1
|
Yang Z, Cao P, Xiao W, Song F, Wu X, Zhang X, He J, Buttino I, Yan X, Liao Z. Different molecular responses of Mytilus mantle to lipopolysaccharide and peptidoglycan challenges. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110246. [PMID: 40037495 DOI: 10.1016/j.fsi.2025.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Mytilus live in water as sessile filter feeders, and the mantle tissue plays an important role in their immune defense. However, the overall knowledge of the immunity of this tissue remains limited. Peptidoglycan (PGN) and lipopolysaccharide (LPS) are the most representative microbe-associated molecular patterns (MAMPs) that play roles in the immune stimulation of host cells. In the present study, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based metabolomic analysis was performed to understand the precise regulatory mechanism at the molecular level in the Mytilus mantle in response to PGN and LPS stress. Moreover, the antioxidant ability and free amino acid composition of the mantle, and the antimicrobial activities of mantle mucus were evaluated. Our results revealed that LPS and PGN stresses had different effects on the mantle's free amino acid composition and antioxidant ability, and the mantle mucus' antimicrobial activity. Both PGN and LPS stress-induced alterations in amino acids, phospholipids, fatty acids, nucleotides, and their derivatives in the mantle. PGN injection activated the amino acid-related metabolism, and inhibited the lipid-related metabolisms in the mantle, while LPS injection activated the amino acid-related metabolisms and inhibited the arachidonic acid metabolism in the mantle compared to that in the control group. In addition, activation of the mTOR and FoxO signaling pathways and inhibition of lipid-related metabolism were observed in PGN vs. LPS. In addition, PGN injection induced the upregulation of fosfomycin and deoxynojirimycin in the mantle compared to LPS injection. Our study highlights the different responses at the metabolomic level of the mussel mantle to different MAMPs and the potential application of metabolites that specifically respond to PGN and LPS challenges in mussels as biomarkers.
Collapse
Affiliation(s)
- Zilin Yang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Pingling Cao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Wenhui Xiao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Fang Song
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaoshan Wu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
2
|
Mandal A, Banerjee S, Ghosh S, Sil PC. Taurine alleviates colitis by regulating oxidative stress, inflammatory responses, ER stress, and apoptotic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04106-x. [PMID: 40227309 DOI: 10.1007/s00210-025-04106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Colitis is an inflammatory condition affecting the colon, characterized by oxidative stress, ER stress, and apoptosis, which leads to severe tissue damage. Existing treatments are associated with significant side effects, necessitating the exploration of alternative therapeutic agents. Taurine is a commonly consumed bioactive sulfur-containing amino acid, recognized for its cyto-protective property. In this study, we are using a male Wistar rat model for 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis and treated them with taurine. Colitis development was indicated by repeated loose bloody stools, reduced appetite, and weight loss. Macroscopic examination revealed an inflamed colon surface with ulcerations, while histopathology showed a destroyed crypt structure and damage to the epithelial and mucosal layers in the colitis-affected rats. However, taurine administration reverses such adverse effects of colitis. Taurine significantly mitigates the oxidative stress by upregulating the level of anti-oxidant molecules, such as CAT, GST and SOD, which were significantly down-regulated in colitis. In addition, increased levels of inflammatory molecules (TNF-α, IL- 1β, IL- 6, MCP- 1, ICAM- 1, and VCAM- 1) in colitis were reduced by taurine supplementation. Furthermore, we observed taurine alleviates colitis induced up-regulation of important endoplasmic reticulum (ER) stress markers like, CHOP, GRP78, calpain 1, and caspase 12. We have also demonstrated that taurine supplementation reverses colitis induced apoptosis by assessing the modulation of apoptotic markers (Bax, Bcl- 2, caspase 9 and caspase 3). Furthermore, no instances of toxicity from taurine were observed. Thus, taurine shows a potential to be utilized as a therapeutic agent for colitis with further detailed investigation.
Collapse
Affiliation(s)
- Ankita Mandal
- Division of Molecular Medicine, Bose Institute, P- 1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India
| | - Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P- 1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P- 1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P- 1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
3
|
Bai G, Chen W, Ji C, Yang Y, Shen J, Li F, Wen Y, Tan DJ, Jiang X, Xiao Y, Chen J. Metabolomic profiles in serum uncover novel biomarkers in children with Williams-Beuren syndrome. Sci Rep 2025; 15:9437. [PMID: 40108238 PMCID: PMC11923248 DOI: 10.1038/s41598-025-94018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Williams-Beuren syndrome (WBS, OMIM-no.194050) is a rare congenital genetic disorder primarily marked by developmental delays and cardiovascular anomalies, with potential involvement of metabolic dysregulation. Despite this, the metabolic features of WBS have not been extensively studied. Thus, our objective was to examine the serum metabolome profile in children with WBS, elucidating metabolic changes and associated pathways in the disorder. We recruited 25 children with WBS (mean age 5.0 ± 2.6 years, 40% female) from the Children's Hospital affiliated to Zhejiang University between 2020 and 2023. An age and sex matched healthy control group (N = 25) were recruited from the Health Management Center in the same hospital. Clinical information of WBS were extracted from the medical records. Blood samples were obtained for untargeted metabolomics analysis using UPLC-MS/MS. The metabolomic profiles of WBS patients were compared to those of healthy controls to identify metabolites with differential abundance. Enrichment analysis was conducted to identify potentially impacted KEGG pathways. Associations between metabolites and phenotypes were evaluated. Children with WBS exhibited a unique metabolic profile compared to healthy controls, as evidenced by the identification of 465 untargeted metabolites in serum. Of these metabolites, 169 showed differential abundance in WBS children. The top enriched KEGG pathways in WBS children included nicotine addiction, cholesterol metabolism, arginine biosynthesis, retrograde endocannabinoid signaling. Additionally, there were indications of potential metabolic alterations in the L-tryptophan pathway, with a shift from serotonin to L-kynurenine, as well as disruptions in bile acid metabolism. Metabolome data in children with WBS showed neurological and amino acid metabolism changes, indicating multisystem involvement and developmental delay. This data can help monitor and manage the disease, but further studies are needed to understand the underlying mechanisms and consequences.
Collapse
Affiliation(s)
- Guannan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Weijun Chen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Chai Ji
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Yang Yang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming, Yunnan Province, People's Republic of China
| | - Jiyang Shen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Fangfang Li
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Yang Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Xiaoling Jiang
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Jinluan Chen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Huang LY, Zhang YD, Chen J, Fan HD, Wang W, Wang B, Ma JY, Li PP, Pu HW, Guo XY, Shen JG, Qi SH. Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke. Neural Regen Res 2025; 20:845-857. [PMID: 38886957 PMCID: PMC11433893 DOI: 10.4103/1673-5374.392889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 11/23/2023] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 μM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 μM) promoted nuclear translocation of β-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the β-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yi-De Zhang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hai-Di Fan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of Laboratory Medicine, Branch Hospital of Huai’an First People’s Hospital, Huai’an, Jiangsu Province, China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ju-Yun Ma
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Peng-Peng Li
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hai-Wei Pu
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xin-Yian Guo
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian-Gang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Bi C, He J, Yuan Y, Che S, Cui T, Ning L, Li Y, Dou Z, Han L. Metabolomic characteristics and related pathways in patients with different severity of COVID-19: a systematic review and meta-analysis. J Glob Health 2025; 15:04056. [PMID: 40019163 PMCID: PMC11869518 DOI: 10.7189/jogh.15.04056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Background Despite advances in metabolomic research on COVID-19, existing studies have small sample sizes and few have comprehensively described the metabolic characteristics of patients with COVID-19 at each stage. In this systematic review, we aimed to summarise the similarities and differences of biomarkers in patients with COVID-19 of different severity and describe their metabolic characteristics at different stages. Methods We retrieved studies from PubMed, Embase, Web of Science, and the Cochrane Library published by October 2022. We performed a meta-analysis on untargeted and targeted metabolomics research data, using the ratio of means as the effect size. We compared changes in metabolite levels between patients with varying severity and controls and investigated sources of heterogeneity through subgroup analyses and meta-regression analysis. Results We included 22 cohorts from 21 studies, comprising 2421 participants, including COVID-19 patients of varying severity and healthy controls. We conducted meta-analysis and heterogeneity analysis on the 1058 metabolites included in the study. The results indicated that, compared to the healthy control group, 23 biomarkers were associated with mild cases (P < 0.05), 3 biomarkers with moderate cases (P < 0.05), and 37 biomarkers with severe cases (P < 0.05). Pathway enrichment analysis revealed significant disturbances in amino acid metabolism, aminoacyl-tRNA biosynthesis, primary bile acid biosynthesis, pantothenate and CoA biosynthesis, the tricarboxylic acid cycle, taurine and hypotaurine metabolism, and nitrogen metabolism in patients with mild, moderate, and severe disease. Additionally, we found that each severity stage exhibited unique metabolic patterns (all P < 0.05) and that the degree of metabolic dysregulation progressively worsened with increasing disease severity (P < 0.05). Conclusions The results of our meta-analysis indicate the similarities and differences of biomarkers and metabolic characteristics of patients with different severity in COVID-19, thereby providing new pathways for the study of pathogenesis, the development precise treatment, and the formulation of comprehensive strategies. Registration PROSPERO: CRD42022369937.
Collapse
Affiliation(s)
- Chenghao Bi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Yuan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shumei Che
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ting Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Ning
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yubo Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Dou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
6
|
Deslande M, Puig-Castellvi F, Castro-Dionicio I, Pacheco-Tapia R, Raverdy V, Caiazzo R, Lassailly G, Leloire A, Andrikopoulos P, Kahoul Y, Zaïbi N, Toussaint B, Oger F, Gambardella N, Lefebvre P, Derhourhi M, Amanzougarene S, Staels B, Pattou F, Froguel P, Bonnefond A, Dumas ME. Intrahepatic levels of microbiome-derived hippurate associates with improved metabolic dysfunction-associated steatotic liver disease. Mol Metab 2025; 92:102090. [PMID: 39746606 PMCID: PMC11772989 DOI: 10.1016/j.molmet.2024.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterised by lipid accumulation in the liver and is often associated with obesity and type 2 diabetes. The gut microbiome recently emerged as a significant player in liver metabolism and health. Hippurate, a host-microbial co-metabolite has been associated with human gut microbial gene richness and with metabolic health. However, its role on liver metabolism and homeostasis is poorly understood. METHODS We characterised liver biospies from 318 patients with obesity using RNAseq and metabolomics in liver and plasma to derive associations among hepatic hippurate, hepatic gene expression and MASLD and phenotypes. To test a potential beneficial role for hippurate in hepatic insulin resistance, we profile the metabolome of (IHH) using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-MS/MS), and characterised intracellular triglyceride accumulation and glucose internalisation after a 24 h insulin exposure. RESULTS We first report significant associations among MASLD traits, plasma and hepatic hippurate. Further analysis of the hepatic transcriptome shows that liver and plasma hippurate are inversely associated with MASLD, implicating lipid metabolism and regulation of inflammatory responses pathways. Hippurate treatment inhibits lipid accumulation and rescues insulin resistance induced by 24-hour chronic insulin in IHH. Hippurate also improves hepatocyte metabolic profiles by increasing the abundance of metabolites involved in energy homeostasis that are depleted by chronic insulin treatment while decreasing those involved in inflammation. CONCLUSIONS Altogether, our results further highlight hippurate as a mechanistic marker of metabolic health, by its ability to improve metabolic homeostasis as a postbiotic candidate.
Collapse
Affiliation(s)
- Maxime Deslande
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Francesc Puig-Castellvi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Inés Castro-Dionicio
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Romina Pacheco-Tapia
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Violeta Raverdy
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Robert Caiazzo
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Guillaume Lassailly
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Audrey Leloire
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Petros Andrikopoulos
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Yasmina Kahoul
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Nawel Zaïbi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Bénédicte Toussaint
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Frédérik Oger
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Nicolas Gambardella
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Philippe Lefebvre
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Mehdi Derhourhi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Souhila Amanzougarene
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Bart Staels
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - François Pattou
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Philippe Froguel
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Amélie Bonnefond
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Marc-Emmanuel Dumas
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom; The Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, H3A 0G1, Canada.
| |
Collapse
|
7
|
Deng YC, Shih CJ, Lin SY, Wang LC, Yang TY, Tseng SP. Synergistic effect between taurine-induced silver ion and itraconazole against azole-resistant Candida species and Candida auris. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00004-0. [PMID: 39893146 DOI: 10.1016/j.jmii.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/03/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Azole antifungals are the first-line choice for treating candidiasis within a limited antifungal option. However, azole-resistant Candida species have increased rapidly, causing severe clinical threats, especially multidrug-resistant (MDR) isolates. The emergence of Candida auris has also caused global concerns recently. METHODS Herein, we evaluated the antifungal activity of taurine-induced silver ions (Tau-Ag), prepared by the induction from silver-incorporated mesoporous bioactive glass to address this issue. RESULTS Our data demonstrated that minimum inhibitory concentrations (MICs) of Tau-Ag ranged from 0.020 to 0.078 mg/mL in 24h and from 0.039 to 0.156 mg/mL in 48h. No hemolysis and cytotoxicity were observed at the MICs. Furthermore, no in vivo toxicity related to Tau-Ag was observed in a Caenorhabditis elegans model. In the investigation of antifungal mechanisms, we observed that the reactive oxygen species (ROS) level significantly increased when Candida spp. treated with Tau-Ag. Biofilm formation inhibition assays found that Tau-Ag may penetrate the biofilm and eliminate biofilm-forming cells. In the time-kill method, Tau-Ag showed a long-lasting fungistatic effect and superior antifungal effect compared to itraconazole alone. Furthermore, Tau-Ag showed synergistic antifungal effects in combination with itraconazole, effectively restoring its activity. CONCLUSION Our results confirmed the potential of Tau-Ag and its combination use with itraconazole to serve as a novel antifungal agent to combat the plight of administration on azole-resistant and MDR Candida spp. and C. auris.
Collapse
Affiliation(s)
- Yu-Cin Deng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Laboratory and Regenerative Medicine, MacKay Medical College, New Taipei City, Taiwan; Research Institute for Science and Engineering, Waseda University, Japan.
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Yu Q, Zhao F, Wang S, Jia X, Shen S, Zhao X, Li Y, Song J, Sun M, Liu X, Liu Z. The Diagnostic Value of Bile Acids and Amino Acids in Differentiating Acute Coronary Syndromes. Int J Gen Med 2025; 18:179-189. [PMID: 39834909 PMCID: PMC11742763 DOI: 10.2147/ijgm.s499046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Purpose Acute coronary syndrome (ACS), comprising unstable angina and acute myocardial infarction, is the most dangerous and fatal form of coronary heart disease. This study evaluates serum bile acids (BAs) and amino acids (AAs) as potential predictors of AMI in UA patients. Patients and Methods A total of 72 Non-Coronary Artery Disease (NCAD) patients, 157 UA patients, and 79 AMI patients were analyzed. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) measured 15 bile acids and 19 amino acids. The data was split into training and validation sets (7:3). Univariate and multivariate analyses were performed. Diagnostic value and clinical benefits were assessed using receiver operating characteristic (ROC) curves, decision curve analysis, and metrics such as the area under the curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI). Results Orthogonal partial least squares discriminant analysis (OPLS-DA) of serum BAs and AAs effectively differentiated NCAD, UA, and AMI groups. The differences in serum BA and AA profiles between UA and AMI patients were primarily driven by four metabolites: deoxycholic acid (DCA), histidine (His), lysine (Lys), and phenylalanine (Phe). Together, they had an AUC of 0.830 (0.768 in the validation cohort) for predicting AMI in UA patients. After adjusting for multiple confounding factors, DCA, His, Lys, and Phe were independent predictors distinguishing UA from AMI. The results of AUC, IDI, and NRI showed that adding these four biomarkers to a model with clinical variables significantly improved predictive value, which was confirmed in the validation cohort. Conclusion These findings highlight the association of DCA, His, Lys, and Phe with AMI, suggesting their potential role in AMI pathogenesis.
Collapse
Affiliation(s)
- Qian Yu
- Post Graduate School of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Huludao Central Hospital Teaching Base of Jinzhou Medical University, Huludao, Liaoning, People’s Republic of China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabolomics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
| | - Furong Zhao
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabolomics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Clinical Research department, Dalian Boyuan Medical Technology Co., Ltd, Dalian, Liaoning, People’s Republic of China
| | - Shuang Wang
- Clinical Research department, Dalian Boyuan Medical Technology Co., Ltd, Dalian, Liaoning, People’s Republic of China
| | - Xingwang Jia
- Post Graduate School of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Department of Laboratory Medicine, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, People’s Republic of China
| | - Shuang Shen
- Huludao Central Hospital Teaching Base of Jinzhou Medical University, Huludao, Liaoning, People’s Republic of China
| | - Xiaofeng Zhao
- Huludao Central Hospital Teaching Base of Jinzhou Medical University, Huludao, Liaoning, People’s Republic of China
| | - Ying Li
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabolomics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Clinical Research department, Dalian Boyuan Medical Technology Co., Ltd, Dalian, Liaoning, People’s Republic of China
| | - Jiaolei Song
- Huludao Central Hospital Teaching Base of Jinzhou Medical University, Huludao, Liaoning, People’s Republic of China
| | - Miao Sun
- Post Graduate School of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Department of Laboratory Medicine, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, People’s Republic of China
| | - Xin Liu
- Post Graduate School of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Huludao Central Hospital Teaching Base of Jinzhou Medical University, Huludao, Liaoning, People’s Republic of China
| | - Zhining Liu
- Post Graduate School of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
- Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People’s Republic of China
| |
Collapse
|
9
|
Zhou Y, Pei S, Qiu G, Zhang J, Guo H, Cui S, Liu Z, Zhang D. Taurine is essential for mouse uterine luminal fluid resorption during implantation window via the SCNN1A and AQP8 signaling†. Biol Reprod 2025; 112:140-155. [PMID: 39428112 DOI: 10.1093/biolre/ioae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Uterine fluid homeostasis during peri-implantation is crucial for successful embryo implantation. Taurine (Tau) plays a crucial role in regulating osmotic pressure and ion transport. However, the precise mechanisms underlying Tau-mediated regulation of uterine fluid homeostasis during peri-implantation in mice remain unclear. In this study, we generated a Tau-deficient mouse model by administering Tau-free diet to Csad knockout (Csad-/-) mice to block endogenous Tau synthesis and exogenous Tau absorption (Csad-/--Tau free). Our findings demonstrated that Csad-/--Tau free mice with diminished level of Tau exhibited decreased rates of embryo implantation and impaired fertility. Further analysis revealed that the expression of Scnn1a was down-regulated during the implantation window, while Aqp8 was upregulated in Csad-/--Tau free mice, leading to uterine luminal fluid retention and defects in luminal closure, resulting in failed embryo implantation. Additionally, it was also found that E2 inhibited uterine Csad expression and Tau synthesis, while P4 promoted them. Therefore, our findings suggest that ovarian steroid hormones regulate Csad expression and Tau synthesis, thereby affecting release and resorption of uterine luminal fluid, ultimately impacting embryo implantation success.
Collapse
Affiliation(s)
- Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Shaona Pei
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, 88 Daxuenan Road, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
10
|
Li B, Du L, Wu S, Yin Y. Protective effects of taurine on heat Stress-Induced cognitive impairment through Npas4 and Lcn2. Int Immunopharmacol 2024; 143:113376. [PMID: 39405930 DOI: 10.1016/j.intimp.2024.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Heat stress (HS) induces various pathophysiological responses in the brain, encompassing neuroinflammation and cognitive impairments. Although taurine has been reported to possess anti-inflammatory and cognitive-enhancing properties, its role and mechanisms in HS-induced cognitive impairment remain unclear. This study supplemented mice exposed to HS with taurine to assess its effect on cognitive function in a HS-induced mouse model. The results revealed that taurine ameliorated cognitive deficits following HS in mice and mitigated HS-induced astrocyte and microglia activation as well as blood-brain barrier (BBB) damage in the hippocampus. Mechanistically, Mechanistically, transcriptome sequencing was employed to identify that taurine regulates neuronal PAS domain protein (Npas4) and lipocalin 2 (Lcn2) during HS. Taurine was found to modulate hippocampal inflammation and influence cognitive function by upregulating Npas4 and downregulating Lcn2 after HS. Subsequently, molecular docking and AnimalTFDB database calculations were conducted, revealing that taurine might regulate the expression of Npas4 and Lcn2 by modulating the regulatory transcription factors (TFs) RE1 silencing transcription factor (REST) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1). Our findings demonstrate that taurine enhances the recovery of cognitive function through Npas4 and Lcn2 following HS, providing a theoretical basis for the clinical application of taurine in preventing or treating HS-induced cognitive impairment.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
11
|
Furlanello T, Masti R, Bertolini FM, Ongaro V, Zoia A, Sanchez del Pulgar J. Development and Validation of a Robust and Straightforward LC-MS Method for Measuring Taurine in Whole Blood and Plasma of Dogs and Reference Intervals Calculation. Animals (Basel) 2024; 15:3. [PMID: 39794945 PMCID: PMC11718811 DOI: 10.3390/ani15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Several studies have highlighted the essential role of taurine in maintaining the health of small animals, particularly dogs. Taurine deficiency has been linked to various health issues, especially in certain dog breeds. Therefore, accurately assessing taurine levels in canine blood is crucial for diagnosing and monitoring these conditions. In this study, we present the development of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for rapidly quantifying taurine concentrations in dog whole blood and plasma. The method was validated according to current guidelines, showing excellent accuracy, precision, and sensitivity across a wide concentration range. Specifically, the limit of quantification was set at 80 nmol/mL for whole blood and 8 nmol/mL for plasma, ensuring the method's reliability for both matrices. The application of this validated technique to blood samples of healthy dogs allowed for the establishment of reference intervals for taurine concentrations (148 to 495 nmol/mL for whole blood; 42 to 183 nmol/mL for plasma). Due to its robustness and simplicity, this method represents a valuable tool, supporting its routine use in health assessments and enabling more effective monitoring of taurine status in dogs.
Collapse
Affiliation(s)
- Tommaso Furlanello
- San Marco Veterinary Clinic and Laboratory, Via dell’Industria 3, 35030 Veggiano, Italy; (T.F.); (F.M.B.); (V.O.); (A.Z.)
| | - Riccardo Masti
- San Marco Veterinary Clinic and Laboratory, Via dell’Industria 3, 35030 Veggiano, Italy; (T.F.); (F.M.B.); (V.O.); (A.Z.)
| | - Francesca Maria Bertolini
- San Marco Veterinary Clinic and Laboratory, Via dell’Industria 3, 35030 Veggiano, Italy; (T.F.); (F.M.B.); (V.O.); (A.Z.)
| | - Valeria Ongaro
- San Marco Veterinary Clinic and Laboratory, Via dell’Industria 3, 35030 Veggiano, Italy; (T.F.); (F.M.B.); (V.O.); (A.Z.)
| | - Andrea Zoia
- San Marco Veterinary Clinic and Laboratory, Via dell’Industria 3, 35030 Veggiano, Italy; (T.F.); (F.M.B.); (V.O.); (A.Z.)
| | | |
Collapse
|
12
|
Mahmoud MM, El-Batran SA, Hegazy R, El-Sayed WM. Taurine and enzymatically modified isoquercitrin protected against methotrexate-induced deteriorations in the conductivity and rhythmicity of the heart in rats: Antioxidant, anti-inflammatory, and histological architecture approach. J Appl Toxicol 2024; 44:1924-1935. [PMID: 39135265 DOI: 10.1002/jat.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 10/06/2024]
Abstract
Cardiotoxicity is one of the most devastating complications of cancer treatment by methotrexate (MTX). The present study aimed to investigate the potential anti-cardiotoxic efficacy of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ) alone or combined against MTX-induced cardiotoxicity in adult male rats. A total of 36 rats were randomly divided into six groups (six animals each): control, MTX (a single i.p. dose of 20 mg/kg), EMIQ + MTX (26 mg/kg of EMIQ, p.o. for 16 days), Tau + MTX (500 mg/kg of Tau, p.o. for 16 days), EMIQ + Tau + MTX at the same previous doses, and (EMIQ + Tau)½ + MTX. MTX reduced the percentage of body weight change, the expression of dihydrofolate reductase (DHFR) and folypolyglutamyl synthetase (FPGS), the cleaved tumor necrosis factor alpha (TNF-α) level in the cardiac tissue, and the elevated serum TNF-α level. MTX extensively deteriorated the electrocardiography (ECG), inducing tachycardia with shortening of the time intervals between successive heartbeats (R-R interval), associated with elongation of ventricular depolarization (QRS interval), and the corrected total time for ventricular de- and repolarization (QTc) duration. Treatment with MTX resulted in a significant reduction in atrial depolarization (P amplitude) and rapid repolarization (T amplitude) and a significant elevation in plateau phase (ST height). MTX treatment resulted in swelling of cardiomyocytes with extensive vacuolization of sarcoplasm with numerous variably sized vacuoles in addition to apoptotic cells. Tau and EMIQ protected against MTX-induced deteriorations in the conductivity and rhythmicity of the heart through antioxidative, anti-inflammatory, and antiapoptotic activities. Treatment with tau and EMIQ combined at high or low doses offered superior protection to the heart than using each agent alone.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Seham A El-Batran
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Li X, Jiang N, Li Q, Zheng K, Zhang Y, Sang X, Feng Y, Chen R, Chen Q. Taurine potentiates artemisinin efficacy against malaria by modulating the immune response in Plasmodium berghei-infected mice. Parasit Vectors 2024; 17:493. [PMID: 39614280 DOI: 10.1186/s13071-024-06585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Artemisinin (ART) is a frontline drug for the treatment of malaria; however, the emergence of ART-resistant Plasmodium strains necessitates increasing ART sensitivity. Given that taurine (TAU) has been shown to have immunomodulatory activity, we investigated the effects of TAU as an adjunct therapy to ART in mice infected with Plasmodium berghei. METHODS Mice infected with P. berghei ANKA strain (P. berghei ANKA) were treated with TAU alone, ART alone or a combination of TAU and ART (TAU + ART), and their survival time and parasitaemia were recorded. The cytotoxic effects of TAU and ART were subsequently assessed. The expression levels of inflammasome-related genes and inflammatory factors in mice infected with P. berghei ANKA were analysed in relation to those in mice treated with TAU alone, ART alone or the TAU + ART combination. The therapeutic effects were further evaluated by histological analysis and measurement of the spleen index. RESULTS Compared with the control mice, P. berghei ANKA-infected mice treated with ART in combination with TAU presented significantly lower parasitaemia and prolonged survival. The combined treatment resulted in significant reductions in the expression levels of inflammasome-related genes in the spleen, including absent in melanoma 2 (AIM2), caspase-1, NOD-, LRR- and pyrin domain-containing protein 3 (Nlrp3), Nlrp1b, Nlrp1b, NLR family CARD domain containing 4 (Nlrc4), Nlrp6, nucleotide binding oligomerization domain containing 1 (NOD1) and NOD2, and decreases in the levels of inflammatory cytokines in the serum, including interleukin (IL)-12p70, tumour necrosis factor-alpha, monocyte chemoattractant protein-1, IL-10 and IL-6. Histopathological analysis confirmed that TAU + ART combination treatment reduced spleen pathology caused by P. berghei ANKA infection. CONCLUSIONS The findings indicate that TAU potentiates ART efficacy by modulating the immune response in P. berghei-infected mice.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Kexin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
14
|
Su Q, Pan XF, Li HB, Xiong LX, Bai J, Wang XM, Qu XY, Zhang NR, Zou GQ, Shen Y, Li L, Huang LL, Zhang H, Xu ML. Taurine Supplementation Alleviates Blood Pressure via Gut-Brain Communication in Spontaneously Hypertensive Rats. Biomedicines 2024; 12:2711. [PMID: 39767618 PMCID: PMC11673895 DOI: 10.3390/biomedicines12122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTS Taurine exhibits protective effects in the context of cardiovascular pathophysiology. A range of evidence suggests that hypertension activates inflammatory responses and oxidative stress in the paraventricular nucleus (PVN), elevating the arterial tone and sympathetic activity, while it induces gut-brain axis dysfunction in the context of hypertension. However, the mechanism underlying taurine's anti-hypertensive effects via the gut-brain axis remains unclear. METHOD Male spontaneously hypertensive rats (SHRs) were administered 3% taurine in their drinking water for eight weeks, with their arterial pressure measured weekly. Molecular techniques were employed to investigate taurine's effects on the hypertensive gut and PVN. Additionally, 16S rRNA gene sequencing was used to analyze the gut microbiota composition, and untargeted metabolomics was applied to assess the fecal metabolites following taurine supplementation. RESULTS Taurine supplementation not only reduced the blood pressure, sympathetic activity, and inflammatory and oxidative stress in the PVN but also improved the cardiac pathology and microbiota composition while alleviating gut inflammation in hypertensive rats. The untargeted metabolite analysis indicated that the primary effect of the taurine intervention in SHRs was exerted on tryptophan metabolism. The levels of serum metabolites such as kynurenine, L-tryptophan, serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) were altered in hypertensive rats following taurine treatment. CONCLUSIONS Taurine supplementation restored the microbiota balance, strengthened the mucosal barrier, reduced intestinal inflammation, and stimulated tryptophan metabolism. The metabolites derived from the gut microbiota likely crossed the brain barrier and reached the paraventricular nucleus, thereby reducing the inflammatory responses and oxidative stress in the PVN via gut-brain communication, leading to decreased sympathetic nerve activity and blood pressure in the studied hypertensive rats.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (H.-B.L.); (X.-M.W.); (L.-L.H.)
| | - Xiong-Feng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha 410007, China;
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (H.-B.L.); (X.-M.W.); (L.-L.H.)
| | - Ling-Xiao Xiong
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Juan Bai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (H.-B.L.); (X.-M.W.); (L.-L.H.)
| | - Xiao-Ying Qu
- Department of Clinical Medical, Xi’an Jiaotong University, Xi’an 710061, China; (X.-Y.Q.); (N.-R.Z.); (G.-Q.Z.); (Y.S.)
| | - Ning-Rui Zhang
- Department of Clinical Medical, Xi’an Jiaotong University, Xi’an 710061, China; (X.-Y.Q.); (N.-R.Z.); (G.-Q.Z.); (Y.S.)
| | - Guo-Quan Zou
- Department of Clinical Medical, Xi’an Jiaotong University, Xi’an 710061, China; (X.-Y.Q.); (N.-R.Z.); (G.-Q.Z.); (Y.S.)
| | - Yang Shen
- Department of Clinical Medical, Xi’an Jiaotong University, Xi’an 710061, China; (X.-Y.Q.); (N.-R.Z.); (G.-Q.Z.); (Y.S.)
| | - Lu Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China;
| | - Li-Li Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (H.-B.L.); (X.-M.W.); (L.-L.H.)
| | - Huan Zhang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Northwest University & Xi’an No.3 Hospital, Xi’an 710018, China;
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China;
| |
Collapse
|
15
|
You Z, Zhang J, Xu Y, Lu J, Zhang R, Zhu Z, Wang Y, Hao Y. Identification of the Biomarkers for Chronic Gastritis with TCM Damp Phlegm Pattern by Using Tongue Coating Metabolomics. J Inflamm Res 2024; 17:8027-8045. [PMID: 39507266 PMCID: PMC11539634 DOI: 10.2147/jir.s480307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to establish a model for identifying chronic gastritis with the traditional Chinese medicine damp phlegm pattern by examining metabolite changes in the tongue coating of patients. It also explored the role of metabolic pathways in the pathogenesis of this condition. Methods This cross-sectional study involved 300 patients diagnosed with chronic gastritis. Of these, 200 patients exhibited the damp phlegm pattern, while 100 did not. Metabolomic methods employing GC-TOF-MS and UHPLC-QE-MS were utilized to identify various metabolites in the tongue coating of patients. An identification model for chronic gastritis with the damp phlegm pattern was created based on ROC curves derived from differential biomarkers. Additionally, 50 samples not included in model construction were collected for external validation. Results Comparison of the damp phlegm pattern group with the non-damp phlegm pattern group revealed a total of 116 differential metabolites. Among these, lipids and lipid-like compounds were most abundant, comprising 27 types, which included four lipid metabolites related to sphingomyelin metabolism. The ROC model, which included phenol, 2.6-diaminoheptanedioic acid, and N-hexadecanoyl pyrrolidine, demonstrated the highest accuracy, with accuracy, sensitivity, and specificity metrics of 94.0%, 91.0%, and 87.0%, respectively. Furthermore, external validation using tongue coating metabolites from 50 patients revealed accuracy, sensitivity, and specificity in the validation set of 93.9%, 90.6%, and 83.3%, respectively. Conclusion Differential metabolites between patients with the damp phlegm pattern and those without are primarily lipids and lipid-like compounds. N-hexadecanoyl pyrrolidine, phenol, and 2.6-diaminoheptanedioic acid may serve as potential biomarkers for chronic gastritis characterized by the damp phlegm pattern.
Collapse
Affiliation(s)
- Zhiyuan You
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jialin Zhang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yifeng Xu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Junhong Lu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Renling Zhang
- Gastroenterology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhujing Zhu
- Rheumatology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yiqin Wang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yiming Hao
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
16
|
Batitucci G, Abud GF, Ortiz GU, Belisário LF, Travieso SG, de Lima Viliod MC, Venturini ACR, de Freitas EC. Sarcobesity: New paradigms for healthy aging related to taurine supplementation, gut microbiota and exercise. Ageing Res Rev 2024; 101:102460. [PMID: 39173917 DOI: 10.1016/j.arr.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/16/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Enigmatic sarcopenic obesity is still a challenge for science and adds to the global public health burden. The progressive accumulation of body fat combined with a dysfunctional skeletal muscle structure and composition, oxidative stress, mitochondrial dysfunction, and anabolic resistance, among other aggravating factors, together represent the seriousness and complexity of treating the metabolic disorder of sarcobesity in aging. For this reason, further studies are needed that encourage the support of therapeutic management. It is along these lines that we direct the reader to therapeutic approaches that demonstrate important, but still obscure, outcomes in the physiological conditions of sarcobesity, such as the role of taurine in modulating inflammatory and antioxidant mechanisms in muscle and adipose tissue, as well as the management of gut microbiota, able to systemically re-establish the structure and function of the gut-muscle axis, in addition to the merits of physical exercise as an instrument to improve muscular health and lifestyle quality.
Collapse
Affiliation(s)
- Gabriela Batitucci
- School of Medical Sciences, Obesity and Comorbidities Research Center, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Gabriela Ferreira Abud
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Fernandes Belisário
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Sofia Germano Travieso
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Marcela Coffacci de Lima Viliod
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Ana Cláudia Rossini Venturini
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil
| | - Ellen Cristini de Freitas
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo - FMRP/USP, Ribeirao Preto, Sao Paulo, Brazil; Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo - EEFERP/USP, Ribeirao Preto, Brazil.
| |
Collapse
|
17
|
García Menéndez G, Sichel L, López MDC, Hernández Y, Arteaga E, Rodríguez M, Fleites V, Fernández LT, Cano RDJ. From colon wall to tumor niche: Unraveling the microbiome's role in colorectal cancer progression. PLoS One 2024; 19:e0311233. [PMID: 39436937 PMCID: PMC11495602 DOI: 10.1371/journal.pone.0311233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Colorectal cancer (CRC) is influenced by perturbations in the colonic microbiota, characterized by an imbalance favoring pathogenic bacteria over beneficial ones. This dysbiosis contributes to CRC initiation and progression through mechanisms such as carcinogenic metabolite production, inflammation induction, DNA damage, and oncogenic signaling activation. Understanding the role of external factors in shaping the colonic microbiota is crucial for mitigating CRC progression. This study aims to elucidate the gut microbiome's role in CRC progression by analyzing paired tumor and mucosal tissue samples obtained from the colon walls of 17 patients. Through sequencing of the V3-V4 region of the 16S rRNA gene, we characterized the tumor microbiome and assessed its association with clinical variables. Our findings revealed a significant reduction in alpha diversity within tumor samples compared to paired colon biopsy samples, indicating a less diverse microbial environment within the tumor microenvironment. While both tissues exhibited dominance of similar bacterial phyla, their relative abundances varied, suggesting potential colon-specific effects. Fusobacteriota enrichment, notably in the right colon, may be linked to MLH1 deficiency. Taxonomy analysis identified diverse bacterial genera, with some primarily associated with the colon wall and others unique to this region. Conversely, several genera were exclusively expressed in tumor tissue. Functional biomarker analysis identified three key genes with differential abundance between tumor microenvironment and colon tissue, indicating distinct metabolic activities. Functional biomarker analysis revealed three key genes with differential abundance: K11076 (putrescine transport system) and K10535 (nitrification) were enriched in the tumor microenvironment, while K11329 (SasA-RpaAB circadian timing mediator) dominated colon tissue. Metabolic pathway analysis linked seven metabolic pathways to the microbiome. Collectively, these findings highlight significant gut microbiome alterations in CRC and strongly suggest that long-term dysbiosis profoundly impacts CRC progression.
Collapse
Affiliation(s)
- Gissel García Menéndez
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Liubov Sichel
- Stellar Biotics, LLC, Rockleigh, New Jersey, United States of America
| | | | - Yasel Hernández
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Ernesto Arteaga
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Marisol Rodríguez
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Vilma Fleites
- Oncology Department Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Lipsy Teresa Fernández
- Surgery Department Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Raúl De Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| |
Collapse
|
18
|
Kurata H, Meguro S, Abe Y, Sasaki T, Arai Y, Hayashi K. Association of fish intake with all-cause mortality according to CRP levels or inflammation in older adults: a prospective cohort study. BMC Public Health 2024; 24:2822. [PMID: 39407192 PMCID: PMC11481737 DOI: 10.1186/s12889-024-20162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The relationship between inflammatory response, fish consumption, and mortality risk in older individuals is unclear. We investigated whether C-reactive protein (CRP) levels ≥ 0.1 mg/dL, fish intake, and inflammatory responses are associated with all-cause mortality risk in older adults. METHODS This prospective cohort study included older adults aged 85-89 years from the Kawasaki Aging and Wellbeing Project, who did not require daily care. Cohort was recruited from March 2017 to December 2018 (follow-up ended on December 31, 2021). Dietary assessment was conducted using the Brief Self-Administered Diet History Questionnaire. Multivariate Cox proportional hazards regression was used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for all-cause mortality in the CRP ≥ 0.1 mg/dL group; the CRP < 0.1 mg/dL group was used for reference. Within CRP ≥ 0.1 and < 0.1 mg/dL groups, participants were categorized into tertiles of fish intake. HRs and 95% CIs for all-cause mortality in the other groups were estimated using the lower tertile group as a reference. RESULTS The study included 996 participants (mean [standard deviation] age, 86.5 [1.37] years; 497 [49.9%] women) with a median CRP level of 0.08 (interquartile range [IQR] = 0.04-0.16). There were 162 deaths during 4,161 person-years of observation; the multivariable-adjusted HR for all-cause mortality in the CRP ≥ 0.1 mg/dL group was 1.86 (95% CI, 1.32-2.62); P < 0.001. In 577 individuals with median (IQR) fish intake of 39.3 g/1000 kcal (23.6-57.6) and CRP level of < 0.1 mg/dL, the multivariable-adjusted HR for all-cause mortality in the higher tertile group of fish intake was 1.15 (0.67-1.97); P = 0.59, non-linear P = 0.84. In 419 individuals with median (IQR) fish intake of 40.7 g/1000 kcal (25.0-60.1) and CRP level of ≥ 0.1 mg/dL, the multivariate-adjusted HR for all-cause mortality in the higher tertile group of fish intake was 0.49 (0.26-0.92); P = 0.026, non-linear P = 0.38, P-value for interaction = 0.040. CONCLUSIONS A negative association between fish intake and all-cause mortality was seen in older adults with elevated CRP levels, which is a mortality risk factor. While the results may be limited owing to stringent methods ensuring impartiality, they offer valuable insights for future research. TRIAL REGISTRATION UMIN000026053. Registered February 24, 2017.
Collapse
Affiliation(s)
- Hideaki Kurata
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shu Meguro
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Yukiko Abe
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Takashi Sasaki
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Yasumichi Arai
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan
| |
Collapse
|
19
|
Zhao X, Liu X, Liu L, Chen R. Serum metabolome alterations in hyperhomocysteinemia based on targeted and non-targeted MS-platforms. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124336. [PMID: 39374563 DOI: 10.1016/j.jchromb.2024.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND AND AIMS Hyperhomocysteinemia (Hhcy) is a pathological condition marked by increased level of homocysteine and serves as an independent risk factor for a range of diseases including cardiovascular diseases and Alzheimer's disease. This study aims to examine alterations in Hhcy-related metabolites using serum metabolomics and unravel the distinct metabolic pathways involved, thereby offering a theoretical foundation for the early prevention and treatment of Hhcy. METHODS Serum samples were collected from 56 individuals with Hhcy and 44 healthy controls. Metabolic alterations in Hhcy were assessed through multi-platform serum metabolomics analyses. Through multivariate statistical analysis and regression modeling, distinct metabolites in the serum were identified, and various metabolic pathways associated with Hhcy were investigated. RESULTS Our findings revealed 21 significant different metabolites that distinguished Hhcy from healthy controls. These varied metabolites primarily comprised 10 organic acids, 4 amino acids, 2 fatty acids, and 5 other metabolites. The key differential metabolic pathways identified were the TCA cycle, pyruvate metabolism, arginine biosynthesis, as well as alanine, aspartate, and glutamate metabolism. CONCLUSIONS This study elucidated the variances in metabolic profiles between Hhcy and healthy control groups, highlighting distinct metabolic pathways that may help explain the etiology of Hhcy. These findings offer valuable insights to address the knowledge gaps related to the metabolic alterations associated with Hhcy.
Collapse
Affiliation(s)
- Xinshu Zhao
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi 150040, China; Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaowei Liu
- Department of Sanitary Inspection, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Liyan Liu
- Department of Sanitary Inspection, School of Public Health, Harbin Medical University, Heilongjiang, China.
| | - Rui Chen
- Department of Orthopedics, Jiangnan University Medical Center, Wuxi 150040, China.
| |
Collapse
|
20
|
Zhang Z, Zheng Y, Zhang B, Wang R, Chen L, Wang Y, Feng W, Zheng X, Li K, Zhou N. Untargeted serum and gastric metabolomics and network pharmacology analysis reveal the superior efficacy of zingiberis rhizoma recens-/euodiae fructus-processed Coptidis Rhizoma on gastric ulcer rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118376. [PMID: 38782310 DOI: 10.1016/j.jep.2024.118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiberis rhizoma recens-/wine-/euodiae fructus-processed Coptidis Rhizoma (CR, zCR/wCR/eCR) are the commonly used processed products of CR in clinic. After being processed with different excipients, the efficacy of CR will change accordingly. I.e., wCR could resolve excessive heat of the upper energizer, zCR could eliminate gastric heat and harmonize the stomach, eCR could smooth the liver and harmonize the stomach. However, the underlying mechanisms were still unclear. AIM OF THE STUDY To further verify the differential efficacy of the three processed CR products and compare the mechanisms on gastric ulcer. MATERIAL AND METHODS First, a GU model, whose onset is closely related to the heat in stomach and the disharmony between liver and stomach, was established, and the therapeutic effects of zCR/wCR/eCR/CR were evaluated by pathologic observation and measurement of cytokine levels. Second, metabolomics analysis and network pharmacology were conducted to reveal the differential intervening mechanism of zCR/eCR on GU. Third, the predicted mechanisms from metabolomics analysis and network pharmacology were validated using western blotting, flow cytometry and immunofluorescence. RESULTS zCR/wCR/eCR/CR could alleviate the pathologic damage to varying degrees. In metabolomics research, fewer metabolic pathways were enriched in serum samples, and most of them were also present in the results of gastric tissue samples. The gastroprotective, anti-inflammatory, antioxidant, and anti-apoptotic effects of zCR/wCR/eCR/CR might be due to their interference on histidine, arachidonic acid, and glycerophospholipids metabolism. Quantitative results indicated that zCR/eCR had a better therapeutic effect than wCR/CR in treating GU. A comprehensive analysis of metabolomics and network pharmacology revealed that zCR and eCR exerted anti-GU effects via intervening in five core targets, including AKT, TNF, IL6, IL1B and PPARG. In the validation experiment, zCR/eCR could significantly reverse the abnormal expression of proteins related to apoptosis, inflammation, oxidative stress, gastric function, as well as the PI3K/AKT signaling pathways. CONCLUSION zCR and eCR could offer gastroprotective benefits by resisting inflammation and apoptosis, inhibiting gastric-acid secretion, as well as strengthening gastric mucosal defense and antioxidant capacity. Integrating network pharmacology and metabolomics analysis could reveal the acting mechanism of drugs and promote the development of medications to counteract GU.
Collapse
Affiliation(s)
- Zhenkai Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yajuan Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Bingxian Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ruifeng Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Long Chen
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Yongxiang Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Kai Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China.
| | - Ning Zhou
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| |
Collapse
|
21
|
Katano S, Yano T, Yamano K, Numazawa R, Nagaoka R, Honma S, Fujisawa Y, Ohori K, Kouzu H, Kunihara H, Fujisaki H, Katayose M, Hashimoto A, Furuhashi M. Associations between in-hospital daily protein intake and adverse clinical outcomes in older patients with heart failure. ESC Heart Fail 2024; 11:2591-2605. [PMID: 38705583 PMCID: PMC11424306 DOI: 10.1002/ehf2.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
AIMS The adverse effects of low daily protein intake (DPI) on clinical outcomes in patients with heart failure (HF) are known; however, an optimal DPI to predict event adverse outcomes remains undetermined. Moreover, whether protein restriction therapy for chronic kidney disease is applicable in patients with HF and renal dysfunction remains unclear. METHODS AND RESULTS In this single-centre, ambispective cohort study, we included 405 patients with HF aged ≥65 years (mean age, 78.6 ± 7.5 years; 50% women). DPI was estimated from consumption over three consecutive days before discharge and normalized relative to the ideal body weight [IBW, 22 kg/m2 × height (m)2]. The primary outcome was a composite of all-cause mortality and HF-related readmission within the 2 year post-discharge period. RESULTS During an average follow-up period of 1.49 ± 0.74 years, 100 patients experienced composite events. Kaplan-Meier survival curves revealed a significantly lower composite event-free rate in patients within the lowest quartile of DPI than in the upper quartiles (log-rank test, P = 0.02). A multivariate Cox proportional hazards analysis after adjusting for established prognostic markers and non-proteogenic energy intake revealed that patients in the lowest DPI quartile faced a two-fold higher risk of composite events than those in the highest quartile [hazard ratio (HR), 2.03; 95% confidence interval (CI), 1.08-3.82; P = 0.03]. The composite event risk linearly increased as DPI decreased (P for nonlinearity = 0.90), with each standard deviation (0.26 g/kg IBW/day) decrease in DPI associated with a 32% increase in composite event risk (HR, 1.32; 95% CI, 1.10-1.71; P = 0.04). There was significant heterogeneity in the effect of DPI, with the possible disadvantage of lower DPI in patients with HF with cystatin C-based estimated glomerular filtration rate <30 mL/min/1.73 m2. The cutoff value of DPI for predicting the occurrence of composite events calculated from the Youden index was 1.12 g/kg IBW/day. Incorporating a DPI < 1.12 g/kg IBW/day into the baseline model significantly improved the prediction of post-discharge composite events (continuous net reclassification improvement, 0.294; 95% CI, 0.072-0.516; P = 0.01). CONCLUSIONS Lower DPI during hospitalization is associated with an increased risk of mortality and HF readmission independent of non-proteogenic energy intake, and the possible optimal DPI for predicting adverse clinical outcomes is >1.12 g/kg IBW/day in older patients with HF. Caution is warranted when protein restriction therapy is administered to older patients with HF and renal dysfunction.
Collapse
Affiliation(s)
- Satoshi Katano
- Division of RehabilitationSapporo Medical University HospitalSapporoHokkaidoJapan
- Second Division of Physical TherapySapporo Medical University School of Health SciencesSapporoHokkaidoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Kotaro Yamano
- Division of RehabilitationSapporo Medical University HospitalSapporoHokkaidoJapan
- Second Division of Physical TherapySapporo Medical University School of Health SciencesSapporoHokkaidoJapan
| | - Ryo Numazawa
- Graduate School of MedicineSapporo Medical UniversitySapporoHokkaidoJapan
| | - Ryohei Nagaoka
- Division of RehabilitationSapporo Medical University HospitalSapporoHokkaidoJapan
- Graduate School of MedicineSapporo Medical UniversitySapporoHokkaidoJapan
| | - Suguru Honma
- Graduate School of MedicineSapporo Medical UniversitySapporoHokkaidoJapan
- Department of RehabilitationSapporo Cardiovascular HospitalSapporoHokkaidoJapan
| | - Yusuke Fujisawa
- Second Division of Physical TherapySapporo Medical University School of Health SciencesSapporoHokkaidoJapan
- Department of RehabilitationJapanese Red Cross Asahikawa HospitalAsahikawaHokkaidoJapan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
- Department of CardiologyHokkaido Cardiovascular HospitalSapporoHokkaidoJapan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Hayato Kunihara
- Division of RehabilitationSapporo Medical University HospitalSapporoHokkaidoJapan
| | - Hiroya Fujisaki
- Division of RehabilitationSapporo Medical University HospitalSapporoHokkaidoJapan
| | - Masaki Katayose
- Second Division of Physical TherapySapporo Medical University School of Health SciencesSapporoHokkaidoJapan
| | - Akiyoshi Hashimoto
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
- Division of Health Care Administration and ManagementSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| |
Collapse
|
22
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Zhou M, Wu Z, Deng D, Wang B, Zhou X, Zhou B, Wang C, Zeng Y. Effects of taurine on the growth performance, diarrhea, oxidative stress and intestinal barrier function of weanling piglets. Front Vet Sci 2024; 11:1436282. [PMID: 39170630 PMCID: PMC11336868 DOI: 10.3389/fvets.2024.1436282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative damage resulting from weaning stress significantly impacts the growth performance and health status of piglets. Taurine, a dietary antioxidant with diverse functions, was investigated in this study for its protective role against weaning stress-induced oxidative damage and its underlying mechanism. Forty 28-day-old male castrated weaned piglets were randomly assigned to four groups. The control group received the basal diet, while the experimental groups were fed the basal diet supplemented with 0.1, 0.2%, or 0.3% taurine over a 28-day period. In vitro, H2O2 was utilized to induce oxidative damage to the jejunal mucosa of piglets via IPEC-J2 cells. The results demonstrated that taurine supplementation reduced the incidence of diarrhea in piglets compared to that in the control group (p < 0.05); the addition of 0.2 and 0.3% taurine led to increased average daily gain and improved feed conversion efficiency in weaned piglets, showing a linear dose-response correlation (p < 0.05). Taurine supplementation at 0.2 and 0.3% enhanced the activities of serum CAT and GSH-Px while decreasing the levels of serum NO, XOD, GSSG, and MDA (p < 0.05). Moreover, it significantly elevated the levels of GSS, Trx, POD, complex I, mt-nd5, and mt-nd6, enhancing superoxide anion scavenging capacity and the hydroxyl-free scavenging rate in the livers of weaned piglets while reducing NO levels in the liver (p < 0.05). Additionally, 0.2 and 0.3% taurine supplementation decreased serum IL-6 levels and elevated the concentrations of IgA, IgG, and IL-10 in weaned piglets (p < 0.05). The levels of occludin, claudin, and ZO-1 in the jejunum mucosa of weaned piglets increased with 0.2 and 0.3% taurine supplementation (p < 0.05). In IPEC-J2 cells, pretreatment with 25 mM taurine for 24 h enhanced the activities of SOD and CAT; reduced the MDA content; upregulated the mRNA expression of various genes, including ZO-1, occludin, claudin-1, Nrf2, and HO-1; and reversed the oxidative damage induced by H2O2 exposure (p < 0.05). Overall, the findings suggest that the inclusion of 2 and 3% taurine in the diet can enhance growth performance, reduce diarrhea rates, ameliorate oxidative stress and inflammation, and promote intestinal barrier function in weaned piglets.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Donghua Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, China
| | | | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | | | - Yan Zeng
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
24
|
Chen B, Chen L, Dai Y, Wu J, Zheng D, Vgontzas AN, Tang X, Li Y. The different roles of homocysteine metabolism in hypertension among normal-weight and obese patients with obstructive sleep apnea. Sleep Med 2024; 120:1-9. [PMID: 38824846 DOI: 10.1016/j.sleep.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with hypertension. However, the differential mechanisms underlying OSA-related hypertension between normal-weight vs. obese patients is limited. METHODS We studied 92 patients with OSA and 24 patients with continuous positive airway pressure (CPAP) treatment. Blood pressure (BP) was measured twice during awake and continuously monitored during sleep. Obesity was defined as body mass index ≥28 kg/m2. Serum metabolite levels were assessed by metabolomics. RESULTS Among 59 normal-weight and 33 obese patients, 651 and 167 metabolites showed differences between hypertension and normotension or were associated with systolic and diastolic BP (SBP, DBP) after controlling confounders. These metabolites involved 16 and 12 Kyoto Encyclopedia of Genes and Genomes enrichment pathways in normal-weight and obese patients respectively, whereas 6 pathways overlapped. Among these 6 overlapping pathways, 4 were related to homocysteine metabolism and 2 were non-specific pathways. In homocysteine metabolism pathway, 13 metabolites were identified. Interestingly, the change trends of 7 metabolites associated with SBP (all interaction-p≤0.083) and 8 metabolites associated with DBP (all interaction-p≤0.033) were opposite between normal-weight and obese patients. Specifically, increased BP was associated with down-regulated folate-dependent remethylation and accelerated transsulfuration in normal-weight patients, whereas associated with enhanced betaine-dependent remethylation and reduced transsulfuration in obese patients. Similar findings were observed in ambulatory BP during sleep. After CPAP treatment, baseline low homocysteine levels predicted greater decrease in DBP among normal-weight but not obese patients. CONCLUSIONS Mechanisms in OSA-related hypertension differ between normal-weight and obese patients, which are explained by different changes in homocysteine metabolism.
Collapse
Affiliation(s)
- Baixin Chen
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| | - Le Chen
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| | - Yanyuan Dai
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| | - Jun Wu
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| | - Dandan Zheng
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Li
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou, China.
| |
Collapse
|
25
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse cardiac events of hypercholesterolemia are enhanced by sitagliptin in sprague dawley rats. Nutr Metab (Lond) 2024; 21:54. [PMID: 39080769 PMCID: PMC11290187 DOI: 10.1186/s12986-024-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. Therefore, studies on the combined effects of Cho and Met were carried out using male Sprague Dawley rats. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. We hypothesized that feeding a dietary combination of Cho and Met would result in adverse cardiac effects and would be attenuated upon administration of sitagliptin. METHODS Adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with an aqueous preparation of sitagliptin (100 mg/kg/d) or vehicle (water) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. RESULTS Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. CONCLUSIONS Adverse cardiac outcomes in HChol were enhanced by the administration of sitagliptin, and such effects were alleviated by Met. Our findings could be significant for understanding or revisiting the risk-benefit evaluation of sitagliptin in type 2 diabetics, and especially those who are known to consume atherogenic diets.
Collapse
Affiliation(s)
- Henry A Palfrey
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Avinash Kumar
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rashmi Pathak
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Kirsten P Stone
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Thomas W Gettys
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Subramanyam N Murthy
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
26
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
27
|
Alkahtani A, Grootveld M, Bhogadia M, Baysan A. Exploring Salivary Metabolic Alterations in Type 2 Diabetes: Implications for Dental Caries and Potential Influences of HbA1c and Vitamin D Levels. Metabolites 2024; 14:372. [PMID: 39057695 PMCID: PMC11279097 DOI: 10.3390/metabo14070372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus is considered to be the most common health issue affecting almost 1 in 11 adults globally. Oral health complications including xerostomia, periodontal disease, dental caries, and soft tissue lesions are prevalent among individuals with diabetes, and therefore an understanding of the potential association between salivary metabolites and dental caries progression would enable the early detection and prevention of this non-communicable disease. Therefore, the aim of this study was to compare salivary biomarkers between individuals with type 2 diabetes (T2DM) with those without this disorder (ND) using 1H NMR-based metabolomics strategies. The objectives were to identify T2DM-associated biomarker signatures and their potential impact on dental caries. In addition, HbA1c and vitamin D levels were also analysed for this purpose. METHODS Stimulated whole-mouth saliva (SWS) samples were collected from T2DM and ND (n = 30 in each case) participants randomly selected from a group of 128 participants recruited for this case-control study. All participants were advised to refrain from eating, drinking, and smoking for at least 1-2 h prior to sample collection. Following preparation, SWS supernatants underwent 1H NMR analysis at an operating frequency of 800 MHz, and the dataset acquired was analysed using a range of multivariate metabolomics techniques. RESULTS Metabolomics analysis of data acquired demonstrated that, together with up- and downregulated blood HbA1c and vitamin D levels, key salivary discriminators between these two classifications included lactate, taurine, creatinine, α-glucose, and formate to a lesser extent. The bacterial catabolites lactate and formate were both significantly upregulated in the T2DM group, and these have previously been implicated in the pathogenesis of dental caries. Significance analysis of metabolites (SAM)-facilitated AUROC analysis yielded an 83% accuracy for this distinction. CONCLUSION In conclusion, this study highlights the significant differences in salivary metabolites between individuals with T2DM and healthy controls. Such differences appear to be related to the development and progression of dental caries in T2DM patients.
Collapse
Affiliation(s)
- Ashwaq Alkahtani
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (M.B.); (M.G.)
| | - Mohammed Bhogadia
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (M.B.); (M.G.)
| | - Aylin Baysan
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| |
Collapse
|
28
|
Rodella P, Boreski D, Luz MAM, Gabriel EA, Takase LF, Chin CM. Taurine Neuroprotection and Neurogenesis Effect in Chronic Ethanol-Induced Rats. Nutrients 2024; 16:1973. [PMID: 38931326 PMCID: PMC11206532 DOI: 10.3390/nu16121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a non-protein β-amino acid essential for cellular homeostasis, with antioxidant, anti-inflammatory, and cytoprotective properties that are crucial for life maintenance. This study aimed to evaluate the effects of taurine administration on hippocampal neurogenesis, neuronal preservation, or reverse damage in rats exposed to forced ethanol consumption in an animal model. Wistar rats were treated with ethanol (EtOH) for a 28-day period (5% in the 1st week, 10% in the 2nd week, and 20% in the 3rd and 4th weeks). Two taurine treatment protocols (300 mg/kg i.p.) were implemented: one during ethanol consumption to analyze neuroprotection, and another after ethanol consumption to assess the reversal of ethanol-induced damage. Overall, the results demonstrated that taurine treatment was effective in protecting against deficits induced by ethanol consumption in the dentate gyrus. The EtOH+TAU group showed a significant increase in cell proliferation (145.8%) and cell survival (54.0%) compared to the EtOH+Sal group. The results also indicated similar effects regarding the reversal of ethanol-induced damage 28 days after the cessation of ethanol consumption. The EtOH+TAU group exhibited a significant increase (41.3%) in the number of DCX-immunoreactive cells compared to the EtOH+Sal group. However, this amino acid did not induce neurogenesis in the tissues of healthy rats, implying that its activity may be contingent upon post-injury stimuli.
Collapse
Affiliation(s)
- Patricia Rodella
- Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil; (P.R.); (D.B.)
| | - Diogo Boreski
- Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil; (P.R.); (D.B.)
| | - Marcus Alexandre Mendes Luz
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto 15030-070, Brazil; (M.A.M.L.); (E.A.G.)
| | - Edmo Atique Gabriel
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto 15030-070, Brazil; (M.A.M.L.); (E.A.G.)
| | - Luiz Fernando Takase
- Morphology and Pathology Department, Federal University of São Paulo of São Carlos (UFSCar), São Carlos 13565-905, Brazil;
| | - Chung Man Chin
- Laboratory for Drug Design (LAPDESF), School of Pharmaceutical Sciences, University of São Paulo State (UNESP), Araraquara 14800-903, Brazil; (P.R.); (D.B.)
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto 15030-070, Brazil; (M.A.M.L.); (E.A.G.)
| |
Collapse
|
29
|
Li YS, Yang RR, Li XY, Liu WW, Zhao YM, Zu MM, Gao YH, Huo MQ, Jiang YT, Li BY. Fluoride impairs vascular smooth muscle A7R5 cell lines via disrupting amino acids metabolism. J Transl Med 2024; 22:528. [PMID: 38824544 PMCID: PMC11143695 DOI: 10.1186/s12967-024-05350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 μmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Fluorides/pharmacology
- Rats, Sprague-Dawley
- Cell Line
- Amino Acids/metabolism
- Cell Proliferation/drug effects
- Rats
- Cell Movement/drug effects
- Male
- Aorta/pathology
- Aorta/drug effects
- Aorta/metabolism
- Metabolomics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks/drug effects
Collapse
Affiliation(s)
- Yan-Shu Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Ru-Ru Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xin-Ying Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Wei-Wei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Yi-Ming Zhao
- Xinyi Center for Disease Control and Prevention, Xinyi, China
| | - Ming-Man Zu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Yi-Hong Gao
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Min-Qi Huo
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Yu-Ting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Bing-Yun Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
30
|
Frascatani R, Mattogno A, Iannucci A, Marafini I, Monteleone G. Reduced Taurine Serum Levels in Inflammatory Bowel Disease. Nutrients 2024; 16:1593. [PMID: 38892527 PMCID: PMC11173840 DOI: 10.3390/nu16111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Taurine is a semi-essential micronutrient that acts as an anti-inflammatory molecule. The oral administration of taurine to colitic mice attenuates ongoing mucosal inflammation. This study aimed to determine whether inflammatory bowel diseases (IBDs) are marked by changes in the circulating levels of taurine. We measured the serum concentrations of taurine in 92 IBD patients [46 with ulcerative colitis (UC) and 46 with Crohn's disease (CD)] and 33 healthy controls with a commercial ELISA kit. The taurine levels were significantly decreased in both patients with UC and patients with CD compared to the controls, while there was no difference between CD and UC. Taurine levels declined with age in healthy controls but not in IBDs. IBD patients younger than 50 years had levels of taurine reduced compared to their age-matched controls. In the IBD group, taurine levels were not influenced by the body mass index of the patients and the consumption of taurine-rich nutrients, while they were significantly reduced in UC patients with clinically active disease compared to those in clinical remission. These findings indicate that IBDs are marked by serum taurine deficiency, which would seem to reflect the activity of the disease, at least in UC.
Collapse
Affiliation(s)
- Rachele Frascatani
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | | | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Irene Marafini
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy (I.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy (I.M.)
| |
Collapse
|
31
|
Tzang CC, Chi LY, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Taurine reduces the risk for metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Nutr Diabetes 2024; 14:29. [PMID: 38755142 PMCID: PMC11099170 DOI: 10.1038/s41387-024-00289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of interconnected risk factors that significantly increase the likelihood of cardiovascular disease and type 2 diabetes. Taurine has emerged as a potential therapeutic agent for MetS. This meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the effects of taurine supplementation on MetS-related parameters. METHODS We conducted electronic searches through databases like Embase, PubMed, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov, encompassing publications up to December 1, 2023. Our analysis focused on established MetS diagnostic criteria, including systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). Meta-regression explored potential dose-dependent relationships based on the total taurine dose administered during the treatment period. We also assessed secondary outcomes like body composition, lipid profile, and glycemic control. RESULTS Our analysis included 1024 participants from 25 RCTs. The daily dosage of taurine in the studies ranged from 0.5 g/day to 6 g/day, with follow-up periods varying between 5 and 365 days. Compared to control groups, taurine supplementation demonstrated statistically significant reductions in SBP (weighted mean difference [WMD] = -3.999 mmHg, 95% confidence interval [CI] = -7.293 to -0.706, p = 0.017), DBP (WMD = -1.509 mmHg, 95% CI = -2.479 to -0.539, p = 0.002), FBG (WMD: -5.882 mg/dL, 95% CI: -10.747 to -1.018, p = 0.018), TG (WMD: -18.315 mg/dL, 95% CI: -25.628 to -11.002, p < 0.001), but not in HDL-C (WMD: 0.644 mg/dl, 95% CI: -0.244 to 1.532, p = 0.155). Meta-regression analysis revealed a dose-dependent reduction in DBP (coefficient = -0.0108 mmHg per g, p = 0.0297) and FBG (coefficient = -0.0445 mg/dL per g, p = 0.0273). No significant adverse effects were observed compared to the control group. CONCLUSION Taurine supplementation exhibits positive effects on multiple MetS-related factors, making it a potential dietary addition for individuals at risk of or already experiencing MetS. Future research may explore dose-optimization strategies and potential long-term benefits of taurine for MetS management.
Collapse
Affiliation(s)
- Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Liang-Yun Chi
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Long-Huei Lin
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan, ROC
| | - Ting-Yu Lin
- Department of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan, Taiwan, ROC
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan, ROC.
- Center for Regional Anesthesia and Pain Medicine, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Wei-Ting Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan, ROC
| | - Levent Özçakar
- Department of Physical and Rehabilitation Medicine, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
32
|
Li Y, Pan J, Yu JJJ, Wu X, Yang G, Pan X, Sui G, Wang M, Cheng M, Zhu S, Tai H, Xiao H, Xu L, Wu J, Yang Y, Tang J, Gong L, Jia L, Min D. Huayu Qutan Recipe promotes lipophagy and cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis. J Cell Mol Med 2024; 28:e18257. [PMID: 38526033 PMCID: PMC10962127 DOI: 10.1111/jcmm.18257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 μg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.
Collapse
Affiliation(s)
- Yue Li
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio‐Cerebrovascular DiseasesShenyangChina
| | - Jiaxiang Pan
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
- Graduate School of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - J. J. Jiajia Yu
- Postdoctoral Program of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Xize Wu
- Graduate School of Liaoning University of Traditional Chinese MedicineShenyangChina
- Nantong Hospital of Traditional Chinese MedicineNantong Hospital Affiliated to Nanjing University of Chinese MedicineNantongChina
| | - Guanlin Yang
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Xue Pan
- Graduate School of Liaoning University of Traditional Chinese MedicineShenyangChina
- Dazhou Vocational College of Chinese MedicineDazhouChina
| | - Guoyuan Sui
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Mingyang Wang
- College of Animal Science and Veterinary Medicine of Shenyang Agricultural UniversityShenyangChina
| | - Meijia Cheng
- Experimental Center of Traditional Chinese Medicinethe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Shu Zhu
- Department of Paediatric Dentistry, School of StomatologyChina Medical UniversityShenyangChina
| | - He Tai
- School of PharmacyLiaoning University of Traditional Chinese MedicineDalianChina
| | - Honghe Xiao
- School of PharmacyLiaoning University of Traditional Chinese MedicineDalianChina
| | - Lili Xu
- Department of Cardiology, 924 Hospital of Joint Logistic Support Force of PLAGuilinChina
| | - Jin Wu
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Yongju Yang
- Experimental Center of Traditional Chinese Medicinethe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Jing Tang
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Lihong Gong
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio‐Cerebrovascular DiseasesShenyangChina
| | - Lianqun Jia
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicinethe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| |
Collapse
|
33
|
Mughal S, Sabater-Arcis M, Artero R, Ramón-Azcón J, Fernández-Costa JM. Taurine activates the AKT-mTOR axis to restore muscle mass and contractile strength in human 3D in vitro models of steroid myopathy. Dis Model Mech 2024; 17:dmm050540. [PMID: 38655653 PMCID: PMC11073513 DOI: 10.1242/dmm.050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/06/2024] [Indexed: 04/26/2024] Open
Abstract
Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.
Collapse
Affiliation(s)
- Sheeza Mughal
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Maria Sabater-Arcis
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Ruben Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| | - Juan M. Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| |
Collapse
|
34
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse Cardiac Events of Hypercholesterolemia Are Enhanced by Sitagliptin Administration in Sprague Dawley Rats. RESEARCH SQUARE 2024:rs.3.rs-4075353. [PMID: 38562676 PMCID: PMC10984018 DOI: 10.21203/rs.3.rs-4075353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. Thus, we hypothesized that atherogenic feeding would result in adverse cardiac effects and would attenuate upon sitagliptin administration. Methods Six-week-old adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with vehicle (water) or sitagliptin (100 mg/kg/d) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. Results Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. Conclusion Adverse cardiac outcomes in HChol were enhanced with sitagliptin administration and such effects were alleviated by Met. Our findings could be significant for understanding the risk-benefit of sitagliptin in type 2 diabetics who are known to consume atherogenic diets.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Southern University and Agricultural and Mechanical College
| | - Rashmi Pathak
- Southern University and Agricultural and Mechanical College
| | | | | | | |
Collapse
|
35
|
Jacques D, Bkaily G. Taurine Prevents Angiotensin II-Induced Human Endocardial Endothelium Morphological Remodeling and the Increase in Cytosolic and Nuclear Calcium and ROS. Nutrients 2024; 16:745. [PMID: 38474873 DOI: 10.3390/nu16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
36
|
Chen J, Zhang X, Zhang Y, Jiang S, Han Y, Zhang L, Zhang Y, Du H. Taurine enhances growth performance by improving intestinal integrity and antioxidant capacity of weaned piglets. J Anim Sci 2024; 102:skae311. [PMID: 39394665 PMCID: PMC11604117 DOI: 10.1093/jas/skae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Taurine is an amino acid that has been considered by animal husbandry as a feed additive due to its abundant biological functions. However, the effective dose of taurine added to feed is unknown. The aim of the current study was to determine the optimal taurine supplementation level by investigating its effects on growth performance, diarrhea index, intestinal health, and antioxidant capacity of weaned piglets. A total of 160 crossbred piglets (Landrace × Yorkshire, initially 8.39 ± 0.11 kg) were assigned to 4 groups (10 pigs/pen and 4 replicates/group). Basal diets containing 0 (control, CON), 0.1%, 0.3%, and 0.5% taurine were respectively provided to the piglets for a duration of 28 d. Six piglets from each group were selected for euthanasia and subsequent sample collection on day 29. The results showed that dietary 0.3% or 0.5% taurine supplementation increased average daily gain (P < 0.05), feed-to-gain ratio (P < 0.01), and serum albumin (P < 0.05), and decreased diarrhea index (P < 0.01) and diamine oxidase (DAO) level in the serum (P < 0.05). The greater expression of tight junction-related genes, including ZO-1 (P < 0.05) and Claudin-1 (P < 0.01), were observed in the duodenum after supplementation with 0.5% taurine. The supplementation of 0.3% or 0.5% taurine resulted in a significant reduction of crypt depth (P < 0.01) and an increase of villus height-to-crypt depth ratio (P < 0.01) in the duodenum. A greater abundance of goblet cells was detected in the duodenum and jejunum of piglets fed 0.5% taurine (P < 0.05). In addition, serum superoxide dismutase (SOD) level, liver catalase (CAT) level, and liver total antioxidant capacity level were all significantly (P < 0.05) increased with 0.1%, 0.3% or 0.5% dietary taurine supplementation. On the whole, dietary supplementation with 0.3% or 0.5% taurine has the potential to significantly enhance the growth performance of piglets by improving the integrity of the intestinal barrier and boosting their antioxidant capacity.
Collapse
Affiliation(s)
- Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Yuhui Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shouchuan Jiang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Zhang
- Department of Animal Nutrition, Zhejiang NHU Group Corporation, Xinchang 312500, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Geng X, Feng Y, Yu C, Yao Y, Chen W, Guo J, Zhang Y, Zhang J, Mi S. Taurine supplementation decreases fat accumulation by suppressing FAS and enhancing ATGL through the ATGL pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1529-1535. [PMID: 39539444 PMCID: PMC11556767 DOI: 10.22038/ijbms.2024.76625.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/17/2024] [Indexed: 11/16/2024]
Abstract
Objectives Obesity leads to severe health issues like cardiovascular disease. Natural substances with anti-obesity properties are gaining attention. This study investigates the impact of taurine on lipid levels in rats fed a high-fat diet. Materials and Methods The SD rats were fed a high-fat diet and treated with or without taurine for 21 weeks. Taurine was added to their drinking water, and an adipose triglyceride lipase (ATGL) inhibitor was injected for one week. The study evaluated the impact of taurine supplementation on the rats' body weight, Lee index, body fat content, serum levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), fatty acid synthase (FAS), ATGL, and peroxisome proliferator-activated receptor α (PPARα) in the liver. Fat accumulation in the liver and aortic arch was assessed through histopathological observations. Results The study found that taurine reduced body weight, body fat, serum TG, TC, LDL-C levels, and lipid deposition in the liver and aortic arch while increasing serum HDL-C levels. Taurine intake also increased FAS and ATGL expression in the liver. Interestingly, the ATGL inhibitor atglistatin did not affect FAS and ATGL expression in the presence of taurine. Conclusion Taurine can reduce fat deposition caused by a high-fat diet in SD rats by decreasing FAS content and increasing ATGL content. However, taurine does not fully regulate FAS and ATGL expression through the ATGL pathway.
Collapse
Affiliation(s)
- Xueying Geng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yafang Feng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Congcong Yu
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yuyang Yao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wen Chen
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Junxia Guo
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Yanzhen Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jing Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Shengquan Mi
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| |
Collapse
|
38
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
39
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Protective Role of Taurine on Rat Offspring Hypertension in the Setting of Maternal Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:2059. [PMID: 38136178 PMCID: PMC10740461 DOI: 10.3390/antiox12122059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Taurine is a natural antioxidant with antihypertensive properties. Maternal chronic kidney disease (CKD) has an impact on renal programming and increases the risk of offspring hypertension in later life. The underlying mechanisms cover oxidative stress, a dysregulated hydrogen sulfide (H2S) system, dysbiotic gut microbiota, and inappropriate activation of the renin-angiotensin-aldosterone system (RAAS). We investigated whether perinatal taurine administration enables us to prevent high blood pressure (BP) in offspring complicated by maternal CKD. Before mating, CKD was induced through feeding chow containing 0.5% adenine for 3 weeks. Taurine was administered (3% in drinking water) during gestation and lactation. Four groups of male offspring were used (n = 8/group): controls, CKD, taurine-treated control rats, and taurine-treated rats with CKD. Taurine treatment significantly reduced BP in male offspring born to mothers with CKD. The beneficial effects of perinatal taurine treatment were attributed to an augmented H2S pathway, rebalance of aberrant RAAS activation, and gut microbiota alterations. In summary, our results not only deepen our knowledge of the mechanisms underlying maternal CKD-induced offspring hypertension but also afford us the impetus to consider taurine-based intervention as a promising preventive approach for future clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
40
|
Chen J, Wang Y, Tang Z, Guo X, Yuan J. Impact of Dietary Supplementation of Cysteamine on Egg Taurine Deposition, Egg Quality, Production Performance and Ovary Development in Laying Hens. Animals (Basel) 2023; 13:3013. [PMID: 37835618 PMCID: PMC10571572 DOI: 10.3390/ani13193013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to examine the effect of dietary cysteamine on yolk taurine content in hens during different egg production periods. In Exp. 1, China Agricultural University-3 (CAU-3) hens at the peak stage of egg production (aged 31 wks) were used to explore the effect of diets supplemented with 0.1% cysteamine on yolk taurine content, egg quality and production performance. In Exp.2, two breeds of hens (half Hy-Line Brown and half CAU-3 hens) at the late stage of egg production (68 wks) were used to investigate the influence of diets supplemented with 0, 0.02%, 0.04%, 0.08% or 0.10% cysteamine on yolk taurine content, egg quality, production performance and ovary development. In Exp.1, diets supplemented with 0.1% cysteamine significantly increased yolk taurine content (p < 0.05) without negative influence on production performance or egg quality. In Exp.2, the highest yolk taurine content was observed when cysteamine was supplemented at 0.08% (p < 0.001). However, supplemental cysteamine linearly or quadratically decreased production performance over the first few weeks of feeding, and the effects disappeared with continued feeding (p < 0.05). In conclusion, this study indicated that cysteamine supplementation benefits yolk taurine deposition in hens at both peak and late stage of egg production, but hens at the late stage of egg production show depressed production performance and egg quality.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu 610041, China;
- Key Laboratory of Sichuan Prpvince for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Sichuan New Hope Liuhe Technology Innovation Co., Ltd., Chengdu 610100, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu 610041, China;
- Key Laboratory of Sichuan Prpvince for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.); (X.G.); (J.Y.)
| | - Xiaorui Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.); (X.G.); (J.Y.)
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.); (X.G.); (J.Y.)
| |
Collapse
|
41
|
Sun J, Guo F, Ran J, Wu H, Li Y, Wang M, Wang X. Bibliometric and Visual Analysis of Global Research on Taurine, Creatine, Carnosine, and Anserine with Metabolic Syndrome: From 1992 to 2022. Nutrients 2023; 15:3374. [PMID: 37571314 PMCID: PMC10420945 DOI: 10.3390/nu15153374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Red meat and animal-sourced protein are often disparaged as risk factors for developing metabolic syndrome, while emerging research has shown the beneficial effects of dietary taurine, creatine, carnosine, and anserine which are all exclusively abundant in red meat. Thus, it is imperative to highlight the available evidence to help promote red meat as part of a well-balanced diet to optimize human health. In this study, a bibliometric analysis was conducted to investigate the current research status of dietary taurine, creatine, carnosine, and anserine with metabolic syndrome, identify research hotspots, and delineate developmental trends by utilizing the visualization software CiteSpace. A total of 1094 publications were retrieved via the Web of Science Core Collection from 1992 to 2022. There exists a gradual increase in the number of publications on this topic, but there is still much room for research papers to rise. The United States has participated in the most studies, followed by China and Japan. The University of Sao Paulo was the research institute contributing the most; Kyung Ja Chang and Sanya Roysommuti have been identified as the most prolific authors. The analysis of keywords reveals that obesity, lipid profiles, blood pressure, and glucose metabolism, as well as ergogenic aid and growth promoter have been the research hotspots. Inflammation and diabetic nephropathy will likely be frontiers of future research related to dietary taurine, creatine, carnosine, and anserine. Overall, this paper may provide insights for researchers to further delve into this field and enlist the greater community to re-evaluate the health effects of red meat.
Collapse
Affiliation(s)
- Jiaru Sun
- Department of Nursing, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Fang Guo
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, China; (H.W.); (Y.L.)
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| | - Haisheng Wu
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, China; (H.W.); (Y.L.)
| | - Yang Li
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, China; (H.W.); (Y.L.)
| | - Mingxu Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China
| | - Xiaoqin Wang
- Department of Nursing, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
42
|
Tore EC, Eussen SJPM, Bastani NE, Dagnelie PC, Elshorbagy AK, Grootswagers P, Kožich V, Olsen T, Refsum H, Retterstøl K, Stehouwer CDA, Stolt ETK, Vinknes KJ, van Greevenbroek MMJ. The Associations of Habitual Intake of Sulfur Amino Acids, Proteins and Diet Quality with Plasma Sulfur Amino Acid Concentrations: The Maastricht Study. J Nutr 2023; 153:2027-2040. [PMID: 37164267 DOI: 10.1016/j.tjnut.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Plasma sulfur amino acids (SAAs), i.e., methionine, total cysteine (tCys), total homocysteine (tHcy), cystathionine, total glutathione (tGSH), and taurine, are potential risk factors for obesity and cardiometabolic disorders. However, except for plasma tHcy, little is known about how dietary intake modifies plasma SAA concentrations. OBJECTIVE To investigate whether the intake of SAAs and proteins or diet quality is associated with plasma SAAs. METHODS Data from a cross-sectional subset of The Maastricht Study (n = 1145, 50.5% men, 61 interquartile range: [55, 66] y, 22.5% with prediabetes and 34.3% with type 2 diabetes) were investigated. Dietary intake was assessed using a validated food frequency questionnaire. The intake of SAAs (total, methionine, and cysteine) and proteins (total, animal, and plant) was estimated from the Dutch and Danish food composition tables. Diet quality was assessed using the Dutch Healthy Diet Index, the Mediterranean Diet Score, and the Dietary Approaches to Stop Hypertension score. Fasting plasma SAAs were measured by liquid chromatography (LC) tandem mass spectrometry (MS) (LC/MS-MS). Associations were investigated with multiple linear regressions with tertiles of dietary intake measures (main exposures) and z-standardized plasma SAAs (outcomes). RESULTS Intake of total SAAs and total proteins was positively associated with plasma tCys and cystathionine. Associations were stronger in women and in those with normal body weight. Higher intake of cysteine and plant proteins was associated with lower plasma tHcy and higher cystathionine. Higher methionine intake was associated with lower plasma tGSH, whereas cysteine intake was positively associated with tGSH. Higher intake of methionine and animal proteins was associated with higher plasma taurine. Better diet quality was consistently related to lower plasma tHcy concentrations, but it was not associated with the other SAAs. CONCLUSION Targeted dietary modifications might be effective in modifying plasma concentrations of tCys, tHcy, and cystathionine, which have been associated with obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Elena C Tore
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pieter C Dagnelie
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Amany K Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, and General University Hospital in Prague, Czech Republic
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Coen DA Stehouwer
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Emma T K Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
43
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
44
|
Razzaghi A, Choobineh S, Gaeini A, Soori R. Interaction of exercise training with taurine attenuates infarct size and cardiac dysfunction via Akt-Foxo3a-Caspase-8 signaling pathway. Amino Acids 2023:10.1007/s00726-023-03275-4. [PMID: 37204452 DOI: 10.1007/s00726-023-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
This research aimed to investigate the synergistic protective effect of exercise training and taurine on Akt-Foxo3a-Caspase-8 signaling related to infarct size and cardiac dysfunction. Therefore, 25 male Wistar rats with MI were divided into five groups: sham (Sh), control-MI(C-MI), exercise training-MI(Exe-MI), taurine supplementation-MI(Supp-MI), and exercise training + taurine-MI(Exe + Supp-MI). The taurine groups were given a 200 mg/kg/day dose of taurine by drinking water. Exercise training was conducted for 8 weeks (5 days/week), each session alternated 2 min with 25-30% VO2peak and 4 min with 55-60% VO2peak for 10 alternations. Then, the left ventricle tissue samples were taken from all groups. Exercise training and taurine activated Akt and decreased Foxo3a. Expression of the caspase-8 gene was increased in cardiac necrosis after MI, While, after 12 weeks of intervention decreased. Results exhibited that exercise training combined with taurine has a greater effect than either alone on activating the Akt-Foxo3a-caspase signaling pathway (P < 0.001). MI-induced myocardial injury leads to increase collagen deposition (P < 0.001) and infarct size and results in cardiac dysfunction via reduced stroke volume, ejection fraction, and fractional shortening (P < 0.001). Exercise training and taurine improved cardiac functional parameters (SV, EF, FS) and infarct size (P < 0.001) after 8 weeks of intervention in rats with MI. Also, the interaction of exercise training and taurine has a greater effect than alone on these variables. Interaction of exercise training with taurine supplementation induces a general amelioration of the cardiac histopathological profiles and improves cardiac remodeling via activating Akt-Foxo3a-Caspase-8 signaling with protective effects against MI.
Collapse
Affiliation(s)
| | - Siroos Choobineh
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Abbasali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Rahman Soori
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Ping Y, Shan J, Liu Y, Liu F, Wang L, Liu Z, Li J, Yue D, Wang L, Chen X, Zhang Y. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8 + T cell function. Cancer Immunol Immunother 2023; 72:1015-1027. [PMID: 36261540 DOI: 10.1007/s00262-022-03308-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
The functional state of CD8+ T cells determines the therapeutic efficacy of PD-1 blockade antibodies in tumors. Amino acids are key nutrients for maintaining T cell antitumor immunity. In this study, we used samples from lung cancer patients treated with PD-1 blockade antibodies to assay the amino acids in their serum by mass spectrometry. We found that lung cancer patients with high serum taurine levels generally responded to PD-1 blockade antibody therapy, in parallel with the secretion of high levels of cytotoxic cytokines (IFN-γ and TNF-α). CD8+ T cells cultured with exogenous taurine exhibited decreased apoptosis, enhanced proliferation, and increased secretion of cytotoxic cytokines. High SLC6A6 expression in CD8+ T cells was positively associated with an effector T cell signature. SLC6A6 knockdown limited the function and proliferation of CD8+ T cells. RNA sequencing revealed that SLC6A6 knockdown altered the calcium signaling pathway, oxidative phosphorylation, and T cell receptor signaling in CD8+ T cells. Furthermore, taurine enhanced T cell proliferation and function in vitro by stimulation of PLCγ1-mediated calcium and MAPK signaling. Taurine plus immune checkpoint blockade antibody significantly attenuated tumor growth and markedly improved the function and proliferation of CD8+ T cells in a mouse tumor model. Thus, our findings indicate that taurine is an important driver for improving CD8+ T cell immune responses and could serve as a potential therapeutic agent for cancer patients.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liuya Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
46
|
Reikvam H, Bruserud Ø, Hatfield KJ. Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality. Transplant Cell Ther 2023:S2666-6367(23)01196-X. [PMID: 36966869 DOI: 10.1016/j.jtct.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Kimberley J Hatfield
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009, Bergen, Norway.
| |
Collapse
|
47
|
Yin C, Harms AC, Hankemeier T, Kindt A, de Lange ECM. Status of Metabolomic Measurement for Insights in Alzheimer's Disease Progression-What Is Missing? Int J Mol Sci 2023; 24:ijms24054960. [PMID: 36902391 PMCID: PMC10003384 DOI: 10.3390/ijms24054960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis.
Collapse
Affiliation(s)
- Chunyuan Yin
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
48
|
Harnisch LO, Mihaylov D, Bein T, Apfelbacher C, Moerer O, Quintel M. A reduced glycine-to-taurine ratio of conjugated serum bile acids signifies an adaptive mechanism and is an early marker of outcome in acute respiratory distress syndrome. Intern Emerg Med 2023; 18:607-615. [PMID: 36378472 DOI: 10.1007/s11739-022-03152-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The accumulation of Bile Acids (BA) in serum is a common finding in critically ill patients and has been found in patients with Acute Respiratory Distress Syndrome (ARDS), where liver and biliary function could be essentially affected by the underlying disease process and subsequent therapeutic measures. We hypothesized that the glycine-to-taurine conjugation ratio (G/T-ratio) is predictive of outcome in ARDS patients and would support our previously published hypothesis that the BA profile reflects a (mal-) adaptive response of bile acid production when suffering from a disease or syndrome such as ARDS. In 70 patients with ARDS, we determined conjugated BA fractions from protein precipitated serum samples using a LC-MS/MS method and calculated the G/T-ratios, which were then compared with a healthy control group. In patients with ARDS, the G/T-ratio was markedly lower compared to the control group, due to an increase in taurine-conjugated BA. The G/T ratio was lowest on the day of diagnosis and increased steadily during the following days (control = 3.80 (2.28-4.44); day 0 = 1.79 (1.31-3.86); day 3 = 2.91 (1.71-5.68); day 5 = 2.28 (1.25-7.85), significant increases were found between day 0 and day 3 (p = 0.019) and between day 0 and day 5 (p = 0.031). G/T-ratio was significantly correlated with SAPS II score on day 0 (p = 0.009) and day 3 (p = 0.036) and with survival (p = 0.006). Regarding survival, the receiver-operator characteristic revealed an area-under-the-curve of 0.713 (CI 0.578-0.848), the Youden index revealed a G/T-ratio cut-off level of 2.835 (sensitivity 78.4%, specificity 63.2%). Our findings further support our previously published hypothesis that alterations in BA profiles represent adaptive mechanisms in states of severe disease. Our current study adds the finding of an increase in taurine-conjugated BA expressed by a decrease in the G/T-ratio of conjugated BA in serum. The G/T-ratio on day 3 using a threshold G/T-ratio of 2.8 was even associated with survival (p = 0.006); these results are yet to be confirmed by subsequent studies.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anaesthesiology, University of Göttingen Medical Center, Robert-Koch-Street 40, 37099, Göttingen, Germany.
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Medicine of the University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Bein
- University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christian Apfelbacher
- Institute for Social Medicine and Health Economics, University of Magdeburg, Leipziger Street 44, 39120, Magdeburg, Germany
| | - Onnen Moerer
- Department of Anaesthesiology, University of Göttingen Medical Center, Robert-Koch-Street 40, 37099, Göttingen, Germany
| | - Michael Quintel
- Department of Anaesthesiology, University of Göttingen Medical Center, Robert-Koch-Street 40, 37099, Göttingen, Germany
| |
Collapse
|
49
|
Li C, Qin J, Liu W, Lv B, Yi N, Xue J, Xue Z. Profiling of Homocysteine Metabolic Pathway Related Metabolites in Plasma of Diabetic Mellitus Based on LC-QTOF-MS. Molecules 2023; 28:molecules28020656. [PMID: 36677712 PMCID: PMC9861464 DOI: 10.3390/molecules28020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Background: Homocysteine (Hcy) has been found to be closely related to the occurrence of diabetes mellitus (DM) and is considered as one of the risk factors of DM. However, Hcy alone is not enough as a factor to predict DM, and our study analyzed and determined the relationship between the main metabolites involved in the Hcy metabolic pathway and DM. Methods: A total of 48 clinical samples were collected, including 18 health control samples and 30 DM samples. All standards and samples were detected by LC-QTOF-MS. Multivariate statistical analysis and k-means cluster analysis were performed to screen and confirm the metabolites significantly correlated with DM. Results: A total of 13 metabolites of the Hcy metabolic pathway were detected in the samples. The content of Hcy, cysteine, taurine, pyridoxamine, methionine, and choline were significantly increased in the DM group (p < 0.05). Hcy, choline, cystathionine, methionine, and taurine contributed significantly to the probabilistic principal component analysis (PPCA) model. The odds ratios (OR) of Hcy, cysteine, taurine, methionine, and choline were all greater than one. K-means cluster analysis showed that the Hcy, taurine, methionine, and choline were significantly correlated with the distribution of glucose values (divided into four levels: 10.5−11.7 mmol/L, 7.7−9.7 mmol/L, 6.0−6.9 mmol/L, and 5.0−5.9 mmol/L, respectively). Conclusion: Hcy, taurine, methionine, and choline can be used as risk factors for diabetes diagnosis and are expected to be used for the assessment of diabetes severity.
Collapse
Affiliation(s)
- Chanyi Li
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiaying Qin
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wuping Liu
- International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Bo Lv
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ning Yi
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jinfeng Xue
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Correspondence: (J.X.); (Z.X.)
| | - Zhigang Xue
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Translational Center of Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
- Hunan Jiahui Genetics Hospital, 72 Xiangya Road, Changsha 410008, China
- Correspondence: (J.X.); (Z.X.)
| |
Collapse
|
50
|
Effects of acute taurine consumption on single bout of muscular endurance resistance exercise performance and recovery in resistance trained young male adults. BIOMEDICAL HUMAN KINETICS 2023. [DOI: 10.2478/bhk-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Abstract
Study aim: This study investigated the effect of taurine supplementation on exercise performance and recovery from resistance exercise. The study was conducted with a cross-over design in a double-blind manner.
Material and methods: Ten resistance trained males (age 21.4 ± 2.01 years; BMI: 23.6 ± 2.5 kg/m²) ingested either a taurine (0.1g/kg) supplement or placebo (18 mg aspartame) prior to resistance exercise. Vertical jump, flexibility, balance, systolic blood pressure, diastolic blood pressure, heart rate (HR), maximal voluntary muscle contraction, speed, lactate, glucose and perceived soreness and strain were assessed. The subjects performed two exercise trials with 1 week wash out interval. Blood samples were collected at baseline and before each exercise (chest press, abdominal crunch and leg extension) to analyse plasma levels of lactate and glucose.
Results: Paired-T test results showed statistically significant increment (p < 0.05) in total volume (kg × #repetitions), chest press volume and leg extension volume. Repeated measure ANOVA results demonstrated statistically significant differences (p < 0.05) in lactate and flexibility in trial and time, and in maximal voluntary isometric muscle contraction (MVIC) test in time, trial and trial × time in favour taurine group. No statistically significant differences were found in cardiovascular parameters, glucose, and balance parameters (p > 0.05).
Conclusion: In conclusion, 0.1 g/kg of taurine consumption before resistance exercise could positively affect exercise performance by increasing exercise volume and reducing lactate levels.
Collapse
|