in a cuboidal shape. RESULTS The AgNPs demonstrated remarkable antibacterial activity and a potent capacity to neutralize DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals. The highest growth inhibition was found for E. serratus against S. dysenteriae (18.5 ± 1.0 mm) and S. aureus (18 ± 1.2 mm). These nanoparticles exhibited robust antiradical efficacy even at low concentrations. The AgNPs additionally exhibited cytotoxic effects on (HT-29) human colon adenocarcinoma cancer cells. The MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) indicated an inhibitory concentration (IC50) value of 49.1 ± 2.33 µg/mL for AgNPs, contrasting with the untreated cells of the negative control. The biotoxicity assessment using A. salina displayed mortality rates ranging from 8 to 69.33%, attributable to the E. serratus synthesized AgNPs. CONCLUSIONS In our results concluded that simply first-hand information on that E. serattus fruit extract synthesized AgNPs were efficiently synthesized without the addition of any hazardous substances, and that they may be a strong antibacterial, antioxidant, and potential cytotoxic effects for the treatment of colon carcinoma cell lines.
Collapse
Affiliation(s)
- Venkatachalam Balamurugan
- Division of Crop Molecular Breeding and Stress Physiology, Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600077, India
| | - Dhanarajan Arulbalachandran
- Division of Crop Molecular Breeding and Stress Physiology, Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
- Division of Crop Molecular Breeding and Stress Physiology, Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
19
|
Ashour MA, Abd-Elhalim BT. Biosynthesis and biocompatibility evaluation of zinc oxide nanoparticles prepared using Priestia megaterium bacteria. Sci Rep 2024; 14:4147. [PMID: 38378738 PMCID: PMC10879496 DOI: 10.1038/s41598-024-54460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The current study aimed to find an effective, simple, ecological, and nontoxic method for bacterial green synthesis of zinc oxide nanoparticles (ZnONPs) using the bacterial strain Priestia megaterium BASMA 2022 (OP572246). The biosynthesis was confirmed by the change in color of the cell-free supernatant added to the zinc nitrate from yellow to pale brown. The Priestia megaterium zinc oxide nanoparticles (Pm/ZnONPs) were characterized using UV-Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and zeta potential. The Pm/ZnONPs characterization showed that they have a size ranging between 5.77 and 13.9 nm with a semi-sphere shape that is coated with a protein-carbohydrate complex. An EDX analysis of the Pm/ZnONPs revealed the presence of the shield matrix, which was composed of carbon, nitrogen, oxygen, chlorine, potassium, sodium, aluminum, sulfur, and zinc. The results of the FTIR analysis showed that the reduction and stabilization of the zinc salt solution were caused by the presence of O-H alcohols and phenols, O=C=O stretching of carbon dioxide, N=C=S stretching of isothiocyanate, and N-H bending of amine functional groups. The produced ZnONPs had good stability with a charge of - 16.2 mV, as evidenced by zeta potential analysis. The MTT assay revealed IC50 values of 8.42% and 200%, respectively, for the human A375 skin melanoma and human bone marrow 2M-302 cell lines. These findings revealed that the obtained Pm/ZnONPs have the biocompatibility to be applied in the pharmaceutical and biomedical sectors.
Collapse
Affiliation(s)
- Mona A Ashour
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Shubra El-Khaimah, Cairo, 11241, Egypt
| | - Basma T Abd-Elhalim
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Shubra El-Khaimah, Cairo, 11241, Egypt.
| |
Collapse
|
20
|
Tunç T, Hepokur C, Kari̇per A. Synthesis and Characterization of Paclitaxel-Loaded Silver Nanoparticles: Evaluation of Cytotoxic Effects and Antimicrobial Activity. Bioinorg Chem Appl 2024; 2024:9916187. [PMID: 38380152 PMCID: PMC10878759 DOI: 10.1155/2024/9916187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Carrier system therapies based on combining cancer drugs with nanoparticles have been reported to control tumor growth and significantly reduce the side effects of cancer drugs. We thought that paclitaxel-loaded silver nanoparticles (AgNPs-PTX) were the right carrier to target cancer cells. We also carried out antimicrobial activity experiments as systems formed with nanoparticles have been shown to have antimicrobial activity. In our study, we used easy-to-synthesize and low-cost silver nanoparticles (AgNPs) with biocatalytic and photocatalytic advantages as drug carriers. We investigated the antiproliferative activities of silver nanoparticles synthesized by adding paclitaxel on MCF-7 (breast adenocarcinoma cell line), A549 (lung carcinoma cell line), C6 (brain glioma cell line) cells, and healthy WI-38 (fibroblast normal cell line) cell lines and their antimicrobial activities on 10 different microorganisms. The synthesized AgNPs and AgNPs-PTX were characterized by dynamic light scattering (DLS), scanning transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray spectroscopy. The nanoparticles were spherical in shape, with AgNPs ranging in size from 2.32 to 5.6 nm and AgNPs-PTXs from 24.36 to 58.77 nm. AgNPs demonstrated well stability of -47.3 mV, and AgNPs-PTX showed good stability of -25.4 mV. The antiproliferative effects of the synthesized nanoparticles were determined by XTT (tetrazolium dye; 2,3-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-tetrazolium-5-carboxanilide), and the proapoptotic effects were determined by annexin V/propidium iodide (PI) staining. The effect of AgNPs-PTX was more effective, and anticancer activity was higher than PTX in all cell lines. When selectivity indices were calculated, AgNPs-PTX was more selective in the A549 cell line (SI value 6.53 μg/mL). AgNPs-PTX was determined to increase apoptosis cells by inducing DNA fragmentation. To determine the antimicrobial activity, the MIC (minimum inhibitory concentration) test was performed using 8 different bacteria and 2 different fungi. Seven of the 10 microorganisms tested exhibited high antimicrobial activity according to the MIC ≤100 μg/mL standard, reaching MIC values below 100 μg/mL and 100 μg/mL for both AgNPs and AgNPs-PTX compared to reference sources. Compared to standard antibiotics, AgNPs-PTX was highly effective against 4 microorganisms.
Collapse
Affiliation(s)
- Tutku Tunç
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Afşin Kari̇per
- Department Mathematics and Science Education, Faculty of Education, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
21
|
Ongtanasup T, Kamdenlek P, Manaspon C, Eawsakul K. Green-synthesized silver nanoparticles from Zingiber officinale extract: antioxidant potential, biocompatibility, anti-LOX properties, and in silico analysis. BMC Complement Med Ther 2024; 24:84. [PMID: 38350963 PMCID: PMC10863109 DOI: 10.1186/s12906-024-04381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Zingiber officinale extract has emerged as a compelling candidate for green synthesis of nanoparticles, offering diverse applications across medicine, cosmetics, and nutrition. This study delves into the investigation of in vitro toxicity and explores the biomedical utility of green-synthesized silver nanoparticles derived from ginger extract (GE-AgNPs). METHODS We employed established protocols to evaluate in vitro aspects such as antioxidant capacity, anti-inflammatory potential, and biocompatibility of GE-AgNPs. Additionally, molecular docking was employed to assess their anti-lipoxygenase (anti-LOX) activity. RESULTS Our findings highlight that the extraction of ginger extract at a pH of 6, utilizing a cosolvent blend of ethanol and ethyl acetate in a 1:1 ratio, yields heightened antioxidant capacity attributed to its rich phenolic and flavonoid content. In the context of silver nanoparticle synthesis, pH 6 extraction yields the highest quantity of nanoparticles, characterized by an average size of 32.64 ± 1.65 nm. Of particular significance, GE-AgNPs (at pH 6) demonstrated remarkable efficacy in scavenging free radicals, as evidenced by an IC50 value of 6.83 ± 0.47 µg/mL. The results from the anti-LOX experiment indicate that GE-AgNPs, at a concentration of 10 µg/mL, can inhibit LOX activity by 25%, outperforming ginger extract which inhibits LOX by 17-18%. Notably, clionasterol exhibited higher binding energy and enhanced stability (-8.9 kcal/mol) compared to nordihydroguaiaretic acid. Furthermore, a cell viability study confirmed the safety of GE-AgNPs at a concentration of 17.52 ± 7.00 µg/mL against the L929 cell line. CONCLUSION These comprehensive findings underscore the significant biomedical advantages of GE-AgNPs and emphasize their potential incorporation into cosmetic products at a maximum concentration of 10 µg/mL.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Patipat Kamdenlek
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komgrit Eawsakul
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
22
|
Shaaban MT, Mohamed BS, Zayed M, El-Sabbagh SM. Antibacterial, antibiofilm, and anticancer activity of silver-nanoparticles synthesized from the cell-filtrate of Streptomyces enissocaesilis. BMC Biotechnol 2024; 24:8. [PMID: 38321442 PMCID: PMC10848522 DOI: 10.1186/s12896-024-00833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Silver nanoparticles (Ag-NPs) have a unique mode of action as antibacterial agents in addition to their anticancer and antioxidant properties. In this study, microbial nanotechnology is employed to synthesize Ag-NPs using the cell filtrate of Streptomyces enissocaesilis BS1. The synthesized Ag-NPs are confirmed by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Also, the effects of different factors on Ag-NPs synthesis were evaluated to set the optimum synthesis conditions. Also, the antibacterial, antibiofilm, and anticancer activity of Ag-NPs was assessed. The X-ray diffraction (XRD) analysis confirmed the crystalline nature of the sample and validated that the crystal structure under consideration is a face-centered cubic (FCC) pattern. The TEM examination displayed the spherical particles of the Ag-NPs and their average size, which is 32.2 nm. Fourier transform infrared spectroscopy (FTIR) revealed significant changes in functionality after silver nanoparticle dispersion, which could be attributed to the potency of the cell filtrate of Streptomyces enissocaesilis BS1 to act as both a reducing agent and a capping agent. The bioactivity tests showed that our synthesized Ag-NPs exhibited remarkable antibacterial activity against different pathogenic strains. Also, when the preformed biofilms of Pseudomonas aeruginosa ATCC 9027, Salmonella typhi ATCC 12023, Escherichia coli ATCC 8739, and Staphylococcus aureus ATCC 6598 were exposed to Ag NPs 50 mg/ml for 24 hours, the biofilm biomass was reduced by 10.7, 34.6, 34.75, and 39.08%, respectively. Furthermore, the Ag-NPs showed in vitro cancer-specific sensitivity against human breast cancer MCF-7 cell lines and colon cancer cell line Caco-2, and the IC50 was 0.160 mg/mL and 0.156 mg/mL, respectively. The results of this study prove the ease and efficiency of the synthesis of Ag-NPs using actinomycetes and demonstrate the significant potential of these Ag-NPs as anticancer and antibacterial agents.
Collapse
Affiliation(s)
- Mohamed T Shaaban
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Briksam S Mohamed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Muhammad Zayed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Sabha M El-Sabbagh
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
23
|
Vikram, Kumar S, Ali J, Baboota S. Potential of Nanocarrier-Associated Approaches for Better Therapeutic Intervention in the Management of Glioblastoma. Assay Drug Dev Technol 2024; 22:73-85. [PMID: 38193798 DOI: 10.1089/adt.2023.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Glioblastoma, commonly known as glioblastoma multiforme (GBM), is one of the deadliest and most invasive types of brain cancer. Two factors account for the majority of the treatment limitations for GBM. First, the presence of the blood-brain barrier (BBB) renders malignancy treatment ineffective, leading to recurrence without full recovery. Second, several adverse effects are associated with the drugs used in conventional GBM treatment. Recent studies have developed nanocarrier systems, such as liposomes, polymeric micelles, dendrimers, nanosuspensions, nanoemulsions, nanostructured lipid carriers, solid lipid nanocarriers, metal particles, and silica nanoparticles, which allow drug-loaded formulations to penetrate the BBB more effectively. This has opened up new possibilities for overcoming therapy issues. Extensive and methodical searches of databases such as PubMed, Science Direct, Google Scholar, and others were conducted to gather relevant literature for this work, using precise keyword combinations such as "GBM," "brain tumor," and "nanocarriers." This review provides deep insights into the administration of drugs using nanocarriers for the management of GBM and explores new advancements in nanotechnology. It also highlights how scientific developments can be explained in connection with hopeful findings about the potential of nanocarriers for the future successful management of GBM.
Collapse
Affiliation(s)
- Vikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
24
|
El-Sayed AIM, El-Sheekh MM, Abo-Neima SE. Mycosynthesis of selenium nanoparticles using Penicillium tardochrysogenum as a therapeutic agent and their combination with infrared irradiation against Ehrlich carcinoma. Sci Rep 2024; 14:2547. [PMID: 38291218 PMCID: PMC10827740 DOI: 10.1038/s41598-024-52982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Over the past years, the assessment of myco-fabricated selenium nanoparticles (SeNPs) properties, is still in its infancy. Herein, we have highly stable myco-synthesized SeNPs using molecularly identified soil-isolated fungus; Penicillium tardochrysogenum OR059437; (PeSeNPs) were clarified via TEM, EDX, UV-Vis spectrophotometer, FTIR and zeta potential. The therapeutic efficacy profile will be determined, these crystalline PeSeNPs were examined for antioxidant, antimicrobial, MIC, and anticancer potentials, indicating that, PeSeNPs have antioxidant activity of (IC50, 109.11 μg/mL) using DPPH free radical scavenging assay. Also, PeSeNPs possess antimicrobial potential against Penicillium italicum RCMB 001,018 (1) IMI 193,019, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 4330 and Porphyromonas gingivalis RCMB 022,001 (1) EMCC 1699; with I.Z. diameters and MIC; 16 ± 0.5 mm and MIC 500 µg/ml, 11.9 ± 0.6 mm, 500 µg/ml and 15.9±0.6 mm, 1000 µg/ml, respectively. Additionally, TEM micrographs were taken for P. italicum treated with PeSeNPs, demonstrating the destruction of hyphal membrane and internal organelles integrity, pores formation, and cell death. PeSeNP alone in vivo and combined with a near-infrared physiotherapy lamp with an energy intensity of 140 mW/cm2 showed a strong therapeutic effect against cancer cells. Thus, PeSeNPs represent anticancer agents and a suitable photothermal option for treating different kinds of cancer cells with lower toxicity and higher efficiency than normal cells. The combination therapy showed a very large and significant reduction in tumor volume, the tumor cells showed large necrosis, shrank, and disappeared. There was also improvement in liver ultrastructure, liver enzymes, and histology, as well as renal function, urea, and creatinine.
Collapse
Affiliation(s)
- Abeer I M El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Sahar E Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
25
|
Mohamed MR, Osman SA, Hassan AA, Raafat AI, Refaat MM, Fathy SA. Gemcitabine and synthesized silver nanoparticles impact on chemically induced hepatocellular carcinoma in male rats. Int J Immunopathol Pharmacol 2024; 38:3946320241263352. [PMID: 39046434 PMCID: PMC11271163 DOI: 10.1177/03946320241263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/02/2024] [Indexed: 07/25/2024] Open
Abstract
Objective: Gemcitabine (GEM) is a deoxycytidine analog chemotherapeutic drug widely used to treat many cancers. Silver nanoparticles (AgNPs) are important nanomaterials used to treat many diseases. Using gamma radiation in nanoparticle preparation is a new eco-friendly method. This study aims to evaluate the efficiency of co-treating gemcitabine and silver nanoparticles in treating hepatocellular carcinoma. Method: The AgNPs were characterized using UV-visible spectroscopy, XRD, TEM, and EDX. The MTT cytotoxicity in vitro assay of gemcitabine, doxorubicin, and cyclophosphamide was assessed against Wi38 normal fibroblast and HepG2 HCC cell lines. After HCC development, rats received (10 µg/g b.wt.) of AgNPs three times a week for 4 weeks and/or GEM (5 mg/kg b.wt.) twice weekly for 4 weeks. Liver function enzymes were investigated. Cytochrome P450 and miR-21 genes were studied. Apoptosis was determined by using flow cytometry, and apoptotic modifications in signaling pathways were evaluated via Bcl-2, Bax, Caspase-9, and SMAD-4. Results: The co-treatment of GEM and AgNPs increased apoptosis by upregulating Bax and caspase 9 while diminishing Bcl2 and SMAD4. It also improved cytochrome P450 m-RNA relative expression. The results also proved the cooperation between GEM and AgNPs in deactivating miR21. The impact of AgNPs as an adjuvant treatment with GEM was recognized. Conclusions: The study showed that co-treating AgNPs and GEM can improve the efficiency of GEM alone in treating HCC. This is achieved by enhancing intrinsic and extrinsic apoptotic pathways while diminishing some drawbacks of using GEM alone.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Soheir A Osman
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Refaat
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Althubiti AA, Alsudir SA, Alfahad AJ, Alshehri AA, Bakr AA, Alamer AA, Alrasheed RH, Tawfik EA. Green Synthesis of Silver Nanoparticles Using Jacobaea maritima and the Evaluation of Their Antibacterial and Anticancer Activities. Int J Mol Sci 2023; 24:16512. [PMID: 38003704 PMCID: PMC10671674 DOI: 10.3390/ijms242216512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Much attention has been gained on green silver nanoparticles (green-AgNPs) in the medical field due to their remarkable effects against multi-drug resistant (MDR) microorganisms and targeted cancer treatment. In the current study, we demonstrated a simple and environment-friendly (i.e., green) AgNP synthesis utilizing Jacobaea maritima aqueous leaf extract. This leaf is well-known for its medicinal properties and acts as a reducing and stabilizing agent. Nanoparticle preparation with the desired size and shape was controlled by distinct parameters; for instance, temperature, extract concentration of salt, and pH. The characterization of biosynthesized AgNPs was performed by the UV-spectroscopy technique, dynamic light scattering, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. The successful formation of AgNPs was confirmed by a surface plasmon resonance at 422 nm using UV-visible spectroscopy and color change observation with a particle size of 37± 10 nm and a zeta potential of -10.9 ± 2.3 mV. SEM further confirmed the spherical size and shape of AgNPs with a size varying from 28 to 52 nm. Antibacterial activity of the AgNPs was confirmed against all Gram-negative and Gram-positive bacterial reference and MDR strains that were used in different inhibitory rates, and the highest effect was on the E-coli reference strain (MIC = 25 μg/mL). The anticancer study of AgNPs exhibited an IC50 of 1.37 μg/mL and 1.98 μg/mL against MCF-7 (breast cancer cells) and A549 (lung cancer cells), respectively. Therefore, this green synthesis of AgNPs could have a potential clinical application, and further in vivo study is required to assess their safety and efficacy.
Collapse
Affiliation(s)
- Amal A. Althubiti
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Samar A. Alsudir
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Ahmed J. Alfahad
- Institute of Waste Management and Recycling Technologies, Sustainability & Environment Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Abrar A. Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Ali A. Alamer
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| | - Rasheed H. Alrasheed
- Institute of Refinery and Petrochemicals, Energy and Industry Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (A.A.A.); (A.A.B.); (A.A.A.)
| |
Collapse
|
27
|
Basavarajappa DS, Niazi SK, Bepari A, Assiri RA, Hussain SA, Muzaheed, Nayaka S, Hiremath H, Rudrappa M, Chakraborty B, Hugar A. Efficacy of Penicillium limosum Strain AK-7 Derived Bioactive Metabolites on Antimicrobial, Antioxidant, and Anticancer Activity against Human Ovarian Teratocarcinoma (PA-1) Cell Line. Microorganisms 2023; 11:2480. [PMID: 37894138 PMCID: PMC10609037 DOI: 10.3390/microorganisms11102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Natural metabolites from beneficial fungi were recognized for their potential to inhibit multidrug-resistant human and plant fungal pathogens. The present study describes the isolation, metabolite profiling, antibacterial, and antifungal, antioxidant, and anticancer activities of soil fungi. Among the 17 isolates, the AK-7 isolate was selected based on the primary screening. Further, the identification of isolate AK-7 was performed by 18S rRNA sequencing and identified as Penicillium limosum (with 99.90% similarity). Additionally, the ethyl acetate extract of the Penicillium limosum strain AK-7 (AK-7 extract) was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS) analysis, and the results showed different functional groups and bioactive metabolites. Consequently, a secondary screening of antibacterial activity by the agar well diffusion method showed significant antibacterial activity against Gram-negative and Gram-positive bacterial pathogens. The AK-7 extract exhibited notable antifungal activity by a food poisoning method and showed maximum inhibition of 77.84 ± 1.62%, 56.42 ± 1.27%, and 37.96 ± 1.84% against Cercospora canescens, Fusarium sambucinum and Sclerotium rolfsii phytopathogens. Consequently, the AK-7 extract showed significant antioxidant activity against DPPH and ABTS•+ free radicals with IC50 values of 59.084 μg/mL and 73.36 μg/mL. Further, the anticancer activity of the AK-7 extract against the human ovarian teratocarcinoma (PA-1) cell line was tested by MTT and Annexin V flow cytometry. The results showed a dose-dependent reduction in cell viability and exhibited apoptosis with an IC50 value of 82.04 μg/mL. The study highlights the potential of the Penicillium limosum strain AK-7 as a source of active metabolites and natural antibacterial, antifungal, antioxidant, and anticancer agent, and it could be an excellent alternative for pharmaceutical and agricultural sectors.
Collapse
Affiliation(s)
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (R.A.A.)
| | - Rasha Assad Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (R.A.A.)
| | - Syed Arif Hussain
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Riyadh 13713, Saudi Arabia;
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (D.S.B.); (H.H.); (M.R.); (B.C.); (A.H.)
| |
Collapse
|
28
|
Shaikh HY, Niazi SK, Bepari A, Cordero MAW, Sheereen S, Hussain SA, Rudrappa M, Nagaraja SK, Agadi SN. Biological Characterization of Cleome felina L.f. Extracts for Phytochemical, Antimicrobial, and Hepatoprotective Activities in Wister Albino Rats. Antibiotics (Basel) 2023; 12:1506. [PMID: 37887207 PMCID: PMC10604301 DOI: 10.3390/antibiotics12101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The present study aims to explore the phytochemical constitution and biological activities of Cleome felina L.f. (Cleomaceae). C. felina (leaves, stem, and root) extracts (acetone, methanol, and water) were qualitatively assessed for phytochemical presence. Methanolic leaves extract revealed more positive phyto-compounds among all the extracts; further, methanolic leaves extract was evaluated for FTIR, EDX, GCMS, antimicrobial assay, acute toxicity, and paracetamol-induced hepatoprotective activity in Wister albino rats. FTIR and EDX analysis unveiled important functional groups and elements in the leaves. GCMS analysis of methanolic leaves extract exposed 12 active phyto-compounds: major constituents detected were 1-Butanol, 3-methyl-, formate-48.79%; 1-Decanol, 2-ethyl-13.40%; 1,6-Anhydro-β-d-talopyranose-12.49%; Ethene, 1,2-bis(methylthio)-7.22%; Decane-4.02%; 3-Methylene-7, 11-dimethyl-1-dodecene-3.085%; Amlexanox-2.50%; 1,2,3,4-Cyclopentanetetrol, (1α,2β,3β,4α)-2.07%; L-Cysteine S-sulfate-1.84%; n-Hexadecanoic acid-1.70%; and Flucarbazone-1.55%. The antimicrobial assay showed a moderate zone of inhibition against S. aureus, B. cereus, E. coli, P. aeruginosa, C. albicans, and C. glabrata at 100 µL/mL concentration. Additionally, acute toxicity revealed no behavioral sign of the toxic effect. The significant results were obtained for methanolic leaves extract (low-50 and high-100 mg/kg b.wt. dose) for hepatoprotective activity, where it dramatically reduced serum blood biochemical markers (AST, ALT, ALP, Total bilirubin, and cholesterol) and exhibited elevated hepatic antioxidant enzymes (SOD, CAT, and GSH) concentration with lipid peroxidation retardation. To conclude, C. felina methanolic leaves extract ameliorated important phytochemical compounds and showed significant antimicrobial and hepatoprotective efficacy; therefore, utilization of C. felina leaves suggested in pharmacological applications, and in numerous cosmetics, herbicides, and food industries, would be a great scope for future hepatoprotective drug designing.
Collapse
Affiliation(s)
- Heena Yaqub Shaikh
- Department of P.G. Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (H.Y.S.); (M.R.); (S.K.N.)
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia;
| | - Asmatanzeem Bepari
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (M.A.W.C.)
| | - Mary Anne Wong Cordero
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.B.); (M.A.W.C.)
| | - Shazima Sheereen
- Department of Pathology, Manipal Academy of Higher Education, Mangalore 576104, Karnataka, India;
| | - Syed Arif Hussain
- Respiratory Care Department, College of Applied Science, Almaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Muthuraj Rudrappa
- Department of P.G. Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (H.Y.S.); (M.R.); (S.K.N.)
| | | | - Shekappa Ningappa Agadi
- Department of P.G. Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (H.Y.S.); (M.R.); (S.K.N.)
| |
Collapse
|
29
|
Shashiraj KN, Hugar A, Kumar RS, Rudrappa M, Bhat MP, Almansour AI, Perumal K, Nayaka S. Exploring the Antimicrobial, Anticancer, and Apoptosis Inducing Ability of Biofabricated Silver Nanoparticles Using Lagerstroemia speciosa Flower Buds against the Human Osteosarcoma (MG-63) Cell Line via Flow Cytometry. Bioengineering (Basel) 2023; 10:821. [PMID: 37508848 PMCID: PMC10376666 DOI: 10.3390/bioengineering10070821] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biosynthesized nano-composites, such as silver nanoparticles (AgNPs), can be engineered to function as smart nano-biomedicine platforms for the detection and management of diverse ailments, such as infectious diseases and cancer. This study determined the eco-friendly fabrication of silver nanoparticles using Lagerstroemia speciosa (L.) Pers. flower buds and their efficacy against antimicrobial and anticancer activities. The UV-Visible spectrum was found at 413 nm showing a typical resonance spectrum for L. speciosa flower bud extract-assisted silver nanoparticles (Ls-AgNPs). Fourier transform infrared analysis revealed the presence of amines, halides, and halogen compounds, which were involved in the reduction and capping agent of AgNP formation. X-ray diffraction analysis revealed the face-centered cubic crystals of NPs. Energy dispersive X-ray verified the weight of 39.80% of silver (Ag), TEM analysis revealed the particles were spherical with a 10.27 to 62.5 nm range, and dynamic light scattering recorded the average particle size around 58.5 nm. Zeta potential showed a significant value at -39.4 mV, and finally, thermo-gravimetric analysis reported higher thermal stability of Ls-AgNPs. Further, the obtained Ls-AgNPs displayed good antimicrobial activity against clinical pathogens. In addition, a dose-dependent decrease in the anticancer activity by MTT assay on the osteosarcoma (MG-63) cell line showed a decrease in the cell viability with increasing in the concentration of Ls-AgNPs with an IC50 value of 37.57 µg/mL. Subsequently, an apoptotic/necrosis study was conducted with the help of Annexin-V/PI assay, and the results indicated a significant rise in early and late apoptosis cell populations. Therefore, green synthesized Ls-AgNPs were found to have potent antimicrobial and anticancer properties making them fascinating choices for future bio-medical implementations.
Collapse
Affiliation(s)
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | | | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
30
|
Chakraborty B, Bhat MP, Basavarajappa DS, Rudrappa M, Nayaka S, Kumar RS, Almansour AI, Perumal K. Biosynthesis and characterization of polysaccharide-capped silver nanoparticles from Acalypha indica L. and evaluation of their biological activities. ENVIRONMENTAL RESEARCH 2023; 225:115614. [PMID: 36889569 DOI: 10.1016/j.envres.2023.115614] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Biosynthesized silver nanoparticles (AgNPs) are gaining popularity due to their distinctive biological applications. In this research work, an eco-friendly method of synthesizing AgNPs from the leaf polysaccharide (PS) of Acalypha indica L. ( A. indica) was carried out. Synthesis of polysaccharide-AgNPs (PS-AgNPs) was indicated by visual detection of colour change from pale yellow to light brown. The PS-AgNPs were characterized with different techniques and further evaluated for biological activities. The Ultra violet-visible (UV-Vis.) spectroscopy expressed a sharp absorption peak at 415 nm confirmed the synthesis. Atomic force microscopy (AFM) analysis revealed the size range of particles from 14 nm to 85 nm. Fourier transform infrared (FTIR) analysis detected the presence of various functional groups. The cubic crystalline structure of PS-AgNPs was confirmed by X-ray diffraction (XRD) and the particles were found to be oval to polymorphic shaped through transmission electron microscopy (TEM) with sizes from 7.25 nm to 92.51 nm. Energy dispersive X-ray (EDX) determined the presence of silver in PS-AgNPs. The zeta potential was -28.0 mV, which confirmed the stability and an average particle size of 62.2 nm was calculated through dynamic light scattering (DLS). Lastly, the thermo gravimetric analysis (TGA) showed the PS-AgNPs were resistant to high temperature. The PS-AgNPs exhibited significant free radical scavenging activity with an IC50 value of 112.91 μg/ml. They were highly capable of inhibiting the growth of different bacterial and plant fungal pathogens and also active to reduce the cell viability of prostate cancer (PC-3) cell line. The IC50 value was 101.43 μg/ml. The flow cytometric apoptosis analysis revealed the percentage of viable, apoptotic and necrotic cells of PC-3 cell line. According to this evaluation, it can be concluded that these biosynthesized and environmentally friendly PS-AgNPs are helpful to improve therapeutics because of significant antibacterial, antifungal, antioxidant, and cytotoxic properties to open up new possibilities for euthenics.
Collapse
Affiliation(s)
- Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India
| | | | | | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Rudrappa M, Kumar RS, Nagaraja SK, Hiremath H, Gunagambhire PV, Almansour AI, Perumal K, Nayaka S. Myco-Nanofabrication of Silver Nanoparticles by Penicillium brasilianum NP5 and Their Antimicrobial, Photoprotective and Anticancer Effect on MDA-MB-231 Breast Cancer Cell Line. Antibiotics (Basel) 2023; 12:antibiotics12030567. [PMID: 36978433 PMCID: PMC10044662 DOI: 10.3390/antibiotics12030567] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, the exploration of fungal organisms for novel metabolite production and its pharmacological applications is much appreciated in the biomedical field. In the present study, the fungal strains were isolated from soil of unexplored Yellapura regions. The potent isolate NP5 was selected based on preliminary screening and identified as Penicillium brasilianum NP5 through morphological, microscopic, and molecular characterizations. Synthesis of silver nanoparticles from P. brasilianum was confirmed by the color change of the reaction mixture and UV-visible surface plasmon resonance (SPR) spectra of 420 nm. Fourier transform infrared (FTIR) analysis revealed the functional groups involved in synthesis. Atomic force microscopy (AFM) and transmission electron microscope (TEM) analysis showed aggregation of the NPs, with sizes ranged from 10 to 60 nm, an average particle size of 25.32 nm, and a polydispersity index (PDI) of 0.40. The crystalline nature and silver as the major element in NP5-AgNPs was confirmed by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The negative value −15.3 mV in Zeta potential exhibited good stability, and thermostability was recorded by thermogravimetric analysis (TGA). NP5-AgNPs showed good antimicrobial activity on selected human pathogens in a concentration-dependent manner. The MTT assay showed concentration-dependent anticancer activity with an IC50 of 41.93 µg/mL on the MDA-MB-231 cell line. Further, apoptotic study was carried out by flow cytometry to observe the rate of apoptosis. The calculated sun protection factor (SPF) value confirms good photoprotection capacity. From the results obtained, NP5-AgNPs can be used in the pharmaceutical field after successful in vitro clinical studies.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.S.K.); (A.I.A.)
| | - Shashiraj Kareyellappa Nagaraja
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Pooja Vidyasagar Gunagambhire
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.S.K.); (A.I.A.)
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA;
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
- Correspondence: or
| |
Collapse
|
32
|
Pangi VN, Marukurti A, Reddy AM, Medapalli SR. Synthesis of Biogenic Silver Nanoparticles (bAgNPs) Using Leaf Extract of Mirabilis jalapa and Evaluation of Anti-vibriocidal, Anti-oxidant properties and Cytotoxicity. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
33
|
One-pot microwave synthesis of chitosan-stabilized silver nanoparticles entrapped polyethylene oxide nanofibers, with their intrinsic antibacterial and antioxidant potency for wound healing. Int J Biol Macromol 2023; 235:123704. [PMID: 36801282 DOI: 10.1016/j.ijbiomac.2023.123704] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Different physical and chemical techniques could be used to prepare chitosan/Silver nanoparticle (CHS/AgNPs) nanocomposite. The microwave heating reactor was rationally adopted as a benign tool for preparing CHS/AgNPs owing to less energy consumption and shorter time required for completing the nucleation and growth particles. UV-Vis, FTIR, and XRD, provided conclusive evidence of the AgNPs creation, while TEM micrographs elucidated that the size was spherical (20 nm). CHS/AgNPs were embedded in polyethylene oxide (PEO) nanofiber via electrospinning, and their biological properties, cytotoxicity evaluation, antioxidant, and antibacterial activity assays were investigated. The generated nanofibers have mean diameters of 130.9 ± 9.5, 168.7 ± 18.8, and 186.8 ± 8.19 nm for PEO, PEO/ CHS, and PEO/ CHS (AgNPs), respectively. Because of the tiny AgNPs particle size loaded in PEO/CHS (AgNPs) fabricated nanofiber, good antibacterial activity with ZOI against E. coli was 51.2 ± 3.2, and S. aureus was 47.2 ± 2.1 for PEO/ CHS (AgNPs) nanofibers. Non-toxicity was observed against Human Skin Fibroblast and Keratinocytes cell lines (>93.5 %), which justifies its great antibacterial potential to remove or prevent infection in wounds with fewer adverse effects.
Collapse
|
34
|
Rudrappa M, Nayaka S, Kumar RS. In Silico Molecular Docking Approach of Melanin Against Melanoma Causing MITF Proteins and Anticancer, Oxidation-Reduction, Photoprotection, and Drug-Binding Affinity Properties of Extracted Melanin from Streptomyces sp. strain MR28. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04358-4. [PMID: 36692647 DOI: 10.1007/s12010-023-04358-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Melanin is a biopolymer reported for diverse biological actions to secure organisms over adverse environmental factors. In the last decade, melanin attributed considerable attention for its use in bioelectronics, photoprotection, environmental bioremediation, and drug discovery. Molecular docking study is the emerging trend in drug discovery for drug designing by targeting proteins. Considering the therapeutic nature of the melanin, we extracted melanin from Streptomyces sp. strain MR28, and it was tested for various biological activities, viz., DPPH free radical scavenging potency, sun protection factor (SPF), drug likeness by SwissADME, molecular docking of melanin on melanocyte-inducing transcription factor (MITF) proteins, cytotoxic activity on A375 malignant melanoma with induction of apoptosis study by flow cytometry, and adsorption study of melanin on doxorubicin and camptothecin drug for drug uptake by melanin. The melanin showed good scavenging potency of DPPH free radicals in a concentration-dependent manner. SPF of 38.64 ± 0.63, 55.53 ± 0.53, and 67.07 ± 0.82 were recorded at 0.06, 0.08, and 0.1 µg/mL, concentrations, respectively. SwissADME screening confirms the drug likeness of melanin. Docking of melanin with MITF proteins exhibited a maximum of - 9.2 kcal/mol binding affinity for 4ATK protein. Cytotoxicity of the melanin drug exhibited good inhibition of melanoma cells in dose-dependent way with significant IC50 of 65.61 µg/mL; apoptotic study reveals melanin showed 64.02% apoptosis for melanin and 33.8% apoptosis for standard drug (doxorubicin). The maximum adsorptions for selected drugs camptothecin and doxorubicin to melanin were recorded at 90 min. In conclusion, the extracted melanin showed significant results over many biological applications and it can be used in the pharmaceutical field to avoid chemical-based drugs.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Silver nanoparticles potentiate antitumor and oxidant actions of cisplatin via the stimulation of TRPM2 channel in glioblastoma tumor cells. Chem Biol Interact 2023; 369:110261. [PMID: 36403784 DOI: 10.1016/j.cbi.2022.110261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
We investigated the effects of silver nanoparticle (AgNP) and cisplatin (CiSP) exposure via the activation of TRPM2 cation channels in glioblastoma (DBTRG-05MG) cell line. The cells were divided into four groups as control, AgNPs (100 μg/ml for 48 h), CiSP (25 μM for 24 h), and CiSP + AgNPs. We found that the cytotoxic, oxidant and apoptotic actions of CiSP were further stimulated through the activation of TRPM2 (via ADP-ribose and H2O2) in the cells by the treatment of AgNPs. The actions were decreased in the cells by the treatments of TRPM2 antagonists (ACA and 2APB). The apoptotic actions of AgNPs were induced by the stimulation of propidium iodide positive DBTRG-05MG rate, caspase -3, caspase -8, and caspase -9 activations, although their oxidant actions were acted by the increase of mitochondrial membrane depolarization, lipid peroxidation, mitochondrial oxygen free radicals (ROS), and cytosolic ROS, but the decrease of total antioxidant status, glutathione, and glutathione peroxidase. The accumulation of cytosolic free Ca2+ and Zn2+ into mitochondria via the activation of TRPM2 current density and activity accelerated oxidant and apoptotic actions of AgNPs in the cells. We found that the combination of AgNPs and CiSP was synergistic via the stimulation of TRPM2 for treatment of DBTRG-05MG cells. The combination of AgNPs and CiSP showed a favorable action via the stimulation of TRPM2 in the treatment of glioblastoma tumor cells.
Collapse
|
36
|
Arsène MMJ, Viktorovna PI, Alla M, Mariya M, Nikolaevitch SA, Davares AKL, Yurievna ME, Rehailia M, Gabin AA, Alekseevna KA, Vyacheslavovna YN, Vladimirovna ZA, Svetlana O, Milana D. Antifungal activity of silver nanoparticles prepared using Aloe vera extract against Candida albicans. Vet World 2023; 16:18-26. [PMID: 36855352 PMCID: PMC9967710 DOI: 10.14202/vetworld.2023.18-26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
Background and Aim Resistance to antifungal agents is a serious public health concern that has not been investigated enough because most studies on antimicrobials are dedicated to antibacterial resistance. This study aimed to synthesize silver nanoparticles (AgNPs) using Aloe vera extract, and to assess its antifungal activity against Candida albicans. Materials and Methods Silver nanoparticles were synthesized by reducing Ag nitrate with aqueous A. vera extracts. Physicochemical properties of synthesized AgNPs were determined by ultraviolet-visible spectrophotometry, photon cross-correlation spectroscopy, energy-dispersive X-ray fluorescence spectrometry, X-ray diffraction analysis, and Fourier-transform infrared spectroscopy. An antifungal investigation was performed against four clinical C. albicans (C1, C2, C3, and C4) and a reference strain, C. albicans ATCC 10321. Results Cubic AgNPs with a mean X50 hydrodynamic diameter of 80.31 ± 10.03 nm were successfully synthesized. These AgNPs exhibited maximum absorbance at 429.83 nm, and X-ray fluorescence (XRF) confirmed the presence of Ag in AgNPs solution by a characteristic peak in the spectrum at the Ag Kα line of 22.105 keV. Infrared spectra for AgNPs and A. vera extract indicated that the compounds present in the extract play an essential role in the coating/capping of synthesized AgNPs. Different concentrations (200, 100, 50, 25, 10, and 5 μg/mL) of AgNPs were tested. The antifungal activity was shown to be dose-dependent with inhibition zones ranging from 10 mm to 22 mm against C. albicans ATCC 10231, 0 mm to 15 mm against C1, 0 mm to 16 mm against C2 and C3, and 0 mm to 14 mm for C4. Minimum inhibitory concentration ranged from 16 μg/mL to 32 μg/mL against clinical C. albicans (C1, C2, C3, and C4) and was 4 μg/mL against C. albicans ATCC 10231. Conclusion This study showed the ability of A. vera to serve as an efficient reducing agent for the biogenic synthesis of AgNPs with excellent antifungal activity.
Collapse
Affiliation(s)
- Mbarga Manga Joseph Arsène
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia,Research Institute of Molecular and Cellular Medicine, Peoples Friendship University of Russia (RUDN University), Moscow, Russia,Corresponding author: Mbarga Manga Joseph Arsène, e-mail: Co-authors: PIV: , MA: , MM: , SAN: , AKLD: , MEY: , MR: , AAG: , KAA: , YNV: , ZAV: , OS: , DM:
| | - Podoprigora Irina Viktorovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia,Research Institute of Molecular and Cellular Medicine, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Marukhlenko Alla
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Morozova Mariya
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Senyagin Alexander Nikolaevitch
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia,Research Institute of Molecular and Cellular Medicine, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anyutoulou Kitio Linda Davares
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Mumrova Evgenia Yurievna
- Research Institute of Molecular and Cellular Medicine, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Manar Rehailia
- Department of Agrobiotechnology, Agrarian Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ada Arsene Gabin
- Department of Traumatology and Orthopedics, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Kulikova A. Alekseevna
- Department of Oral and Maxillofacial Surgery, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Yashina Natalia Vyacheslavovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Zhigunova Anna Vladimirovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Orlova Svetlana
- Department of Dietetics and Clinical Nutritiology, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Das Milana
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
37
|
Chemical Characterization, Antioxidant, Antimicrobial, and Antibiofilm Activities of Essential Oils of Plumeria alba (Forget-Me-Not). Biochem Res Int 2023; 2023:1040478. [PMID: 36873255 PMCID: PMC9977525 DOI: 10.1155/2023/1040478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/14/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Essential oils are known to possess many biological properties such as antimicrobial and antioxidant activities. Plumeria alba flowers are used in traditional remedies for diarrhea, cough, fever, and asthma treatment. This work evaluated the chemical composition and the biological activities of essential oils obtained from the flowers and leaves of Plumeria alba. The essential oils were extracted using the Clevenger-type apparatus and characterized using GC-MS. In the flower essential oil, a total of 17 compounds were identified, with linalool (23.91%), α-terpineol (10.97%), geraniol (10.47%), and phenyl ethyl alcohol (8.65%) being abundant. In the leaf essential oil, a total of 24 compounds were identified, with benzofuran, 2,3-di, hydro-(3.24%), and muurolol (1.40%) being present. Antioxidant activities were assessed using hydrogen peroxide scavenging, phosphomolybdenum, and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assays. Antimicrobial activities were assessed through a microdilution assay. The essential oil showed antimicrobial activity against test microorganisms with minimum inhibitory concentrations ranging from 25.0 to 50.0 mg/mL. Biofilm inhibition ranged from 27.14 ± 1.0 to 58.99 ± 0.6 mg/mL. The essential oil exhibited total antioxidant capacities which ranged from 17.5 μg/g AAE to 83 μg/g AAE in the phosphomolybdenum assay. The IC50 values in the DPPH and hydrogen peroxide radical scavenging assays for both flowers and leaves ranged from 18.66 μg/mL to 38.28 μg/mL. Both essential oils also displayed good antibiofilm activities, with the concentration required for half-maximal inhibition of biofilm formation being ∼60 mg/mL for both oils. This study shows that essential oils of Plumeria alba possess good antioxidant and antimicrobial activities and could be used as a source of natural antioxidants and antimicrobial agents.
Collapse
|
38
|
Nagaraja SK, Niazi SK, Bepari A, Assiri RA, Nayaka S. Leonotis nepetifolia Flower Bud Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization, and In Vitro Evaluation of Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248990. [PMID: 36556796 PMCID: PMC9781718 DOI: 10.3390/ma15248990] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 05/14/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) using the green matrix is an emerging trend and is considered green nanotechnology because it involves a simple, low-cost, and environmentally friendly process. The present research aimed to synthesize silver nanoparticles from a Leonotis nepetifolia (L.) R.Br. flower bud aqueous extract, characterize these nanoparticles, and perform in vitro determination of their biological applications. UV-Vis spectra were used to study the characterization of biosynthesized L. nepetifolia-flower-bud-mediated AgNPs (LnFb-AgNPs); an SPR absorption maximum at 418 nm confirmed the formation of LnFb-AgNPs. The presumed phytoconstituents subjected to reduction in the silver ions were revealed by FTIR analysis. XRD, TEM, EDS, TGA, and zeta potential with DLS analysis revealed the crystalline nature, particle size, elemental details, surface charge, thermal stability, and spherical shape, with an average size of 24.50 nm. In addition, the LnFb-AgNPs were also tested for antimicrobial activity and exhibited a moderate zone of inhibition against the selected pathogens. Concentration-dependent antioxidant activity was observed in the DPPH assay. Further, the cytotoxicity increased proportionate to the increasing concentration of the biosynthesized LnFb-AgNPs with a maximum effect at 200 μg/mL by showing the inhibition cell viability percentages and an IC50 of 35.84 μg/mL. Subsequently, the apoptotic/necrotic potential was determined using Annexin V/Propidium Iodide staining by the flow cytometry method. Significant early and late apoptosis cell populations were observed in response to the pancreatic ductal adenocarcinoma (PANC-1) cell line, as demonstrated by the obtained results. In conclusion, the study's findings suggest that the LnFb-AgNPs could serve as remedial agents in a wide range of biomedical applications.
Collapse
Affiliation(s)
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rasha Assad Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
- Correspondence: (S.K.N.); (S.N.)
| |
Collapse
|
39
|
Nava-Solis U, Rodriguez-Canales M, Hernandez-Hernandez AB, Velasco-Melgoza DA, Moreno-Guzman BP, Rodriguez-Monroy MA, Canales-Martinez MM. Antimicrobial activity of the methanolic leaf extract of Prosopis laevigata. Sci Rep 2022; 12:20807. [PMID: 36460709 PMCID: PMC9718812 DOI: 10.1038/s41598-022-25271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The appearance of antimicrobial-resistant pathogens has highlighted the need to search for new compounds that can effectively combat infectious diseases. A potential source of these compounds are the secondary metabolites of species that have been reported as effective traditional treatments of such diseases. Prosopis laevigata is a medicinal plant, and its chemical constituents have shown potential antimicrobial activity. In this study, the antimicrobial activities of the methanolic extract of the leaves of Prosopis laevigata against different bacterial and fungal strains of medical and agronomic interest were investigated in vitro. In addition, the chemical composition of this extract was investigated by HPLC-DAD, GC‒MS, and HPLC‒MS. The methanolic leaf extract contained 67 mg of GAE/g of total phenols (6.7%), 2.6 mg of QE/g of flavonoids (0.26%), and 11.87 mg of AE/g of total alkaloids (1.18%). Phenolic acids and catechol were the compounds identified by HPLC-DAD. The methanolic extract had strong antimicrobial activity, especially against Staphylococcus aureus (MIC = 0.62 mg/mL), Escherichia coli (MIC = 0.62 mg/mL), Candida tropicalis (MIC = 0.08 mg/mL) and Fusarium moniliforme (MIC = 4.62 mg/mL). These results suggest that the extract of P. laevigata leaves could be a source of antimicrobial molecules. However, it is necessary to delve into its chemical composition.
Collapse
Affiliation(s)
- Uriel Nava-Solis
- grid.9486.30000 0001 2159 0001Laboratorio de Farmacognosia, Unidad de Biología, Tecnología Y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| | - Mario Rodriguez-Canales
- grid.9486.30000 0001 2159 0001Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| | - Ana Bertha Hernandez-Hernandez
- grid.9486.30000 0001 2159 0001Laboratorio de Farmacognosia, Unidad de Biología, Tecnología Y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| | - David Arturo Velasco-Melgoza
- grid.9486.30000 0001 2159 0001Laboratorio de Farmacognosia, Unidad de Biología, Tecnología Y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| | - Brenda Paola Moreno-Guzman
- grid.9486.30000 0001 2159 0001Laboratorio de Farmacognosia, Unidad de Biología, Tecnología Y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| | - Marco Aurelio Rodriguez-Monroy
- grid.9486.30000 0001 2159 0001Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| | - María Margarita Canales-Martinez
- grid.9486.30000 0001 2159 0001Laboratorio de Farmacognosia, Unidad de Biología, Tecnología Y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090 México
| |
Collapse
|
40
|
Bernabé-Antonio A, Martínez-Ceja A, Romero-Estrada A, Sánchez-Carranza JN, Columba-Palomares MC, Rodríguez-López V, Meza-Contreras JC, Silva-Guzmán JA, Gutiérrez-Hernández JM. Green Synthesis of Silver Nanoparticles Using Randia aculeata L. Cell Culture Extracts, Characterization, and Evaluation of Antibacterial and Antiproliferative Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4184. [PMID: 36500807 PMCID: PMC9736092 DOI: 10.3390/nano12234184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The demand for metallic nanoparticles synthesized using green methods has increased due to their various therapeutic and clinical applications, and plant biotechnology may be a potential resource facilitating sustainable methods of AgNPs synthesis. In this study, we evaluate the capacity of extracts from Randia aculeata cell suspension culture (CSC) in the synthesis of AgNPs at different pH values, and their activity against pathogenic bacteria and cancer cells was evaluated. Using aqueous CSC extracts, AgNPs were synthesized with 10% (w/v) of fresh biomass and AgNO3 (1 mM) at a ratio of 1:1 for 24 h of incubation and constant agitation. UV-vis analysis showed a high concentration of AgNPs as the pH increased, and TEM analysis showed polydisperse nanoparticles with sizes from 10 to 90 nm. Moreover, CSC extracts produce reducing agents such as phenolic compounds (162.2 ± 27.9 mg gallic acid equivalent/100 g biomass) and flavonoids (122.07 ± 8.2 mg quercetin equivalent/100 g biomass). Notably, AgNPs had strong activity against E. coli, S. pyogenes, P. aeruginosa, S. aureus, and S. typhimurium, mainly with AgNPs at pH 6 (MIC: 1.6 to 3.9 µg/mL). AgNPs at pH 6 and 10 had a high antiproliferative effect on cancer cells (IC50 < 5.7 µg/mL). Therefore, the use of cell suspension cultures may be a sustainable option for the green synthesis of AgNPs.
Collapse
Affiliation(s)
- Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Alejandro Martínez-Ceja
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Antonio Romero-Estrada
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Jessica Nayelli Sánchez-Carranza
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - María Crystal Columba-Palomares
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Verónica Rodríguez-López
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Juan Carlos Meza-Contreras
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - José Manuel Gutiérrez-Hernández
- Laboratory of Basic Sciences, Faculty of Odontology, Autonomous University of San Luis Potosí, Dr. Manuel Nava No. 2, Zona Universitaria, San Luis Potosí 78290, San Luis Potosí, Mexico
| |
Collapse
|
41
|
Phytosynthesis of Silver Nanoparticle (AgNPs) Using Aqueous Leaf Extract of Knoxia sumatrensis (Retz.) DC. and Their Multi-Potent Biological Activity: An Eco-Friendly Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227854. [PMID: 36431952 PMCID: PMC9694222 DOI: 10.3390/molecules27227854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.
Collapse
|
42
|
Role of Lactiplantibacillus plantarum strain RD1 (Lpb RD1) in mitochondria-mediated apoptosis: an in vitro analysis. Arch Microbiol 2022; 204:593. [PMID: 36053319 DOI: 10.1007/s00203-022-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine the cytotoxicity of Lactiplantibacillus plantarum strain RD1 (Lpb RD1), which was isolated and identified from the curd by 16 S rRNA sequencing. The probiotic properties of the isolated strain were studied by bile and NaCl tolerance and the ethyl acetate extract of Ea-LpRD1, was used to determine the toxicity against human breast cancer (MCF-7) cell lines and human embryonic kidney (HEK-293) cell lines by MTT assay. DNA fragmentation assay was carried out to study apoptosis induction. Flow cytometry analysis was done to determine the % of a cell population using the FTIC-Annexin V staining method. RT-PCR was used to assess gene expression levels in both cell lines. The IC50 concentration of the Ea-LpRD1 in MCF-7 cells was 0.30 mg/ml and in HEK-293 was 0.47 mg/ml. The expression levels of the BCL-2 gene anti-apoptotic genes in humans were reduced and BAX, caspase-8, caspase-3, and caspase-9 were an increased expression in MCF-7 cell lines.
Collapse
|
43
|
Thammawithan S, Talodthaisong C, Srichaiyapol O, Patramanon R, Hutchison JA, Kulchat S. Andrographolide stabilized-silver nanoparticles overcome ceftazidime-resistant Burkholderia pseudomallei: study of antimicrobial activity and mode of action. Sci Rep 2022; 12:10701. [PMID: 35739211 PMCID: PMC9226156 DOI: 10.1038/s41598-022-14550-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Burkholderia pseudomallei (B. pseudomallei) is a Gram-negative pathogen that causes melioidosis, a deadly but neglected tropical disease. B. pseudomallei is intrinsically resistant to a growing list of antibiotics, and alternative antimicrobial agents are being sought with urgency. In this study, we synthesize andrographolide-stabilized silver nanoparticles (andro-AgNPs, spherically shaped with 16 nm average diameter) that show excellent antimicrobial activity against B. pseudomallei, including ceftazidime-resistant strains, being 1-3 orders of magnitude more effective than ceftazidime and 1-2 orders of magnitude more effective than other green-synthesized AgNPs. The andro-AgNPs are meanwhile non-toxic to mammalian cell lines. The mode of action of Andro-AgNPs toward B. pseudomallei is unraveled by killing kinetics, membrane neutralization, silver ions (Ag+) release, reactive oxygen species (ROS) induction, membrane integrity, and cell morphology change studies. The antimicrobial activity and mode of action of andro-AgNPs against B. pseudomallei reported here may pave the way to alternative treatments for melioidosis.
Collapse
Affiliation(s)
- Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen, 40002, Thailand
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
44
|
Biogenic silver/silver chloride nanoparticles inhibit human cancer cells proliferation in vitro and Ehrlich ascites carcinoma cells growth in vivo. Sci Rep 2022; 12:8909. [PMID: 35618812 PMCID: PMC9135710 DOI: 10.1038/s41598-022-12974-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Silver/silver chloride nanoparticles (Ag/AgCl-NPs) were synthesized for the first time from the herbal Geodorum densiflorum rhizome extracts and characterized by different techniques. The surface plasmon resonance peak at 455 nm was observed in the UV–Visible spectrum, the average particle size of 25 nm was determined by SEM, XRD reflection peaks (28.00°, 32.42°, 38.28°, 46.38°, 54.94°, 57.60°, 64.64°, and 67.48°) indicated the presence of Ag-NPs and AgCl-NPs, heat stability was confirmed by TGA and FTIR analysis indicated the presence of alcohol/phenol, alkanes, primary amines, nitro compounds, alkyl chloride functional groups. The synthesized Ag/AgCl-NPs, previously synthesized Kaempferia rotunda and Zizyphus mauritiana mediated Ag/AgCl-NPs separately inhibited the proliferation of BxPC-3 cells with the IC50 values of 7.8, 17.1, and 20.1 µg/ml, respectively. In the case of MCF-7 cells, the IC50 values of G. densiflorum- Ag/AgCl-NPs and K. rotunda-Ag/AgCl-NPs were 21.5 and 23.5 µg/ml, respectively. Whereas the IC50 of G. densiflorum-Ag/AgCl-NPs was 28.0 µg/ml against glioblastoma stem cells (GSCs). Induction of apoptosis in GSCs, BxPC-3 and MCF-7 cells was noted followed by NPs treatment. In GSCs, the expression level of NFκB, TNFα, p21, and TLR9 genes were upregulated after treatment with G. densiflorum-Ag/AgCl-NPs while in the MCF-7 cells, the expression of p53, FAS, Caspase-8 and -9, NFκB, MAPK, JNK and p21 genes were increased. G. densiflorum-Ag/AgCl-NPs inhibited 60% and 95% of EAC cells growth at the doses of 2 and 4 mg/Kg/day after intraperitoneal treatment with five consequent days, respectively. A remarkable improvement of hematological parameters with the decreased average tumor weight and increase of 75% life span of G. densiflorum-Ag/AgCl-NPs treated mice were observed. Altogether, this study reported for the first time in vitro anticancer activity of biogenic G. densiflorum-Ag/AgCl-NPs against GSC cells along with MCF-7 and BxPC-3 cells and in vivo anticancer properties against EAC cells.
Collapse
|