1
|
Saati S, Dehghan P, Zamanian M, Faghfouri AH, Maleki P. Effectiveness of different gums on modulating of glycemic indices in adults: a systematic review and meta-analysis. J Diabetes Metab Disord 2025; 24:32. [PMID: 39736929 PMCID: PMC11682031 DOI: 10.1007/s40200-024-01541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 01/01/2025]
Abstract
Background Functional foods have been widely used as the anti-diabetic agents worldwide. Existing studies presented conflicting results of anti-hyperglycemic properties of gums. This systematic review and meta-analysis study evaluated the existing trials and determined the efficacy of different gums on glycemic indices. Method Systematic search was performed on four main databases (PubMed, Scopus, Embase, Web of Science) by November 2023 using medical subject headings. The meta-analyses were conducted on the findings of the studies of guar gum supplementation on glycemic indices including fasting blood glucose (FBG) and HbA1c (hemoglobinA1c) and systematic review studies include the effect of xanthan gum, arabic gum, bitter almond gum, flaxseed gum, oat gum, gellan gum, locust been gum, tragacanth gum, and karaya gum on fasting plasma insulin, postprandial plasma glucose, HbA1c and Homeostatic Model Assessment for Insulin Resistance (HOMA - IR). Results Totally, 42 studies were included in this systematic review. Regarding guar gum, xanthan gum, and Arabic gum, most of included studies in our investigation showed that guar gum can be considered as an anti-hyperglycemic agent. Results on other types of gums including bitter almond gum, flaxseed gum, oat gum, gellan gum, locust been gum, tragacanth gum, and karaya gum are limited and exact interpretation cannot be obtained. In meta-analysis on 17 studies of guar gum, it was identified guar gum had a non-significant decrease of 3.02 mg/dl (Mean difference: -3.02, CI 95%: -7.60, 1.56) on the fasting glucose and 0.23 (Mean difference: -0.23, CI 95%: -0.63, 0.17) on HbA1c. Conclusion Modification of food processing using gums may be a promising strategy to help modulate glycemic indices. More studies with larger sample size are needed, both with acute and long-term interventions to clarify this issue. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01541-0.
Collapse
Affiliation(s)
- Saba Saati
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamanian
- Department of epidemiology, School of Health, Arak University of Medical Science, Arak, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Parham Maleki
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Zheng F, Yang Y, Lu G, Tan JS, Mageswary U, Zhan Y, Ayad ME, Lee YY, Xie D. Metabolomics Insights into Gut Microbiota and Functional Constipation. Metabolites 2025; 15:269. [PMID: 40278398 DOI: 10.3390/metabo15040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The composition and metabolic activity of the gut microbiota play a crucial role in various health conditions, including the occurrence and development of chronic constipation. Recent metabolomic advances reveal that gut microbiota-derived metabolites-such as SCFAs, bile acids, neurotransmitters, and microbial gases-play critical roles in regulating intestinal function. Methods: We systematically analyzed the current literature on microbial metabolomics in chronic constipation. This review consolidates findings from high-throughput metabolomic techniques (GC-MS, LC-MS, NMR) comparing metabolic profiles of constipated patients with healthy individuals. It also examines diagnostic improvements and personalized treatments, including fecal microbiota transplantation and neuromodulation, guided by these metabolomic insights. Results: This review shows that reduced SCFA levels impair intestinal motility and promote inflammation. An altered bile acid metabolism-with decreased secondary bile acids like deoxycholic acid-disrupts receptor-mediated signaling, further affecting motility. Additionally, imbalances in amino acid metabolism and neurotransmitter production contribute to neuromuscular dysfunction, while variations in microbial gas production (e.g., methane vs. hydrogen) further modulate gut transit. Conclusions: Integrating metabolomics with gut microbiota research clarifies how specific microbial metabolites regulate gut function. These insights offer promising directions for precision diagnostics and targeted therapies to restore microbial balance and improve intestinal motility.
Collapse
Affiliation(s)
- Fan Zheng
- Deyang People's Hospital of Chengdu University of Traditional Chinese Medicine, Deyang 617000, China
- School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Malaysia
| | - Yong Yang
- Deyang People's Hospital of Chengdu University of Traditional Chinese Medicine, Deyang 617000, China
| | - Guanting Lu
- Deyang People's Hospital of Chengdu University of Traditional Chinese Medicine, Deyang 617000, China
| | - Joo Shun Tan
- School of Industrial Technology, University Sains Malaysia, Penang 11700, Malaysia
| | - Uma Mageswary
- School of Industrial Technology, University Sains Malaysia, Penang 11700, Malaysia
| | - Yu Zhan
- Anorectal Department, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, China
| | - Mina Ehab Ayad
- School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Malaysia
| | - Yeong-Yeh Lee
- School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Malaysia
- GI Function and Motility Unit, Hospital Pakar University Sains Malaysia, Kota Bharu 16150, Malaysia
| | - Daoyuan Xie
- Deyang People's Hospital of Chengdu University of Traditional Chinese Medicine, Deyang 617000, China
| |
Collapse
|
3
|
Jagadeesan G, Das TK, Mendoza JM, Alrousan G, Blasco-Conesa MP, Thangaraj P, Ganesh BP. Effects of Prebiotic Phytocompound Administration in Gestational Diabetic Dams and Its Influence on Offspring Cognitive Outcomes. Int J Mol Sci 2025; 26:3140. [PMID: 40243881 PMCID: PMC11988369 DOI: 10.3390/ijms26073140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Gestational diabetes mellitus (GD)-induced gut dysbiosis in pregnant mothers may increase the risk of cognitive impairment and neurological disorders in both the mother and offspring as they age. Restoring gut balance could improve cognitive outcomes for both. Despite advancements in GD treatment, side effects have increased, and long-term neurocognitive impacts on offspring born to GD mothers remain underexplored. This study uses a GD mouse model, inducing pancreatic dysfunction in 3-month-old pregnant C57BL/6J mice with Streptozotocin. The efficacy and mechanism of the prebiotic phytocompound green leaf extract (Allmania nodiflora) were assessed, with metformin as the standard. GD dams exhibited weight and glucose reduction, pancreatic IL-6 elevation, GLUT3 reduction, astroglia changes in the cerebral cortex, gut barrier impairment, cognitive impairment, and heightened anxiety compared to controls. Bacterial 16s rRNA sequencing revealed dysbiosis, with reduced Erysipelotrichales in GD dams compared to controls. Metformin lowered blood glucose levels but failed to rescue functional and behavioral phenotypes in both GD dams and offspring. Phytocompound treatment improved blood glucose, reduced pancreatic inflammation, improved gut barrier integrity, reversed dysbiosis, and enhanced brain health. It rescued behavioral deficits and improved cognitive outcomes in offspring, suggesting the prebiotic phytocompound may be a more effective therapeutic agent for GD in humans.
Collapse
Affiliation(s)
- Gayathri Jagadeesan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA; (G.J.); (T.K.D.); (J.M.M.); (G.A.); (M.P.B.-C.)
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India;
| | - Tushar K. Das
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA; (G.J.); (T.K.D.); (J.M.M.); (G.A.); (M.P.B.-C.)
| | - Jennifer M. Mendoza
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA; (G.J.); (T.K.D.); (J.M.M.); (G.A.); (M.P.B.-C.)
| | - Ghalya Alrousan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA; (G.J.); (T.K.D.); (J.M.M.); (G.A.); (M.P.B.-C.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Maria P. Blasco-Conesa
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA; (G.J.); (T.K.D.); (J.M.M.); (G.A.); (M.P.B.-C.)
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641-046, Tamil Nadu, India;
| | - Bhanu Priya Ganesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA; (G.J.); (T.K.D.); (J.M.M.); (G.A.); (M.P.B.-C.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
5
|
Koh YC, Hsu HW, Ho PY, Lin WS, Hsu KY, Majeed A, Ho CT, Pan MH. Feruloylacetone and Its Analog Demethoxyferuloylacetone Mitigate Obesity-Related Muscle Atrophy and Insulin Resistance in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1231-1243. [PMID: 39754576 PMCID: PMC11741112 DOI: 10.1021/acs.jafc.4c07798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies. This study investigates the impact of FER and DFER on obesity-related glucose intolerance and muscle atrophy. High-fat diet (HFD) feeding resulted in muscle mass reduction and increased intramuscular triglyceride accumulation, both of which were mitigated by FER and DFER supplementation. The supplements activated the PI3K/Akt/mTOR signaling pathway, enhanced muscle protein synthesis, and decreased markers of muscle protein degradation. Additionally, FER and DFER supplementation improved glucose homeostasis in HFD-fed mice. The supplements also promoted the formation of a gut microbial consortium comprising Blautia intestinalis, Dubosiella newyorkensis, Faecalicatena fissicatena, Waltera intestinalis, Clostridium viride, and Caproiciproducens galactitolivorans, which contributed to the reduction of obesity-induced chronic inflammation. These findings suggest, for the first time, that FER and DFER may prevent obesity-related complications, including muscle atrophy and insulin resistance, thereby warranting further research into their long-term efficacy and safety.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Han-Wen Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Pin-Yu Ho
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Food Science, National Quemoy University, 89250 Quemoy, Taiwan
| | - Kai-Yu Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Anju Majeed
- Sami-Sabinsa
Group Limited, Bengaluru 560058, Karnataka, India
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick 08901, New Jersey, United
States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
| |
Collapse
|
6
|
García G, Soto J, Netherland M, Hasan NA, Buchaca E, Martínez D, Carlin M, de Jesus Cano R. Evaluating the Effects of Sugar Shift ® Symbiotic on Microbiome Composition and LPS Regulation: A Double-Blind, Placebo-Controlled Study. Microorganisms 2024; 12:2525. [PMID: 39770729 PMCID: PMC11678924 DOI: 10.3390/microorganisms12122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: This study evaluated the effects of BiotiQuest® Sugar Shift®, a novel probiotic formulation, for its impact on gut microbiome composition and metabolic health in type 2 diabetes mellitus (T2D). T2D is characterized by chronic inflammation and gut microbiome imbalances, yet the therapeutic potential of targeted probiotics remains underexplored. (2) Methods: In a 12-week randomized, double-blind, placebo-controlled trial, 64 adults with T2D received either Sugar Shift or placebo capsules twice daily. Each dose provided 18 billion CFU of eight GRAS-certified bacterial strains and prebiotics. Clinical samples were analyzed for metabolic markers, and microbiome changes were assessed using 16S rRNA sequencing and metagenomics. (3) Results: Sugar Shift significantly reduced serum lipopolysaccharide (LPS) levels, improved insulin sensitivity (lower HOMA-IR scores), and increased short-chain fatty acid (SCFA)-producing genera, including Bifidobacterium, Faecalibacterium, Fusicatenibacter, and Roseburia. Pro-inflammatory taxa like Enterobacteriaceae decreased, with reduced LPS biosynthesis genes and increased SCFA production genes. The Lachnospiraceae:Enterobactericeae ratio emerged as a biomarker of reduced inflammation. (4) Conclusions: These findings demonstrate the potential of Sugar Shift to restore gut homeostasis, reduce inflammation, and improve metabolic health in T2D. Further studies are warranted to explore its long-term efficacy and broader application in metabolic disease management.
Collapse
Affiliation(s)
- Gissel García
- Pathology Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | - Josanne Soto
- Clinical Laboratory Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | | | - Nur A. Hasan
- EzBiome, 704 Quince Orchard Rd, Gaithersburg, MD 20878, USA (N.A.H.)
| | - Emilio Buchaca
- Internal Medicine Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | - Duniesky Martínez
- Research and Development Department, Center for Genetic Engineering and Biotechnology of Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus 60200, Cuba;
| | - Martha Carlin
- The BioCollective, LLC, 4800 Dahlia Street, G8, Denver, CO 80216, USA;
| | - Raúl de Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
7
|
Basnet J, Eissa MA, Cardozo LLY, Romero DG, Rezq S. Impact of Probiotics and Prebiotics on Gut Microbiome and Hormonal Regulation. GASTROINTESTINAL DISORDERS 2024; 6:801-815. [PMID: 39649015 PMCID: PMC11623347 DOI: 10.3390/gidisord6040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
The gut microbiome plays a crucial role in human health by influencing various physiological functions through complex interactions with the endocrine system. These interactions involve the production of metabolites, signaling molecules, and direct communication with endocrine cells, which modulate hormone secretion and activity. As a result, the microbiome can exert neuroendocrine effects and contribute to metabolic regulation, adiposity, and appetite control. Additionally, the gut microbiome influences reproductive health by altering levels of sex hormones such as estrogen and testosterone, potentially contributing to conditions like polycystic ovary syndrome (PCOS) and hypogonadism. Given these roles, targeting the gut microbiome offers researchers and clinicians novel opportunities to improve overall health and well-being. Probiotics, such as Lactobacillus and Bifidobacterium, are live beneficial microbes that help maintain gut health by balancing the microbiota. Prebiotics, non-digestible fibers, nourish these beneficial bacteria, promoting their growth and activity. When combined, probiotics and prebiotics form synbiotics, which work synergistically to enhance the gut microbiota balance and improve metabolic, immune, and hormonal health. This integrated approach shows promising potential for managing conditions related to hormonal imbalances, though further research is needed to fully understand their specific mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Manar A. Eissa
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
8
|
Bender M, Santos JM, Dufour JM, Deshmukh H, Trasti S, Elmassry MM, Shen CL. Peanut Shell Extract Improves Markers of Glucose Homeostasis in Diabetic Mice by Modulating Gut Dysbiosis and Suppressing Inflammatory Immune Response. Nutrients 2024; 16:4158. [PMID: 39683552 DOI: 10.3390/nu16234158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE There is strong evidence that the tripartite interaction between glucose homeostasis, gut microbiota, and the host immune system plays a critical role in the pathophysiology of type 2 diabetes mellitus (T2DM). We reported previously that peanut shell extract (PSE) improves mitochondrial function in db/db mice by suppressing oxidative stress and inflammation in the liver, brain, and white adipose tissue. This study evaluated the impacts of PSE supplementation on glucose homeostasis, liver histology, intestinal microbiome composition, and the innate immune response in diabetic mice. METHODS Fourteen db/db mice were randomly assigned to a diabetic group (DM, AIN-93G diet) and a PSE group (1% wt/wt PSE in the AIN-93G diet) for 5 weeks. Six C57BL/6J mice received the AIN-93G diet for 5 weeks (control group). Parameters of glucose homeostasis included serum insulin, HOMA-IR, HOMA-B, and the analysis of pancreatic tissues for insulin and glucagon. We assessed the innate immune response in the colon and liver using a microarray. Gut microbiome composition of cecal contents was analyzed using 16S rRNA gene amplicon sequencing. RESULTS PSE supplementation improved glucose homeostasis (decreased serum insulin concentration, HOMA-IR, and HOMA-B) and reduced hepatic lipidosis in diabetic mice. PSE supplementation reversed DM-induced shifts in the relative abundance of amplicon sequence variants of Enterorhabdus, Staphylococcus, Anaerotruncus, and Akkermansia. Relative to the DM mice, the PSE group had suppressed gene expression levels of Cd8α, Csf2, and Irf23 and increased expression levels of Tyk2, Myd88, and Gusb in the liver. CONCLUSIONS This study demonstrates that PSE supplementation improves T2DM-associated disorders of diabetic mice, in part due to the suppression of innate immune inflammation.
Collapse
Affiliation(s)
- Matthew Bender
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Julianna M Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Microanatomy and Cellular Biology, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| | - Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Trasti
- Laboratory Animal Resource Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
9
|
Ataollahi Eshkoor S, Fanijavadi S. Dysbiosis-epigenetics-immune system interaction and ageing health problems. J Med Microbiol 2024; 73. [PMID: 39606883 DOI: 10.1099/jmm.0.001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Background. The growing interest in microbiota-epigenetics-immune system research stems from the understanding that microbiota, a group of micro-organisms colonized in the human body, can influence the gene expression through epigenetic mechanisms and interaction with the immune system. Epigenetics refers to changes in gene activity that are not caused by the alteration in the DNA sequence itself.Discussion. The clinical significance of this research lies in the potential to develop new therapies for diseases linked to the imbalance of these microbial species (dysbiosis), such as cancer and neurodegenerative diseases. The intricate interaction between microbiota and epigenetics involves the production of metabolites and signalling molecules that can impact our health by influencing immune responses, metabolism and inflammation. Understanding these interactions could lead to novel therapeutic strategies targeting microbiota-epigenetic pathways to improve health outcomes.Conclusion. In this context, we aim to review and emphasize the current knowledge and key concepts that link the microbiota to epigenetics and immune system function, exploring their relevance to the development and maintenance of homeostasis and susceptibility to different diseases later in life. We aim to elucidate key concepts concerning the interactions and potential effects among the human gut microbiota, epigenetics, the immune system and ageing diseases linked to dysbiosis.
Collapse
|
10
|
Yang H, Song X, Huang X, Yu B, Lin C, Du J, Yang J, Luo Q, Li J, Feng Y, Zhan R, Yan P. Mesona chinensis Benth. Extract Ameliorates Hyperlipidemia in High-Fat Diet-Fed Mice and Rats by Regulating the Gut Microbiota. Foods 2024; 13:3383. [PMID: 39517167 PMCID: PMC11545744 DOI: 10.3390/foods13213383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton), an edible and medicinal plant, is the main ingredient in black jelly, Hsian-tsao tea, and beverages, and its processed products are popular in China as well as in Southeast Asian countries. Previous studies have shown that the alcohol extract of Mesona chinensis Benth. (MC) can reduce the accumulation of oleic acid and ameliorate hyperlipidemia. However, researchers have not yet determined whether it could improve intestinal permeability and metabolic dysfunction by controlling gut microbial dysbiosis and thus reducing hyperlipidemia. This study aimed to explore the potential mechanism by which MC regulates metabolic function disorders in hyperlipidemic high-fat diet (HFD)-fed rats and mice from the perspective of gut microbiota. This study analyzed the effects of MC on metabolic indices related to hyperlipidemia in HFD-fed rats and the abundance and diversity of the gut microbiota via 16S rRNA V3-4 region pyrosequencing to investigate the regulation of the gut microbiota by MC. We further confirmed that MC ameliorates hyperlipidemia by regulating the gut microbiota by simultaneously administering antibiotics and MC to C57BL/6 mice and measuring their metabolic indices. These results indicate that MC reduces the lipid concentration in the serum of HFD-fed rats, thereby significantly alleviating hyperlipidemia, and regulates the abundance ratio and diversity of the gut microbiota, thereby exerting a beneficial effect on hyperlipidemia. Our further antibiotic experiments in mice revealed that the administration of MC was unable to reduce body weight or serum and organ lipid concentrations in the antibiotic-treated group of hyperlipidemic mice. This study provides evidence that the microbiota is an alternative target for the antihyperlipidemic effect of MC.
Collapse
Affiliation(s)
- Huilin Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Xiaojuan Song
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Xiaofang Huang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Bilian Yu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Cuiqing Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Jialin Du
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Jiehui Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Qing Luo
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Jingwen Li
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Yinshan Feng
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Ruoting Zhan
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Ping Yan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
11
|
Poo CL, Lau MS, Nasir NLM, Nik Zainuddin NAS, Rahman MRAA, Mustapha Kamal SK, Awang N, Muhammad H. A Scoping Review on Hepatoprotective Mechanism of Herbal Preparations through Gut Microbiota Modulation. Curr Issues Mol Biol 2024; 46:11460-11502. [PMID: 39451562 PMCID: PMC11506797 DOI: 10.3390/cimb46100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Liver diseases cause millions of deaths globally. Current treatments are often limited in effectiveness and availability, driving the search for alternatives. Herbal preparations offer potential hepatoprotective properties. Disrupted gut microbiota is linked to liver disorders. This scoping review aims to explore the effects of herbal preparations on hepatoprotective mechanisms, particularly in the context of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatic steatosis, with a focus on gut microbiota modulation. A systematic search was performed using predetermined keywords in four electronic databases (PubMed, Scopus, EMBASE, and Web of Science). A total of 55 studies were included for descriptive analysis, covering study characteristics such as disease model, dietary model, animal model, intervention details, comparators, and study outcomes. The findings of this review suggest that the hepatoprotective effects of herbal preparations are closely related to their interactions with the gut microbiota. The hepatoprotective mechanisms of herbal preparations are shown through their effects on the gut microbiota composition, intestinal barrier, and microbial metabolites, which resulted in decreased serum levels of liver enzymes and lipids, improved liver pathology, inhibition of hepatic fatty acid accumulation, suppression of inflammation and oxidative stress, reduced insulin resistance, and altered bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hussin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia; (C.L.P.); (M.S.L.); (N.L.M.N.); (N.A.S.N.Z.); (M.R.A.A.R.); (S.K.M.K.); (N.A.)
| |
Collapse
|
12
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. Global trends and collaborative networks in gut microbiota-insulin resistance research: a comprehensive bibliometric analysis (2000-2024). Front Med (Lausanne) 2024; 11:1452227. [PMID: 39211341 PMCID: PMC11358073 DOI: 10.3389/fmed.2024.1452227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background The human gut microbiota plays a crucial role in maintaining metabolic health, with substantial evidence linking its composition to insulin resistance. This study aims to analyze the global scholarly contributions on the relationship between intestinal microbiota and insulin resistance from 2000 to 2024. Methods A bibliometric analysis was conducted using data from Scopus and Web of Science Core Collection. The search strategy included terms related to "Gastrointestinal Microbiome" and "Insulin Resistance" in the title or abstract. Results The analysis of 1,884 relevant studies from 510 sources was conducted, revealing a mean citation of 51.36 per manuscript and a remarkable annual growth rate of 22.08%. The findings highlight the significant role of gut microbiota in insulin resistance, corroborating prior studies that emphasize its influence on metabolic disorders. The literature review of the current study showed key mechanisms include the regulation of short-chain fatty acids (SCFAs) and gut hormones, which are critical for glucose metabolism and inflammation regulation. The analysis also identifies "Food and Function" as the most productive journal and Nieuwdorp M. as a leading author, underscoring the collaborative nature of this research area. Conclusion The consistent increase in publications in the field of gut microbiota and insulin resistance indicates growing recognition of the gut microbiota's therapeutic potential in treating insulin resistance and related metabolic disorders. Future research should focus on standardizing methodologies and conducting large-scale clinical trials to fully realize these therapeutic possibilities.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Foundation, Institute of Innovative and Preventive Medicine, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- PerciaVista R&D Co., Shiraz, Iran
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
14
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
15
|
Lee S, Tejesvi MV, Hurskainen E, Aasmets O, Plaza-Díaz J, Franks S, Morin-Papunen L, Tapanainen JS, Ruuska TS, Altmäe S, Org E, Salumets A, Arffman RK, Piltonen TT. Gut bacteriome and mood disorders in women with PCOS. Hum Reprod 2024; 39:1291-1302. [PMID: 38614956 PMCID: PMC11145006 DOI: 10.1093/humrep/deae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
STUDY QUESTION How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S Lee
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - M V Tejesvi
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - E Hurskainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - O Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - J Plaza-Díaz
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - S Franks
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - L Morin-Papunen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR-Cantonal Hospital of and University of Fribourg, Fribourg, Switzerland
| | - T S Ruuska
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - S Altmäe
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - E Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - A Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - R K Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
16
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
17
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024; 13:1026. [PMID: 38611332 PMCID: PMC11011999 DOI: 10.3390/foods13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A global epidemiological shift has been observed in recent decades, characterized by an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2 diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal link between changes in the gut microbiota and the onset of these maladies has been recognized, offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained significance in this setting due to its promising resource for the development of functional or value-added food formulations and its ability to reshape gut microbial composition. This has led to increasing commercial interest worldwide as it presents a natural beverage replete with health-promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota in human health and the etiology of several diseases, we conducted a comprehensive synthesis covering a total of 33 investigations involving experimental animal models, aimed to elucidate the regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in promoting optimal health. This review underscores the outstanding nutritional properties of kefir as a central repository of bioactive compounds encompassing micronutrients and amino acids and delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut microbiota and their broader physiological consequences. Furthermore, an investigation of putative mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with various human diseases was discussed, along with potential applications in the food industry.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
| | - Grace Adeola Adegoye
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Teresia Mbogori
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Jayanthi Kandiah
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | | |
Collapse
|
19
|
Pheiffer C, Riedel S, Dias S, Adam S. Gestational Diabetes and the Gut Microbiota: Fibre and Polyphenol Supplementation as a Therapeutic Strategy. Microorganisms 2024; 12:633. [PMID: 38674578 PMCID: PMC11051981 DOI: 10.3390/microorganisms12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an escalating public health concern due to its association with short- and long-term adverse maternal and child health outcomes. Dysbiosis of microbiota within the gastrointestinal tract has been linked to the development of GDM. Modification of microbiota dysbiosis through dietary adjustments has attracted considerable attention as adjunct strategies to improve metabolic disease. Diets high in fibre and polyphenol content are associated with increased gut microbiota alpha diversity, reduced inflammation and oxidative processes and improved intestinal barrier function. This review explores the potential of fibre and polyphenol supplementation to prevent GDM by investigating their impact on gut microbiota composition and function.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
20
|
Guzmán-Carrasco A, Kapravelou G, López-Jurado M, Bermúdez F, Andrés-León E, Terrón-Camero LC, Prados J, Melguizo C, Porres JM, Martínez R. A Novel Plant-Based Nutraceutical Combined with Exercise Can Revert Oxidative Status in Plasma and Liver in a Diet-Induced-Obesity Animal Model. Antioxidants (Basel) 2024; 13:274. [PMID: 38539808 PMCID: PMC10967303 DOI: 10.3390/antiox13030274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 11/11/2024] Open
Abstract
The prevalence of obesity increases alarmingly every year mostly due to external factors such as high-fat and high-refined sugar intake associated with a sedentary lifestyle. It triggers metabolic disorders such as insulin resistance, hyperlipemia, non-alcoholic fatty liver disease, chronic inflammation, oxidative stress, and gut microbiota dysbiosis. The aim of this study was to evaluate the beneficial effects of a combined intervention with caloric restriction, nutraceutical intake, and a mixed training protocol on oxidative stress, inflammation, and gut dysbiosis derived from the development of obesity in a C57BL6/J mouse experimental model of diet-induced obesity (4.6 Kcal/g diet, 45% Kcal as fat, and 20% fructose in the drinking fluid). The nutraceutical was formulated with ethanolic extracts of Argania spinosa pulp (10%) and Camelina sativa seeds (10%) and with protein hydrolysates from Psoralea corylifolia seeds (40%) and Spirodela polyrhiza whole plants (40%). The combination of nutraceutical and exercise decreased the animals' body weights and inflammatory markers (TNFα, IL-6, and resistin) in plasma, while increasing gene expression of cat, sod2, gsta2, and nqo1 in the liver. Obese animals showed lower β-diversity of microbiota and a higher Firmicutes/Bacteroidetes ratio vs. normocaloric controls that were reversed by all interventions implemented. Dietary inclusion of a nutraceutical with high antioxidant potential combined with an exercise protocol can be beneficial for bodyweight control and improvement of metabolic status in patients undergoing obesity treatment.
Collapse
Affiliation(s)
- Ana Guzmán-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 Almería, Spain;
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research (CIBM), Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, 18016 Granada, Spain; (J.P.); (C.M.)
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 Almería, Spain;
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain; (E.A.-L.); (L.C.T.-C.)
| | - Laura C. Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain; (E.A.-L.); (L.C.T.-C.)
| | - José Prados
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research (CIBM), Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, 18016 Granada, Spain; (J.P.); (C.M.)
| | - Consolación Melguizo
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research (CIBM), Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, 18016 Granada, Spain; (J.P.); (C.M.)
| | - Jesus M. Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (A.G.-C.); (G.K.); (M.L.-J.); (R.M.)
| |
Collapse
|
21
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
22
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Kassai S, de Vos P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr Rev Food Sci Food Saf 2024; 23:e13271. [PMID: 38284595 DOI: 10.1111/1541-4337.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/30/2024]
Abstract
Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.
Collapse
Affiliation(s)
- Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Liu L, Kaur GI, Kumar A, Kanwal A, Singh SP. The Role of Gut Microbiota and Associated Compounds in Cardiovascular Health and its Therapeutic Implications. Cardiovasc Hematol Agents Med Chem 2024; 22:375-389. [PMID: 38275032 DOI: 10.2174/0118715257273506231208045308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
It is possible that gut bacteria may have a beneficial effect on cardiovascular health in humans. It may play a major role in the progression of a variety of cardiovascular diseases, including Heart Failure (HF), Atherosclerosis, Coronary Arterial Disease (CAD), Ischemic Heart Disease (IHD), and Others. Dysbiosis of the gut microbiota, along with its direct and indirect impact on gut health, may induce cardiovascular disorders. Although advanced studies have demonstrated the relationship of various metabolites to cardiovascular diseases (CVD) in animals, translating their functional capacity to humans remains a significant area of research. This paper simplifies the demonstration of some compounds, pathways, and components like Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and butyrate production. It demonstrates how a change in eating habits causes TMAO and how the impact of different drugs on gut microbiota species and high consumption of Westernized food causes several heartrelated problems, such as atherosclerosis and inflammation that can even become the cause of heart failure. Modulation of the gut microbiome, on the other hand, is a novel therapeutic measure because it can be easily altered through diet and other lifestyle changes. It could then be used to lower the risk of several CVDs.
Collapse
Affiliation(s)
- Lu Liu
- Endoscopic Diagnosis and Treatment Center, Baoding First Central Hospital, Baoding, China
| | - Guneet Inderjeet Kaur
- Department of Sports Psychology, Central University of Rajasthan, Ajmer, 305817, India
| | - Avinash Kumar
- Department of Sports Biosciences, Central University of Rajasthan, Ajmer, 305817, India
| | | | | |
Collapse
|
25
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
26
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
Abuqwider J, Corrado A, Scidà G, Lupoli R, Costabile G, Mauriello G, Bozzetto L. Gut microbiome and blood glucose control in type 1 diabetes: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1265696. [PMID: 38034007 PMCID: PMC10684760 DOI: 10.3389/fendo.2023.1265696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Objective The risk of developing micro- and macrovascular complications is higher for individuals with type 1 diabetes (T1D). Numerous studies have indicated variations in gut microbial composition between healthy individuals and those with T1D. These changes in the gut ecosystem may lead to inflammation, modifications in intestinal permeability, and alterations in metabolites. Such effects can collectively impact the metabolic regulation system, thereby influencing blood glucose control. This review aims to explore the relationship between the gut microbiome, inflammation, and blood glucose parameters in patients with T1D. Methods Google Scholar, PubMed, and Web of Science were systematically searched from 2003 to 2023 using the following keywords: "gut microbiota," "gut microbiome," "bacteria," "T1D," "type 1 diabetes," "autoimmune diabetes," "glycemic control," "glucose control," "HbA1c," "inflammation," "inflammatory," and "cytokine." The examination has shown 18,680 articles with relevant keywords. After the exclusion of irrelevant articles, seven observational papers showed a distinct gut microbial signature in T1D patients. Results This review shows that, in T1D patients, HbA1c level was negatively correlated with abundance of Prevotella, Faecalibacterium, and Ruminococcaceae and positively correlated with abundance of Dorea formicigenerans, Bacteroidetes, Lactobacillales, and Bacteriodes. Instead, Bifidobacteria was negatively correlated with fasting blood glucose. In addition, there was a positive correlation between Clostridiaceae and time in range. Furthermore, a positive correlation between inflammatory parameters and gut dysbiosis was revealed in T1D patients. Conclusion We draw the conclusion that the gut microbiome profiles of T1D patients and healthy controls differ. Patients with T1D may experience leaky gut, bacterial translocation, inflammation, and poor glucose management due to microbiome dysbiosis. Direct manipulation of the gut microbiome in humans and its effects on gut permeability and glycemic control, however, have not been thoroughly investigated. Future research should therefore thoroughly examine other potential pathophysiological mechanisms in larger studies.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandra Corrado
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Scidà
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Tedjo DI, Wilbrink JA, Boekhorst J, Timmerman HM, Nienhuijs SW, Stronkhorst A, Savelkoul PHM, Masclee AAM, Penders J, Jonkers DMAE. Impact of Sleeve Gastrectomy on Fecal Microbiota in Individuals with Morbid Obesity. Microorganisms 2023; 11:2353. [PMID: 37764197 PMCID: PMC10537490 DOI: 10.3390/microorganisms11092353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The intestinal microbiota plays an important role in the etiology of obesity. Sleeve gastrectomy (SG) is a frequently performed and effective therapy for morbid obesity. OBJECTIVE To investigate the effect of sleeve gastrectomy on the fecal microbiota of individuals with morbid obesity and to examine whether shifts in microbiota composition are associated with markers of inflammation and intestinal barrier function. METHODS Fecal and blood samples of healthy individuals (n = 27) and morbidly obese individuals pre-SG (n = 24), and at 2 months (n = 13) and 6 months post-SG (n = 9) were collected. The 16SrRNA gene was sequenced to assess microbiota composition. Fecal calprotectin, plasma inflammatory markers and intestinal permeability markers (multi-sugar test) were determined. RESULTS Fecal microbiota composition between morbidly obese and lean individuals was significantly different. The fecal microbiota composition changed significantly 2 and 6 months post-SG (p = 0.008) compared to pre-SG but not towards a more lean profile. The post-SG microbiota profile was characterized by an increase in facultative anaerobic bacteria, characteristic for the upper gastrointestinal tract. No correlations were found between inflammatory markers, intestinal permeability and microbial profile changes. CONCLUSIONS Fecal microbiota composition in morbidly obese individuals changed significantly following SG. This change might be explained by functional changes induced by the SG procedure.
Collapse
Affiliation(s)
- Danyta I. Tedjo
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
| | - Jennifer A. Wilbrink
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
- Department of Gastroenterology, Zuyderland Ziekenhuis, 6162 Sittard-Geleen, The Netherlands
| | - Jos Boekhorst
- NIZO Food Research B.V., 6718 Ede, The Netherlands; (J.B.); (H.M.T.)
| | | | - Simon W. Nienhuijs
- Department of Surgery and Gastroenterology, Catharina Hospital, 5623 Eindhoven, The Netherlands; (S.W.N.); (A.S.)
| | - Arnold Stronkhorst
- Department of Surgery and Gastroenterology, Catharina Hospital, 5623 Eindhoven, The Netherlands; (S.W.N.); (A.S.)
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
- Department of Medical Microbiology & Infection Control, VU University Medical Center, 1081 Amsterdam, The Netherlands
| | - Ad A. M. Masclee
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
| |
Collapse
|
29
|
Xiao L, Tang R, Wang J, Wan D, Yin Y, Xie L. Gut microbiota bridges the iron homeostasis and host health. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1952-1975. [PMID: 37515687 DOI: 10.1007/s11427-022-2302-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 07/31/2023]
Abstract
The gut microbiota acts as a symbiotic microecosystem that plays an indispensable role in the regulation of a number of metabolic processes in the host by secreting secondary metabolites and impacting the physiology and pathophysiology of numerous organs and tissues through the circulatory system. This relationship, referred to as the "gut-X axis", is associated with the development and progression of disorders, including obesity, fatty liver and Parkinson's disease. Given its importance, the gut flora is a vital research area for the understanding and development of the novel therapeutic approaches for multiple disorders. Iron is a common but necessary element required by both mammals and bacteria. As a result, iron metabolism is closely intertwined with the gut microbiota. The host's iron homeostasis affects the composition of the gut microbiota and the interaction between host and gut microbiota through various mechanisms such as nutrient homeostasis, intestinal peaceability, gut immunity, and oxidative stress. Therefore, understanding the relationship between gut microbes and host iron metabolism is not only of enormous significance to host health but also may offer preventative and therapeutic approaches for a number of disorders that impact both parties. In this review, we delve into the connection between the dysregulation of iron metabolism and dysbiosis of gut microbiota, and how it contributes to the onset and progression of metabolic and chronic diseases.
Collapse
Affiliation(s)
- Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Tang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528308, China.
| |
Collapse
|
30
|
Jiang H, Li D, Han Y, Li N, Tao X, Liu J, Zhang Z, Yu Y, Wang L, Yu S, Zhang N, Xiao H, Yang X, Zhang Y, Zhang G, Zhang BT. The role of sclerostin in lipid and glucose metabolism disorders. Biochem Pharmacol 2023; 215:115694. [PMID: 37481136 DOI: 10.1016/j.bcp.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Dijie Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Han
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Nanxi Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaohui Tao
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Luyao Wang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sifan Yu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Huan Xiao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Xin Yang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yihao Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.
| |
Collapse
|
31
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body's normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China.
| |
Collapse
|
32
|
Basciani S, Nordio M, Dinicola S, Unfer V, Gnessi L. Diet Plus Inositols, α-Lactalbumin and Gymnema sylvestre: The Successful Combo to Restore Body Weight and Metabolic Profile in Obese and Dysmetabolic Patients. Nutrients 2023; 15:3142. [PMID: 37513560 PMCID: PMC10385591 DOI: 10.3390/nu15143142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The primary control of dysmetabolic patients is extremely challenging worldwide, with inadequate dietary habits and sporadic physical activity among the key risk factors for metabolic syndrome onset. Nowadays, there is no exclusive treatment for this condition, and considering that preventive measures usually fail, new therapeutic approaches need to be proposed and investigated. This present pilot study compared the effects of diet alone and in association with a combination of myo-inositol and d-chiro-inositol in their 40:1 ratio, α-lactalbumin, and Gymnema sylvestre on different metabolic parameters in obese dysmetabolic patients. To this purpose, 37 patients with BMI between 30 and 40 and fasting blood glucose between 100 and 125 mg/dL were divided into two groups: (i) the control group followed a hypocaloric Mediterranean diet, (ii) while the study group was also supplemented with a daily dosage of two sachets, each one containing 1950 mg myo-inositol, 50 mg d-chiro-inositol, 50 mg α-lactalbumin, and 250 mg Gymnema Sylvestre. After a 6-month treatment, all parameters improved in both groups. Nevertheless, the treated group experienced a greater improvement, especially concerning the variation from the baseline of HOMA index, triglycerides, BMI, body weight, and waist circumference. These findings support the supplementation with myo-inositol and d-chiro-inositol in the 40:1 ratio, α-lactalbumin, and Gymnema sylvestre as a therapeutical strategy to potentiate the beneficial effects induced via dietary programs in dysmetabolic patients.
Collapse
Affiliation(s)
- Sabrina Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maurizio Nordio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Simona Dinicola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- R&D Department, Lo.Li. Pharma, 00156 Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
33
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
34
|
Yao Q, Yu Z, Meng Q, Chen J, Liu Y, Song W, Ren X, Zhou J, Chen X. The Role of Small Intestinal Bacterial Overgrowth in Obesity and Its Related Diseases. Biochem Pharmacol 2023; 212:115546. [PMID: 37044299 DOI: 10.1016/j.bcp.2023.115546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Obesity has become a major public health problem worldwide and its occurrence is increasing globally. Obesity has also been shown to be involved in the occurrence and development of many diseases and pathological conditions, such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), insulin resistance (IR). In recent years, gut microbiota has received extensive attention as an important regulatory part involved in host diseases and health status. A growing body of evidence suggests that gut microbiota dysbiosis has a significant adverse effect on the host. Small intestinal bacterial overgrowth (SIBO), a type of intestinal microbial dysbiosis, has been gradually revealed to be associated with obesity and its related diseases. The presence of SIBO may lead to the destruction of intestinal barrier integrity, increased intestinal permeability, increased endotoxin levels, activation of inflammatory responses, and translocation of bacteria from the colon to the small intestine. However, the causal relationship between SIBO and obesity and the specific mechanisms have not been well elucidated. This review discusses the cross-talk between SIBO and obesity and its related diseases, and expounds its potential mechanisms and interventions, which may help to discover new therapeutic targets for obesity and its related diseases and develop treatment options.
Collapse
Affiliation(s)
- Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
35
|
Gao Y, Zhu R, Dong J, Li Z. Pathogenesis of NAFLD-Related Hepatocellular Carcinoma: An Up-to-Date Review. J Hepatocell Carcinoma 2023; Volume 10:347-356. [DOI: 10.2147/jhc.s400231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
36
|
Li W, Chen W. Weight cycling based on altered immune microenvironment as a result of metaflammation. Nutr Metab (Lond) 2023; 20:13. [PMID: 36814270 PMCID: PMC9945679 DOI: 10.1186/s12986-023-00731-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
As a result of the obesity epidemic, more people are concerned about losing weight; however, weight regain is common, leading to repeated weight loss and weight cycling. The health benefits of early weight loss are nullified by weight regain after weight cycling, which has much more severe metabolic consequences. Weight cycling alters body composition, resulting in faster fat recovery and slower muscle reconstruction. This evident fat accumulation, muscle loss, and ectopic fat deposition destroy the intestinal barrier, increase the permeability of the small intestinal epithelium, and cause the lipotoxicity of lipid metabolites and toxins to leak into extraintestinal tissues and circulation. It causes oxidative stress and hypoxia in local tissues and immune cell infiltration in various tissues, all contributing to the adaptation to this metabolic change. Immune cells transmit inflammatory responses in adipose and skeletal muscle tissue by secreting cytokines and adipokines, which mediate immune cell pathways and cause metaflammation and inefficient metabolic degradation. In this review, we focus on the regulatory function of the immunological microenvironment in the final metabolic outcome, with a particular emphasis on the cellular and molecular processes of local and systemic metaflammation induced by weight cycling-induced changes in body composition. Metaflammation in adipose and muscle tissues that is difficult to relieve may cause weight cycling. As this chronic low-grade inflammation spreads throughout the body, metabolic complications associated with weight cycling are triggered. Inhibiting the onset and progression of metabolic inflammation and enhancing the immune microenvironment of adipose and muscle tissues may be the first step in addressing weight cycling.
Collapse
Affiliation(s)
- Wanyang Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
37
|
Giannella L, Grelloni C, Quintili D, Fiorelli A, Montironi R, Alia S, Delli Carpini G, Di Giuseppe J, Vignini A, Ciavattini A. Microbiome Changes in Pregnancy Disorders. Antioxidants (Basel) 2023; 12:463. [PMID: 36830021 PMCID: PMC9952029 DOI: 10.3390/antiox12020463] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The human microbiota comprises all microorganisms, such as bacteria, fungi, and viruses, found within a specific environment that live on our bodies and inside us. The last few years have witnessed an explosion of information related to the role of microbiota changes in health and disease. Even though the gut microbiota is considered the most important in maintaining our health, other regions of the human body, such as the oral cavity, lungs, vagina, and skin, possess their own microbiota. Recent work suggests a correlation between the microbiota present during pregnancy and pregnancy complications. The aim of our literature review was to provide a broad overview of this growing and important topic. We focused on the most significant changes in the microbiota in the four more common obstetric diseases affecting women's health. Thus, our attention will be focused on hypertensive disorders, gestational diabetes mellitus, preterm birth, and recurrent miscarriage. Pregnancy is a unique period in a woman's life since the body undergoes different adaptations to provide an optimal environment for fetal growth. Such changes also involve all the microorganisms, which vary in composition and quantity during the three trimesters of gestation. In addition, special attention will be devoted to the potential and fundamental advances in developing clinical applications to prevent and treat those disorders by modulating the microbiota to develop personalized therapies for disease prevention and tailored treatments.
Collapse
Affiliation(s)
- Luca Giannella
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Camilla Grelloni
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Dayana Quintili
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Alessia Fiorelli
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Ramona Montironi
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Giovanni Delli Carpini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Jacopo Di Giuseppe
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Andrea Ciavattini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| |
Collapse
|
38
|
Aedh AI, Alshahrani MS, Huneif MA, Pryme IF, Oruch R. A Glimpse into Milestones of Insulin Resistance and an Updated Review of Its Management. Nutrients 2023; 15:nu15040921. [PMID: 36839279 PMCID: PMC9960458 DOI: 10.3390/nu15040921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Insulin is the main metabolic regulator of fuel molecules in the diet, such as carbohydrates, lipids, and proteins. It does so by facilitating glucose influx from the circulation into the liver, adipose tissue, and skeletal myocytes. The outcome of which is subjected to glycogenesis in skeletal muscle and lipogenesis in adipose tissue, as well as in the liver. Therefore, insulin has an anabolic action while, on the contrary, hypoinsulinemia promotes the reverse process. Protein breakdown in myocytes is also encountered during the late stages of diabetes mellitus. The balance of the blood glucose level in physiological conditions is maintained by virtue of the interactive functions of insulin and glucagon. In insulin resistance (IR), the balance is disturbed because glucose transporters (GLUTs) of cell membranes fail to respond to this peptide hormone, meaning that glucose molecules cannot be internalized into the cells, the consequence of which is hyperglycemia. To develop the full state of diabetes mellitus, IR should be associated with the impairment of insulin release from beta-cells of the pancreas. Periodic screening of individuals of high risk, such as those with obesity, hypercholesterolemia, and pregnant nulliparous women in antenatal control, is vital, as these are important checkpoints to detect cases of insulin resistance. This is pivotal as IR can be reversed, provided it is detected in its early stages, through healthy dietary habits, regular exercise, and the use of hypoglycemic agents. In this review, we discuss the pathophysiology, etiology, diagnosis, preventive methods, and management of IR in brief.
Collapse
Affiliation(s)
- Abdullah I. Aedh
- Department of Internal Medicine, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Majed S. Alshahrani
- Department of Obstetrics & Gynecology, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Mohammed A. Huneif
- Department of Pediatrics, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Ian F. Pryme
- Department of Biomedicine, School of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ramadhan Oruch
- Department of Biochemistry and Molecular Biology, School of Medicine, Najran University, Najran 66324, Saudi Arabia
- Correspondence: ; Tel.: +966-562144606
| |
Collapse
|
39
|
Wang K, Zhao Y, Xu L, Liao X, Xu Z. Health outcomes of 100% orange juice and orange flavored beverage: A comparative analysis of gut microbiota and metabolomics in rats. Curr Res Food Sci 2023; 6:100454. [PMID: 36815996 PMCID: PMC9932342 DOI: 10.1016/j.crfs.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A high intake of sugar-sweetened fruity beverage (FB) is associated with a higher risk of metabolic syndromes, but the health outcome of 100% fruit juice (FJ) intake remains unclear. We aim to reveal health outcomes of diet intervention (FJ or FB) with system profiling via interaction of gut microbiota and metabolomics in a rat (Rattus norvegicus) model. Firstly, the glucose, sucrose, fructose, and bioactive metabolites of FJ and FB were analyzed, and FJ possessed higher sucrose and flavonoids, while FB showed higher glucose and fructose. Secondly, C0 was set as the control group on Day 0, and a 4-week diet invention was performed to control, FJ-intake, and FB-intake groups with normal saline, FJ, and FB, respectively. The results showed that FJ improved alpha diversity and decreased the Firmicutes/Bacteroidota ratio (F/B ratio) of gut microbiota and prevented insulin resistance. However, FB possessed unchanged microbial diversity and enhanced F/B ratio, causing insulin resistance with renal triglyceride accumulation. In summary, FJ, although naturally containing similar amounts of total free sugars as FB, could be a healthier drink choice.
Collapse
Affiliation(s)
- Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lei Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Corresponding author.
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Corresponding author. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
40
|
Igudesman D, Crandell J, Corbin KD, Zaharieva DP, Addala A, Thomas JM, Bulik CM, Pence BW, Pratley RE, Kosorok MR, Maahs DM, Carroll IM, Mayer-Davis EJ. Associations of disordered eating with the intestinal microbiota and short-chain fatty acids among young adults with type 1 diabetes. Nutr Metab Cardiovasc Dis 2023; 33:388-398. [PMID: 36586772 PMCID: PMC9925402 DOI: 10.1016/j.numecd.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Disordered eating (DE) in type 1 diabetes (T1D) includes insulin restriction for weight loss with serious complications. Gut microbiota-derived short chain fatty acids (SCFA) may benefit host metabolism but are reduced in T1D. We evaluated the hypothesis that DE and insulin restriction were associated with reduced SCFA-producing gut microbes, SCFA, and intestinal microbial diversity in adults with T1D. METHODS AND RESULTS We collected stool samples at four timepoints in a hypothesis-generating gut microbiome pilot study ancillary to a weight management pilot in young adults with T1D. 16S ribosomal RNA gene sequencing measured the normalized abundance of SCFA-producing intestinal microbes. Gas-chromatography mass-spectrometry measured SCFA (total, acetate, butyrate, and propionate). The Diabetes Eating Problem Survey-Revised (DEPS-R) assessed DE and insulin restriction. Covariate-adjusted and Bonferroni-corrected generalized estimating equations modeled the associations. COVID-19 interrupted data collection, so models were repeated restricted to pre-COVID-19 data. Data were available for 45 participants at 109 visits, which included 42 participants at 65 visits pre-COVID-19. Participants reported restricting insulin "At least sometimes" at 53.3% of visits. Pre-COVID-19, each 5-point DEPS-R increase was associated with a -0.34 (95% CI -0.56, -0.13, p = 0.07) lower normalized abundance of genus Anaerostipes; and the normalized abundance of Lachnospira genus was -0.94 (95% CI -1.5, -0.42), p = 0.02 lower when insulin restriction was reported "At least sometimes" compared to "Rarely or Never". CONCLUSION DE and insulin restriction were associated with a reduced abundance of SCFA-producing gut microbes pre-COVID-19. Additional studies are needed to confirm these associations to inform microbiota-based therapies in T1D.
Collapse
Affiliation(s)
- Daria Igudesman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA; AdventHealth Translational Research Institute, Orlando, 32804, USA.
| | - Jamie Crandell
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, 32804, USA
| | - Dessi P Zaharieva
- Department of Pediatrics, Division of Endocrinology, Stanford University, Stanford, 94304, USA
| | - Ananta Addala
- Department of Pediatrics, Division of Endocrinology, Stanford University, Stanford, 94304, USA
| | - Joan M Thomas
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Cynthia M Bulik
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brian W Pence
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | | | - Michael R Kosorok
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - David M Maahs
- Department of Pediatrics, Division of Endocrinology, Stanford University, Stanford, 94304, USA
| | - Ian M Carroll
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| |
Collapse
|
41
|
Ntona S, Papaefthymiou A, Kountouras J, Gialamprinou D, Kotronis G, Boziki M, Polyzos SA, Tzitiridou M, Chatzopoulos D, Thavayogarajah T, Gkolia I, Ntonas G, Vardaka E, Doulberis M. Impact of nonalcoholic fatty liver disease-related metabolic state on depression. Neurochem Int 2023; 163:105484. [PMID: 36634820 DOI: 10.1016/j.neuint.2023.105484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), also recently referred as metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by hepatocyte steatosis in the setting of metabolic risk conditions and in the absence of an underlying precursor, for instance alcohol consumption, hepatotropic viruses and hepatotoxic drugs. A possible association between NAFLD and depression has been proposed, owing to intersecting pathophysiological pathways. This narrative review aimed to summarize the current evidence that illustrate the potential pathophysiological and clinical linkage between NAFLD-related metabolic state and depression. Prefrontal cortex lesions are suggested to be a consequence of liver steatosis-associated systematic hyperinflammatory state, a phenomenon also occurring in depression. In addition, depressive symptoms are present in neurotransmitter imbalances. These abnormalities seem to be correlated with NAFLD/MAFLD, in terms of insulin resistance (IR), ammonia and gut dysbiosis' impact on serotonin, dopamine, noradrenaline levels and gamma aminobutyric acid receptors. Furthermore, reduced levels of nesfatin-1 and copine-6-associated BDNF (brain-derived neurotrophic factor) levels have been considered as a probable link between NAFLD and depression. Regarding NAFLD-related gut dysbiosis, it stimulates mediators including lipopolysaccharides, short-chain fatty acids and bile acids, which play significant role in depression. Finally, western diet and IR, which are mainstay components of NAFLD/MAFLD, are, also, substantiated to affect neurotransmitters in hippocampus and produce neurotoxic lipids that contribute to neurologic dysfunction, and thus trigger emotional disturbances, mainly depressive symptoms.
Collapse
Affiliation(s)
- Smaragda Ntona
- Alexandrovska University Hospital, Medical University Sofia, 1431, Sofia, Bulgaria
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larisa, 41110, Mezourlo, Larissa, Thessaly, Greece; First Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece; Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Dimitra Gialamprinou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Second Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56403, Thessaloniki, Macedonia, Greece
| | - Georgios Kotronis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134, Thessaloniki, Macedonia, Greece
| | - Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Tharshika Thavayogarajah
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Ioanna Gkolia
- Psychiatric Hospital of Thessaloniki, 54634, Stavroupoli, Macedonia, Greece
| | - Georgios Ntonas
- Department of Anesthesiology, Agios Dimitrios General Hospital, 54635, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Gastroenterology and Hepatology, University of Zurich, 8091, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
42
|
Barlow GM, Celly S, Mathur R. Changes in the Gut Microbiome as Seen in Diabetes and Obesity. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:61-81. [DOI: 10.1007/978-3-031-46712-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Kang BE, Park A, Yang H, Jo Y, Oh TG, Jeong SM, Ji Y, Kim H, Kim H, Auwerx J, Nam S, Park CY, Ryu D. Machine learning-derived gut microbiome signature predicts fatty liver disease in the presence of insulin resistance. Sci Rep 2022; 12:21842. [PMID: 36528695 PMCID: PMC9759583 DOI: 10.1038/s41598-022-26102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. Here, we developed a supervised machine learning-based classifier for fatty liver disease using fecal 16S rDNA sequencing data. Based on the Kangbuk Samsung Hospital cohort (n = 777), we generated a random forest classifier to predict fatty liver diseases in individuals with or without insulin resistance (n = 166 and n = 611, respectively). The model performance was evaluated based on metrics, including accuracy, area under receiver operating curve (AUROC), kappa, and F1-score. The developed classifier for fatty liver diseases performed better in individuals with insulin resistance (AUROC = 0.77). We further optimized the classifiers using genetic algorithm. The improved classifier for insulin resistance, consisting of ten microbial genera, presented an advanced classification (AUROC = 0.93), whereas the improved classifier for insulin-sensitive individuals failed to distinguish participants with fatty liver diseases from the healthy. The classifier for individuals with insulin resistance was comparable or superior to previous methods predicting fatty liver diseases (accuracy = 0.83, kappa = 0.50, F1-score = 0.89), such as the fatty liver index. We identified the ten genera as a core set from the human gut microbiome, which could be a diagnostic biomarker of fatty liver diseases for insulin resistant individuals. Collectively, these findings indicate that the machine learning classifier for fatty liver diseases in the presence of insulin resistance is comparable or superior to commonly used methods.
Collapse
Affiliation(s)
- Baeki E. Kang
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea
| | - Aron Park
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999 Republic of Korea
| | - Hyekyung Yang
- grid.415735.10000 0004 0621 4536Medical Research Institute, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, 03181 Republic of Korea
| | - Yunju Jo
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea
| | - Tae Gyu Oh
- grid.250671.70000 0001 0662 7144Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Seung Min Jeong
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea ,HEM Inc., 404, Ace Gwanggyo Tower 3, Suwon, 16229 Republic of Korea
| | - Yosep Ji
- HEM Inc., 404, Ace Gwanggyo Tower 3, Suwon, 16229 Republic of Korea
| | - Hyung‐Lae Kim
- grid.255649.90000 0001 2171 7754Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07985 Republic of Korea
| | - Han‐Na Kim
- grid.415735.10000 0004 0621 4536Medical Research Institute, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, 03181 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355 Republic of Korea
| | - Johan Auwerx
- grid.5333.60000000121839049Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Seungyoon Nam
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Genome Medicine and Science, AI Convergence, Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Centre, Gachon University College of Medicine, 38-13, Dokjeom-Ro 3Beon-Gil, Incheon, 21999 Republic of Korea
| | - Cheol-Young Park
- grid.415735.10000 0004 0621 4536Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-Ro, Jongno-Gu, Seoul, 03181 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Dongryeol Ryu
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
44
|
The Molecular Gut-Brain Axis in Early Brain Development. Int J Mol Sci 2022; 23:ijms232315389. [PMID: 36499716 PMCID: PMC9739658 DOI: 10.3390/ijms232315389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Millions of nerves, immune factors, and hormones in the circulatory system connect the gut and the brain. In bidirectional communication, the gut microbiota play a crucial role in the gut-brain axis (GBA), wherein microbial metabolites of the gut microbiota regulate intestinal homeostasis, thereby influencing brain activity. Dynamic changes are observed in gut microbiota as well as during brain development. Altering the gut microbiota could serve as a therapeutic target for treating abnormalities associated with brain development. Neurophysiological development and immune regulatory disorders are affected by changes that occur in gut microbiota composition and function. The molecular aspects relevant to the GBA could help develop targeted therapies for neurodevelopmental diseases. Herein, we review the findings of recent studies on the role of the GBA in its underlying molecular mechanisms in the early stages of brain development. Furthermore, we discuss the bidirectional regulation of gut microbiota from mother to infant and the potential signaling pathways and roles of posttranscriptional modifications in brain functions. Our review summarizes the role of molecular GBA in early brain development and related disorders, providing cues for novel therapeutic targets.
Collapse
|
45
|
Lu J, Zhu D, Lu J, Liu J, Wu Z, Liu L. Dietary supplementation with low and high polymerization inulin ameliorates adipose tissue inflammation via the TLR4/NF-κB pathway mediated by gut microbiota disturbance in obese dogs. Res Vet Sci 2022; 152:624-632. [DOI: 10.1016/j.rvsc.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|
46
|
Bhat MA, Mishra AK, Tantray JA, Alatawi HA, Saeed M, Rahman S, Jan AT. Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life (Basel) 2022; 12:1986. [PMID: 36556351 PMCID: PMC9780831 DOI: 10.3390/life12121986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Gut microbiota encompasses the resident microflora of the gut. Having an intricate relationship with the host, it plays an important role in regulating physiology and in the maintenance of balance between health and disease. Though dietary habits and the environment play a critical role in shaping the gut, an imbalance (referred to as dysbiosis) serves as a driving factor in the occurrence of different diseases, including cardiovascular disease (CVD). With risk factors of hypertension, diabetes, dyslipidemia, etc., CVD accounts for a large number of deaths among men (32%) and women (35%) worldwide. As gut microbiota is reported to have a direct influence on the risk factors associated with CVDs, this opens up new avenues in exploring the possible role of gut microbiota in regulating the gross physiological aspects along the gut-heart axis. The present study elaborates on different aspects of the gut microbiota and possible interaction with the host towards maintaining a balance between health and the occurrence of CVDs. As the gut microbiota makes regulatory checks for these risk factors, it has a possible role in shaping the gut and, as such, in decreasing the chances of the occurrence of CVDs. With special emphasis on the risk factors for CVDs, this paper includes information on the prominent bacterial species (Firmicutes, Bacteriodetes and others) towards an advance in our understanding of the etiology of CVDs and an exploration of the best possible therapeutic modules for implementation in the treatment of different CVDs along the gut-heart axis.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Javeed Ahmad Tantray
- Department of Zoology, Central University of Kashmir, Ganderbal 191131, Jammu and Kashmir, India
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University College of Haqel, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 842001, Bihar, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| |
Collapse
|
47
|
Rehman AU, Siddiqui NZ, Farooqui NA, Alam G, Gul A, Ahmad B, Asim M, Khan AI, Xin Y, Zexu W, Song Ju H, Xin W, Lei S, Wang L. Morchella esculenta mushroom polysaccharide attenuates diabetes and modulates intestinal permeability and gut microbiota in a type 2 diabetic mice model. Front Nutr 2022; 9:984695. [PMID: 36276816 PMCID: PMC9582931 DOI: 10.3389/fnut.2022.984695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a health issue that causes serious worldwide economic problems. It has previously been reported that natural polysaccharides have been studied with regard to regulating the gut microbiota, which plays an important role in T2DM. Here, we investigate the effects of Morchella esculenta polysaccharide (MEP) on a high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM in BALB/c mice. The administration of MEP effectively regulated hyperglycemia and hyperlipidemia and improved insulin sensitivity. We also determined an improvement in gut microbiota composition by 16sRNA pyrosequencing. Treatment with MEP showed an increase in beneficial bacteria, i.e., Lactobacillus and Firmicutes, while the proportion of the opportunistic bacteria Actinobacteria, Corynebacterium, and Facklamia decreased. Furthermore, the treatment of T2DM mice with MEP resulted in reduced endotoxemia and insulin resistance-related pro-inflammatory cytokines interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Moreover, MEP treatment improved intestinal permeability by modulating the expression of the colon tight-junction proteins zonula occludens-1 (ZO-1), occludin, claudin-1, and mucin-2 protein (MUC2). Additionally, MEP administration affects the metagenome of microbial communities in T2DM mice by altering the functional metabolic pathways. All these findings suggested that MEP is a beneficial prebiotic associated with ameliorating the gut microbiota and its metabolites in T2DM.
Collapse
Affiliation(s)
- Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Gulzar Alam
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Aneesa Gul
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Bashir Ahmad
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Asim
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hyo Song Ju
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Sun Lei
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Liang Wang,
| |
Collapse
|
48
|
Li X, Wang Y, Zhou J, Wang Z, Wang Y, Zheng J, Sun M, Jin L, Qi C, Sun J. Mixed nuts with high nutrient density improve insulin resistance in mice by gut microbiota remodeling. Food Funct 2022; 13:9904-9917. [PMID: 36053223 DOI: 10.1039/d2fo01479c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The consumption of mixed nuts is a healthy dietary strategy to reduce the risk of cardiovascular disease and has a prebiotic effect on the gut microbiota. However, there is a lack of basic research based on mixed nut formulation. This study established a new method for optimizing mixed nut formulations using the Nutrient Rich Food (NRF) index model. Nutrient indices were adjusted by combining 10 and 8 encouraging nutrients and 3 limiting nutrients of nuts and dried fruits, respectively. The optimized mixed nut formulation had the highest total NRF and the lowest energy, which was achieved by applying linear programming. The effect of an optimized mixed nut formulation on insulin resistance and gut microbiota was investigated in an animal model of metabolic disorders caused by a high-fat diet. Male C57BL/6J mice (n = 12 per group) were fed a low-fat diet, a high-fat diet (HFD), HFD with a supplemented classical randomized controlled trial mixed nut formula (MN1), a commercially available mixed nut formula (MN2), a high-nutrient density mixed nut formula (MN3), or ellagic acid (positive control). MN3 treatment decreased total plasma cholesterol, homeostasis model assessment-insulin resistance index, high sensitivity C-reactive protein, and zonulin levels, strengthened the intestinal barrier, and significantly altered the β-diversity of the intestinal microbiota as compared to the HFD group. These effects of MN3 were superior to MN1 and MN2. In conclusion, MN3 had the highest nutrient density and improved insulin resistance in low-grade inflammation via gut microbiota remodeling.
Collapse
Affiliation(s)
- Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Youjiao Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Zhongya Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yiying Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jie Zheng
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd, Hefei, 230601, Anhui, China
| | - Mei Sun
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd, Hefei, 230601, Anhui, China
| | - Long Jin
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd, Hefei, 230601, Anhui, China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
49
|
Olivieri F, Maguolo A, Corradi M, Zusi C, Huber V, Fornari E, Morandi A, Maffeis C. Serum zonulin as an index of glucose dysregulation in children and adolescents with overweight and obesity. Pediatr Obes 2022; 17:e12946. [PMID: 35666025 PMCID: PMC9541276 DOI: 10.1111/ijpo.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Increased intestinal permeability has an important role in metabolic dysregulation. In this cross-sectional study, we examined whether serum intestinal permeability marker zonulin and related pro-inflammatory molecules were associated with the oral disposition index, a predictor for the development of type 2 diabetes, in a cohort of children and adolescents with overweight and obesity. Ninety-two children and adolescents were recruited [Male: 43; 12.7 (2.35) years; BMI SDS: 2.7 (0.96)]. Anthropometric and clinical parameters, lipid profile, glucose metabolism and plasma levels of zonulin, lipopolysaccharide-binding protein and Interleukin-6 were measured. We found an association between oral disposition index and zonulin (β = -0.243; p = 0.019) and age (β = -0.307; p = 0.004), independent of sex and BMI SDS [R2 = 0.16; p = 0.005]. Our results show an association between serum zonulin concentration and oral disposition index supporting the hypothesis of increased intestinal permeability as a possible risk factor for glucose metabolism dysregulation in children and adolescents with obesity.
Collapse
Affiliation(s)
- Francesca Olivieri
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Alice Maguolo
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Massimiliano Corradi
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Chiara Zusi
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Valentina Huber
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Elena Fornari
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Anita Morandi
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and GynaecologyUniversity of VeronaVeronaItaly
| |
Collapse
|
50
|
Liu Y, Liu X, Zhou W, Zhang J, Wu J, Guo S, Jia S, Wang H, Li J, Tan Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e30184. [PMID: 36086766 PMCID: PMC10980383 DOI: 10.1097/md.0000000000030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that imposes a huge economic burden on global public health. And the gut-liver axis theory supports the therapeutic role of intestinal flora in the development and progression of NAFLD. To this end, we designed bioinformatics study on the relationship between intestinal flora disorder and NAFLD, to explore the possible molecular mechanism of intestinal flora interfering with NAFLD. METHODS Differentially expressed genes for NAFLD were obtained from the GEO database. And the disease genes for NAFLD and intestinal flora disorder were obtained from the disease databases. The protein-protein interaction network was established by string 11.0 database and visualized by Cytoscape 3.7.2 software. Cytoscape plug-in MCODE and cytoHubba were used to screen the potential genes of intestinal flora disorder and NAFLD, to obtain potential targets for intestinal flora to interfere in the occurrence and process of NAFLD. Enrichment analysis of potential targets was carried out using R 4.0.2 software. RESULTS The results showed that 7 targets might be the key genes for intestinal flora to interfere with NAFLD. CCL2, IL6, IL1B, and FOS are mainly related to the occurrence and development mechanism of NAFLD, while PTGS2, SPINK1, and C5AR1 are mainly related to the intervention of intestinal flora in the occurrence and development of NAFLD. The gene function is mainly reflected in basic biological processes, including the regulation of metabolic process, epithelial development, and immune influence. The pathway is mainly related to signal transduction, immune regulation, and physiological metabolism. The TNF signaling pathway, AGE-RAGE signaling pathway in diabetic activity, and NF-Kappa B signaling pathways are important pathways for intestinal flora to interfere with NAFLD. According to the analysis results, there is a certain correlation between intestinal flora disorder and NAFLD. CONCLUSION It is speculated that the mechanism by which intestinal flora may interfere with the occurrence and development of NAFLD is mainly related to inflammatory response and insulin resistance. Nevertheless, further research is needed to explore the specific molecular mechanisms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|