1
|
Wang Y, Li D, Xu K, Wang G, Zhang F. Copper homeostasis and neurodegenerative diseases. Neural Regen Res 2025; 20:3124-3143. [PMID: 39589160 PMCID: PMC11881714 DOI: 10.4103/nrr.nrr-d-24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue. Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins, including ceruloplasmin and metallothionein, is involved in the pathogenesis of neurodegenerative disorders. However, the exact mechanisms underlying these processes are not known. Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress. Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction. Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation, with elevated levels activating several critical inflammatory pathways. Additionally, copper can bind aberrantly to several neuronal proteins, including alpha-synuclein, tau, superoxide dismutase 1, and huntingtin, thereby inducing neurotoxicity and ultimately cell death. This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases, with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis. By synthesizing the current findings on the functions of copper in oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein misfolding, we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders, such as Wilson's disease, Menkes' disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Potential clinically significant therapeutic targets, including superoxide dismutase 1, D-penicillamine, and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline, along with their associated therapeutic agents, are further discussed. Ultimately, we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Daidi Li
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Kaifei Xu
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Guoqing Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Xiao B, Chu C, Lin Z, Fang T, Zhou Y, Zhang C, Shan J, Chen S, Li L. Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways. Neural Regen Res 2025; 20:2706-2726. [PMID: 39105365 PMCID: PMC11801291 DOI: 10.4103/nrr.nrr-d-23-01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 03/23/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Biao Xiao
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chaoyang Chu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhicheng Lin
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Tianyuan Fang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yuyu Zhou
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuxia Zhang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianghui Shan
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shiyu Chen
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Ningbo Key Laboratory of Behavioral Neuroscience, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
3
|
Fu Y, Hou L, Han K, Zhao C, Hu H, Yin S. The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns. Clin Nutr 2025; 48:161-179. [PMID: 40220473 DOI: 10.1016/j.clnu.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Copper plays an important physiological role in the body, with both deficiency and excess potentially impacting overall health. The body maintains a stringent copper metabolism mechanism to oversee absorption, utilization, storage, and elimination. Dietary consumption serves as the principal source of copper. The dietary factors may interfere with the absorption and metabolism of copper, leading to fluctuation of copper levels in the body. However, these dietary factors can also be strategically employed to facilitate the precise regulation of copper. This paper delved into the advancements in research concerning copper in food processing, including dietary sources of copper, the regulatory processes of copper metabolism and health implications of copper. The safety and its underlying mechanisms of excess copper were also highlighted. In particular, the paper examines the influence of dietary factors on the absorption and metabolism of copper, aiming to provide direction for accurate copper regulation and the creation of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Yuhan Fu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lirui Hou
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Kai Han
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Shutao Yin
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Chen Z, Hou R, Zhang Y, Xiong M, Zhang D, Ding C. Loureirin C inhibits ferroptosis and apoptosis in 6-OHDA-induced Parkinson's model. Tissue Cell 2025; 93:102721. [PMID: 39799706 DOI: 10.1016/j.tice.2025.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/17/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Parkinson's disease (PD) is a type of chronic neurodegenerative disorder. There is an ongoing need for the development of new medications to address this illness. Loureirin C is known to have a protective impact on neurological disorders. Nonetheless, its specific function in Parkinson's Disease (PD) has yet to be fully understood. In this study, we examined the effects of Loureirin C in a cellular model of PD. The PD cell model was established by treating PC-12 cells with 6-hydroxydopamine (6-OHDA). We revealed that Loureirin C promoted the growth of 6-OHDA-treated PC-12 cells. In addition, Loureirin C suppressed the apoptosis of 6-OHDA-treated PC-12 cells and alleviated ferroptosis. Further, Loureirin C improved mitochondrial membrane potential in 6-OHDA-treated PC-12 cells. Mechanically, Loureirin C mediated Nrf2 pathway. Accordingly, Loureirin C not only inhibits ferroptosis but also apoptosis in the 6-OHDA-induced PD cell model, leading us to consider the potential value of Loureirin C in the treatment of PD.
Collapse
Affiliation(s)
- Zhongmei Chen
- Department of Neurology, Chonggang General Hospital, Chongqing 400081, China.
| | - Ruimin Hou
- Department of Neurology, Chonggang General Hospital, Chongqing 400081, China
| | - Yuping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingjian Xiong
- Department of Neurology, Chonggang General Hospital, Chongqing 400081, China
| | - Dongping Zhang
- Department of Neurology, Chonggang General Hospital, Chongqing 400081, China
| | - Chawen Ding
- Department of Neurology, Chonggang General Hospital, Chongqing 400081, China
| |
Collapse
|
5
|
Xu X, Mo C, Qin J, Cai J, Liu Q, Tang X, Zhang H, Zhang Z. Association between Copper Exposure and Cognitive Function: A Cross-Sectional Study in a County, Guangxi, China. Biol Trace Elem Res 2025; 203:2310-2319. [PMID: 38965167 DOI: 10.1007/s12011-024-04296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
There has been growing attention to the impact of copper exposure on cognitive function; however, current research on the specific information regarding urinary copper and cognitive function is limited, particularly detailed analyses in the Chinese adult population. This study aimed to explore the association between copper exposure and cognitive function in a cross-sectional design. A total of 2617 participants in a county, Guangxi Zhuang Autonomous Region (Guangxi), China, were included. The mini-mental state examination (MMSE) was used to assess cognitive function, and inductively coupled plasma mass spectrometry was used to measure urinary metal levels. Spearman's rank correlation was used to analyze the correlation between urinary copper levels and various cognitive function assessment indices. After adjusting for potential confounders, binary logistic regression was used to explore the association between urinary copper levels and the risk of cognitive impairment (CI) as revealed by MMSE, and restricted cubic spline regression was further used to explore the dose-response relationship. The results showed a negative correlation between urinary copper levels and orientation, attention and calculation, memory, language ability, and MMSE total scores (P < 0.05). Compared with the low copper exposure group, the high exposure group showed a 58.5% increased risk of CI (OR = 1.585, 95%CI: 1.125 to 2.235, P = 0.008). A significant linear dose-response relationship was observed between urinary copper levels and the risk of CI (P overall = 0.045, P nonlinearity = 0.081). Our findings suggest that higher copper exposure may be associated with CI in the population of a county, Guangxi, China.
Collapse
Affiliation(s)
- Xia Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
| | - Chunbao Mo
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, Lequn Road 20, Guilin, 541001, Guangxi, China
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi, China
| | - Qiumei Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
| | - Xu Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China.
| | - Zhiyong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Shuangyong Road 22, Nanning, 530021, Guangxi, China.
- School of Public Health, Guilin Medical University, Lequn Road 20, Guilin, 541001, Guangxi, China.
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
6
|
Wang X, Ling W, Zhu Y, Ji C, An X, Qi Y, Li S, Zhang C, Tong R, Jiang D, Kang B. Spermidine alleviates copper-induced oxidative stress, inflammation and cuproptosis in the liver. FASEB J 2025; 39:e70453. [PMID: 40079199 DOI: 10.1096/fj.202403002r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Copper exposure poses potential detrimental effects on both public and ecosystem health. Spermidine, an antioxidant, has shown promise in reducing oxidative stress and inflammation within the liver. However, its specific role in mitigating copper-induced hepatic cuproptosis and disturbances in copper metabolism remains unexplored. Consequently, this research aims to investigate to examine the impact of spermidine on hepatic cuproptosis and the related disturbances in copper metabolism. In the study, we established a model of copper-induced liver toxicity by feeding C57BL/6 mice a high-copper diet for three months. Histopathological and biochemical analyses revealed that copper exposure induced hepatic inflammatory cell infiltration, hepatocyte degeneration, elevated levels of MDA, ROS, and Cu2+ accumulation in the liver, and increased ALT and AST activities in serum (p < .05). Regarding inflammation, copper exposure significantly increased serum levels of IL-1β, IL-6, and TNF-α (p < .05), upregulated TNF-α and IFN-γ expression, and downregulated IL-10 expression in the liver (p < .05). Meanwhile, copper exposure inhibited the expression of copper metabolism and Fe-S cluster-related proteins (p < .05). Exogenous spermidine administration effectively reduced ROS, MDA, and Cu2+ accumulation in the liver, while also decreasing ALT and AST activites, IL-1β, IL-6, and TNF-α levels in the serum (p < .05), and downregulated TNF-α and IFN-γ expression (p < .001). Additionally, spermidine combined with CuSO4 treatment significantly promotes the expression of copper metabolism and Fe-S cluster-related proteins, compared to the CuSO4 group (p < .05). In summary, spermidine reduces Cu2+ accumulation in the liver, alleviates hepatic cuproptosis, oxidative damage, and inflammation, and exerts a protective effect on the liver.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yang Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuxin Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengye Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ruixue Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
7
|
Zhang X, Yan F, He XJ, Chen Y, Gu R, Dong X, Wei Y, Bai L, Bai J. Thioredoxin-1 Downregulation in the SNpc Exacerbates the Cognitive Impairment Induced by MPTP. Antioxid Redox Signal 2025. [PMID: 40135707 DOI: 10.1089/ars.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims: Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuron degeneration in the substantia nigra pars compacta (SNpc). Thioredoxin-1 (Trx-1) is a redox protein that protects neurons from various injuries. Our study revealed that Trx-1 overexpression improved the learning and memory impairments induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the role of the specific transmission of signals from the SNpc to the hippocampus regulated by Trx-1 in cognition deficits associated with PD is still unknown. Results: We observed that Trx-1 downregulation in the SNpc aggravated cognitive dysfunction induced by MPTP. Importantly, we observed that the SNpc directly projects to the hippocampus. We found that the loss of DAergic neurons in the SNpc induced by MPTP resulted in a decrease in dopamine D1 receptor (D1R) expression in the hippocampus, which was promoted by Trx-1 downregulation in the SNpc. The levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated cAMP-response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and postsynaptic density protein 95 (PSD95) in the hippocampus were decreased by MPTP and further decreased by Trx-1 downregulation in the SNpc. Finally, the number of synapses in the hippocampus was decreased by MPTP in the hippocampus and further reduced by Trx-1 downregulation in the SNpc. Innovation: Trx-1 downregulation accelerated the loss of DAergic neurons in the SNpc, leading to a decrease in the number dopaminergic projections to the hippocampus, subsequently inhibiting the D1R-ERK1/2-CREB-BDNF pathway in the hippocampus, and ultimately impairing hippocampus-dependent cognition. Conclusions: These results indicate that a decrease in Trx-1 level in the SNpc plays a critical regulatory role in cognitive dysfunction in individuals with PD by decreasing the hippocampal D1R signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xianwen Zhang
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Jie He
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Rou Gu
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Xianghuan Dong
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yonghang Wei
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Pu Y, Xu Y, Zhuo Z, Xiao H, Xu X. Investigating the therapeutic potential of naringin in MK-801-induced schizophrenia model: focus on cognitive impairment and miR-25-3p-regulated pathways. Int J Neurosci 2025:1-14. [PMID: 40083156 DOI: 10.1080/00207454.2025.2478825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
AIM The aim of this study was to assess the ameliorative effects of naringin (NR) on cognitive impairment in schizophrenia(SZ) from multiple perspectives using behavioral, histopathological and molecular biological approaches. MATERIALS AND METHODS SZ models were established in rats via acute intraperitoneal injection of MK-801 in all groups except the control group, which received saline. Cognitive function was assessed using the Morris water maze test 21 days after prophylactic NR administration. Subsequently, Serum interleukin-6 (IL-6) and homocysteine (HCY) levels were quantified using enzyme-linked immunosorbent assay (ELISA), and hippocampal neuronal and synaptic structures were observed via microscopy. Molecular detection was performed using real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting (WB) to assess the expression levels of molecules related to the microRNA-25-3p/salt inducible kinase 1/CREB regulated transcription coactivator 2/cAMP responsive element binding protein 1 (miR-25-3p/SIK1/CRTC2/CREB1) pathway, thereby elucidating the mechanism by which NR ameliorates cognitive impairment in SZ. RESULTS NR was found to mitigate cognitive decline in learning and memory induced by MK-801. It lowered serum levels of IL-6 and HCY, reduced neuronal damage in the CA1 region of the hippocampus, increased the thickness of postsynaptic dense material, decreased the distance between synaptic gaps, decreased the expression of SIK1, and elevated the expression of miR-25-3p, CRTC2 and CREB1 in the hippocampus. CONCLUSION NR may protect neurons in the CA1 region of the hippocampus and enhance synaptic plasticity by regulating the miR-25-3p/SIK1/CRTC2/CREB1 signaling pathway, thereby promoting cognitive improvement.
Collapse
Affiliation(s)
- Yuxin Pu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Yiyong Xu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Zushun Zhuo
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Huizhong Xiao
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| | - Xinyi Xu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi Province, China
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Traditional Chinese Medicine(TCM), Nanchang, Jiangxi Province, China
| |
Collapse
|
9
|
Luo S, Shi L, Liu T, Jin Q. Aerobic exercise training improves learning and memory performance in hypoxic-exposed rats by activating the hippocampal PKA-CREB-BDNF signaling pathway. BMC Neurosci 2025; 26:13. [PMID: 39984845 PMCID: PMC11846353 DOI: 10.1186/s12868-025-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND This study aims to investigate the effects of aerobic exercise training on learning and memory (L&M) performance in rats exposed to altitude hypoxia and its relationship with hippocampal plasticity and the PKA-CREB-BDNF signaling pathway. METHODS Male Sprague-Dawley rats were exposed to 14.2% hypoxia with or without 60 min of non-weight-bearing swimming training for 8 weeks. The L&M performance was evaluated using the Morris water maze, and the mRNA expression of PSD95, SYP, PKA, CREB, CBP, and BDNF in the hippocampus was detected. RESULTS Chronic hypoxia exposure significantly impaired L&M performance and reduced the mRNA expression of hippocampal PSD95, SYP, PKA, CREB, CBP, and BDNF. Aerobic exercise training effectively reversed these changes by enhancing hippocampal synaptic plasticity through the activation of the PKA-CREB-BDNF signaling pathway. CONCLUSION Aerobic exercise training can alleviate the decline in L&M performance caused by altitude hypoxia exposure, possibly through the activation of the hippocampal PKA-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Shichen Luo
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Nanjing Yincheng Primary School, Nanjing Yincheng Primary School Education Group, Nanjing, 210036, Jiangsu, China
| | - Lei Shi
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Tong Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Qiguan Jin
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
10
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
11
|
Wang L, Wu L, Wang T, Fang X, Jiang Z, Yue Y, Zhao D, Liu Q, Han H. [Gandou Bushen Decoction Ameliorates Cognitive Impairment in Wilson Disease Model TX Mice by Regulating Melatonin Synthesis via the SIRT3/FOXO3α Pathway]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2025; 56:102-111. [PMID: 40109448 PMCID: PMC11914004 DOI: 10.12182/20250160602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Indexed: 03/22/2025]
Abstract
Objective Melatonin has been shown to have neuroprotective effects. This study is aimed at observing the effects of copper deposition on cognitive function in a toxic milk (TX) mouse model of Wilson disease (WD), and investigating the effects and mechanisms of action of Gandou Bushen Decoction (GDBSD) on melatonin synthesis and pineal function in the WD model mice. Methods A total of 30 homozygous TX mice were randomly assigned to 3 groups (n = 10 in each group), including a WD group, a GDBSD group, and a dimercaptosuccinic acid (DMSA) group. A total of 10 DL mice were included in the normal control (NC) group. The structure and copper content of pineal gland tissues, oxidative stress and apoptosis-related markers, and serum melatonin levels were evaluated using hematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blot. Results Compared with the NC group, the WD group exhibited decreased learning and cognitive abilities (P < 0.05), damaged pineal gland structure, increased copper content, reactive oxygen species (ROS) levels, and mitochondrial damage rate in the pineal gland (P < 0.01), altered levels of melatonin and oxidative stress-related markers (P < 0.05), upregulated expression levels of pro-apoptotic proteins Bax and Caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2 (P < 0.01). After treatment with GDBSD and DMSA, the SIRT3/FOXO3α signaling pathway was activated, the copper content in the pineal gland was reduced, and oxidative stress and apoptosis-related damages were improved, leading to an improvement in learning and memory abilities (P < 0.05). Conclusion GDBSD can alleviate cognitive impairments in WD mice caused by pineal gland copper deposition by inhibiting oxidative stress and apoptosis in the pineal gland. The underlying molecular mechanism is associated with the regulation of the SIRT3/FOXO3α signaling pathway.
Collapse
Affiliation(s)
- Luyao Wang
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Limin Wu
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Tingting Wang
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Xinru Fang
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Zhenzhen Jiang
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Yike Yue
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Dan Zhao
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qianzhuo Liu
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Hui Han
- ( 230031) The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| |
Collapse
|
12
|
Lu L, Zhang Y, Shi W, Zhou Q, Lai Z, Pu Y, Yin L. The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells. TOXICS 2025; 13:63. [PMID: 39853061 PMCID: PMC11769067 DOI: 10.3390/toxics13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation. In this study, we established an in vitro model of Cu2+-exposed (0, 15, 30, 60 and 120 μM) SH-SY5Y cells to explore the role of autophagy in copper-induced developmental neurotoxicity. The results showed that copper resulted in the reduction and shortening of neural synapses in differentiated cultured SH-SY5Y cells, a downregulated Wnt signaling pathway, and nuclear translocation of β-catenin. Exposure to Cu2+ increased autophagosome accumulation and autophagic flux blockage in terms of increased sequestosome 1 (p62/SQSTM1) and microtubule-associated protein 1 light chain 3B (LC3B) II/LC3BI expressions and inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. Furthermore, copper induced apoptosis, characterized by increased expressions of Bcl2 X protein (Bax), caspase 3, and Poly (ADP-ribose) polymerase (PARP) and decreased expression of B-cell lymphoma 2 (Bcl2). Compared with the 120 μM Cu2+ exposure group alone, autophagy activator rapamycin pretreatment increased expression of Wnt and β-catenin nuclear translocation, decreased expression of LC3BII/LC3BI and p62, as well as upregulated expression of Bcl2 and downregulated expressions of caspase 3 and PARP. In contrast, after autophagy inhibitor chloroquine pretreatment, expressions of Wnt and β-catenin nuclear translocation were decreased, expression levels of LC3BII/LC3BI and p62 were upregulated, expression of Bcl2 was decreased, while expression levels of caspase 3, Bax, and PARP were increased. In conclusion, the study demonstrated that autophagosome accumulation and autophagic flux blockage were associated with copper-induced developmental neurotoxicity via the Wnt signaling pathway, which might deepen the understanding of the developmental neurotoxicity mechanism of environmental copper exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.L.); (Y.Z.); (W.S.); (Q.Z.); (Z.L.); (Y.P.)
| |
Collapse
|
13
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
14
|
Wang X, Chen H, Shao N, Zhang X, Huang C, Li X, Zhang J, Chang Z, Tang L, Xie D. Protective Effect of Aloe-emodin on Cognitive Function in Copper-loaded Rats Based on The Inhibition of Hippocampal Neuron Ferroptosis. Curr Neurovasc Res 2025; 21:458-471. [PMID: 39400027 DOI: 10.2174/0115672026348862241003042336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aloe-emodin (AE), a monomer derived from traditional Chinese medicine, has demonstrated remarkable efficacy in the clinical management of cognitive disorders. Ferroptosis (FPT), a specialized form of programmed cell death, plays a critical role in the pathological progression of various cognitive diseases. METHODS This study explored the therapeutic potential of AE in a rat model of Wilson's disease cognitive impairments (WDCI) and examined whether these effects are mediated through the silencing information regulator 1 (SIRT1)-regulated FPT signaling pathway. Employing techniques, such as the Morris water maze (MWM), Hematoxylin & eosin (H&E) staining, Transmission electron microscopy (TEM), Immunofluorescence (IF), assessments of oxidative stress markers, and measurements of FPT-related protein levels, we evaluated the extent of SIRT1-mediated FPT and the therapeutic efficacy of AE. RESULTS The findings from the WD copper-loaded rat model experiments revealed that MWM, H&E, TEM, and IF outcomes indicated AE's potential to promote the restoration of learning and memory functions, ameliorate hippocampal neuronal morphological damage, and preserve cell membrane integrity. Results from western blot (WB) and ELISA analyses demonstrated that AE markedly upregulated the expression of SIRT1, nuclear factor erythroid-2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SCL7A11), and glutathione peroxidase 4 (GPX4) proteins while simultaneously reversing the expression of oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), and reactive oxygen species (ROS). Consequently, we posit that AE may attenuate WD copper-loaded rat model hippocampal neuronal FPT by activating the SIRT1-mediated signaling pathway. CONCLUSION These findings suggested that AE mitigates WD copper-loaded rat model hippocampal neuronal damage through the activation of SIRT1-mediated FPT, thereby presenting a valuable candidate Chinese herbal monomer for the clinical treatment of WDCI.
Collapse
Affiliation(s)
- Xie Wang
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Hong Chen
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Nan Shao
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Xiaoyan Zhang
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Chenye Huang
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Xiangjun Li
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, China
| | - Ze Chang
- The First Clinical Medical College, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100089, China
| | - Le Tang
- Quanjiao County Hospital of Traditional Chinese Medicine, Chuzhou, 239500, China
| | - Daojun Xie
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, China
| |
Collapse
|
15
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
16
|
Chen G, Xi E, Gu X, Wang H, Tang Q. The study on cuproptosis in Alzheimer's disease based on the cuproptosis key gene FDX1. Front Aging Neurosci 2024; 16:1480332. [PMID: 39759399 PMCID: PMC11696982 DOI: 10.3389/fnagi.2024.1480332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory and cognitive impairments. Previous studies have shown neuronal death in the brains of AD patients, but the role of cuproptosis and its associated genes in AD neurons remains unclear. Methods Intersection analysis was conducted using the AD transcriptome dataset GSE63060, neuron dataset GSE147528, and reported cuproptosis-related genes to identify the cuproptosis key gene FDX1 highly expressed in AD. Subsequently, cell experiments were performed by treating SH-SY5Y cells with Aβ25-35 to establish AD cell model. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blotting (WB) assays were employed to detect the expression levels of FDX1, DLAT, and DLST. Cell proliferation was analyzed by counting Kit-8 (CCK8), mitochondrial ROS levels were analyzed using flow cytometry. shRNA was used to downregulate FDX1 expression, followed by repetition of the aforementioned experiments. Clinical experiments utilized qPCR to detect FDX1 mRNA levels in peripheral venous blood of patients, and analyzed FDX1 expression differences in different APOE genotypes of AD patients. Finally, a protein-protein interaction (PPI) network of FDX1 was constructed based on the GeneMANIA database, immune infiltration analysis was conducted using R language, and transcription factors prediction for FDX1 was performed based on the ENCODE database. Results The cuproptosis key gene FDX1 showed significantly higher expression in peripheral blood and neuron models of AD compared to non-AD individuals, with significantly higher expression in APOE ε4/ε4 genotype than other APOE genotype of AD patients. Knockdown of FDX1 expression reduced the lipidation levels of DLAT and DLST in neurons, alleviated ROS accumulation in mitochondria, improved cell viability, and mitigated cuproptosis. Immune infiltration analysis results indicated a high enrichment of peripheral blood γδ-T lymphocytes in AD, and FDX1 was significantly associated with the infiltration of four immune cells and may be regulated by three transcription factors. Conclusion The cuproptosis key gene FDX1 is highly expressed in AD and may promote cuproptosis in AD neurons by regulating the lipidation levels of DLAT and DLST, thereby participating in the onset and development of AD. This provides a potential target for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Guilin Chen
- Department of Neurology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Erwei Xi
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiaozhen Gu
- Institute of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Huili Wang
- Institute of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
17
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
18
|
Hu J, Zhu J, Chen T, Zhao Y, Xu Q, Wang Y. Cuproptosis in cancer therapy: mechanisms, therapeutic application and future prospects. J Mater Chem B 2024; 12:12191-12206. [PMID: 39526989 DOI: 10.1039/d4tb01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cuproptosis is a regulated form of cell death induced by the accumulation of metal ions and is closely linked to aspects of cellular drug resistance, cellular metabolism, and signalling pathways. Due to its crucial role in regulating physiological and pathological processes, cuproptosis has gained increasing significance as a potential target for anticancer drug development. In this review, we introduce the definition of cuproptosis and provide a comprehensive discussion of the mechanisms of cuproptosis. In addition, the methods for the detection of cuproptosis are summarized, and recent advances in cuproptosis in cancer therapy are reviewed, mainly in terms of elesclomol (ES)-mediated cuproptosis and disulfiram (DSF)-mediated cuproptosis, which provided practical value for applications. Finally, the current challenges and future development of cuproptosis-mediated cancer therapy are discussed. In summary, this review highlights recent progress on cuproptosis in cancer therapy, offering novel ideas and strategies for future research and applications.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Qingwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
19
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
20
|
Ji X, Liu S, Li S, Li X, Luo A, Zhang X, Zhao Y. GABA in early brain development: A dual role review. Int J Dev Neurosci 2024; 84:843-856. [PMID: 39503050 DOI: 10.1002/jdn.10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
This comprehensive review examines the multifaceted roles of gamma-aminobutyric acid (GABA) in early brain development. GABA, traditionally recognized for its inhibitory functions in the mature brain, also exhibits excitatory effects during early neural development. This article explores the mechanisms behind GABA's dual roles, detailing its impact on the properties of the immature brain, the mechanisms of GABA-mediated excitation, the role of GABA-mediated presynaptic inhibition, the trophic actions of GABA during early development, GABA regulation of neurite growth and GABA-mediated cell differentiation in the immature brain. Emphasizing recent research findings, the review highlights the significance of GABAergic signalling in shaping the developing brain and its potential implications for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzhen Liu
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Wang S, Zhang H, Chen T, Jiang W, Wang F, Yu Y, Guo B, Xu J, Yang F, Kang Q, Ma Z. Injectable hyaluronate-L- cysteine gel potentiates photothermal therapy in osteosarcoma via vorinostat-copper cell death. Mater Today Bio 2024; 29:101368. [PMID: 39659842 PMCID: PMC11629197 DOI: 10.1016/j.mtbio.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
The prognosis for osteosarcoma patients, a devastating malignancy affecting young individuals, remains grim despite multimodal therapeutic advances. Recently, the advent of cuproptosis, a novel programmed cell death, offers hope in fighting osteosarcoma. In this study, we introduce SAHAm@{[Cu(HA-Cys)2]Cl2}n, an injectable hyaluronate-L-cysteine hydrogel that integrates both copper ions (Cu2+) and vorinostat (SAHA) for the possible therapeutic effect. The Cu2+ targets the TCA cycle, inducing cuproptosis in osteosarcoma cells. While SAHA acts as both a histone deacetylase inhibitor and an ROS generator for eliminating tumor cells. The mechanism involves amplifying FDX-1 expression via SAHA modulation of the TCA cycle, which was an original discovery. Critically, the combined mechanisms and localized injection enables the hydrogel partially eradicating osteosarcoma without metastasis in rats. Therefore, this study advances cuproptosis induced photothermal therapy for promising clinical translations, shedding light on favorable prognosis for osteosarcoma.
Collapse
Affiliation(s)
- Sizhen Wang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Hanzhe Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Tianheng Chen
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Weiwei Jiang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Yuhao Yu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Beibei Guo
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Feng Yang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Zhiqiang Ma
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
22
|
Chen Z, Liu J, Zheng M, Mo M, Hu X, Liu C, Pathak JL, Wang L, Chen L. TRIM24-DTNBP1-ATP7A mediated astrocyte cuproptosis in cognition and memory dysfunction caused by Y 2O 3 NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176353. [PMID: 39304169 DOI: 10.1016/j.scitotenv.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak Lal Pathak
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Abadin X, de Dios C, Zubillaga M, Ivars E, Puigròs M, Marí M, Morales A, Vizuete M, Vitorica J, Trullas R, Colell A, Roca-Agujetas V. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants (Basel) 2024; 13:1440. [PMID: 39765769 PMCID: PMC11672511 DOI: 10.3390/antiox13121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons. Understanding the causes that support this aberrant inflammatory response has become a topic of growing interest and research in neurodegeneration, with high translational potential. It has been postulated that the phenotypic shift of immune cells towards a proinflammatory state combined with the presence of immunogenic cell death fuels a vicious cycle in which mitochondrial dysfunction plays a central role. Mitochondria and mitochondria-generated reactive oxygen species are downstream effectors of different inflammatory signaling pathways, including inflammasomes. Dysfunctional mitochondria are also recognized as important producers of damage-associated molecular patterns, which can amplify the immune response. Here, we review the major findings highlighting the role of mitochondria as a checkpoint of neuroinflammation and immunogenic cell deaths in neurodegenerative diseases. The knowledge of these processes may help to find new druggable targets to modulate the inflammatory response.
Collapse
Affiliation(s)
- Xenia Abadin
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Cristina de Dios
- High Technology Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Marlene Zubillaga
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Elia Ivars
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Margalida Puigròs
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Vicente Roca-Agujetas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| |
Collapse
|
24
|
Zhu Z, Song M, Ren J, Liang L, Mao G, Chen M. Copper homeostasis and cuproptosis in central nervous system diseases. Cell Death Dis 2024; 15:850. [PMID: 39567497 PMCID: PMC11579297 DOI: 10.1038/s41419-024-07206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Copper (Cu), an indispensable micronutrient for the sustenance of living organisms, contributes significantly to a vast array of fundamental metabolic processes. The human body maintains a relatively low concentration of copper, which is mostly found in the bones, liver, and brain. Despite its low concentration, Cu plays a crucial role as an indispensable element in the progression and pathogenesis of central nervous system (CNS) diseases. Extensive studies have been conducted in recent years on copper homeostasis and copper-induced cell death in CNS disorders, including glioma, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease, and stroke. Cuproptosis, a novel copper-induced cell death pathway distinct from apoptosis, necrosis, pyroptosis, and ferroptosis, has been identified as potentially intricately linked to the pathogenic mechanisms underlying various CNS diseases. Therefore, a systematic review of copper homeostasis and cuproptosis and their relationship with CNS disorders could deepen our understanding of the pathogenesis of these diseases. In addition, it may provide new insights and strategies for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurosurgery, Shangrao People's Hospital, Shangrao, China
| | - Min Song
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianxun Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lirong Liang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guohua Mao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
25
|
Du M, Fu J, Zhang J, Zhu Z, Huang X, Tan W, Liu L, Huang Z, Liu X, Tan Q, Liao Z, Cheng Y. CircSpna2 attenuates cuproptosis by mediating ubiquitin ligase Keap1 to regulate the Nrf2-Atp7b signalling axis in depression after traumatic brain injury in a mouse model. Clin Transl Med 2024; 14:e70100. [PMID: 39581695 PMCID: PMC11586089 DOI: 10.1002/ctm2.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Depression is a common but often overlooked consequence in individuals with post-traumatic brain injury (TBI). Circular RNAs (circRNAs) play essential roles in the nervous system, yet their involvement in the cell death mechanism known as cuproptosis and in TBI-related depression remains unclear. OBJECTIVES This study aimed to investigate the role of circRNA, specifically circSpna2, in the regulation of cuproptosis and its association with depression in TBI patients. METHODS RNA sequencing (RNA-Seq) was used to assess the differential expression of circRNAs. Depression was evaluated using subjective and objective rating scales, and circSpna2 expression levels in plasma were measured. Further functional experiments were conducted in TBI mouse models, including knockdown and overexpression of circSpna2, to explore its impact on the Keap1-Nrf2-Atp7b pathway and cuproptosis. RESULTS TBI patients exhibited decreased levels of circSpna2, which correlated with depression (p < 0.0001). Knocking down circSpna2 in TBI mice aggravated depression-like symptoms (p < 0.0001). Mechanistically, circSpna2 was found to bind ubiquitin ligase Keap1, modulating the Nrf2-Atp7b signaling pathway and influencing cuproptosis (docking score: -331.88). Overexpression of circSpna2 alleviated cuproptosis after TBI through the Keap1/Nrf2/Atp7b axis. CONCLUSIONS CircSpna2 plays a regulatory role in cuproptosis and may serve as a novel biomarker and therapeutic target for depression following TBI. Enhancing circSpna2 expression could mitigate depression after TBI by modulating the Keap1/Nrf2/Atp7b pathway. KEY POINTS This study explores the role of circSpna2 in depression following traumatic brain injury (TBI). It was found that circSpna2 is significantly downregulated in TBI patients, and its expression levels correlate with depressive symptoms. In TBI mouse models, overexpression of circSpna2 alleviated depression-like behaviours, while its knockdown exacerbated these symptoms, suggesting its potential as both a biomarker and a therapeutic target for post-TBI depression. Mechanistically, circSpna2 regulates the Nrf2-Atp7b signalling pathway by binding to the DGR domain of Keap1, which prevents Nrf2 ubiquitination and enhances Nrf2 activity. This in turn promotes the transcription of Atp7b, a copper transport protein, helping to maintain copper homeostasis and mitigate copper-induced oxidative stress, a key driver of cell death (cuproptosis). The overexpression of circSpna2 also improved mitochondrial function and synaptic integrity, which are typically impaired by copper dysregulation. These findings highlight the therapeutic potential of circSpna2 in managing TBI-related depression through the regulation of oxidative stress and copper homeostasis.
Collapse
Affiliation(s)
- Mengran Du
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiayuanyuan Fu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ziyu Zhu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuekang Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Weilin Tan
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lian Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhijian Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xin Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qiuhao Tan
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - ZhengBu Liao
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
26
|
Li Y, Sun W, Yuan S, Liu X, Zhang Z, Gu R, Li P, Gu X. The role of cuproptosis in gastric cancer. Front Immunol 2024; 15:1435651. [PMID: 39539553 PMCID: PMC11558255 DOI: 10.3389/fimmu.2024.1435651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
As a biologically essential transition metal, copper is widely involved in various enzymatic reactions and crucial biological processes in the body. It plays an increasingly important role in maintaining normal cellular metabolism and supporting the growth and development of the human body. As a trace element, copper maintains the dynamic balance of its concentration in body fluids through active homeostatic mechanisms. Both excess and deficiency of copper ions can impair cell function, ultimately leading to cell damage and death. Cuproptosis is a novel form of cell death where copper ions cause cell death by directly binding to the lipoylated components of the citric acid cycle (CAC) in mitochondrial respiration and interfering with the levels of iron-sulfur cluster (Fe-S cluster) proteins, ultimately causing protein toxic stress. Its primary characteristics are Cu2+ concentration dependence and high expression in mitochondrial respiratory cells. Recent research has revealed that, compared to other forms of programmed cell death such as apoptosis, necrosis, and autophagy, cuproptosis has unique morphological and biochemical features. Cuproptosis is associated with the occurrence and development of various diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases. This article focuses on a review of the relevance of cuproptosis in gastric cancer (GC).
Collapse
Affiliation(s)
- Yixian Li
- Nanjing University of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Wenhao Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Shaolin Yuan
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Xinxin Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Ziqi Zhang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
28
|
Ma X, Sun Y, Li C, Wang M, Zang Q, Zhang X, Wang F, Niu Y, Hua J. Novel Insights Into DLAT's Role in Alzheimer's Disease-Related Copper Toxicity Through Microglial Exosome Dynamics. CNS Neurosci Ther 2024; 30:e70064. [PMID: 39428563 PMCID: PMC11491298 DOI: 10.1111/cns.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder, with recent research emphasizing the roles of microglia and their secreted extracellular vesicles in AD pathology. However, the involvement of specific molecular pathways contributing to neuronal death in the context of copper toxicity remains largely unexplored. OBJECTIVE This study investigates the interaction between pyruvate kinase M2 (PKM2) and dihydrolipoamide S-acetyltransferase (DLAT), particularly focusing on copper-induced neuronal death in Alzheimer's disease. METHODS Gene expression datasets were analyzed to identify key factors involved in AD-related copper toxicity. The role of DLAT was validated using 5xFAD transgenic mice, while in vitro experiments were conducted to assess the impact of microglial exosomes on neuronal PKM2 transfer and DLAT expression. The effects of inhibiting the PKM2 transfer via microglial exosomes on DLAT expression and copper-induced neuronal death were also evaluated. RESULTS DLAT was identified as a critical factor in the pathology of AD, particularly in copper toxicity. In 5xFAD mice, increased DLAT expression was linked to hippocampal damage and cognitive decline. In vitro, microglial exosomes were shown to facilitate the transfer of PKM2 to neurons, leading to upregulation of DLAT expression and increased copper-induced neuronal death. Inhibition of PKM2 transfer via exosomes resulted in a significant reduction in DLAT expression, mitigating neuronal death and slowing AD progression. CONCLUSION This study uncovers a novel pathway involving microglial exosomes and the PKM2-DLAT interaction in copper-induced neuronal death, providing potential therapeutic targets for Alzheimer's disease. Blocking PKM2 transfer could offer new strategies for reducing neuronal damage and slowing disease progression in AD.
Collapse
Affiliation(s)
- Xiang Ma
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Yusheng Sun
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Changchun Li
- Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Man Wang
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Qijiao Zang
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Xuxia Zhang
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Feng Wang
- Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Yulan Niu
- Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Jiai Hua
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| |
Collapse
|
29
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
30
|
Qin L, Cao X, Huang T, Liu Y, Li S. Identification of potential biomarkers of cuproptosis in cerebral ischemia. Front Nutr 2024; 11:1410431. [PMID: 39360273 PMCID: PMC11445069 DOI: 10.3389/fnut.2024.1410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Cerebral ischemia can cause mild damage to local brain nerves due to hypoxia and even lead to irreversible damage due to neuronal cell death. However, the underlying pathogenesis of this phenomenon remains unclear. This study utilized bioinformatics to explore the role of cuproptosis in cerebral ischemic disease and its associated biomarkers. Method R software identified the overlap of cerebral ischemia and cuproptosis genes, analyzed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and explored hub genes. Expressions and localizations of hub genes in brain tissue, cells, and immune cells were analyzed, along with predictions of protein structures, miRNAs, and transcription factors. A network was constructed depicting hub gene co-expression with miRNAs and interactions with transcription factors. Ferredoxin 1 (FDX1) expression was determined using qRT-PCR. Results Ten cuproptosis-related genes in cerebral ischemia were identified, with GO analysis revealing involvement in acetyl-CoA synthesis, metabolism, mitochondrial function, and iron-sulfur cluster binding. KEGG highlighted processes like the tricarboxylic acid cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. Using the Human Protein Atlas, eight hub genes associated with cuproptosis were verified in brain tissues, hippocampus, and AF22 cells. Lipoyl(octanoyl) transferase 1 (LIPT1), was undetected, while others were found in mitochondria or both nucleus and mitochondria. These genes were differentially expressed in immune cells. FDX1, lipoic acid synthetase (LIAS), dihydrolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 component subunit alpha 1 (PDHA1), PDHB, and glutaminase (GLS) were predicted to target 111 miRNAs. PDHA1, FDX1, LIPT1, PDHB, LIAS, DLAT, GLS, and dihydrolipoamide dehydrogenase (DLD) were predicted to interact with 11, 10, 10, 9, 8, 7, 5, and 4 transcription factors, respectively. Finally, FDX1 expression was significantly upregulated in the hippocampus of ovariectomized rats with ischemia. Conclusion This study revealed an association between cerebral ischemic disease and cuproptosis, identifying eight potential target genes. These findings offer new insights into potential biomarkers for the diagnosis, treatment, and prognosis of cerebral ischemia, and provide avenues for the exploration of new medical intervention targets.
Collapse
Affiliation(s)
- Lihua Qin
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardiocerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Cao
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tengjia Huang
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixin Liu
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Sheng Li
- Key Laboratory of Hunan Province for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardiocerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
31
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
32
|
Corrêa Costa-Beber L, Kazmirczak Moraes R, Marques Obelar Ramos J, Meira Martins LA, Toquetto AL, Fursel Pacheco J, Resende Farias H, Gioda A, Antunes de Oliveira V, de Oliveira J, Costa Rodrigues Guma FT. Aqueous PM 2.5 promotes lipid accumulation, classical macrophage polarisation and heat shock response. CHEMOSPHERE 2024; 363:142987. [PMID: 39094706 DOI: 10.1016/j.chemosphere.2024.142987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fine particulate matter (PM2.5) is an air pollutant that enhances susceptibility to cardiovascular diseases. Macrophages are the first immune cells to encounter the inhaled particles and orchestrate an inflammatory response. Given their role in atherosclerosis development, we investigated whether aqueous PM2.5 could elicit atherogenic effects by polarising macrophages to a pro-oxidative and pro-inflammatory phenotype and enhancing foam cell formation. The RAW264.7 macrophage cell line was exposed to PM2.5 for 48 h, with PBS as the control. Aqueous PM2.5 induced apoptosis and reduced cell proliferation. In surviving cells, we observed morphological, phagocytic, oxidative, and inflammatory features (i.e. enhanced iNOS, Integrin-1β, IL-6 expression), indicative of classical macrophage activation. We also detected an increase in total and surface HSP70 levels, suggesting macrophage activation. Further, exposure of high-cholesterol diet-fed mice to PM2.5 resulted in aortic wall enlargement, indicating vascular lesions. Macrophages exposed to PM2.5 and non-modified low-density lipoprotein (LDL) showed exacerbated lipid accumulation. Given the non-oxidised LDL used and the evidence linking inflammation to disrupted cholesterol negative feedback, we hypothesise that PM2.5-induced inflammation in macrophages enhances their susceptibility to transforming into foam cells. Finally, our results indicate that exposure to aqueous PM2.5 promotes classical macrophage activation, marked by increased HSP70 expression and that it potentially contributes to atherosclerosis.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rafael Kazmirczak Moraes
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Marques Obelar Ramos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Laura Toquetto
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Júlia Fursel Pacheco
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Hémelin Resende Farias
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rio de Janeiro, RJ, Brazil
| | - Vitor Antunes de Oliveira
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Jade de Oliveira
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Chen X, Li K, Xiao Y, Wu W, Lin H, Qing X, Tian S, Liu S, Feng S, Wang B, Shao Z, Peng Y. SP1/CTR1-mediated oxidative stress-induced cuproptosis in intervertebral disc degeneration. Biofactors 2024; 50:1009-1023. [PMID: 38599595 DOI: 10.1002/biof.2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/27/2023] [Indexed: 04/12/2024]
Abstract
Intervertebral disc degeneration (IDD) is an age-related disease and is responsible for low back pain. Oxidative stress-induced cell death plays a fundamental role in IDD pathogenesis. Cuproptosis is a recently discovered form of programmed cell death dependent on copper availability. Whether cuproptosis is involved in IDD progression remains unknown. Herein, we established in vitro and in vivo models to investigate cuproptosis in IDD and the mechanisms by which oxidative stress interacts with copper sensitivity in nucleus pulposus cells (NPCs). We found that ferredoxin-1 (FDX1) content increased in both rat and human degenerated discs. Sublethal oxidative stress on NPCs led to increased FDX1 expression, tricarboxylic acid (TCA) cycle-related proteins lipoylation and aggregation, and cell death in the presence of Cu2+ at physiological concentrations, while FDX1 knockdown inhibited cell death. Since copper homeostasis is involved in copper-induced cytotoxicity, we investigated the role of copper transport-related proteins, including importer (CTR1) and efflux pumps (ATPase transporter, ATP7A, and ATP7B). CTR1 and ATP7A content increased under oxidative stress, and blocking CTR1 reduced oxidative stress/copper-induced TCA-related protein aggregation and cell death. Moreover, oxidative stress promoted the expression of specific protein 1 (SP1) and SP1-mediated CTR1 transcription. SP1 inhibition decreased cell death rates, preserved disc hydration, and alleviated tissue degeneration. This suggests that oxidative stress upregulates FDX1 expression and copper flux through promoting SP1-mediated CTR1 transcription, leading to increased TCA cycle-related protein aggregation and cuproptosis. This study highlights the importance of cuproptosis in IDD progression and provides a promising therapeutic target for IDD treatment.
Collapse
Affiliation(s)
- Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Departments of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqing Feng
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S, Ge P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther 2024; 30:e70039. [PMID: 39267265 PMCID: PMC11392831 DOI: 10.1111/cns.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Copper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper-induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper-related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications. MAIN BODY This review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper-induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity. CONCLUSION The study highlights the need for further research to explore alternative pathways of copper-induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
35
|
Huang Q, Yang J, Zhang J, Yao L, Jiang B, Du S, Li F, Peng Q, Qin L, Wang Y, Qi L. Eupalinolide B suppresses pancreatic cancer by ROS generation and potential cuproptosis. iScience 2024; 27:110496. [PMID: 39100694 PMCID: PMC11295471 DOI: 10.1016/j.isci.2024.110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.
Collapse
Affiliation(s)
- Qingtian Huang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jie Yang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jiaxing Zhang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Leyi Yao
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Baoyi Jiang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Siyuan Du
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Fengjin Li
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Qian Peng
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Lingsha Qin
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Yanfen Wang
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Ling Qi
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| |
Collapse
|
36
|
Xie S, Zhu M, Zhu H, Wang W. Effects of β-asarone on spatial learning and memory impairment by exhaustive exercise-induced fatigue: Role of NR-CaMKII-ERK/CREB signal in hippocampus of rats. Behav Brain Res 2024; 471:115076. [PMID: 38825021 DOI: 10.1016/j.bbr.2024.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVE It is to investigate the effects of β-asarone on learning and memory, hippocampal morphology, synaptophysin (SYP) and postsynaptic density 95(PSD95) protein expression, N-methyl-D-aspartic acid receptor 2B (NR2B)- Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) - Extracellular signal-regulated kinase (ERK) / Cyclic-AMP response element binding protein (CREB) signal in hippocampus of rats with exhaustive exercise-induced fatigue. METHODS Fifty Sprague-Dawley male rats were randomly divided into five groups: normal group, exercise group, exercise and β-asarone (2.5, 10, 40 mg/kg)-treated groups. The learning and memory in rats were tested by Morris water maze experiment. We measured the hippocampal morphology by Nissl staining. The levels of SYP, PSD95, NR2B, CaMKII, ERK1/2, CREB, p-NR2B, p-CaMKII, p-ERK1/2 and p-CREB expression were measured by western blot analysis. RESULTS The results demonstrated that β-asarone (10, 40 mg/kg) treatment significantly decreased the latency to find the platform, increased the time spent in the target quadrant and the number of crossing the platform of rats with exhaustive exercise-induced fatigue. β-asarone (10, 40 mg/kg) treatment increased the cell density in the hippocampus CA1 region, significantly up-regulated NR2B-CaMKII-ERK/CREB signal and improved the protein expression levels of SYP and PSD95 in hippocampus of rats with exhaustive exercise-induced fatigue. CONCLUSIONS It suggests that β-asarone could improve learning and memory of rats with exhaustive exercise-induced fatigue. The mechanism might be related to β-asarone protecting the morphology of hippocampus, increasing the protein expression levels of SYP and PSD95 and up-regulating NR2B-CaMKII-ERK/CREB signal in hippocampus of rats with exhaustive exercise-induced fatigue.
Collapse
Affiliation(s)
- Shifeng Xie
- School of Sports Science, Jinggangshan University, Jian, Jiangxi 343009, China
| | - Meiju Zhu
- School of Sports Science, Jinggangshan University, Jian, Jiangxi 343009, China.
| | - Hongzhu Zhu
- School of Sports Science, Jinggangshan University, Jian, Jiangxi 343009, China
| | - Wei Wang
- School of Sports Science, Jinggangshan University, Jian, Jiangxi 343009, China
| |
Collapse
|
37
|
Yang Y, Zheng T, Tang Q, Xiang B, Yang M, Zeng J, Zhou F, Xie X. Developmental dyslexia genes are selectively targeted by diverse environmental pollutants. BMC Psychiatry 2024; 24:509. [PMID: 39020327 PMCID: PMC11256705 DOI: 10.1186/s12888-024-05952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Developmental dyslexia, a complex neurodevelopmental disorder, not only affects children's academic performance but is also associated with increased healthcare costs, lower employment rates, and reduced productivity. The pathogenesis of dyslexia remains unclear and it is generally considered to be caused by the overlap of genetic and environmental factors. Systematically exploring the close relationship between exposure to environmental compounds and susceptibility genes in the development of dyslexia is currently lacking but high necessary. METHODS In this study, we systematically compiled 131 publicly reported susceptibility genes for dyslexia sourced from DisGeNET, OMIM, and GeneCards databases. Comparative Toxicogenomics Database database was used to explore the overlap between susceptibility genes and 95 environmental compounds, including metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, and pesticides. Chemical bias towards the dyslexia risk genes was taken into account in the observation/expectation ratios > 1 and the corresponding P value obtained by hypergeometric probability test. RESULTS Our study found that the number of dyslexia risk genes targeted by each chemical varied from 1 to 109. A total of 35 chemicals were involved in chemical reactions with dyslexia-associated genes, with significant enrichment values (observed/expected dyslexia risk genes) ranging from 1.147 (Atrazine) to 66.901 (Dibenzo(a, h)pyrene). CONCLUSION The results indicated that dyslexia-associated genes were implicated in certain chemical reactions. However, these findings are exploratory, and further research involving animal or cellular experiments is needed.
Collapse
Affiliation(s)
- Yangyang Yang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Tingting Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qidi Tang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Bing Xiang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Mei Yang
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Jing Zeng
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Feng Zhou
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China
| | - Xinyan Xie
- Research Center for Health Promotion in Women, Youth and Children, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, West Huangjiahu Road, Hongshan District, Wuhan, 430065, China.
| |
Collapse
|
38
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
39
|
Yang S, Li X, Yan J, Jiang F, Fan X, Jin J, Zhang W, Zhong D, Li G. Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci Rep 2024; 14:15175. [PMID: 38956251 PMCID: PMC11219760 DOI: 10.1038/s41598-024-64981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuai Yang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xudong Li
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Jinhong Yan
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Fangchao Jiang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xuehui Fan
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Jing Jin
- Heilongjiang Provincial Hospital, Harbin, China
| | - Weihua Zhang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Di Zhong
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
| | - Guozhong Li
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
- Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
40
|
Zhao T, Guo Y, Li J. Identification and experimental validation of cuproptosis regulatory program in a sepsis immune microenvironment through a combination of single-cell and bulk RNA sequencing. Front Immunol 2024; 15:1336839. [PMID: 38947313 PMCID: PMC11211538 DOI: 10.3389/fimmu.2024.1336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Background In spite of its high mortality rate and poor prognosis, the pathogenesis of sepsis is still incompletely understood. This study established a cuproptosis-based risk model to diagnose and predict the risk of sepsis. In addition, the cuproptosis-related genes were identified for targeted therapy. Methods Single-cell sequencing analyses were used to characterize the cuproptosis activity score (CuAS) and intercellular communications in sepsis. Differential cuproptosis-related genes (CRGs) were identified in conjunction with single-cell and bulk RNA sequencing. LASSO and Cox regression analyses were employed to develop a risk model. Three external cohorts were conducted to assess the model's accuracy. Differences in immune infiltration, immune cell subtypes, pathway enrichment, and the expression of immunomodulators were further evaluated in distinct groups. Finally, various in-vitro experiments, such as flow cytometry, Western blot, and ELISA, were used to explore the role of LST1 in sepsis. Results ScRNA-seq analysis demonstrated that CuAS was highly enriched in monocytes and was closely related to the poor prognosis of sepsis patients. Patients with higher CuAS exhibited prominent strength and numbers of cell-cell interactions. A total of five CRGs were identified based on the LASSO and Cox regression analyses, and a CRG-based risk model was established. The lower riskScore cohort exhibited enhanced immune cell infiltration, elevated immune scores, and increased expression of immune modulators, indicating the activation of an antibacterial response. Ultimately, in-vitro experiments demonstrated that LST1, a key gene in the risk model, was enhanced in the macrophage in response to LPS, which was closely related to the decrease of macrophage survival rate, the enhancement of apoptosis and oxidative stress injury, and the imbalance of the M1/M2 phenotype. Conclusions This study constructed a cuproptosis-related risk model to accurately predict the prognosis of sepsis. We further characterized the cuproptosis-related gene LST1 to provide a theoretical framework for sepsis therapy.
Collapse
Affiliation(s)
- Tingru Zhao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | |
Collapse
|
41
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
42
|
Du J, Yang L, Duan Y, Cui Y, Qi Q, Liu Z, Liu H. Association between drinking water sources and cognitive functioning in Chinese older adults residing in rural areas. Int J Geriatr Psychiatry 2024; 39:e6110. [PMID: 38831201 DOI: 10.1002/gps.6110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To explore the association between drinking water sources and cognitive functioning among older adults residing in rural China. METHODS Data were extracted from the 2008-2018 Chinese Longitudinal Healthy Longevity Survey. Drinking water sources were categorized according to whether purification measures were employed. The Chinese version of the Mini-Mental State Examination was used for cognitive functioning assessment, and the score of <24 was considered as having cognitive dysfunction. Cox regression analyses were conducted to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the effects of various drinking water sources, changes in such sources, and its interaction with exercise on cognition dysfunction. RESULTS We included 2304 respondents aged 79.67 ± 10.02 years; of them, 1084 (44.49%) were men. Our adjusted model revealed that respondents consistently drinking tap water were 21% less likely to experience cognitive dysfunction compared with those drinking untreated water (HR = 0.79, 95% CI: 0.70-0.90). Respondents transitioning from natural to tap water showed were 33% less likely to experience cognitive dysfunction (HR = 0.67, 95% CI: 0.58-0.78). Moreover, the HR (95% CI) for the interaction between drinking tap water and exercising was 0.86 (0.75-1.00) when compared with that between drinking untreated water and not exercising. All results adjusted for age, occupation, exercise, and body mass index. CONCLUSIONS Prolonged tap water consumption and switching from untreated water to tap water were associated with a decreased risk of cognitive dysfunction in older individuals. Additionally, exercising and drinking tap water was synergistically associated with the low incidence of cognitive dysfunction. These findings demonstrate the importance of prioritizing drinking water health in rural areas, indicating that purified tap water can enhance cognitive function among older adults.
Collapse
Affiliation(s)
- Jing Du
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Ling Yang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Ying Duan
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yan Cui
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Qi Qi
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Zihao Liu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Huaqing Liu
- School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
43
|
Xu Y, Xin X, Tao T. Decoding the neurotoxic effects of propofol: insights into the RARα-Snhg1-Bdnf regulatory cascade. Am J Physiol Cell Physiol 2024; 326:C1735-C1752. [PMID: 38618701 PMCID: PMC11371332 DOI: 10.1152/ajpcell.00547.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 04/16/2024]
Abstract
The potential neurotoxic effects of propofol, an extensively utilized anesthetic, underline the urgency to comprehend its influence on neuronal health. Insights into the role of the retinoic acid receptor-α, small nucleolar RNA host gene 1, and brain-derived neurotrophic factor (RARα-Snhg1-Bdnf) network can offer significant advancements in minimizing these effects. The study targets the exploration of the RARα and Snhg1 regulatory network's influence on Bdnf expression in the realm of propofol-induced neurotoxicity. Harnessing the Gene Expression Omnibus (GEO) database and utilizing JASPAR and RNA-Protein Interaction Prediction (RPISeq) database for projections, the study embarks on an in-depth analysis employing both in vitro and in vivo models. The findings draw a clear link between propofol-induced neurotoxicity and the amplification of RAR signaling pathways, impacting hippocampal development and apoptosis and leading to increased RARα and Snhg1 and decreased Bdnf. Propofol is inferred to accentuate neurotoxicity by heightening RARα and Snhg1 interactions, culminating in Bdnf suppression.NEW & NOTEWORTHY This study aimed to decode propofol's neurotoxic effects on the regulatory cascade, provide insights into the RARα-Snhg1-Bdnf interaction, apply extensive validation techniques, provide a detailed analysis and exploration of propofol's neurotoxicity, and offer a comprehensive approach to understanding molecular interactions.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Xin Xin
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| |
Collapse
|
44
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
45
|
Chen Z, Wang X, Zhang S, Han F. Neuroplasticity of children in autism spectrum disorder. Front Psychiatry 2024; 15:1362288. [PMID: 38726381 PMCID: PMC11079289 DOI: 10.3389/fpsyt.2024.1362288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses a range of symptoms including difficulties in verbal communication, social interaction, limited interests, and repetitive behaviors. Neuroplasticity refers to the structural and functional changes that occur in the nervous system to adapt and respond to changes in the external environment. In simpler terms, it is the brain's ability to learn and adapt to new environments. However, individuals with ASD exhibit abnormal neuroplasticity, which impacts information processing, sensory processing, and social cognition, leading to the manifestation of corresponding symptoms. This paper aims to review the current research progress on ASD neuroplasticity, focusing on genetics, environment, neural pathways, neuroinflammation, and immunity. The findings will provide a theoretical foundation and insights for intervention and treatment in pediatric fields related to ASD.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xu Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Si Zhang
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Fei Han
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
46
|
Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct 2024; 15:4503-4514. [PMID: 38567489 DOI: 10.1039/d4fo00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction is an effective means of extending a healthy lifespan. Fasting mimicking diet (FMD) is a growing pattern of caloric restriction. We found that FMD significantly prolonged the lifespan of prematurely aging mice. In naturally aging mice, FMD improved cognitive and intestinal health. Through a series of behavioral experiments, we found that FMD relieved anxiety and enhanced cognition in aged mice. In the intestine, the FMD cycles enhanced the barrier function, reduced senescence markers, and maintained T cell naïve-memory balance in the lamina propria mucosa. To further explore the causes of immune alterations, we examined changes in the stool microbiota using 16S rRNA sequencing. We found that FMD remodeled gut bacterial composition and significantly expanded the abundance of Lactobacillus johnsonii. Our research revealed that FMD has in-depth investigative value as an anti-aging intervention for extending longevity and improving cognition, intestinal function, and gut microbiota composition.
Collapse
Affiliation(s)
- Qingyi Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Man Luo
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yao Jiang
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yanrou Gu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Sun
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lijun Feng
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
47
|
Song J, Li J, Pei X, Chen J, Wang L. Identification of cuproptosis-realated key genes and pathways in Parkinson's disease via bioinformatics analysis. PLoS One 2024; 19:e0299898. [PMID: 38626069 PMCID: PMC11020840 DOI: 10.1371/journal.pone.0299898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common worldwide age-related neurodegenerative disorder without effective treatments. Cuproptosis is a newly proposed conception of cell death extensively studied in oncological diseases. Currently, whether cuproptosis contributes to PD remains largely unclear. METHODS The dataset GSE22491 was studied as the training dataset, and GSE100054 was the validation dataset. According to the expression levels of cuproptosis-related genes (CRGs) and differentially expressed genes (DEGs) between PD patients and normal samples, we obtained the differentially expressed CRGs. The protein-protein interaction (PPI) network was achieved through the Search Tool for the Retrieval of Interacting Genes. Meanwhile, the disease-associated module genes were screened from the weighted gene co-expression network analysis (WGCNA). Afterward, the intersection genes of WGCNA and PPI were obtained and enriched using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the key genes were identified from the datasets. The receiver operating characteristic curves were plotted and a PPI network was constructed, and the PD-related miRNAs and key genes-related miRNAs were intersected and enriched. Finally, the 2 hub genes were verified via qRT-PCR in the cell model of the PD and the control group. RESULTS 525 DEGs in the dataset GSE22491 were identified, including 128 upregulated genes and 397 downregulated genes. Based on the PPI network, 41 genes were obtained. Additionally, the dataset was integrated into 34 modules by WGCNA. 36 intersection genes found from WGCNA and PPI were significantly abundant in 7 pathways. The expression levels of the genes were validated, and 2 key genes were obtained, namely peptidase inhibitor 3 (PI3) and neuroserpin family I member 1 (SERPINI1). PD-related miRNAs and key genes-related miRNAs were intersected into 29 miRNAs including hsa-miR-30c-2-3p. At last, the qRT-PCR results of 2 hub genes showed that the expressions of mRNA were up-regulated in PD. CONCLUSION Taken together, this study demonstrates the coordination of cuproptosis in PD. The key genes and miRNAs offer novel perspectives in the pathogenesis and molecular targeting treatment for PD.
Collapse
Affiliation(s)
- Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaochen Pei
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Xing L, Wang Z, Hao Z, Pan P, Yang A, Wang J. Cuproptosis in stroke: focusing on pathogenesis and treatment. Front Mol Neurosci 2024; 17:1349123. [PMID: 38605864 PMCID: PMC11007218 DOI: 10.3389/fnmol.2024.1349123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Annually, more than 15 million people worldwide suffer from stroke, a condition linked to high mortality and disability rates. This disease significantly affects daily life, impairing everyday functioning, executive function, and cognition. Moreover, stroke severely restricts patients' ability to perform daily activities, diminishing their overall quality of life. Recent scientific studies have identified cuproptosis, a newly discovered form of cell death, as a key factor in stroke development. However, the role of cuproptosis in stroke remains unclear to researchers. Therefore, it is crucial to investigate the mechanisms of cuproptosis in stroke's pathogenesis. This review examines the physiological role of copper, the characteristics and mechanisms of cuproptosis, the differences and similarities between cuproptosis and other cell death types, and the pathophysiology of cuproptosis in stroke, focusing on mitochondrial dysfunction and immune infiltration. Further research is necessary to understand the relationship between previous strokes and cuproptosis and to clarify the mechanisms behind these associations.
Collapse
Affiliation(s)
- Liwei Xing
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Zhifeng Wang
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Zhihui Hao
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pan Pan
- College of Acupuncture and Massage, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Aiming Yang
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- The First Clinical Medical School, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
49
|
张 笑, 王 谢, 王 杰, 邵 楠, 蔡 标, 谢 道. [ Huangpu Tongqiao Capsule improves cognitive impairment in rats with Wilson disease by inhibiting endoplasmic reticulum stress-mediated apoptosis pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:447-454. [PMID: 38597435 PMCID: PMC11006687 DOI: 10.12122/j.issn.1673-4254.2024.03.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.
Collapse
Affiliation(s)
- 笑颜 张
- 安徽中医药大学中西医结合学院,安徽 合肥 230012School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 谢 王
- 安徽中医药大学第一临床医学院,安徽 合肥 230012First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 杰 王
- 安徽中医药大学护理学院,安徽 合肥 230012School of Nursing, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 楠 邵
- 安徽中医药大学中西医结合学院,安徽 合肥 230012School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 标 蔡
- 安徽中医药大学中西医结合学院,安徽 合肥 230012School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 道俊 谢
- 安徽中医药大学第一附属医院脑病中心,安徽 合肥 230031Encephalopathy Center, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
50
|
Huang M, Zhang Y, Liu X. The mechanism of cuproptosis in Parkinson's disease. Ageing Res Rev 2024; 95:102214. [PMID: 38311254 DOI: 10.1016/j.arr.2024.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an increased morbidity. The pathogenesis PD has not been fully elucidated, and whatever mechanism is involved, it ultimately leads to dopamine (DA) neuronal apoptosis. Cuproptosis is a novel form of cell death. Its morphology, biochemical properties, and mechanism of action differ from known forms of cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Copper binds to the lipoylated components of the tricarboxylic acid cycle, causing proteotoxic stress that ultimately leads to cellular cuproptosis. PD has biochemical features such as mitochondrial dysfunction and decreased levels of copper and glutathione in brain regions. This is closely related to the cuproptosis mechanism. However, the specific link between the pathogenesis of PD and cuproptosis is unclear. Herein, we summarizes cuproptosis as the cause of DA neuronal death in PD, and the relationship between cuproptosis and the PD pathogenesis. This article provides a research basis for targeted cuproptosis for PD.
Collapse
Affiliation(s)
- Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|