1
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Sawhney SS, Thänert R, Thänert A, Hall-Moore C, Ndao IM, Mahmud B, Warner BB, Tarr PI, Dantas G. Gut microbiome evolution from infancy to 8 years of age. Nat Med 2025:10.1038/s41591-025-03610-0. [PMID: 40175737 DOI: 10.1038/s41591-025-03610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025]
Abstract
The human gut microbiome is most dynamic in early life. Although sweeping changes in taxonomic architecture are well described, it remains unknown how, and to what extent, individual strains colonize and persist and how selective pressures define their genomic architecture. In this study, we combined shotgun sequencing of 1,203 stool samples from 26 mothers and their twins (52 infants), sampled from childbirth to 8 years after birth, with culture-enhanced, deep short-read and long-read stool sequencing from a subset of 10 twins (20 infants) to define transmission, persistence and evolutionary trajectories of gut species from infancy to middle childhood. We constructed 3,995 strain-resolved metagenome-assembled genomes across 399 taxa, and we found that 27.4% persist within individuals. We identified 726 strains shared within families, with Bacteroidales, Oscillospiraceae and Lachnospiraceae, but not Bifidobacteriaceae, vertically transferred. Lastly, we identified weaning as a critical inflection point that accelerates bacterial mutation rates and separates functional profiles of genes accruing mutations.
Collapse
Affiliation(s)
- Sanjam S Sawhney
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Thänert
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Thänert
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Pasha A, Iqbal NT, Shafiq Y, Khan W, Azam SI, Kabir F, Muhammad A, Nisar MI, Jehan F. Effect of one prophylactic dose of azithromycin on Bifidobacterium infantis colonization in infants from the Mumta trial. Int J Infect Dis 2025; 153:107794. [PMID: 39855335 PMCID: PMC11910343 DOI: 10.1016/j.ijid.2025.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES The effects of antibiotics on the microbiome remain incompletely understood. Azithromycin (AZ) has been shown to improve child survival and infant growth outcomes. This study aimed to assess the impact of AZ on Bifidobacterium infantis colonization and bacterial enteropathogen count in the infant gut. METHODS We analyzed clinical, biomarker, B. infantis and enteropathogen data from 150 mother-infant dyads from the MUMTA Lactating Women study. Colonization of B. infantis was assessed using quantitative polymerase chain reaction (PCR) of fecal samples. We utilized a customized PCR-based TaqMan Array Card for enteropathogen detection. RESULTS AZ administration was associated with a 1.99-fold (95% confidence intervals [CI] 1.33-2.97) increase in colonization by B. infantis. B. infantis colonization was highest when inflammatory biomarker levels were within normal range. Mode of delivery (RR 2.43; 95% CI: 1.58, 3.76) and colostrum (RR2.05; 95% CI: 1.41, 2.98) given to the infant within 24 h of birth were associated with B. infantis colonization. A single dose of AZ on day 42 reduced bacterial enteropathogen count in the AZ group on day 56, as compared to the pre-AZ count. Bacterial enteropathogen count for infants with wasting (weight for length z-score WLZ <-2) was 1.43-fold higher (95% CI: 1.00-2.03) than for infants with WLZ ≥ -2. Over 60% of infants harbored with the macrolide resistance mph(A) gene CONCLUSION: AZ administration increases B. infantis colonization and reduces bacterial enteropathogen count in infants.
Collapse
Affiliation(s)
- Aneela Pasha
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan; Department of Biological & Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Yasir Shafiq
- Center of Excellence for Trauma and Emergencies and Community Health Sciences, The Aga Khan University, Karachi, Pakistan; Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Waqasuddin Khan
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Syed Iqbal Azam
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | | | - Muhammad Imran Nisar
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Fyezah Jehan
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
4
|
Kim YT, Huang YP, Ozturk G, Hahn J, Taha AY, Wang A, Barile D, Mills DA. Characterization of Bifidobacterium bifidum growth and metabolism on whey protein phospholipid concentrate. J Dairy Sci 2025; 108:3366-3381. [PMID: 39788196 DOI: 10.3168/jds.2024-25885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Whey protein phospholipid concentrate (WPPC) is a co-product generated during the manufacture of whey protein isolate. Whey protein phospholipid concentrate is depleted of simple sugars but contains numerous glycoconjugates embedded in the milk fat globule membrane, suggesting this fraction may serve as a carbon source for growth of bifidobacteria commonly enriched in breastfed infants. In this work, we demonstrate that WPPC can serve as a sole carbon source for the growth of Bifidobacterium bifidum, a species common to the breastfed infant and routinely used as a probiotic. Growth on WPPC fractions resulted in expression of key extracellular glycosyl hydrolases in B. bifidum associated with the catabolism of glycoproteins. Interestingly, this included induction of fucosidase genes in B. bifidum linked to catabolism of fucosylated human milk oligosaccharides even though the WPPC glycan possesses little fucose. Additional growth studies revealed that WPPC-glycan components N-acetylglucosamine or N-acetylgalactosamine were required for pre-activation of B. bifidum toward rapid growth on fucosylated human milk oligosaccharides. Growth on WPPC fractions also resulted in expression of extracellular sialidases in B. bifidum which promoted a consistent release of sialic acid, a well-known component of bovine milk oligosaccharides and glycoconjugates with potential effects on gut microbial ecology and host cognition. These studies suggest WPPC may serve as a promising bioactive component to facilitate probiotic activity for use in infant formulas and other synbiotic applications.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Gulustan Ozturk
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616; Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie Hahn
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Aidong Wang
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Daniela Barile
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - David A Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616.
| |
Collapse
|
5
|
Sohn K, Palacios V, Clark R. Bifidobacterium longum subsp infantis (EVC001) is associated with reduced incidence of necrotizing enterocolitis stage ≥2 and bloody stools in premature babies. J Perinatol 2024:10.1038/s41372-024-02188-8. [PMID: 39643694 DOI: 10.1038/s41372-024-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To utilize an evidence-based probiotic protocol to achieve a 50% reduction in necrotizing enterocolitis (NEC) ≥ stage 2 and bloody stools. STUDY DESIGN From January 2022 through September 2023, daily enteral Bifidobacterium longum ssp. infantis EVC001 (B. infantis EVC001) was administered to babies ≤ 33 6/7 weeks gestation until 36 weeks post menstrual age. Feeding tolerance and complications were compared to babies admitted during the prior two-year period. Fisher's Exact test was used to analyze proportional data and t test was used for continuous variables. RESULTS A total of 265 babies received EVC001, and a total of 277 babies formed the pre-probiotic cohort. Probiotic use was associated with decreased NEC ≥ stage 2 (p = 0.0058), reduced bloody stools (p < 0.0001), decreased time to full enteral feeds (p < 0.0001), and decreased total parenteral nutrition (TPN) days (p < 0.0001). CONCLUSION Administration of B. infantis EVC001 was associated with a decrease in NEC, a decrease in bloody stools, and improvement in feeding tolerance in premature babies.
Collapse
Affiliation(s)
- Kristin Sohn
- Department of Pediatrics, University of Nevada School of Medicine, Reno, NV, USA.
- Pediatrix Neonatology of Nevada, Reno, NV, USA.
| | | | - Reese Clark
- Pediatrix Center for Research and Education, Sunrise, FL, USA
| |
Collapse
|
6
|
Dalby MJ, Kiu R, Serghiou IR, Miyazaki A, Acford-Palmer H, Tung R, Caim S, Phillips S, Kujawska M, Matsui M, Iwamoto A, Taking B, Cox SE, Hall LJ. Faecal microbiota and cytokine profiles of rural Cambodian infants linked to diet and diarrhoeal episodes. NPJ Biofilms Microbiomes 2024; 10:85. [PMID: 39277573 PMCID: PMC11401897 DOI: 10.1038/s41522-024-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
The gut microbiota of infants in low- to middle-income countries is underrepresented in microbiome research. This study explored the faecal microbiota composition and faecal cytokine profiles in a cohort of infants in a rural province of Cambodia and investigated the impact of sample storage conditions and infant environment on microbiota composition. Faecal samples collected at three time points from 32 infants were analysed for microbiota composition using 16S rRNA amplicon sequencing and concentrations of faecal cytokines. Faecal bacterial isolates were subjected to whole genome sequencing and genomic analysis. We compared the effects of two sample collection methods due to the challenges of faecal sample collection in a rural location. Storage of faecal samples in a DNA preservation solution preserved Bacteroides abundance. Microbiota analysis of preserved samples showed that Bifidobacterium was the most abundant genus with Bifidobacterium longum the most abundant species, with higher abundance in breast-fed infants. Most infants had detectable pathogenic taxa, with Shigella and Klebsiella more abundant in infants with recent diarrhoeal illness. Neither antibiotics nor infant growth were associated with gut microbiota composition. Genomic analysis of isolates showed gene clusters encoding the ability to digest human milk oligosaccharides in B. longum and B. breve isolates. Antibiotic-resistant genes were present in both potentially pathogenic species and in Bifidobacterium. Faecal concentrations of Interlukin-1alpha and vascular endothelial growth factor were higher in breast-fed infants. This study provides insights into an underrepresented population of rural Cambodian infants, showing pathogen exposure and breastfeeding impact gut microbiota composition and faecal immune profiles.
Collapse
Affiliation(s)
- Matthew J Dalby
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Raymond Kiu
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Iliana R Serghiou
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Asuka Miyazaki
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
| | - Holly Acford-Palmer
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Rathavy Tung
- National Maternal and Child Health Centre, Ministry of Health, Phnom Penh, Cambodia
| | - Shabhonam Caim
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Sarah Phillips
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Magdalena Kujawska
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, 80333, Germany
| | - Mitsuaki Matsui
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
| | - Azusa Iwamoto
- Bureau of International Health Cooperation, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Bunsreng Taking
- Kampong Cham Provincial Health Department, Ministry of Health, Kampong Cham, Cambodia
| | - Sharon E Cox
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Lindsay J Hall
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, 80333, Germany.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
7
|
Tripp P, Davis EC, Gurung M, Rosa F, Bode L, Fox R, LeRoith T, Simecka C, Seppo AE, Järvinen KM, Yeruva L. Infant Microbiota Communities and Human Milk Oligosaccharide Supplementation Independently and Synergistically Shape Metabolite Production and Immune Responses in Healthy Mice. J Nutr 2024; 154:2871-2886. [PMID: 39069270 PMCID: PMC11393170 DOI: 10.1016/j.tjnut.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated associations between the early-life gut microbiome and incidence of inflammatory and autoimmune disease in childhood. Although microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy. OBJECTIVES In this study, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. METHODS Germ-free mice were inoculated with fecal slurries from Bifidobacterium longum subspecies infantis positive (BIP) or B. longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 d. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. RESULTS The results showed that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, Ruminococcus gnavus, Cellulosilyticum sp., and Erysipelatoclostridium sp. The BIP microbiome produced 2-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of mesenteric lymph node cells to phorbol myristate acetate and lipopolysaccharide and increased serum IgA and IgG concentrations. CONCLUSIONS Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.
Collapse
Affiliation(s)
- Patricia Tripp
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States
| | - Manoj Gurung
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Fernanda Rosa
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, United States; Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Renee Fox
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Christy Simecka
- Division of Laboratory Animal Medicine University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY, United States; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| | - Laxmi Yeruva
- USDA-ARS, SEA, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, AR, United States.
| |
Collapse
|
8
|
Davis EC, Monaco CL, Insel R, Järvinen KM. Gut microbiome in the first 1000 days and risk for childhood food allergy. Ann Allergy Asthma Immunol 2024; 133:252-261. [PMID: 38494114 PMCID: PMC11344696 DOI: 10.1016/j.anai.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE To summarize recent data on the association between gut microbiome composition and food allergy (FA) in early childhood and highlight potential host-microbiome interactions that reinforce or abrogate oral tolerance. DATA SOURCES PubMed search of English-language articles related to FA, other atopic disease, and the gut microbiome in pregnancy and early childhood. STUDY SELECTIONS Human studies published after 2015 assessing the relationship between the gut bacteriome and virome in the first 2 years of life and FA or food sensitization development in early childhood were prioritized. Additional human studies conducted on the prenatal gut microbiome or other atopic diseases and preclinical studies are also discussed. RESULTS Children who developed FA harbored lower abundances of Bifidobacterium and Clostridia species and had a less mature microbiome during infancy. The early bacterial microbiome protects against FA through production of anti-inflammatory metabolites and induction of T regulatory cells and may also affect FA risk through a role in trained immunity. Infant enteric phage communities are related to childhood asthma development, though no data are available for FA. Maternal gut microbiome during pregnancy is associated with childhood FA risk, potentially through transplacental delivery of maternal bacterial metabolites, though human studies are lacking. CONCLUSION The maternal and infant microbiomes throughout the first 1000 days of life influence FA risk through a number of proposed mechanisms. Further large, longitudinal cohort studies using taxonomic, functional, and metabolomic analysis of the bacterial and viral microbiomes are needed to provide further insight on the host-microbe interactions underlying FA pathogenesis in childhood.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Cynthia L Monaco
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Insel
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
9
|
De Bruyn F, James K, Cottenet G, Dominick M, Katja J. Combining Bifidobacterium longum subsp. infantis and human milk oligosaccharides synergistically increases short chain fatty acid production ex vivo. Commun Biol 2024; 7:943. [PMID: 39098939 PMCID: PMC11298527 DOI: 10.1038/s42003-024-06628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
To enhance health benefits, a probiotic can be co-administered with a metabolizable prebiotic forming a synergistic synbiotic. We assessed the synergies resulting from combining Bifidobacterium longum subsp. infantis LMG 11588 and an age-adapted blend of six human milk oligosaccharides (HMOs) in ex vivo colonic incubation bioreactors seeded with fecal background microbiota from infant and toddler donors. When HMOs were combined with B. infantis LMG 11588, they were rapidly and completely consumed. This resulted in increased short chain fatty acid (SCFA) production compared to the summed SCFA production from individual ingredients (synergy). Remarkably, HMOs were partially consumed for specific infant donors in the absence of B. infantis LMG 11588, yet all donors showed increased SCFA production upon B. infantis LMG 11588 supplementation. We found specific bacterial taxa associated with the differential response pattern to HMOs. Our study shows the importance of carefully selecting pre- and probiotic into a synergistic synbiotic that could benefit infants.
Collapse
Affiliation(s)
- Florac De Bruyn
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland.
| | - Kieran James
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| | - Geoffrey Cottenet
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Route du Jorat 57, CH-1000, Lausanne, Switzerland
| | - Maes Dominick
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| | - Johnson Katja
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| |
Collapse
|
10
|
Arzamasov AA, Rodionov DA, Hibberd MC, Guruge JL, Kazanov MD, Leyn SA, Kent JE, Sejane K, Bode L, Barratt MJ, Gordon JI, Osterman AL. Integrative genomic reconstruction of carbohydrate utilization networks in bifidobacteria: global trends, local variability, and dietary adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602360. [PMID: 39005317 PMCID: PMC11245093 DOI: 10.1101/2024.07.06.602360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janaki L Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey, 34956
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - James E Kent
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Xu J, Duar RM, Quah B, Gong M, Tin F, Chan P, Sim CK, Tan KH, Chong YS, Gluckman PD, Frese SA, Kyle D, Karnani N. Delayed colonization of Bifidobacterium spp. and low prevalence of B. infantis among infants of Asian ancestry born in Singapore: insights from the GUSTO cohort study. Front Pediatr 2024; 12:1421051. [PMID: 38915873 PMCID: PMC11194334 DOI: 10.3389/fped.2024.1421051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background The loss of ancestral microbes, or the "disappearing microbiota hypothesis" has been proposed to play a critical role in the rise of inflammatory and immune diseases in developed nations. The effect of this loss is most consequential during early-life, as initial colonizers of the newborn gut contribute significantly to the development of the immune system. Methods In this longitudinal study (day 3, week 3, and month 3 post-birth) of infants of Asian ancestry born in Singapore, we studied how generational immigration status and common perinatal factors affect bifidobacteria and Bifidobacterium longum subsp. infantis (B. infantis) colonization. Cohort registry identifier: NCT01174875. Results Our findings show that first-generation migratory status, perinatal antibiotics usage, and cesarean section birth, significantly influenced the abundance and acquisition of bifidobacteria in the infant gut. Most importantly, 95.6% of the infants surveyed in this study had undetectable B. infantis, an early and beneficial colonizer of infant gut due to its ability to metabolize the wide variety of human milk oligosaccharides present in breastmilk and its ability to shape the development of a healthy immune system. A comparative analysis of B. infantis in 12 countries by their GDP per capita showed a remarkably low prevalence of this microbe in advanced economies, especially Singapore. Conclusion This study provides new insights into infant gut microbiota colonization, showing the impact of generational immigration on early-life gut microbiota acquisition. It also warrants the need to closely monitor the declining prevalence of beneficial microbes such as B. infantis in developed nations and its potential link to increasing autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jia Xu
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | | | - Baoling Quah
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Min Gong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Felicia Tin
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Penny Chan
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kiat Sim
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Kok Hian Tan
- SingHealth Duke-NUS Institute for Patient Safety and Quality, Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D. Gluckman
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Centre for SPDS Centre for Informed Futures, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - David Kyle
- Infinant Health, Inc., Davis, CA, United States
| | - Neerja Karnani
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Hazan S, Smith M, Lander S, Carlson A, Walters C. Bifidobacterium Against COVID-19: A Mother and Her Newborn's Gut Microbiome. Cureus 2024; 16:e60038. [PMID: 38854284 PMCID: PMC11162645 DOI: 10.7759/cureus.60038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Several treatments and preventive measures for SARS-CoV-2 were studied during the pandemic, but few focused on the neonatal gut microbiome and its role in the setting of COVID-19. This case report is unique because it describes the gut microbiomes of a mother and her newborn, who both contracted COVID-19 shortly after the baby's birth. In this prospective study, on day 11 postpartum, both the newborn and mother (38 years old), of white race/ethnicity, were exposed to a COVID-19-positive person. After exposure, the mother received a 40,000 IU bolus of vitamin D orally and started a five-day course of high-dose vitamin C (10,000 mg daily), after which she continued her daily combination of vitamins C, D, and zinc pill with probiotic skyr yogurt and manuka honey. Stool specimens and DNA were extracted, quantitated, and normalized from the mother and the newborn for downstream library fabrication utilizing shotgun methodology. Baseline Bifidobacteria level for the mother was 1.5% which increased to 19% on day 15 postpartum after testing positive for COVID-19 and taking vitamin C. Neonatal Bifidobacteriasteadily increased regardless of COVID-19 infection. We propose that the disease course was altered by maternal supplementation of vitamins C and D and zinc, which may have increased Bifidobacterium levels and led to improved outcomes for both patients.
Collapse
Affiliation(s)
| | - Megan Smith
- Biomedical Sciences, California University of Science and Medicine, Colton, USA
| | - Skye Lander
- Biomedical Sciences, California University of Science and Medicine, Colton, USA
| | - Abby Carlson
- Research and Development, ProgenaBiome, Ventura, USA
| | - Camila Walters
- Anesthesiology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
13
|
Ennis D, Shmorak S, Jantscher-Krenn E, Yassour M. Longitudinal quantification of Bifidobacterium longum subsp. infantis reveals late colonization in the infant gut independent of maternal milk HMO composition. Nat Commun 2024; 15:894. [PMID: 38291346 PMCID: PMC10827747 DOI: 10.1038/s41467-024-45209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Breast milk contains human milk oligosaccharides (HMOs) that cannot be digested by infants, yet nourish their developing gut microbiome. While Bifidobacterium are the best-known utilizers of individual HMOs, a longitudinal study examining the evolving microbial community at high-resolution coupled with mothers' milk HMO composition is lacking. Here, we developed a high-throughput method to quantify Bifidobacterium longum subsp. infantis (BL. infantis), a proficient HMO-utilizer, and applied it to a longitudinal cohort consisting of 21 mother-infant dyads. We observed substantial changes in the infant gut microbiome over the course of several months, while the HMO composition in mothers' milk remained relatively stable. Although Bifidobacterium species significantly influenced sample variation, no specific HMOs correlated with Bifidobacterium species abundance. Surprisingly, we found that BL. infantis colonization began late in the breastfeeding period both in our cohort and in other geographic locations, highlighting the importance of focusing on BL. infantis dynamics in the infant gut.
Collapse
Affiliation(s)
- Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Browne HP, Iqbal NT, Osman M, Tigoi C, Lawley TD, Gordon JI, Ahmed T, Kariuki S. Boosting microbiome science worldwide could save millions of children's lives. Nature 2024; 625:237-240. [PMID: 38191714 PMCID: PMC10810019 DOI: 10.1038/d41586-024-00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Studies of the microbes living on and in our bodies are conducted mainly in a few rich countries, squandering opportunities to improve the health of people globally.
Collapse
|
15
|
Walsh C, Owens RA, Bottacini F, Lane JA, van Sinderen D, Hickey RM. HMO-primed bifidobacteria exhibit enhanced ability to adhere to intestinal epithelial cells. Front Microbiol 2023; 14:1232173. [PMID: 38163079 PMCID: PMC10757668 DOI: 10.3389/fmicb.2023.1232173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
The ability of gut commensals to adhere to the intestinal epithelium can play a key role in influencing the composition of the gut microbiota. Bifidobacteria are associated with a multitude of health benefits and are one of the most widely used probiotics for humans. Enhanced bifidobacterial adhesion may increase host-microbe, microbe-nutrient, and/or microbe-microbe interactions, thereby enabling consolidated health benefits to the host. The objective of this study was to determine the ability of human milk oligosaccharides (HMOs) to enhance bifidobacterial intestinal adhesion in vitro. This study assessed the colonisation-promoting effects of HMOs on four commercial infant-associated Bifidobacterium strains (two B. longum subsp. infantis strains, B. breve and B. bifidum). HT29-MTX cells were used as an in vitro intestinal model for bacterial adhesion. Short-term exposure of four commercial infant-associated Bifidobacterium strains to HMOs derived from breastmilk substantially increased the adherence (up to 47%) of these probiotic strains. Interestingly, when strains were incubated with HMOs as a four-strain combination, the number of viable bacteria adhering to intestinal cells increased by >90%. Proteomic analysis of this multi-strain bifidobacterial mixture revealed that the increased adherence resulting from exposure to HMOs was associated with notable increases in the abundance of sortase-dependent pili and glycosyl hydrolases matched to Bifidobacterium bifidum. This study suggests that HMOs may prime infant gut-associated Bifidobacterium for colonisation to intestinal epithelial cells by influencing the expression of various colonization factors.
Collapse
Affiliation(s)
- Clodagh Walsh
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- Health and Happiness Group, H&H Research, Cork, Ireland
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Francesca Bottacini
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
- Biological Sciences and ADAPT Research Centre, Munster Technological University, Cork, Ireland
| | | | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Capeding MRZ, Phee LCM, Ming C, Noti M, Vidal K, Le Carrou G, Frézal A, Moll JM, Vogt JK, Myers PN, Nielsen BH, Boulangé CL, Samuel TM, Berger B, Cercamondi CI. Safety, efficacy, and impact on gut microbial ecology of a Bifidobacterium longum subspecies infantis LMG11588 supplementation in healthy term infants: a randomized, double-blind, controlled trial in the Philippines. Front Nutr 2023; 10:1319873. [PMID: 38162520 PMCID: PMC10755859 DOI: 10.3389/fnut.2023.1319873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Bifidobacterium longum subspecies infantis (B. infantis) may play a key role in infant gut development. This trial evaluated safety, tolerability, and efficacy of B. infantis LMG11588 supplementation. Methods This randomized, placebo-controlled, double-blind study conducted in the Philippines included healthy breastfed and/or formula-fed infants (14-21 days old) randomized for 8 weeks to a control group (CG; n = 77), or any of two B. infantis experimental groups (EGs): low (Lo-EG; 1*108 CFU/day; n = 75) or high dose (Hi-EG; 1.8*1010 CFU/day; n = 76). Primary endpoint was weight gain; secondary endpoints included stooling patterns, gastrointestinal symptoms, adverse events, fecal microbiome, biomarkers, pH, and organic acids. Results Non-inferiority in weight gain was demonstrated for Hi-EG and Lo-EG vs. CG. Overall, probiotic supplementation promoted mushy-soft stools, fewer regurgitation episodes, and increased fecal acetate production, which was more pronounced in the exclusively breastfed infants (EBF) and positively correlated with B. infantis abundance. In EBF, fecal pro-inflammatory cytokines (IL-1 beta, IL-8) were reduced. Strain-level metagenomic analysis allowed attributing the increased abundance of B. infantis in EGs versus CG, to LMG11588 probiotic colonization. Colonization by autochthonous B. infantis strains was similar between groups. Discussion B. infantis LMG11588 supplementation was associated with normal infant growth, was safe and well-tolerated and promoted a Bifidobacterium-rich microbiota driven by B. infantis LMG11588 colonization without disturbing the natural dispersal of autochthonous B. infantis strains. In EBF, supplementation stimulated microbial metabolic activity and beneficially modulated enteric inflammation.
Collapse
Affiliation(s)
| | | | - Chang Ming
- Biostatistics & Data, Nestlé Research, Lausanne, Switzerland
| | - Mario Noti
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gilles Le Carrou
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - A. Frézal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | | | | | | | - Claire L. Boulangé
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center – Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Colin Ivano Cercamondi
- Nestlé Product Technology Center – Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| |
Collapse
|
17
|
Laursen MF, Roager HM. Human milk oligosaccharides modify the strength of priority effects in the Bifidobacterium community assembly during infancy. THE ISME JOURNAL 2023; 17:2452-2457. [PMID: 37816852 PMCID: PMC10689826 DOI: 10.1038/s41396-023-01525-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Despite the significant role of the gut microbiota in infant health and development, little is known about the ecological processes determining gut microbial community assembly. According to ecology theory, the timing and order of arrival of microbial species into an ecosystem affect microbial community assembly, a phenomenon termed priority effects. Bifidobacterium species are recognized as highly abundant early colonizers of the infant's gut, partly due to their ability to selectively utilize human milk oligosaccharides (HMOs) from breast milk. However, the role of priority effects in Bifidobacterium community assembly remains unclear. Here, we investigated the Bifidobacterium community assembly in the gut of 25 breastfed Danish infants longitudinally sampled throughout the first 6 months of life. Our results showed that the breastfed infants were often initially, but temporarily, dominated by suboptimal HMO-utilizing Bifidobacterium taxa, such as B. longum subsp. longum, before more efficient HMO-utilizers such as B. longum subsp. infantis, replaced the first colonizer as the dominant Bifidobacterium taxon. Subsequently, we validated this observation using gnotobiotic mice sequentially colonized with B. longum subsp. longum and B. longum subsp. infantis or vice versa, with or without supplementation of HMOs in the drinking water. The results showed that in the absence of HMOs, order of arrival determined dominance. Yet, when mice were supplemented with HMOs the strength of priority effects diminished, and B. longum subsp. infantis dominated regardless of colonization order. Our data demonstrate that the arrival order of Bifidobacterium taxa and the deterministic force of breast milk-derived HMOs, dictate Bifidobacterium community assembly in the infant's gut.
Collapse
Affiliation(s)
- Martin F Laursen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Development of the Anaerobic Microbiome in the Infant Gut. Pediatr Infect Dis J 2023:00006454-990000000-00384. [PMID: 36917032 DOI: 10.1097/inf.0000000000003905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ninety-five percent of gut microbiota are anaerobes and vary according to age and diet. Complex carbohydrates in human milk enhance the growth of Bifidobacterium and Bacteroides in the first year. Complex carbohydrates in solid foods enhance the growth of Bacteroides and Clostridium in the second year. Short-chain fatty acids produced by Akkermansia and Faecalibacterium may reduce obesity, diabetes and IBD.
Collapse
|
19
|
Njunge JM, Walson JL. Microbiota and growth among infants and children in low-income and middle-income settings. Curr Opin Clin Nutr Metab Care 2023; 26:245-252. [PMID: 36930056 DOI: 10.1097/mco.0000000000000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Adequate nutrition is essential but insufficient for optimal childhood growth and development. Increasingly, it is clear that the gut microbiota modulates childhood growth and may be particularly important in low-income and middle-income countries (LMIC), where growth faltering, undernutrition, environmental contamination and enteric pathogens are more common. We summarize recent evidence demonstrating the role of the gut microbiota in impacting childhood growth and interventions targeting the gut microbiota to impact growth in children in LMIC settings. RECENT FINDINGS Recent studies show that maturation of the infant microbiota is linked with the development of the immune system, which is key to host-microbe symbiosis. Infants lacking Bifidobacterium longum subsp. Infantis, which predominates breastfed microbiome, display immune activation while supplementation is linked to increased immune tolerance and among undernourished children, promotes growth. Microbiome-directed complimentary foods (MDCF) containing local ingredients is a novel strategy to promote gut microbiota development, especially among undernourished children and improve growth. Dietary patterns during pregnancy may drive selection of gut microbial species that impact infant health and growth. SUMMARY Growth patterns among children in LMIC settings are closely associated with the diversity and maturity of the infant microbiome. Prebiotics, probiotics, and synbiotics targeting microbiota dysbiosis may impact birth outcomes, infant immune development and infections, and childhood growth in LMIC settings.
Collapse
Affiliation(s)
- James M Njunge
- KEMRI-Wellcome Trust Research Programme, Kilifi
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
| | - Judd L Walson
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- Department of Global Health
- Departments of Medicine, Pediatrics, and Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Mills DA, German JB, Lebrilla CB, Underwood MA. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023; 15:2192458. [PMID: 37013357 PMCID: PMC10075334 DOI: 10.1080/19490976.2023.2192458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.
Collapse
Affiliation(s)
- David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Department of Chemistry, University of California-Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, United States
| | - Mark A. Underwood
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Division of Neonatology, Department of Pediatrics, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
21
|
Arzamasov AA, Nakajima A, Sakanaka M, Ojima MN, Katayama T, Rodionov DA, Osterman AL. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. mSystems 2022; 7:e0034322. [PMID: 36094076 PMCID: PMC9599254 DOI: 10.1128/msystems.00343-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. longum subsp. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR transcriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple potential regulon expansion events, suggesting evolution from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis and Bifidobacterium bifidum. IMPORTANCE The predominance of bifidobacteria in the gut of breastfed infants is attributed to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). Thus, individual HMOs such as lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are considered promising prebiotics that would stimulate the growth of bifidobacteria and confer multiple health benefits to preterm and malnourished children suffering from impaired (stunted) gut microbiota development. However, the rational selection of HMO-based prebiotics is hampered by the incomplete knowledge of regulatory mechanisms governing HMO utilization in target bifidobacteria. This study describes NagR-mediated transcriptional regulation of LNT and LNnT utilization in Bifidobacterium longum subsp. infantis. The elucidated regulatory network appears optimally adapted to simultaneous utilization of multiple HMOs, providing a rationale to add HMO mixtures (rather than individual components) to infant formulas. The study also provides insights into the evolutionary trajectories of complex regulatory networks controlling carbohydrate metabolism in bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A. Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
22
|
Arzamasov AA, Osterman AL. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Crit Rev Biochem Mol Biol 2022; 57:562-584. [PMID: 36866565 PMCID: PMC10192226 DOI: 10.1080/10409238.2023.2182272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
24
|
German JB, Lebrilla C, Mills DA. Milk: A Scientific Model for Diet and Health Research in the 21st Century. Front Nutr 2022; 9:922907. [PMID: 35757260 PMCID: PMC9226620 DOI: 10.3389/fnut.2022.922907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
The origin of lactation and the composition, structures and functions of milk's biopolymers highlight the Darwinian pressure on lactation as a complete, nourishing and protective diet. Lactation, under the driving pressure to be a sustainable bioreactor, was under selection pressure of its biopolymers with diverse functions acting from the mammary gland through the digestive system of the infant. For example, milk is extensively glycosylated and the glycan structures and their functions are now emerging. Milk contains free oligosaccharides; complex polymers of sugars whose stereospecific linkages are not matched by glycosidic enzymes within the mammalian infant gut. These glycan polymers reach the lower intestine undigested. In this microbe-rich environment, bacteria compete to release and ferment the sugars via different hydrolytic strategies. One specific type of bacteria, Bifidobacterium longum subsp. infantis, (B. infantis) is uniquely equipped with a repertoire of genes encoding enzymes capable of taking up, hydrolyzing and metabolizing the complex glycans of human milk. This combination of a distinct food supply and unique genetic capability shapes the composition and metabolic products of the entire microbial community within the lower intestine of breast fed infants. The intestinal microbiome dominated by B. infantis, shields the infant from the growth of gram negative enteropathogens and their endotoxins as a clear health benefit. The world is facing unprecedented challenges to produce a food supply that is both nourishing, safe and sustainable. Scientists need to guide the future of agriculture and food in response to these 21st century challenges. Lactation provides an inspiring model of what that future research strategy could be.
Collapse
Affiliation(s)
- J Bruce German
- University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Davis, CA, United States.,Foods for Health Institute, Davis, CA, United States
| | - Carlito Lebrilla
- University of California, Davis, Davis, CA, United States.,Department of Chemistry, Davis, CA, United States
| | - David A Mills
- University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Davis, CA, United States.,Foods for Health Institute, Davis, CA, United States
| |
Collapse
|