1
|
Wang H, Li C, Li Y, Gao J, Leng X, Huang D. Preparation, physicochemical characterization and functional properties of selenium nanoparticles stabilized by polysaccharides from the seeds of Plantago asiatica L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3582-3592. [PMID: 39956988 DOI: 10.1002/jsfa.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND Selenium nanoparticles (SeNPs), comprising a novel selenium element with higher bioactivity, easily aggregate into large black monomeric selenium particles. In the present study, polysaccharides from the seeds of Plantago asiatica L. (PLP) was used as a template and morphology/particle size modifier to synthesize selenium nanoparticles. The preparation process of SeNPs stabilized by PLP was optimized, and its antioxidant and immunological activities were investigated. RESULTS The optimal preparation conditions of PLP-SeNPs were a reaction temperature of 60°C, a reaction time of 1.5 h, a PLP concentration of 0.04 mg · mL-1 and a Na2SeO3/Vc molar ratio of 1:5. Stable spherical PLP-SeNPs with a particle size of 78.39 ± 2.15 nm were prepared through this process. The PLP-SeNPs complex at a concentration of 32 μg · mL-1 demonstrated scavenging activities against 1,1-diphenyl-2-picrylhydrazyl radicals, hydroxyl radicals and 2,2'-azinobis-(3-ethyl-benzothiazolin-6-sulfonic acid) diammonium salt radicals of up to 49.49 ± 2.58%, 60.99 ± 2.49% and 42.07 ± 1.76%, respectively. The PLP-SeNPs complex significantly increased the activation of RAW264.7 cells through improving phagocytosis, reactive oxygen species levels, and the secretion of tumor necrosis factor-α and interleukin-10. CONCLUSION The present study lays a theoretical foundation for the development of food-borne SeNPs and the exploration of their application in functional foods, which will help to promote the high-value utilization of P. asiatica L., and also has an important guiding significance for the healthy development of selenium-enriched functional food industry. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2025; 203:1251-1268. [PMID: 38829477 PMCID: PMC11872778 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
3
|
Waqar MA. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. J Drug Target 2025; 33:157-170. [PMID: 39392210 DOI: 10.1080/1061186x.2024.2412142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Zhou B, Wu H, Wu B, Song Z. Valuable Data "Gain" and "Loss": The Quantitative Impact of Information Choice on Consumers' Decision to Buy Selenium-Rich Agricultural Products. Foods 2024; 13:3256. [PMID: 39456317 PMCID: PMC11507236 DOI: 10.3390/foods13203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Biotechnology assumes a paramount role in addressing micronutrient deficiencies. The promotion thereof and the augmentation of public awareness are indispensable for implementation. The advancement of big data presents challenges due to the plethora of information and the constrained processing capacity, thereby inducing difficulties in consumer decision-making. The study is obliged to intensify information dissemination to empower consumers to apprehend the value of selenium-enriched products as an integral constituent of positive nutrition guidance. The study undertook an experiment related to nutrition information acquisition, in which participants provided relevant interferences. The study utilized the structural equation model (SEM) and fuzzy set qualitative comparative analysis (fsQCA) to analyze the data. The study arrived at three research conclusions. Firstly, the furnishing of valuable information constitutes a significant factor in motivating consumers to purchase selenium-rich agricultural products. Secondly, the communication of brand information holds crucial significance in shaping the perception of product advantages and plays a salient role in the promotion and construction of selenium-rich agricultural products. Finally, the dissemination of health information can be incorporated into the process of promoting selenium-rich agricultural products. This conforms to the urgent necessity to address hidden hunger and establish a value identity.
Collapse
Affiliation(s)
- Bo Zhou
- College of Economics and Management, Jiangxi Agricultural University, Nanchang 330045, China; (B.Z.); (H.W.)
| | - Huizhen Wu
- College of Economics and Management, Jiangxi Agricultural University, Nanchang 330045, China; (B.Z.); (H.W.)
| | - Baoshu Wu
- School of Business Administration, Jiangxi University of Finance and Economics, Nanchang 330032, China
| | - Zhenjiang Song
- College of Economics and Management, Jiangxi Agricultural University, Nanchang 330045, China; (B.Z.); (H.W.)
- Rural Development Research Center of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Jiangxi Selenium-Rich Agricultural Research, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Xu M, Gao X, Yue L, Li J, Feng X, Huang D, Cai H, Qi Y. Sensitivity of triple negative breast cancer cells to ATM-dependent ferroptosis induced by sodium selenite. Exp Cell Res 2024; 442:114222. [PMID: 39214329 DOI: 10.1016/j.yexcr.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Targeting ferroptosis, a type of cell death elicited by Fe2+ and lipid reactive oxygen species (L-ROS), provides a novel strategy for cancer therapy. Selenium has the potential to treat cancers by acting as a pro-oxidative agent, thus leading to cancer cell death. Here, we found that the triple negative breast cancer (TNBC) MDA-MB-231 cells were more sensitive to ferroptosis induced by sodium selenite (Na2SeO3) than that of non-TNBC MCF-7 cells. Na2SeO3 significantly elevated the level of L-ROS, MDA and Fe2+, decreased the content of GSH and the enzyme activity of GPx, disrupted the expression of ferroptosis related proteins such as GPx4 and FTH1, as well as compromised mitochondrial morphology in MDA-MB-231 cells. Moreover, ATM was activated by Na2SeO3 in MDA-MB-231 cells. Notably, Na2SeO3-induced ferroptosis was inhibited by ATM kinase inhibitor KU55933 or siATM, suggesting that Na2SeO3-induced ferroptosis was mediated by ATM protein in MDA-MB-231 cells. Our findings suggest a therapeutic strategy by ferroptosis against TNBC and deepened our understanding of ATM function.
Collapse
Affiliation(s)
- Mengchen Xu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Yue
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinyu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 222 South Tianshui R.D., Lanzhou, 730000, China.
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Alarfaj H. Selenium in Surgery. Cureus 2024; 16:e72168. [PMID: 39583421 PMCID: PMC11582387 DOI: 10.7759/cureus.72168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Selenium, a micronutrient essential for many enzymatic functions, is crucial for maintaining human health. Its presence in the human diet is of paramount importance for metabolism and support of the immune system. Many diseases of surgical importance are related to the level of selenoproteins and their influence on different organs. The aim of this concise narrative review is to highlight the role of selenium as a trace element in various surgical morbidities, a concept that is often neglected or not well perceived by most surgeons.
Collapse
|
9
|
Radomska D, Czarnomysy R, Marciniec K, Nowakowska J, Domínguez-Álvarez E, Bielawski K. Short Communication: Novel Di- and Triselenoesters as Effective Therapeutic Agents Inhibiting Multidrug Resistance Proteins in Breast Cancer Cells. Int J Mol Sci 2024; 25:9732. [PMID: 39273679 PMCID: PMC11395623 DOI: 10.3390/ijms25179732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds-novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
10
|
Chen YC, Chang CH, Tang MH, Ding YC, Wu IC, Ye WT, Shih TL. Synthesis of selenophene-containing flavonols and 2-styrylchromones: Evaluation of their activities compared with selenophene-containing chalcones as potential anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400242. [PMID: 38763904 DOI: 10.1002/ardp.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Previously, we documented the synthesis and assessed the biological effects of chalcones containing selenium against HT-29 human colorectal adenocarcinoma cells, demonstrating their significant potential. As research on selenium-containing flavonoids remains limited, this article outlines our design and synthesis of three selenium-based flavonols and three 2-styrylchromones. We conducted evaluations of these compounds to determine their impact on human lung cancer cells (A549, H1975, CL1-0, and CL1-5) and their influence on normal lung fibroblast MRC5 cells. Additionally, we included selenium-based chalcones in our testing for comparative purposes. Our findings highlight that the simplest compound, designated as compound 1, exhibited the most promising performance among the tested molecules.
Collapse
Affiliation(s)
- Ya-Chen Chen
- Department of Chemistry, Tamkang University, Tamsui District, New Taipei City, Taiwan
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mei-Hsin Tang
- Department of Chemistry, Tamkang University, Tamsui District, New Taipei City, Taiwan
| | - Yu Chun Ding
- Department of Chemistry, Tamkang University, Tamsui District, New Taipei City, Taiwan
| | - I-Ching Wu
- Department of Nutrition and Health Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wei-Tong Ye
- Department of Nutrition and Health Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, Tamsui District, New Taipei City, Taiwan
| |
Collapse
|
11
|
Radomska D, Czarnomysy R, Szymanowska A, Radomski D, Chalecka M, Surazynski A, Domínguez-Álvarez E, Bielawska A, Bielawski K. Di- and Triselenoesters-Promising Drug Candidates for the Future Therapy of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:7764. [PMID: 39063006 PMCID: PMC11277004 DOI: 10.3390/ijms25147764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is a major malignancy among women, characterized by a high mortality rate. The available literature evidence indicates that selenium, as a trace element, has chemopreventive properties against many types of cancer; as such, compounds containing it in their structure may potentially exhibit anticancer activity. Accordingly, we have undertaken a study to evaluate the effects of novel selenoesters (EDAG-1, -7, -8, -10) on MCF-7 and MDA-MB-231 breast cancer cells. Our analysis included investigations of cell proliferation and viability as well as cytometric determinations of apoptosis/autophagy induction, changes in mitochondrial membrane polarity (ΔΨm), caspase 3/7, 8, and 9 activities, and Bax, Bcl-2, p53, Akt, AMPK, and LC3A/B proteins. The obtained data revealed that the tested derivatives are highly cytotoxic and inhibit cell proliferation even at nanomolar doses (0.41-0.79 µM). Importantly, their strong proapoptotic properties (↑ caspase 3/7) are attributable to the effects on both the extrinsic (↑ caspase 8) and intrinsic (↓ ΔΨm and Bcl-2, ↑ Bax, p53, and caspase 9) pathways of apoptosis. Moreover, the tested compounds are autophagy activators (↓ Akt, ↑ autophagosomes and autolysosomes, AMPK, LC3A/B). In summary, the potent anticancer activity suggests that the tested compounds may be promising drug candidates for future breast cancer therapy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Magda Chalecka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
12
|
Díaz-Ortega P, Calderón-Montaño JM, Jiménez-Alonso JJ, Guillén-Mancina E, Jiménez-González V, Burgos-Morón E, López-Lázaro M. A Diet Lacking Selenium, but Not Zinc, Copper or Manganese, Induces Anticancer Activity in Mice with Metastatic Cancers. Nutrients 2024; 16:2249. [PMID: 39064692 PMCID: PMC11280272 DOI: 10.3390/nu16142249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium, zinc, copper, and manganese are essential components of antioxidant enzymes involved in the elimination of reactive oxygen species (ROS). Given that cancer cells produce high levels of ROS and the accumulation of ROS can lead to cell death, cancer cells may be susceptible to strategies that reduce ROS elimination. In this work, we prepared several artificial diets that contained normal carbohydrate, protein, and lipid levels but lacked selenium, zinc, copper, or manganese. The anticancer activity of these diets was examined in a metastatic ovarian cancer model, established by injecting ID8 Trp53-/- murine ovarian cancer cells into the peritoneal cavity of C57BL/6JRj mice. Treatments started 15 days later and consisted of replacing a normal diet with one of the artificial diets for several weeks. A significant improvement in mice survival was observed when the normal diet was replaced with the selenium-free diet. Diets lacking zinc, copper, or manganese showed no significant impact on mice survival. All diets were very well tolerated. The anticancer efficacy of a diet lacking selenium was confirmed in mice with metastatic colon cancer and in mice with metastatic triple-negative breast cancer. These results suggest that diets lacking selenium hold potential for the treatment of metastatic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
13
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
14
|
Hekal HA, Amer ME, Amer M, El-Missiry MA, Othman AI. Selenium suppressed growth of Ehrlich solid tumor and improved health of tumor-bearing mice. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:672-682. [PMID: 38591238 DOI: 10.1002/jez.2815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G0/G1 phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.
Collapse
Affiliation(s)
- Heba A Hekal
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maher Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Azza I Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Lv S, Ding Y, Huang J, He Y, Xie R, Shi X, Ye W. Genetic prediction of micronutrient levels and the risk of colorectal polyps: A mendelian randomization study. Clin Nutr 2024; 43:1405-1413. [PMID: 38691983 DOI: 10.1016/j.clnu.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Previous epidemiological and experimental studies have yielded conflicting results regarding the influence of human micronutrient levels on the risk of colorectal polyps (CP). In our study, we conducted a two-sample Mendelian randomization (MR) investigation to probe the link between 13 human micronutrients (calcium, selenium, magnesium, phosphorus, folate, vitamins B-6, B-12, C, D, beta-carotene, iron, zinc, and copper) and the genetic susceptibility to CP. METHODS Summary statistics for CP (n = 463,010) were obtained from pan-European genome-wide association studies, and instrumental variables for 13 micronutrients were screened from published genome-wide association studies (GWAS). After selecting suitable instrumental variables, we performed a two-sample MR study, deploying sensitivity analyses to judge heterogeneity and pleiotropy, using inverse variance weighted methods as our primary estimation tool. RESULTS Our study identified that a genetic predisposition to elevated toenail and circulating selenium or serum β-carotene concentrations lowers the risk of CP occurrence. However, no statistically significant association was observed between the other 11 micronutrients and the risk of CP. CONCLUSION The study findings provide evidence that the micronutrient selenium and β-carotene may confer protective effects against the development of CP.
Collapse
Affiliation(s)
- Siyao Lv
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yunyi Ding
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Junli Huang
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yixin He
- Gynaecologic Department of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ruijie Xie
- Division of Clinical Epidemiology and Aging Research, University of Heidelberg, Heidelberg, 69117, Germany.
| | - Xiaohong Shi
- Department of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Wei Ye
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
16
|
Henkel R. Leukocytospermia and/or Bacteriospermia: Impact on Male Infertility. J Clin Med 2024; 13:2841. [PMID: 38792382 PMCID: PMC11122306 DOI: 10.3390/jcm13102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly ranges between 10% and 35%. Leukocytospermia is found in 30% of infertile men and up to 20% in fertile men. Bacterial infections cause an inflammatory response attracting leukocytes, which produce reactive oxygen species (ROS) and release cytokines, both of which can cause damage to sperm, rendering them dysfunctional. Although leukocytospermia and bacteriospermia are both clinical conditions that can negatively affect male fertility, there is still debate about their impact on assisted reproduction outcomes and management. According to World Health Organization (WHO) guidelines, leukocytes should be determined by means of the Endtz test or with monoclonal antibodies against CD15, CD68 or CD22. The cut-off value proposed by the WHO is 1 × 106 peroxidase-positive cells/mL. For bacteria, Gram staining and semen culture are regarded as the "gold standard", while modern techniques such as PCR and next-generation sequencing (NGS) are allowing clinicians to detect a wider range of pathogens. Whereas the WHO manual does not specify a specific value as a cut-off for bacterial contamination, several studies consider semen samples with more than 103 colony-forming units (cfu)/mL as bacteriospermic. The pathogenic mechanisms leading to sperm dysfunction include direct interaction of bacteria with the male germ cells, bacterial release of spermatotoxic substances, induction of pro-inflammatory cytokines and ROS, all of which lead to oxidative stress. Clinically, bacterial infections, including "silent" infections, are treatable, with antibiotics being the treatment of choice. Yet, non-steroidal antiphlogistics or antioxidants should also be considered to alleviate inflammatory lesions and improve semen quality. In an assisted reproduction set up, sperm separation techniques significantly reduce the bacterial load in the semen. Nonetheless, contamination of the semen sample with skin commensals should be prevented by applying relevant hygiene techniques. In patients where leukocytospermia is detected, the causes (e.g. infection, inflammation, varicocele, smoking, etc.) of the leukocyte infiltration have to be identified and addressed with antibiotics, anti-inflammatories or antioxidants in cases where high oxidative stress levels are detected. However, no specific strategy is available for the management of leukocytospermia. Therefore, the relationship between bacteriospermia and leukocytospermia as well as their specific impact on functional sperm parameters and reproductive outcome variables such as fertilization or clinical pregnancy must be further investigated. The aim of this narrative review is to provide an update on the current knowledge on leukocytospermia and bacteriospermia and their impact on male fertility.
Collapse
Affiliation(s)
- Ralf Henkel
- LogixX Pharma Ltd., Merlin House, Brunel Road, Theale, Reading RG7 4AB, UK;
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
17
|
Pehlivan Ö, Wojtkowiak K, Jezierska A, Waliczek M, Stefanowicz P. Photochemical Transformations of Peptides Containing the N-(2-Selenoethyl)glycine Moiety. ACS OMEGA 2024; 9:16775-16791. [PMID: 38617632 PMCID: PMC11007844 DOI: 10.1021/acsomega.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The diselenide bond has attracted considerable attention due to its ability to undergo the metathesis reaction in response to visible light. In our previous study, we demonstrated visible-light-induced diselenide metathesis of selenocysteine-containing linear peptides, allowing for the convenient generation of peptide libraries. Here, we investigated the transformation of linear and cyclic peptides containing the N-(2-selenoethyl)glycine moiety. The linear peptides were highly susceptible to the metathesis reaction, whereas the cyclic systems gave only limited conversion yields of the metathesis product. In both cases, side reactions leading to the formation of mono-, di-, and polyselenides were observed upon prolonged irradiation. To confirm the radical mechanism of the reaction, the radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) was tested, and it was found to induce diselenide metathesis without photochemical activation. The data were interpreted in the light of quantum-chemical simulations based on density functional theory (DFT). The simulations were performed at the B3LYP-D3BJ/def2-TZVP level of theory using a continuum solvation model (IEF-PCM) and methanol as a solvent.
Collapse
Affiliation(s)
- Özge Pehlivan
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| |
Collapse
|
18
|
Chen D, Cai B, Zhu Y, Ma Y, Yu X, Xiong J, Shen J, Tie W, Zhang Y, Guo F. Targeting histone demethylases JMJD3 and UTX: selenium as a potential therapeutic agent for cervical cancer. Clin Epigenetics 2024; 16:51. [PMID: 38576048 PMCID: PMC10993516 DOI: 10.1186/s13148-024-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.
Collapse
Affiliation(s)
- Dezhi Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Bo Cai
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Yingying Zhu
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yimin Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Xiaoting Yu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jieqi Xiong
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Jiaying Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Weiwei Tie
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yisheng Zhang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
19
|
Smorodin E, Chuzmarov V, Veidebaum T. The Potential of Integrative Cancer Treatment Using Melatonin and the Challenge of Heterogeneity in Population-Based Studies: A Case Report of Colon Cancer and a Literature Review. Curr Oncol 2024; 31:1994-2023. [PMID: 38668052 PMCID: PMC11049198 DOI: 10.3390/curroncol31040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a multifunctional hormone regulator that maintains homeostasis through circadian rhythms, and desynchronization of these rhythms can lead to gastrointestinal disorders and increase the risk of cancer. Preliminary clinical studies have shown that exogenous melatonin alleviates the harmful effects of anticancer therapy and improves quality of life, but the results are still inconclusive due to the heterogeneity of the studies. A personalized approach to testing clinical parameters and response to integrative treatment with nontoxic and bioavailable melatonin in patient-centered N-of-1 studies deserves greater attention. This clinical case of colon cancer analyzes and discusses the tumor pathology, the adverse effects of chemotherapy, and the dynamics of markers of inflammation (NLR, LMR, and PLR ratios), tumors (CEA, CA 19-9, and PSA), and hemostasis (D-dimer and activated partial thromboplastin time). The patient took melatonin during and after chemotherapy, nutrients (zinc, selenium, vitamin D, green tea, and taxifolin), and aspirin after chemotherapy. The patient's PSA levels decreased during CT combined with melatonin (19 mg/day), and melatonin normalized inflammatory markers and alleviated symptoms of polyneuropathy but did not help with thrombocytopenia. The results are analyzed and discussed in the context of the literature on oncostatic and systemic effects, alleviating therapy-mediated adverse effects, association with survival, and N-of-1 studies.
Collapse
Affiliation(s)
- Eugeniy Smorodin
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| | - Valentin Chuzmarov
- 2nd Surgery Department, General Surgery and Oncology Surgery Centre, North Estonia Medical Centre, J. Sütiste Str. 19, 13419 Tallinn, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| |
Collapse
|
20
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
21
|
Haji Mehdi Nouri Z, Tafvizi F, Amini K, Khandandezfully N, Kheirkhah B. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei. Biol Trace Elem Res 2024; 202:1288-1304. [PMID: 37392361 DOI: 10.1007/s12011-023-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.
Collapse
Affiliation(s)
- Zahra Haji Mehdi Nouri
- Department of Cellular and Molecular Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Kumarss Amini
- Department of Microbiology, School of Basic Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Nooshin Khandandezfully
- Faculty Member, Department of Microbiology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Babak Kheirkhah
- Department of Microbiology, Faculty of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
22
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
23
|
Tomić N, Stevanović MM, Filipović N, Ganić T, Nikolić B, Gajić I, Ćulafić DM. Resveratrol/Selenium Nanocomposite with Antioxidative and Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:368. [PMID: 38392741 PMCID: PMC10892210 DOI: 10.3390/nano14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
In this work, we synthesized a new composite material comprised of previously formulated resveratrol nanobelt-like particles (ResNPs) and selenium nanoparticles (SeNPs), namely ResSeNPs. Characterization was provided by FESEM and optical microscopy, as well as by UV-Vis and FTIR spectroscopy, the last showing hydrogen bonds between ResNPs and SeNPs. DPPH, TBA, and FRAP assays showed excellent antioxidative abilities with ResNPs and SeNPs contributing mainly to lipid peroxidation inhibition and reducing/scavenging activity, respectively. The antibacterial effect against common medicinal implant colonizers pointed to notably higher activity against Staphylococcus isolates (minimal inhibitory concentrations 0.75-1.5%) compared to tested gram-negative species (Escherichia coli and Pseudomonas aeruginosa). Antibiofilm activity against S. aureus, S. epidermidis, and P. aeruginosa determined in a crystal violet assay was promising (up to 69%), but monitoring of selected biofilm-related gene expression (pelA and algD) indicated the necessity of the involvement of a larger number of genes in the analysis in order to further establish the underlying mechanism. Although biocompatibility screening showed some cytotoxicity and genotoxicity in MTT and alkaline comet assays, respectively, it is important to note that active antioxidative and antibacterial/antibiofilm concentrations were non-cytotoxic and non-genotoxic in normal MRC-5 cells. These results encourage further composite improvements and investigation in order to adapt it for specific biomedical purposes.
Collapse
Affiliation(s)
- Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Magdalena M. Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Tea Ganić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| | - Ina Gajić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Mitić Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| |
Collapse
|
24
|
Himoto T, Masaki T. Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients 2024; 16:472. [PMID: 38398797 PMCID: PMC10892613 DOI: 10.3390/nu16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis. These essential trace elements can affect the microenvironment in HCC. The carrier proteins for zinc and copper and selenium-containing enzymes play important roles in the prevention or progression of HCC. These trace elements enhance or alleviate the chemosensitivity of anticancer agents in patients with HCC. The zinc, copper, or selenium may affect the homeostasis of other trace elements with each other. Novel types of cell death including ferropotosis and cupropotosis are also associated with hepatocarcinogenesis. Therapeutic strategies for HCC that target these carrier proteins for zinc and copper or selenium-containing enzymes have been developed in in vitro and in vivo studies. The use of zinc-, copper- or selenium-nanoparticles has been considered as novel therapeutic agents for HCC. These results indicate that zinc, copper, and selenium may become promising therapeutic targets in patients with HCC. The clinical application of these agents is an urgent unmet requirement. This review article highlights the correlation between the dysregulation of the homeostasis of these essential trace elements and the development of HCC and summarizes the current trends on the roles of these essential trace elements in the pathogenesis of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-cho, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan
| |
Collapse
|
25
|
Li J, Li H, Ullah A, Yao S, Lyu Q, Kou G. Causal Effect of Selenium Levels on Osteoporosis: A Mendelian Randomization Study. Nutrients 2023; 15:5065. [PMID: 38140324 PMCID: PMC10746097 DOI: 10.3390/nu15245065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Prior research has demonstrated equivocal associations between selenium (Se) concentrations and osteoporosis (OP), yielding inconclusive findings. The purpose of the current study was to examine the potential correlation between Se levels and the risk of OP by using the Mendelian randomization (MR) study design. The genetic variants related to Se levels were obtained from a meta-analysis of a Genome-Wide Association Study (GWAS) conducted on toenail Se levels (n = 4162) and blood Se levels (n = 5477). The data summary for OP and bone mineral density (BMD) was obtained by utilizing the GWAS database. To examine the association between Se levels and BMD and OP, we employed three statistical methods: inverse variance weighted, weighted median, and MR-Egger. The reliability of the analysis was verified by sensitivity testing. All three methods of MR analysis revealed that Se levels had no effect on OP risk. In addition, the sensitivity analysis revealed no heterogeneity or pleiotropy, and the significance of the overall effect remained unaffected by single-nucleotide polymorphisms (SNPs), as determined by the leave-one-out analysis, indicating that our findings are relatively reliable. The results of our study indicate that there is no causal association between Se levels and the risk of OP. However, additional investigation is necessary to ascertain whether there is a potential association between these variables.
Collapse
Affiliation(s)
- Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hong Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuyuan Yao
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Wang W, Yan Y, Li Y, Huang Y, Zhang Y, Yang L, Xu X, Wu F, Du B, Mao Z, Shan T. Nutritional Value, Volatile Components, Functional Metabolites, and Antibacterial and Cytotoxic Activities of Different Parts of Millettia speciosa Champ., a Medicinal and Edible Plant with Potential for Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3900. [PMID: 38005797 PMCID: PMC10674594 DOI: 10.3390/plants12223900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Highly nutritious traditional plants which are rich in bioactive substances are attracting increasing attention. In this study, the nutritional value, chemical composition, biological activities, and feed indices of different parts of Millettia speciosa were comprehensively evaluated. In terms of its nutritional value, this study demonstrated that the leaves, flowers and seeds of M. speciosa were rich in elements and amino acids; the biological values (BVs) of these ingredients ranged from 85% to 100%, showing the extremely high nutritional value of this plant. GC-MS analysis suggested that the main chemical components of the flower volatile oil were n-hexadecanoic acid (21.73%), tetracosane (19.96%), and pentacosane (5.86%). The antibacterial activities of the flower and seed extracts were significantly stronger than those of the leaves and branches. The leaf extract displayed the strongest antifungal activities (EC50 values: 18.28 ± 0.54 μg/mL for Pseudocryphonectria elaeocarpicola and 568.21 ± 33.60 μg/mL for Colletotrichum gloeosporioides) and were the least toxic to mouse fibroblasts (L929) (IC50 value: 0.71 ± 0.04 mg/mL), while flowers were the most toxic (IC50 value: 0.27 ± 0.03 mg/mL). In addition, the abundance of fiber, protein, mineral elements, and functional metabolite contents indicated the potential applicability of M. speciosa as an animal feed. In conclusion, as a traditional herbal plant used for medicinal and food purposes, M. speciosa shows potential for safe and multifunctional development.
Collapse
Affiliation(s)
- Wei Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Y.Y.); (Y.L.); (F.W.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Yigang Yan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Y.Y.); (Y.L.); (F.W.)
| | - Yitong Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Y.Y.); (Y.L.); (F.W.)
| | - Yinyin Huang
- Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou 510182, China; (Y.H.); (L.Y.)
| | - Yirong Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Lan Yang
- Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou 510182, China; (Y.H.); (L.Y.)
| | - Xiaoli Xu
- Instrumental Analysis and Research Center of SCAU, South China Agricultural University, Guangzhou 510642, China;
| | - Fengqi Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Y.Y.); (Y.L.); (F.W.)
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Ziling Mao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Y.Y.); (Y.L.); (F.W.)
| | - Tijiang Shan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Y.Y.); (Y.L.); (F.W.)
| |
Collapse
|
27
|
Takahashi K, Ochi A, Mihara H, Ogra Y. Comparison of Nutritional Availability of Biogenic Selenium Nanoparticles and Chemically Synthesized Selenium Nanoparticles. Biol Trace Elem Res 2023; 201:4861-4869. [PMID: 36648599 DOI: 10.1007/s12011-023-03567-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is an essential micronutrient, and animals biosynthesize selenoproteins from various selenocompounds such as inorganic salts and organic selenocompounds as a Se source. In addition to the inorganic and organic forms of Se, it is also known that elemental Se is biologically synthesized at the nanoscale in nature. Biologically synthesized Se nanoparticles (Se-NPs), i.e., biogenic Se-NPs (Se-BgNPs), have not been fully investigated as a Se source compared with the other forms of Se. In this study, we evaluated the nutritional availability of Se-BgNPs biosynthesized in E. coli and revealed that Se-BgNPs were less assimilated into selenoproteins in rats as a Se source than inorganic Se salt or chemically synthesized Se-NPs. Se-BgNPs showed tolerance toward digestion and low absorbability in gut, which resulted in the low nutritional availability. Se-BgNPs seem to be coated with a biomaterial that functions to reduce their toxicity toward E. coli and at the same time lowers their availability to animals.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
- Graduate School of Horticulture, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Anna Ochi
- Laboratory of Applied Molecular Microbiology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hisaaki Mihara
- Laboratory of Applied Molecular Microbiology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan.
| |
Collapse
|
28
|
Chen P, Shaghaleh H, Hamoud YA, Wang J, Pei W, Yuan X, Liu J, Qiao C, Xia W, Wang J. Selenium-Containing Organic Fertilizer Application Affects Yield, Quality, and Distribution of Selenium in Wheat. Life (Basel) 2023; 13:1849. [PMID: 37763253 PMCID: PMC10532816 DOI: 10.3390/life13091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to investigate the effect on wheat yield of applying organic fertilizers (OF) with five different selenium (Se) concentrations. The mineral nutrients, cadmium (Cd) content, and the distribution of Se in wheat plants were also measured. The results showed that wheat yields reached a maximum of 9979.78 kg ha-1 in Mengcheng (MC) County and 8868.97 kg ha-1 in Dingyuan (DY) County, Anhui Province, China when the application amount of selenium-containing organic fertilizer (SOF) was up to 600 kg ha-1. Among the six mineral nutrients measured, only the calcium (Ca) content of the grains significantly increased with an increase in the application amount of SOF in the two regions under study. Cd content showed antagonistic effects with the Se content of wheat grains, and when the SOF was applied at 1200 kg ha-1, the Cd content of the grains was significantly reduced by 30.1% in MC and 67.3% in DY, compared with under the Se0 treatment. After application of SOF, the Se content of different parts of the wheat plant ranked root > grain > spike-stalk > glume > leaf > stem. In summary, SOF application at a suitable concentration could increase wheat yields and significantly promote the Ca content of the grains. Meanwhile, the addition of Se effectively inhibited the level of toxic Cd in the wheat grains.
Collapse
Affiliation(s)
- Peng Chen
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing 210098, China;
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
| | - Jing Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Wenxia Pei
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Xianfu Yuan
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Jianjian Liu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Cece Qiao
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Wenhui Xia
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| |
Collapse
|
29
|
Amini S, Golshani M, Moslehi M, Hajiahmadi S, Askari G, Iraj B, Bagherniya M. The effect of selenium supplementation on sonographic findings of salivary glands in papillary thyroid cancer (PTC) patients treated with radioactive iodine: study protocol for a double-blind, randomized, placebo-controlled clinical trial. Trials 2023; 24:501. [PMID: 37550760 PMCID: PMC10405508 DOI: 10.1186/s13063-023-07470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Thyroid cancer is a very damaging disease. The most common treatment for this disease includes thyroidectomy and then using radioactive iodine (RAI). RAI has many side effects, including a decrease in salivary secretions, followed by dry mouth and oral and dental injuries, as well as increased inflammation and oxidative stress. Selenium can be effective in these patients by improving inflammation and oxidative stress and by modulating salivary secretions. So far, only one clinical trial has investigated the effect of selenium on thyroid cancer patients treated with radioiodine therapy (RIT) conducted on 16 patients; considering the importance of this issue, to show the potential efficacy of selenium in these patients, more high-quality trials with a larger sample size are warranted. METHODS This is a parallel double-blind randomized controlled clinical trial that includes 60 patients aged 20 to 65 years with papillary thyroid cancer (PTC) treated with RAI and will be conducted in Seyyed al-Shohada Center, an academic center for referral of patients to receive iodine, Isfahan, Iran. Thirty patients will receive 200 µg of selenium for 10 days (3 days before to 6 days after RAI treatment) and another 30 patients will receive a placebo for the same period. Sonographic findings of major salivary glands, salivary secretions, and sense of taste will be evaluated before and 6 months after 10-day supplementation. DISCUSSION Due to its anti-inflammatory and antioxidant effects, as well as improving salivary secretions, selenium may improve the symptoms of thyroid cancer treated with radioactive iodine. In past studies, selenium consumption has not reduced the therapeutic effects of radiation therapy, and at a dose of 300 to 500 μg/day, it has not had any significant side effects in many types of cancer under radiation therapy. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20201129049534N6 . Registered on 16 September 2021.
Collapse
Affiliation(s)
- Sepide Amini
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Golshani
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Hajiahmadi
- Department of Radiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Iraj
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Mesalam NM, Ibrahim MA, Mousa MR, Said NM. Selenium and vitamin E ameliorate lead acetate-induced hepatotoxicity in rats via suppression of oxidative stress, mRNA of heat shock proteins, and NF-kB production. J Trace Elem Med Biol 2023; 79:127256. [PMID: 37442019 DOI: 10.1016/j.jtemb.2023.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Lead exposure results in a terrible rise in heat shock protein levels. OBJECTIVE This research was conducted to look at the effects of lead poisoning on heat shock response, oxidative stress, and inflammatory markers in albino rats, as well as the power of selenium and vitamin E to resist lead toxic effects. METHODS Eight groups of albino rats are used. Each group contained six rats where the first group represented the negative control, and the other groups were treated with olive oil, vitamin E, selenium, lead, (vitamin E + lead), (selenium + lead), and (vitamin E + selenium + lead). All the treatments lasted for 28 days. Then, the mRNA expression of interested heat shock proteins (HSP90, HSP70, and HSP60) was assessed. For oxidative stress disruption, we investigated nitric oxide (NO) and malondialdehyde (MDA) content, and enzymatic and non-enzymatic antioxidants activity respectively in rat livers. RESULTS our results revealed the synergetic protective effect of the combination of two antioxidants (vitamin E and selenium) against lead poising. This was clear in regulating HSPs expression, inflammatory markers, glucose, lipid profile, liver functions, and antioxidant enzymes more than the treatment with one antioxidant. CONCLUSION Pb is a toxic material that can induce HSPs and inflammatory markers expression. Selenium and vitamin E can give excellent effects in ameliorating Pb toxicity when used together.
Collapse
Affiliation(s)
- Noura M Mesalam
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
31
|
Prasad Panda S, Kesharwani A. Micronutrients/miRs/ATP networking in mitochondria: Clinical intervention with ferroptosis, cuproptosis, and calcium burden. Mitochondrion 2023; 71:1-16. [PMID: 37172668 DOI: 10.1016/j.mito.2023.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The mitochondrial electron transport chain (mtETC) requires mainly coenzyme Q10 (CoQ10), copper (Cu2+), calcium (Ca2+), and iron (Fe2+) ions for efficient ATP production. According to cross-sectional research, up to 50% of patients with micronutrient imbalances have been linked to oxidative stress, mitochondrial dysfunction, reduced ATP production, and the prognosis of various diseases. The condition of ferroptosis, which is caused by the downregulation of CoQ10 and the activation of non-coding micro RNAs (miRs), is strongly linked to free radical accumulation, cancer, and neurodegenerative diseases. The entry of micronutrients into the mitochondrial matrix depends upon the higher threshold level of mitochondrial membrane potential (ΔΨm), and high cytosolic micronutrients. The elevated micronutrient in the mitochondrial matrix causes the utilization of all ATP, leading to a drop in ATP levels. Mitochondrial calcium uniporter (MCU) and Na+/Ca2+ exchanger (NCX) play a major role in Ca2+ influx in the mitochondrial matrix. The mitochondrial Ca2+ overload is regulated by specific miRs such as miR1, miR7, miR25, miR145, miR138, and miR214, thereby reducing apoptosis and improving ATP production. Cuproptosis is primarily brought on by increased Cu+ build-up and mitochondrial proteotoxic stress, mediated by ferredoxin-1 (FDX1) and long non-coding RNAs. Cu importers (SLC31A1) and exporters (ATP7B) influence intracellular Cu2+ levels to control cuproptosis. According to literature reviews, very few randomized micronutrient interventions have been carried out, despite the identification of a high prevalence of micronutrient deficiencies. In this review, we concentrated on essential micronutrients and specific miRs associated with ATP production that balance oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
32
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
33
|
Balis P, Berenyiova A, Misak A, Grman M, Rostakova Z, Waczulikova I, Cacanyiova S, Domínguez-Álvarez E, Ondrias K. The Phthalic Selenoanhydride Decreases Rat Blood Pressure and Tension of Isolated Mesenteric, Femoral and Renal Arteries. Molecules 2023; 28:4826. [PMID: 37375381 DOI: 10.3390/molecules28124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phthalic selenoanhydride (R-Se) solved in physiological buffer releases various reactive selenium species including H2Se. It is a potential compound for Se supplementation which exerts several biological effects, but its effect on the cardiovascular system is still unknown. Therefore, herein we aimed to study how R-Se affects rat hemodynamic parameters and vasoactive properties in isolated arteries. The right jugular vein of anesthetized Wistar male rats was cannulated for IV administration of R-Se. The arterial pulse waveform (APW) was detected by cannulation of the left carotid artery, enabling the evaluation of 35 parameters. R-Se (1-2 µmol kg-1), but not phthalic anhydride or phthalic thioanhydride, transiently modulated most of the APW parameters including a decrease in systolic and diastolic blood pressure, heart rate, dP/dtmax relative level, or anacrotic/dicrotic notches, whereas systolic area, dP/dtmin delay, dP/dtd delay, anacrotic notch relative level or its delay increased. R-Se (~10-100 µmol L-1) significantly decreased the tension of precontracted mesenteric, femoral, and renal arteries, whereas it showed a moderate vasorelaxation effect on thoracic aorta isolated from normotensive Wistar rats. The results imply that R-Se acts on vascular smooth muscle cells, which might underlie the effects of R-Se on the rat hemodynamic parameters.
Collapse
Affiliation(s)
- Peter Balis
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Zuzana Rostakova
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Investigaciones Científicas CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
34
|
Feng Z, Sun H, Qin Y, Zhou Y, Zhu H, Yao Q. A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162076. [PMID: 36758687 DOI: 10.1016/j.scitotenv.2023.162076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Dietary selenium (Se) is an effective strategy to meet Se requirement of human body, and Se biofortification in crops in seleniferous soils with selenobacteria represents an eco-friendly biotechnique. In this study, we tested the effectiveness of siderophore-producing bacterial (SPB) synthetic communities (SynComs) in promoting plant Se uptake in a subtropical seleniferous soil where the fixation of Se by ferric-oxides is severe. The results indicated that SPB SynComs drastically elevated soil bioavailable Se content by up to 68.7 %, and significantly increased plant Se concentration and uptake by up to 83.1 % and 92.2 %, respectively. Seven out of ten SPB isolates in the SynComs were enriched in soils after 120 days of inoculation. Additionally, variation partitioning analysis (VPA) revealed that the contribution of soil bacterial community (up to 42.8 %) to the increased plant Se uptake was much greater than that of soil bioavailable Se (up to 5.1 %), suggesting a direct pathway other than the pathway of mobilizing Se. The relative abundances of some operational taxonomic units (OTUs) showed significantly positive relationship with plant Se status but not with soil Se status, which supports the results of VPA. Network analysis indicates that some inoculated SPB isolates promoted plant Se uptake by regulating the native bacterial taxa. Taken together, this study demonstrates that SPB can be used in Se biofortification in crops, especially in subtropical soils.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Sun
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yongqiang Qin
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Wang H, Li Z, Liu Y, Zhang M, Shi Y, Zhang Y, Mi G, Wang M, He Y, Chen Y, Chen C, Chen J. Effects of Selenoprotein S Knockdown on Endoplasmic Reticulum Stress in ATDC5 Cells and Gene Expression Profiles in Hypertrophic Chondrocytes. Biol Trace Elem Res 2023; 201:1965-1976. [PMID: 35725994 DOI: 10.1007/s12011-022-03313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022]
Abstract
Selenoprotein S (SelS), a member of the selenoprotein family, is mainly located on the endoplasmic reticulum (ER) membrane. SelS is involved in a variety of biological processes, including oxidative stress, inflammation, glucose metabolism regulation, and ER-associated protein degradation (ERAD). This study was designed to explore the role of SelS in chondrocytes. It was confirmed that SelS is a Se-sensitive selenoprotein in low-selenium rat and cell models. ER stress was not induced in SelS knockdown ATDC5 cells. However, treatment of ATDC5 cells with tunicamycin (Tm), an ER stress inducer, increased the expression of SelS, and knockdown of SelS aggravated ER stress induced by Tm, suggesting that SelS is a regulatory molecule involved in ER stress in chondrocytes. Both osteoarthritis and Kashin-Beck disease are osteochondral diseases associated with hypertrophic chondrocyte abnormalities. Therefore, ATDC5 cells were induced to hypertrophic chondrocytes. SelS was knocked down and RNA sequencing was performed. Bioinformatics analysis of the differentially expressed genes (DEGs) revealed that SelS knockdown affected a variety of biological processes, including cell adhesion, osteoclast differentiation, and extracellular matrix homeostasis. Collectively, this study verified that SelS is sensitive to selenium levels and is an ER stress-responsive molecule. Knocking down SelS can cause abnormal expression of adhesion molecules and matrix homeostasis disorder in hypertrophic chondrocytes.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhengzheng Li
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinan Liu
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Zhang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yawen Shi
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Zhang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ge Mi
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengying Wang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying He
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Chen
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jinghong Chen
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
36
|
Nie X, Yang X, He J, Liu P, Shi H, Wang T, Zhang D. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front Bioeng Biotechnol 2023; 11:1167123. [PMID: 36994362 PMCID: PMC10042385 DOI: 10.3389/fbioe.2023.1167123] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, microbial conversion of inorganic selenium into an efficient and low-toxic form of selenium has attracted much attention. With the improvement of scientific awareness and the continuous progress of nanotechnology, selenium nanoparticles can not only play the unique functions of organic selenium and inorganic selenium but also have higher safety, absorption and biological activity than other selenium forms. Therefore, the focus of attention has gradually shifted beyond the level of selenium enrichment in yeast to the combination of biosynthetic selenium nanoparticles (BioSeNPs). This paper primarily reviews inorganic selenium and its conversion to less toxic organic selenium and BioSeNPs by microbes. The synthesis method and potential mechanism of organic selenium and BioSeNPs are also introduced, which provide a basis for the production of specific forms of selenium. The methods to characterize selenium in different forms are discussed to understand the morphology, size and other characteristics of selenium. In general, to obtain safer and higher selenium content products, it is necessary to develop yeast resources with higher selenium conversion and accumulation.
Collapse
Affiliation(s)
- Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Xurui Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Pei Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA, United States
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Product, Chinese Academy of Forestry, Nanjing, Jiangsu, China
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| |
Collapse
|
37
|
Identification of Prognostic and Predictive Biomarkers and Druggable Targets among 205 Antioxidant Genes in 21 Different Tumor Types via Data-Mining. Pharmaceutics 2023; 15:pharmaceutics15020427. [PMID: 36839749 PMCID: PMC9959161 DOI: 10.3390/pharmaceutics15020427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Oxidative stress is crucial in carcinogenesis and the response of tumors to treatment. Antioxidant genes are important determinants of resistance to chemotherapy and radiotherapy. We hypothesized that genes involved in the oxidative stress response may be valuable as prognostic biomarkers for the survival of cancer patients and as druggable targets. (2) Methods: We mined the KM Plotter and TCGA Timer2.0 Cistrome databases and investigated 205 antioxidant genes in 21 different tumor types within the context of this investigation. (3) Results: Of 4347 calculations with Kaplan-Meier statistics, 84 revealed statistically significant correlations between high gene expression and worse overall survival (p < 0.05; false discovery rate ≤ 5%). The tumor types for which antioxidant gene expression was most frequently correlated with worse overall survival were renal clear cell carcinoma, renal papillary cell carcinoma, and hepatocellular carcinoma. Seventeen genes were clearly overexpressed in tumors compared to their corresponding normal tissues (p < 0.001), possibly qualifying them as druggable targets (i.e., ALOX5, ALOX5AP, EPHX4, G6PD, GLRX3, GSS, PDIA4, PDIA6, PRDX1, SELENOH, SELENON, STIP1, TXNDC9, TXNDC12, TXNL1, TXNL4A, and TXNRD1). (4) Conclusions: We concluded that a sub-set of antioxidant genes might serve as prognostic biomarkers for overall survival and as druggable targets. Renal and liver tumors may be the most suitable entities for this approach.
Collapse
|
38
|
Zhao B, Ding H, Hu T, Guo Y. Synergistic effects of the Se and Zn supplemental combination on the nutrient improvement of mannitol and adenosine and the multi-element bioaccessibility in Cordyceps cicadae. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Saba S, Preve NB, Granja IJA, Pedroso GJ, Cabreira CR, Dreyer JP, Ribeiro LFB, Horn AP, Marinho MAG, Bellettini IC, Pich CT, Kokuszi LTF, Borges E, de Lima VR, Rafique J, Frizon TEA. Synthesis of silver nanoparticles coupled with aromatic diselenides: greener approach, potential against glioma cells and DNA interaction. NEW J CHEM 2023; 47:2727-2735. [DOI: 10.1039/d2nj04810h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Synthesis of organochalcogen-modified silver nanoparticles (A1-7), their cytotoxic potentials against glioma cells (C6) & their interaction with DNA.
Collapse
Affiliation(s)
- Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Natalia B. Preve
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Isis J. A. Granja
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Gabriela J. Pedroso
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Climei R. Cabreira
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | - Juliana P. Dreyer
- Department of Chemistry, Federal University of Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Luiz F. B. Ribeiro
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Ana P. Horn
- Institute of Biological Sciences, Post-Graduate Program in Physiological Sciences, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo A. G. Marinho
- Institute of Biological Sciences, Post-Graduate Program in Physiological Sciences, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Ismael C. Bellettini
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Claus T. Pich
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Lucas T. F. Kokuszi
- Escola de Química e Alimentos, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, RS, Brazil
| | - Eduardo Borges
- Escola de Química e Alimentos, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, RS, Brazil
| | - Vânia R. de Lima
- Escola de Química e Alimentos, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, RS, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | - Tiago E. A. Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| |
Collapse
|
40
|
Zhang Y, Liu J, Li X, Zhou G, Sang Y, Zhang M, Gao L, Xue J, Zhao M, Yu H, Zhou X. Dietary selenium excess affected spermatogenesis via DNA damage and telomere-related cell senescence and apoptosis in mice. Food Chem Toxicol 2023; 171:113556. [DOI: 10.1016/j.fct.2022.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
|
41
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
42
|
Blinov AV, Nagdalian AA, Siddiqui SA, Maglakelidze DG, Gvozdenko AA, Blinova AA, Yasnaya MA, Golik AB, Rebezov MB, Jafari SM, Shah MA. Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. Sci Rep 2022; 12:21975. [PMID: 36539549 PMCID: PMC9763805 DOI: 10.1038/s41598-022-25884-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, selenium nanoparticles (Se NPs) stabilized with cocamidopropyl betaine were synthesized for the first time. It was observed that Se NPs synthesized in excess of selenic acid had a negative charge with ζ-potential of -21.86 mV, and in excess of cocamidopropyl betaine-a positive charge with ξ = + 22.71 mV. The resulting Se NPs with positive and negative charges had a spherical shape with an average size of about 20-30 nm and 40-50 nm, respectively. According to the data of TEM, HAADF-TEM using EDS, IR spectroscopy and quantum chemical modeling, positively charged selenium nanoparticles have a cocamidopropylbetaine shell while the potential- forming layer of negatively charged selenium nanoparticles is formed by SeO32- ions. The influence of various ions on the sol stability of Se NPs showed that SO42- and PO43- ions had an effect on the positive Se NPs, and Ba2+ and Fe3+ ions had an effect on negative Se NPs, which corresponded with the Schulze-Hardy rule. The mechanism of coagulating action of various ions on positive and negative Se NPs was also presented. Also, influence of the active acidity of the medium on the stability of Se NPs solutions was investigated. Positive and negative sols of Se NPs had high levels of stability in the considered range of active acidity of the medium in the range of 1.21-11.98. Stability of synthesized Se NPs stability has been confirmed in real system (liquid soap). An experiment with the addition of Se NPs stabilized with cocamidopropyl betaine to liquid soap showed that the particles of dispersed phases retain their initial distributions, which revealed the stability of synthesized Se NPs.
Collapse
Affiliation(s)
- Andrey V. Blinov
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Andrey A. Nagdalian
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Shahida A. Siddiqui
- grid.6936.a0000000123222966Campus Straubing for Biotechnology and Sustainability, Technical University of Munich (TUM), Essigberg 3, 94315 Straubing, Germany ,grid.424202.20000 0004 0427 4308German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - David G. Maglakelidze
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Alexey A. Gvozdenko
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Anastasiya A. Blinova
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Mariya A. Yasnaya
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Alexey B. Golik
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Maksim B. Rebezov
- grid.446163.20000 0000 9194 3477Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia ,grid.465377.40000 0004 5940 5280Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Seid Mahdi Jafari
- grid.411765.00000 0000 9216 4846Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran ,grid.6312.60000 0001 2097 6738Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, 32004 Ourense, Spain
| | - Mohd Asif Shah
- Department of Economics, Kebridehar University, Kebri Dehar, Somali Post Box 250, Ethiopia ,Adjunct Faculty, School of Business, Woxsen University, Hyderabad, Telangana 502345 India
| |
Collapse
|
43
|
Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022; 14:nu14245308. [PMID: 36558469 PMCID: PMC9785339 DOI: 10.3390/nu14245308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Selenium is an essential trace element in humans and animals and its role in selenoprotein and enzyme antioxidant activity is well documented. Food is the principal source of selenium, and it is important that selenium status in the body is adequately maintained for physiological functions. There has been increasing attention on the role of selenium in mitigating the toxic effects of mercury exposure from dietary intake in humans. In contrast, mercury is a neurotoxin, and its continuous exposure can cause adverse health effects in humans. The interactions of selenium and mercury are multi-factorial and involve complex binding mechanisms between these elements at a molecular level. Further insights and understanding in this area may help to evaluate the health implications of dietary mercury exposure and selenium status. This review aims to summarise current information on the interplay of the interactions between selenium and mercury in the body and the protective effect of selenium on at-risk groups in a population who may experience long-term mercury exposure.
Collapse
|
44
|
Organoselenocyanates Tethered Methyl Anthranilate Hybrids with Promising Anticancer, Antimicrobial, and Antioxidant Activities. INORGANICS 2022. [DOI: 10.3390/inorganics10120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Novel methyl anthranilate-based organoselenocyanate hybrids were developed, and their structures were confirmed by the state-of-the-art spectroscopic techniques. Their antimicrobial potency was estimated against various microbial strains (e.g., Candida albicans, Escherichia coli, and Staphylococcus aureus). The S. aureus and C. albicans strains were more sensitive than E. coli toward the organoselenocyanates. Interestingly, the azoic derivatives 4 and 9, methyl ester 6, and phenoxy acetamide 15 showed promising antimicrobial activity. Moreover, the antitumor potential was estimated against liver and breast carcinomas, as well as primary fibroblasts. Interestingly, the anticancer properties were more pronounced in the HepG2 cells. The organoselenocyanates 4, 6, 9, 10, and 15 showed interesting anti-HepG2 cytotoxic patterns. Additionally, organoselenocyanates 3, 4, and 10 exhibited promising antioxidant activities in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and 2,2-diphenyl-1-picrylhydrazyl in vitro assays compared to ascorbic acid. These data point to promising antimicrobial, anticancer, and antioxidant activities of organoselenocyanates 6, 9, and 15 warrant further studies.
Collapse
|
45
|
Zhang M, Liu K. Lipid and Protein Oxidation of Brown Rice and Selenium-Rich Brown Rice during Storage. Foods 2022; 11:foods11233878. [PMID: 36496686 PMCID: PMC9737139 DOI: 10.3390/foods11233878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Selenium-rich rice has become one of the effective ways to increase people's selenium intake. Selenium-containing proteins have higher antioxidant properties, which may lead to selenium-rich brown rice (Se-BR) having better storage stability than ordinary brown rice (BR). By measuring the peroxidation value, fatty acid value, carbonyl value and protein secondary structure, it was found that Se-BR had higher oxidation resistance stability than BR. The biological function of the differential proteins (DEPs) between ordinary brown rice stored for 0 days (BR-0) and 180 days (BR-6) as well as Se-rich brown rice stored for 0 days (Se-0) and 180 days (Se-6) was investigated by using iTRAQ. A total of 237, 235, 113 and 213 DEPs were identified from group A (BR-0/BR-6), group B (Se-0/Se-6), group C (BR-0/Se-0) and group D (BR-6/Se-6), respectively. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs were mainly enriched in glucose metabolism, tricarboxylic acid cycle, fatty acid biosynthesis and degradation, glutathione metabolism, sulfur metabolism, peroxisome and other metabolic pathways. This study provides theoretical support for the study of protein oxidation kinetics and storage quality control of brown rice during storage.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67758850
| |
Collapse
|
46
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
47
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, García-Barrera T, Abril N. A selenium-enriched diet helps to recover liver function after antibiotic administration in mice. Food Chem Toxicol 2022; 171:113519. [PMID: 36464106 DOI: 10.1016/j.fct.2022.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic (Abx) treatments or inadvertent exposure to Abx-contaminated food and water can adversely affect health. Many studies show strong correlations between Abx and liver damage pointing to gut dysbiosis as a contributing factor because the gut microbiota (GM) forms a complex network with liver. Selenium (Se) is a beneficial micronutrient able to shape the composition of the GM. We analyzed here the ability of a low dose (120 μg/kg bodyweight/day) Se-enriched diet to ameliorate the effects of a 7-day intervention with an Abx-cocktail over the global health and the homeostasis of cholesterol and bile acids in the mouse liver. We found that Se restored lipid metabolism preventing the increased synthesis and accumulation of cholesterol caused by Abx treatment. Integrating these results with previous metataxonomic and metabolomic data in same mice, we conclude that part of the effect of Se against liver dysfunction (cholesterol and bile acids metabolism and transport) could be mediated by the GM. We provide data that contribute to a more complete view of the molecular mechanisms underlying the beneficial action of Se on health, pointing to a possible use of low doses of Se as a functional food additive (prebiotic) to prevent the negative effects of antibiotics.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - María-José Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| | - Juan Jurado
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
48
|
Anticancer, Antimicrobial, and Antioxidant Activities of Organodiselenide-Tethered Methyl Anthranilates. Biomolecules 2022; 12:biom12121765. [PMID: 36551195 PMCID: PMC9775310 DOI: 10.3390/biom12121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Novel methyl anthranilate-based organodiselenide hybrids were synthesized, and their chemical structures were confirmed by state-of-the-art spectroscopic techniques. Their antimicrobial properties were assessed against Staphylococcus aureus, Escherichia coli, and Candida albicans microbial strains. Moreover, the antitumor potential was estimated against liver and breast carcinomas, as well as primary fibroblast cell lines. The Staphylococcus aureus and Candida albicans strains were more sensitive than Escherichia coli toward the OSe compounds. Interestingly, methyl 2-amino-5-(methylselanyl) benzoate (14) showed similar antifungal activity to the standard drug clotrimazole (IA% = 100%) and manifested promising antibacterial activity against E. coli (IA% = 91.3%) and S. aureus (IA% = 90.5%). Furthermore, the minimum inhibitory concentration experiments confirmed the antimicrobial activity of the OSe 14, which in turn was comparable to clotrimazole and ampicillin drugs. Interestingly, the anticancer properties were more pronounced in the HepG2 cells. The OSe 14 was the most cytotoxic (IC50 = 3.57 ± 0.1 µM), even more than the Adriamycin drug (IC50 = 4.50 ± 0.2 µM), and with therapeutic index (TI) 17 proposing its potential selectivity and safety. Additionally, OSe compounds 14 and dimethyl 5,5'-diselanediylbis(2-aminobenzoate) (5) exhibited promising antioxidants in the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro assays with 96%, 92%, 91%, and 86% radical scavenging activities compared to 95% by vitamin C in the DPPH and ABTS assays, respectively. These results point to promising antimicrobial, anticancer, and antioxidant activities of OSe 14 and 5 and warrant further studies.
Collapse
|
49
|
Hellwig PS, Barcellos AM, Cargnelutti R, Barcellos T, Perin G. Synthesis of Chalcogenylchromenes through Cyclization of Propargylic Aryl Ethers. J Org Chem 2022; 87:15050-15060. [PMID: 36302502 DOI: 10.1021/acs.joc.2c01490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe here for the first time the synthesis of 2-(chalcogenyl)-3H-benzo[f]chromenes and the new 3-(phenylselanyl)-2H-chromenes by the radical or electrophilic cyclization of propargylic aryl ethers in the presence of diorganyl diselenides or ditellurides using Oxone as a green oxidant and acetonitrile as solvent in a sealed tube at 100 °C. In this study, thirty-one chalcogenylchromenes with a broad substrate scope were prepared in moderate to excellent yields (50-98%), including compounds derived from natural products.
Collapse
Affiliation(s)
- Paola S Hellwig
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul, 95070-560, Caxias do Sul, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
50
|
Younesian O, Sheikh Arabi M, Jafari SM, Joshaghani H. Long-Term Excessive Selenium Supplementation Affects Gene Expression in Esophageal Tissue of Rats. Biol Trace Elem Res 2022; 201:3387-3394. [PMID: 36319827 DOI: 10.1007/s12011-022-03413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 04/17/2023]
Abstract
Esophageal cancer is one of the leading causes of cancer death and the seventh most prevalent cancer worldwide. Considering the positive association of high selenium with the prevalence of esophageal cancer, we have investigated the effect of high doses of selenium on gene expression in the normal esophageal tissue of rats. Twenty male rats were randomly divided into four groups: control group, group 2 mg Se/L, 10 mg Se/L, and 20 mg Se/L rats fed with a basal basic diet and 2, 10, and 20 mg Se/L as sodium selenite in drinking water, respectively, for 20 weeks. Serum malondialdehyde and glutathione peroxidase activity were measured. Moreover, the expression and concentration of the cyclin D1, cyclin E, KRAS, p53, NF-kB, TGF-β, and MGMT in the esophageal tissue were analyzed and compared between the four groups. In normal esophageal tissue, selenium supplementations (2, 10, and 20 mg Se/L) increased the mRNA levels of cyclin D1, P53, KRAS, NF-κB p65, and MGMT and decreased the mRNA level of TGFß1. The concentrations of cyclin D1 and MGMT were also significantly increased by selenium supplementations. Selenium supplementations had no significant effect on serum MDA but significantly increased GPX activity. The present study suggests that selenium supplementation (2, 10, and 20 mg Se/L) affects gene expression related to inflammation, Cell proliferation, and apoptosis in the normal esophageal tissue. However, there were no observed abnormalities other than reduced growth with supplementation of 20 mg/L as Na2SeO3 in rats.
Collapse
Affiliation(s)
- Ommolbanin Younesian
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
| | - Hamidreza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, 60 Kola, Road, Falsafi Building, Gorgan, Iran.
| |
Collapse
|