1
|
Zhao Y, Xu X, Liu S, Wang X, Musha J, Li T, Ge L, Sun Y, Zhang S, Zhao L, Zhan J. Butyrate inhibits histone deacetylase 2 expression to alleviate liver fibrosis in biliary atresia. BMC Pediatr 2025; 25:286. [PMID: 40221650 PMCID: PMC11992845 DOI: 10.1186/s12887-025-05635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Previous studies have found a reduction in butyrate-producing bacteria in the gut microbiota of infants with biliary atresia (BA). Butyrate is also an important inhibitor of histone deacetylase 2 (HDAC2). This study aims to explore how butyrate alleviates liver fibrosis in BA through HDAC2. METHODS Fibrosis-related pathways associated with butyrate were analyzed using the GSE46960 database. BA liver sections were used to validate factor expression. The effects of HDAC2 and butyrate and the pathway were performed in vitro experiments. Butyrate intervention was performed in bile duct ligation (BDL) mice, and alterations in the gut microbiota were analyzed using fecal 16S rRNA sequencing. The impact of butyrate and related pathways on liver fibrosis in BDL mice was further evaluated. RESULTS The IL-6/STAT3 pathway showed a clear correlation with butyrate in BA. HDAC2 promoted LX-2 activation via the IL-6/STAT3 pathway, while butyrate inhibited LX-2 activation by suppressing HDAC2. Butyrate not only alleviated liver fibrosis but also improved the gut microbiota structure in BDL mice. CONCLUSION Butyrate may improve liver fibrosis in BA by regulating HDAC2 expression and modulating the IL-6/STAT3 pathway. Therefore, butyrate could serve as a promising therapeutic option for mitigating liver fibrosis in BA.
Collapse
Affiliation(s)
- Yilin Zhao
- Graduate College, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
| | - Xiaodan Xu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaowen Liu
- Graduate College, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
| | - Xueting Wang
- Department of Pediatric Surgery, Xinjiang Yili Friendship Hospital, Yili, China
| | - Jiayinaxi Musha
- Graduate College, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
- Department of Pediatric Surgery, Urumqi First People's Hospital (Urumqi Children's Hospital), Xinjiang, China
| | - Tengfei Li
- Graduate College, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
| | - Liang Ge
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
| | - Yan Sun
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
| | - Shujian Zhang
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China
| | - Li Zhao
- Department of Pathology, Tianjin Children's Hospital, Tianjin, China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, P. R. China.
| |
Collapse
|
2
|
Cao X, Di Y, Tian YJ, Huang XB, Zhou Y, Zhang DM, Song Y. Sodium butyrate inhibits activation of ROS/NF-κB/NLRP3 signaling pathway and angiogenesis in human retinal microvascular endothelial cells. Int Ophthalmol 2025; 45:108. [PMID: 40100328 DOI: 10.1007/s10792-025-03458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND To determine the impact of sodium butyrate on the activation of the reactive oxygen species (ROS)/nuclear factor kappa B (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) signaling pathway and angiogenesis in human retinal microvascular endothelial cells (HRMECs) caused by high glucose (HG). METHODS HRMECs were grown for 24 h or 72 h in HG solution (30 mmol/L D-glucose) with 5 mM NaB. Using Cell Counting Kit-8, the effects of HG and NaB levels on the viability of HRMECs were examined. Using various kits, intracellular ROS levels, lactate dehydrogenase (LDH), and Malondialdehyde (MDA) in cell supernatants were measured. Western blot, Immunofluorescence, and Real-time quantitative polymerase chain reaction were employed to quantify protein and messenger RNA expression. Using wound-healing and tube formation tests, the migratory proficiency and angiogenesis of HRMECs were evaluated. RESULTS NaB demonstrated a reduction in ROS production, as well as the release of LDH and MDA in HG-induced HRMECs. Additionally, NaB led to a decrease in protein expression of phosphorylation of NF-κB, NLRP3, Caspase 1, interleukin, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. The impact of HG on zonula occluden-1, a tight junction protein, was attenuated by NaB. Furthermore, NaB inhibited the migration and tube formation of HRMECs partly by ROS/NF-κB/NLRP3 pathway. CONCLUSION NaB suppresses the activation of ROS/NF-κB/NLRP3 signaling pathway and angiogenesis in HRMECs induced by HG.
Collapse
Affiliation(s)
- Xin Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yue Di
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Ya-Jing Tian
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiao-Bo Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Dong-Mei Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Saedi S, Derakhshan S, Hasani A, Khoshbaten M, Poortahmasebi V, Milani PG, Sadeghi J. Recent Advances in Gut Microbiome Modulation: Effect of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Inflammatory Bowel Disease Prevention and Treatment. Curr Microbiol 2024; 82:12. [PMID: 39589525 DOI: 10.1007/s00284-024-03997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
The human gastrointestinal tract contains trillions of microbes that affect the body. Dysbiosis in the composition of gut microbiota is one of the leading causes of chronic inflammatory diseases such as inflammatory bowel disease (IBD). IBD is a global public health challenge and millions of people in the world are suffering from this disease. It is a recurring inflammatory disease that affects different parts of the human digestive system. Ulcerative colitis and Crohn's disease are the two main types of IBD with similar clinical symptoms. The increasing incidence and severity of IBD require new treatment methods. The composition of the gut microbiota can be modified using dietary supplements such as prebiotics and bacterial supplements called probiotics. Furthermore, the effects of the microbiome can be improved by using paraprobiotics (non-viable, inactivated bacteria or their components) and/or postbiotics (products of bacterial metabolism).
Collapse
Affiliation(s)
- Samira Saedi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Reasearch Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safoura Derakhshan
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Gonbari Milani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ventura I, Chomon-García M, Tomás-Aguirre F, Palau-Ferré A, Legidos-García ME, Murillo-Llorente MT, Pérez-Bermejo M. Therapeutic and Immunologic Effects of Short-Chain Fatty Acids in Inflammatory Bowel Disease: A Systematic Review. Int J Mol Sci 2024; 25:10879. [PMID: 39456661 PMCID: PMC11506931 DOI: 10.3390/ijms252010879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition characterized by recurrent intestinal inflammation. Its etiopathogenesis is driven by a series of events that disrupt the mucosal barrier, alter the healthy balance of intestinal microbiota, and abnormally stimulate intestinal immune responses. Therefore, numerous studies suggest the use of short-chain fatty acids and their immunomodulatory effects as a therapeutic approach in this disease. The objective of this systematic review was to synthesize previous evidence on the relevance and therapeutic use of short-chain fatty acids, particularly butyrate, in the immune regulation of inflammatory bowel disease. This systematic review of articles linking inflammatory bowel disease with short-chain fatty acids was conducted according to the PRISMA-2020 guidelines. The Medline and the Web of Science databases were searched in August 2024. The risk of bias was assessed using the Joanna Briggs Institute checklists. A total of 1460 articles were reviewed, of which, 29 met the inclusion criteria. Short-chain fatty acids, particularly butyrate, play a critical role in the regulation of intestinal inflammation and can be used as a strategy to increase the levels of short-chain fatty acid-producing bacteria for use in therapeutic approaches.
Collapse
Affiliation(s)
- Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain;
- Translational Research Center San Alberto Magno CITSAM, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain
| | - Miryam Chomon-García
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (M.C.-G.); (F.T.-A.)
| | - Francisco Tomás-Aguirre
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (M.C.-G.); (F.T.-A.)
| | - Alma Palau-Ferré
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - María Ester Legidos-García
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - María Teresa Murillo-Llorente
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - Marcelino Pérez-Bermejo
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| |
Collapse
|
6
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
8
|
Favero C, Pintor-Chocano A, Sanz A, Ortiz A, Sanchez-Niño MD. Butyrate promotes kidney resilience through a coordinated kidney protective response in tubular cells. Biochem Pharmacol 2024; 224:116203. [PMID: 38615919 DOI: 10.1016/j.bcp.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Acute kidney injury (AKI) is common in hospitalized patients and increases short-term and long-term mortality. Treatment options for AKI are limited. Gut microbiota products such as the short-chain fatty acid butyrate have anti-inflammatory actions that may protect tissues, including the kidney, from injury. However, the molecular mechanisms of tissue protection by butyrate are poorly understood. Treatment with oral butyrate for two weeks prior to folic acid-induced AKI and during AKI improved kidney function and decreased tubular injury and kidney inflammation while stopping butyrate before AKI was not protective. Continuous butyrate preserved the expression of kidney protective factors such as Klotho, PGC-1α and Nlrp6 which were otherwise downregulated. In cultured tubular cells, butyrate blunted the maladaptive tubular cell response to a proinflammatory milieu, preserving the expression of kidney protective factors. Kidney protection afforded by this continuous butyrate schedule was confirmed in a second model of nephrotoxic AKI, cisplatin nephrotoxicity, where the expression of kidney protective factors was also preserved. To assess the contribution of preservation of kidney protective factors to kidney resilience, recombinant Klotho was administered to mice with cisplatin-AKI and shown to preserve the expression of PGC-1α and Nlrp6, decrease kidney inflammation and protect from AKI. In conclusion, butyrate promotes kidney resilience to AKI and decreases inflammation by preventing the downregulation of kidney protective genes such as Klotho. This information may be relevant to optimize antibiotic management during hospitalization.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Ana Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Meng Q, Guo J, Lv K, Liu Y, Zhang J, Li M, Cheng X, Chen S, Huo X, Zhang Q, Chen Y, Li J. 5 S-Heudelotinone alleviates experimental colitis by shaping the immune system and enhancing the intestinal barrier in a gut microbiota-dependent manner. Acta Pharm Sin B 2024; 14:2153-2176. [PMID: 38799623 PMCID: PMC11120280 DOI: 10.1016/j.apsb.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant changes in the gut microbiota are implicated in many diseases, including inflammatory bowel disease (IBD). Gut microbes produce diverse metabolites that can shape the immune system and impact the intestinal barrier integrity, indicating that microbe-mediated modulation may be a promising strategy for preventing and treating IBD. Although fecal microbiota transplantation and probiotic supplementation are well-established IBD therapies, novel chemical agents that are safe and exert strong effects on the gut microbiota are urgently needed. Herein, we report the total synthesis of heudelotinone and the discovery of 5S-heudelotinone (an enantiomer) as a potent agent against experimental colitis that acts by modulating the gut microbiota. 5S-Heudelotinone alters the diversity and composition of the gut microbiota and increases the concentration of short-chain fatty acids (SCFAs); thus, it regulates the intestinal immune system by reducing proinflammatory immune cell numbers, and maintains intestinal mucosal integrity by modulating tight junctions (TJs). Moreover, 5S-heudelotinone (2) ameliorates colitis-associated colorectal cancer (CAC) in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced in situ carcinoma model. Together, these findings reveal the potential of a novel natural product, namely, 5S-heudelotinone, to control intestinal inflammation and highlight that this product is a safe and effective candidate for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Qing Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ke Lv
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Mingyue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Xirui Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Shenghua Chen
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | | | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Gkikas K, Svolos V, White B, Gerasimidis K. An update on dietary therapies in paediatric Crohn's disease. Curr Opin Clin Nutr Metab Care 2024; 27:304-312. [PMID: 38456807 DOI: 10.1097/mco.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This article provides a literature update on original articles published in the past 18 months (May 2022-November 2023) in the dietary management of paediatric Crohn's disease. RECENT FINDINGS There is more data to support the use of exclusive enteral nutrition in the management of active Crohn's disease in children. Several food-based dietary therapies have been proposed for the management of Crohn's disease. There is an interest in precision nutritional therapy in Crohn's disease, but current data are scarce. SUMMARY Exclusive enteral nutrition is an effective treatment for paediatric Crohn's disease. Predictors of response to exclusive enteral nutrition include mild disease phenotype and ileal disease involvement, although data remain inconclusive. Adherence to exclusive enteral nutrition is cornerstone to its efficacy. Treatment with exclusive enteral nutrition modifies the gut microbiome, modulates bile acid metabolism and has significant effects on host immune responses. More studies are expected in which drugs need to be combined with dietary therapies and microbial therapeutics. The efficacy of Crohn's disease exclusion diet coupled with partial enteral nutrition is supported by independent studies, but tolerance remains an issue, particularly for long-term disease management. More research is anticipated in precision nutritional therapy in paediatric Crohn's disease, but currently no recommendations can be made.
Collapse
Affiliation(s)
- Konstantinos Gkikas
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| | | | | | | |
Collapse
|
11
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
12
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
13
|
Pantalos G, Vaou N, Papachristidou S, Stavropoulou E, Tsigalou C, Voidarou C, Bezirtzoglou E. Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. APPLIED SCIENCES 2024; 14:2177. [DOI: 10.3390/app14052177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Inflammatory bowel disease (IBD) remains a burden for patients with increasing prevalence in industrialized countries. Phytochemicals are non-nutrient plant derived bioactive substances with antioxidant and anti-inflammatory effects that may prove beneficial to IBD patients. This review aims to overview current evidence on the application and impact of isolated phytochemicals or phytochemicals contained in plant extracts and essential oils on patients suffering from IBD. A systematic literature search was conducted for studies relating to the use of phytochemicals for the treatment of IBD. Ultimately, 37 human clinical trials and 3 systematic reviews providing human IBD patient data relevant to phytochemicals as therapeutic agents were included. Phytochemicals in the form of curcumin, Plantago ovata seeds, polyphenon E, silymarin, resveratrol supplements or an herbal preparation of myrrh, chamomile and coffee charcoal have evidence from human clinical trials supporting their safety and beneficial effects. Cannabinoids improve quality of life but not IBD outcomes. The addition of probiotics like B. longum to fructo-oligosaccharides promote healthy composition of the gut microbiome. Phytochemicals like mastiha, anthocyanins, berberine, tormentil, T2, ecabet sodium and Pycnogenol need more well-designed trials. Systematic research on phytochemicals can lead to the discovery of useful therapeutics. These secondary metabolites can be incorporated in current IBD treatment strategies to limit side effects, promote mucosal healing and provide higher quality of life to patients.
Collapse
Affiliation(s)
- George Pantalos
- Pediatric Surgery Department, Penteli General Children’s Hospital, 15236 Athens, Greece
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Smaragda Papachristidou
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, P.&A. Kyriakou Children’s Hospital, 11527 Athens, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Chrysa Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| |
Collapse
|
14
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
15
|
Yang T, Sun Y, Dai Z, Liu J, Xiao S, Liu Y, Wang X, Yang S, Zhang R, Yang C, Dai B. Microencapsulated Sodium Butyrate Alleviates Immune Injury and Intestinal Problems Caused by Clostridium Perfringens through Gut Microbiota. Animals (Basel) 2023; 13:3784. [PMID: 38136821 PMCID: PMC10741131 DOI: 10.3390/ani13243784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1β level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Yaowei Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Shiping Xiao
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Xiuxi Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Shenglan Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Bing Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| |
Collapse
|
16
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
17
|
Li S, Xu K, Cheng Y, Chen L, Yi A, Xiao Z, Zhao X, Chen M, Tian Y, Meng W, Tang Z, Zhou S, Ruan G, Wei Y. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol 2023; 14:1188455. [PMID: 37389342 PMCID: PMC10303177 DOI: 10.3389/fmicb.2023.1188455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacological treatment of inflammatory bowel disease (IBD) is inefficient and difficult to discontinue appropriately, and enterobacterial interactions are expected to provide a new target for the treatment of IBD. We collected recent studies on the enterobacterial interactions among the host, enterobacteria, and their metabolite products and discuss potential therapeutic options. Intestinal flora interactions in IBD are affected in the reduced bacterial diversity, impact the immune system and are influenced by multiple factors such as host genetics and diet. Enterobacterial metabolites such as SCFAs, bile acids, and tryptophan also play important roles in enterobacterial interactions, especially in the progression of IBD. Therapeutically, a wide range of sources of probiotics and prebiotics exhibit potential therapeutic benefit in IBD through enterobacterial interactions, and some have gained wide recognition as adjuvant drugs. Different dietary patterns and foods, especially functional foods, are novel therapeutic modalities that distinguish pro-and prebiotics from traditional medications. Combined studies with food science may significantly improve the therapeutic experience of patients with IBD. In this review, we provide a brief overview of the role of enterobacteria and their metabolites in enterobacterial interactions, discuss the advantages and disadvantages of the potential therapeutic options derived from such metabolites, and postulate directions for further research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Kan Xu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailin Yi
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuefei Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Meng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongyuan Tang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuhong Zhou
- Department of Laboratory Animal Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Lange O, Proczko-Stepaniak M, Mika A. Short-Chain Fatty Acids-A Product of the Microbiome and Its Participation in Two-Way Communication on the Microbiome-Host Mammal Line. Curr Obes Rep 2023:10.1007/s13679-023-00503-6. [PMID: 37208544 DOI: 10.1007/s13679-023-00503-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE OF REVIEW The review aims to describe short-chain fatty acids (SCFAs) as metabolites of bacteria, their complex influence on whole-body metabolism, and alterations in the SCFA profile in obesity and after bariatric surgery (BS). RECENT FINDINGS The fecal profile of SCFAs in obese patients differs from that of lean patients, as well as their gut microbiota composition. In obese patients, a lower diversity of bacteria is observed, as well as higher concentrations of SCFAs in stool samples. Obesity is now considered a global epidemic and bariatric surgery (BS) is an effective treatment for severe obesity. BS affects the structure and functioning of the digestive system, and also alters gut microbiota and the concentration of fecal SCFAs. Generally, after BS, SCFA levels are lower but levels of branched short-chain fatty acids (BSCFAs) are elevated, the effect of which is not fully understood. Moreover, changes in the profile of circulating SCFAs are little known and this is an area for further research. Obesity seems to be inherently associated with changes in the SCFA profile. It is necessary to better understand the impact of BS on microbiota and the metabolome in both feces and blood as only a small percentage of SCFAs are excreted. Further research may allow the development of a personalized therapeutic approach to the BS patient in terms of diet and prebiotic intervention.
Collapse
Affiliation(s)
- Oliwia Lange
- Department of Environmental Analysis, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine, and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analysis, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
19
|
Recharla N, Geesala R, Shi XZ. Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients 2023; 15:2275. [PMID: 37242159 PMCID: PMC10221771 DOI: 10.3390/nu15102275] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Background and objective: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial role in regulating immune function, epithelial barrier function, and intestinal homeostasis. In this review, we aim to present an overview of butyrate synthesis and metabolism and the mechanism of action of butyrate in maintaining intestinal homeostasis and to discuss the therapeutic implications of butyrate in IBD. Methods: We searched the literature up to March 2023 through PubMed, Web of Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn's disease, and ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic implications of butyrate. Results: Research in the last two decades has shown the beneficial effects of butyrate on gut immune function and epithelial barrier function. Most of the preclinical and clinical studies have shown the positive effect of butyrate oral supplements in reducing inflammation and maintaining remission in colitis animal models and IBD patients. However, butyrate enema showed mixed effects. Butyrogenic diets, including germinated barley foodstuff and oat bran, are found to increase fecal butyrate concentrations and reduce the disease activity index in both animal models and IBD patients. Conclusions: The current literature suggests that butyrate is a potential add-on therapy to reduce inflammation and maintain IBD remission. Further clinical studies are needed to determine if butyrate administration alone is an effective therapeutic treatment for IBD.
Collapse
Affiliation(s)
| | | | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, 4.106 Basic Science Building, Galveston, TX 77555-0655, USA; (N.R.); (R.G.)
| |
Collapse
|
20
|
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023; 15:2211. [PMID: 37432351 DOI: 10.3390/nu15092211] [Citation(s) in RCA: 302] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Short-chain fatty acids (SCFAs) play a key role in health and disease, as they regulate gut homeostasis and their deficiency is involved in the pathogenesis of several disorders, including inflammatory bowel diseases, colorectal cancer, and cardiometabolic disorders. SCFAs are metabolites of specific bacterial taxa of the human gut microbiota, and their production is influenced by specific foods or food supplements, mainly prebiotics, by the direct fostering of these taxa. This Review provides an overview of SCFAs' roles and functions, and of SCFA-producing bacteria, from their microbiological characteristics and taxonomy to the biochemical process that lead to the release of SCFAs. Moreover, we will describe the potential therapeutic approaches to boost the levels of SCFAs in the human gut and treat different related diseases.
Collapse
Affiliation(s)
- William Fusco
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Manuel Bernabeu Lorenzo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Elena Lener
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
21
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
22
|
MacDonald CA, Qian H, Pundir P, Kulka M. Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. FRONTIERS IN ALLERGY 2023; 4:1109717. [PMID: 36970068 PMCID: PMC10036836 DOI: 10.3389/falgy.2023.1109717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Sodium butyrate (NaBu) is a class I histone deacetylase inhibitor (HDACi) that can impede the proliferation of transformed cells. Although some HDACi downregulate the expression of the stem cell factor receptor (KIT/CD117), the effect of NaBu on KIT expression and human mast cell proliferation requires further elucidation. In this study, we examined the effects of NaBu on three transformed human mast cell lines, HMC-1.1, HMC-1.2 and LAD2. NaBu (100 µM) inhibited the proliferation and metabolic activity of all three cell lines without significantly affecting their viability, suggesting that although the cells had ceased to divide, they were not yet undergoing apoptosis. Cell cycle analysis using the cell-permeant dye, propidium iodide, indicated that NaBu significantly blocked the cell cycle progression of HMC-1.1 and HMC-1.2 from G1 to G2/M phases. Furthermore, NaBu downregulated the expression of C-KIT mRNA and KIT protein expression in all three cell lines, but this effect was most significant in the HMC-1.1 and HMC-1.2, both of which harbour activating mutations in KIT, which proliferate more rapidly than LAD2. These data support earlier observations showing that human mast cell lines are sensitive to histone deacetylase inhibition. However, our data presents the novel observation that inhibition of cell proliferation by NaBu was not associated with a loss in cell viability but rather an arrest of the cell cycle. Higher concentrations of NaBu led to modest increases in histamine content, tryptase expression, and granularity. In conclusion, NaBu treatment of human mast cell lines led to a modest enhancement of the hallmarks of mature mast cells.
Collapse
Affiliation(s)
- Clayton A. MacDonald
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
- Correspondence: Marianna Kulka
| |
Collapse
|
23
|
Yan XX, Wu D. Intestinal microecology-based treatment for inflammatory bowel disease: Progress and prospects. World J Clin Cases 2023; 11:47-56. [PMID: 36687179 PMCID: PMC9846986 DOI: 10.12998/wjcc.v11.i1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and debilitating disorder, and includes Crohn’s disease and ulcerative colitis. The pathogenesis of IBD is closely associated with intestinal dysbiosis, but has not yet been fully clarified. Genetic and environmental factors can influence IBD patients’ gut microbiota and metabolism, disrupt intestinal barriers, and trigger abnormal immune responses. Studies have reported the alteration of gut microbiota and metabolites in IBD, providing the basis for potential therapeutic options. Intestinal microbiota-based treatments such as pre/probiotics, metabolite supplementation, and fecal microbiota transplantation have been extensively studied, but their clinical efficacy remains controversial. Repairing the intestinal barrier and promoting mucosal healing have also been proposed. We here review the current clinical trials on intestinal microecology and discuss the prospect of research and practice in this field.
Collapse
Affiliation(s)
- Xia-Xiao Yan
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Panufnik P, Więcek M, Kaniewska M, Lewandowski K, Szwarc P, Rydzewska G. Selected Aspects of Nutrition in the Prevention and Treatment of Inflammatory Bowel Disease. Nutrients 2022; 14:nu14234965. [PMID: 36500995 PMCID: PMC9737796 DOI: 10.3390/nu14234965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammatory bowel disease has become a global health problem at the turn of the 21st century. The pathogenesis of this disorder has not been fully explained. In addition to non-modifiable genetic factors, a number of modifiable factors such as diet or gut microbiota have been identified. In this paper, the authors focus on the role of nutrition in the prevention of inflammatory bowel disease as well as on the available options to induce disease remission by means of dietary interventions such as exclusive and partial enteral nutrition in Crohn's disease, the efficacy of which is reported to be comparable to that of steroid therapy. Diet is also important in patients with inflammatory bowel disease in the remission stage, during which some patients report irritable bowel disease-like symptoms. In these patients, the effectiveness of diets restricting the intake of oligo-, di-, monosaccharides, and polyols is reported.
Collapse
Affiliation(s)
- Paulina Panufnik
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
- Correspondence: (P.P.); (G.R.)
| | - Martyna Więcek
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Magdalena Kaniewska
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Konrad Lewandowski
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Paulina Szwarc
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Grażyna Rydzewska
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Correspondence: (P.P.); (G.R.)
| |
Collapse
|