1
|
Ghantabpour T, Goudarzi N, Parsaei H. Overview of Nrf2 as a target in ovary and ovarian dysfunctions focusing on its antioxidant properties. J Ovarian Res 2025; 18:60. [PMID: 40121445 PMCID: PMC11929342 DOI: 10.1186/s13048-025-01639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Female infertility is a common issue caused by various factors, such as hormonal imbalances, age-related decline in oocyte quality, and lifestyle choices. Ovarian dysfunction is a prevalent cause, impacting fertility by damaging cells and impairing functions. Oxidative stress (OS) is a condition resulting from an imbalance between natural antioxidants and the generation of oxidants. This phenomenon acts as a double-edged sword, playing a crucial role as a signaling mechanism in both physiological and pathological processes related to the female reproductive system. OS is linked to ovarian dysfunction, leading to cell damage and reduced fertility. Nrf2 is a key regulator in oxidative homeostasis, helping to defend against OS and improve ovarian function in women of reproductive age. Therefore, this review aims to highlight the role of Nrf2 in the female reproductive system, focusing on its antioxidant properties.
Collapse
Affiliation(s)
- Taha Ghantabpour
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nasim Goudarzi
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Wang Z, Fang L, Han M, Liu K, Zheng Y, Zhan Y. Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e40932. [PMID: 39705422 PMCID: PMC11666176 DOI: 10.1097/md.0000000000040932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 12/22/2024] Open
Abstract
Atherosclerosis (AS) is a disease characterized by the buildup of fat and fibrous elements within the walls of arteries and is a primary factor in the occurrence of heart failure and mortality. The potential targets and mechanisms underlying the anti-atherosclerotic effects of avenanthramide (Avn) were investigated using network pharmacology, molecular docking, and molecular dynamics simulations. Target information for Avn A, B, and C was collected from the PubChem and Swiss Target Prediction databases. Potential therapeutic targets for AS were identified by mining the OMIM, DrugBank, DisGeNET, and GeneCards databases. A protein-protein interaction (PPI) network of shared targets was constructed and visualized using the STRING database and Cytoscape 3.9.1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to explore the functions of core targets within the PPI network. Molecular docking was performed using the AutoDockTool to verify the correlation between the 3 types of Avns and the core targets. Furthermore, molecular dynamics simulations were performed using the 3 highest molecular docking binding energies to validate and confirm the binding of potent compounds to the target. The results revealed 109 respective targets for Avn, with 55 common targets identified by intersection with AS-related targets. Five pivotal genes, matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), ICAM1, CASP3, and MMP2, were selected from the PPI network. Molecular docking results showed a strong binding affinity between Avn and MMP9 as well as EGFR. Molecular dynamics simulations showed good binding capacity of Avn A, B, and C with EGFR, validating the reliability of the molecular docking results. Avn potentially exerts its effects through multiple targets and displays anti-inflammatory and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Zhigang Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Hubei, China
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Longzhi Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Hubei, China
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Meng Han
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Hubei, China
| | - Kangzhe Liu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yuanmei Zheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Hubei, China
| | - Yibei Zhan
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Hubei, China
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, Hubei, China
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Hubei, China
| |
Collapse
|
3
|
Alwaili MA, Abu-Almakarem AS, Aljohani S, Alkhodair SA, Al-Bazi MM, Eid TM, Alamri J, Mobasher MA, Algarzae NK, A. Khayyat AI, Alshaygy LS, El-Said KS. Avenanthramide-C ameliorate doxorubicin-induced hepatotoxicity via modulating Akt/GSK-3β and Wnt-4/β-Catenin pathways in male rats. Front Mol Biosci 2024; 11:1507786. [PMID: 39687571 PMCID: PMC11646862 DOI: 10.3389/fmolb.2024.1507786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Doxorubicin (DOX) drugs used in cancer treatment can cause various adverse effects, including hepatotoxicity. Natural-derived constituents have shown promising effects in alleviating chemotherapy-induced toxicities. This study addressed the effect of Avenanthramides-C (AVN-C) treatment in rats with DOX-indued hepatotoxicity. Methods AutoDock Vina was used for the molecular docking investigations. In silico toxicity prediction for AVN-C and DOX was performed using the Pro Tox-III server. Four groups of ten male Sprague-Dawley rats were created: Group 1 (Gp1) served as a negative control, Gp2 received an intraperitoneal (i.p.) injection of AVN-C (10 mg/kg), Gp3 received an i.p. dose of DOX (4 mg/kg) weekly for a month, and Gp4 received the same dose of DOX as G3 and AVN-C as G2. Histopathological, molecular, and biochemical analyses were conducted 1 month later. Results The study showed that treatment with AVN-C significantly ameliorated DOX-induced hepatotoxicity in rats by restoring biochemical alterations, boosting antioxidant activity, reducing inflammation, and modulating the Akt/GSK-3β and Wnt-4/β-Catenin signaling pathways in male rats. Conclusion This study is the first to demonstrate the therapeutic effects of AVN-C therapy on DOX-induced liver damage in male rats. Therefore, AVN-C could have a pronounced palliative effect on the hepatotoxicity caused by DOX treatment. These findings suggest that AVN-C could potentially alleviate the hepatotoxicity associated with DOX-based chemotherapy.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal S. Abu-Almakarem
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah, Saudi Arabia
| | - Salwa Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | | | - Maha M. Al-Bazi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jehan Alamri
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Luluah Saleh Alshaygy
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Kale MB, Bhondge HM, Wankhede NL, Shende PV, Thanekaer RP, Aglawe MM, Rahangdale SR, Taksande BG, Pandit SB, Upaganlawar AB, Umekar MJ, Kopalli SR, Koppula S. Navigating the intersection: Diabetes and Alzheimer's intertwined relationship. Ageing Res Rev 2024; 100:102415. [PMID: 39002642 DOI: 10.1016/j.arr.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) and Diabetes mellitus (DM) exhibit comparable pathophysiological pathways. Genetic abnormalities in APP, PS-1, and PS-2 are linked to AD, with diagnostic aid from CSF and blood biomarkers. Insulin dysfunction, termed "type 3 diabetes mellitus" in AD, involves altered insulin signalling and neuronal shrinkage. Insulin influences beta-amyloid metabolism, exacerbating neurotoxicity in AD and amyloid production in DM. Both disorders display impaired glucose transporter expression, hastening cognitive decline. Mitochondrial dysfunction and Toll-like receptor 4-mediated inflammation worsen neurodegeneration in both diseases. ApoE4 raises disease risk, especially when coupled with dyslipidemia common in DM. Targeting shared pathways like insulin-degrading enzyme activation and HSP60 holds promise for therapeutic intervention. Recognizing these interconnected mechanisms underscores the imperative for developing tailored treatments addressing the overlapping pathophysiology of AD and DM, offering potential avenues for more effective management of both conditions.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | | | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Rushikesh P Thanekaer
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sunil B Pandit
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
5
|
Stefanello R, Puntel RT, da Silva Garcia WJ, Strazzabosco Dorneles L. Mitigating salt stress by conditioning seeds with ultraviolet light (UV-C) in white oats ( Avena sativa L.). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:533-540. [PMID: 38660981 DOI: 10.1080/15287394.2024.2345878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.
Collapse
Affiliation(s)
- Raquel Stefanello
- Department of Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Raissa Tainá Puntel
- Graduate of Agronomy, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Lucio Strazzabosco Dorneles
- Laboratory of Nanostructured Magnetic Materials, Department of Physics, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Wankhede NL, Kale MB, Umare MD, Lokhande S, Upaganlawar AB, Wal P, Taksande BG, Umekar MJ, Khandige PS, Singh B, Sadananda V, Ramniwas S, Behl T. Revisiting the Mitochondrial Function and Communication in Neurodegenerative Diseases. Curr Pharm Des 2024; 30:902-911. [PMID: 38482626 DOI: 10.2174/0113816128286655240304070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 06/21/2024]
Abstract
Neurodegenerative disorders are distinguished by the progressive loss of anatomically or physiologically relevant neural systems. Atypical mitochondrial morphology and metabolic malfunction are found in many neurodegenerative disorders. Alteration in mitochondrial function can occur as a result of aberrant mitochondrial DNA, altered nuclear enzymes that interact with mitochondria actively or passively, or due to unexplained reasons. Mitochondria are intimately linked to the Endoplasmic reticulum (ER), and ER-mitochondrial communication governs several of the physiological functions and procedures that are disrupted in neurodegenerative disorders. Numerous researchers have associated these disorders with ER-mitochondrial interaction disturbance. In addition, aberrant mitochondrial DNA mutation and increased ROS production resulting in ionic imbalance and leading to functional and structural alterations in the brain as well as cellular damage may have an essential role in disease progression via mitochondrial malfunction. In this review, we explored the evidence highlighting the role of mitochondrial alterations in neurodegenerative pathways in most serious ailments, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee 441002, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee 441002, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee 441002, Maharashtra, India
| | - Sanket Lokhande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee 441002, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandawad 423101, Maharashtra, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, NH-19, Bhauti Road, Kanpur, Uttar Pradesh, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee 441002, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee 441002, Maharashtra, India
| | - Prasanna Shama Khandige
- Department of Conservative, Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Department of Pharmacy, S.N. Medical College, Agra, India
| | - Vandana Sadananda
- Department of Conservative, Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|