1
|
Russell MW, Kilian M, Mestecky J. Role of IgA1 protease-producing bacteria in SARS-CoV-2 infection and transmission: a hypothesis. mBio 2024; 15:e0083324. [PMID: 39207101 PMCID: PMC11492985 DOI: 10.1128/mbio.00833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Secretory (S) IgA antibodies against severe acute respiratory syndrome (SARS)-CoV-2 are induced in saliva and upper respiratory tract (URT) secretions by natural infection and may be critical in determining the outcome of initial infection. Secretory IgA1 (SIgA1) is the predominant isotype of antibodies in these secretions. Neutralization of SARS-CoV-2 is most effectively accomplished by polymeric antibodies such as SIgA. We hypothesize that cleavage of SIgA1 antibodies against SARS-CoV-2 by unique bacterial IgA1 proteases to univalent Fabα antibody fragments with diminished virus neutralizing activity would facilitate the descent of the virus into the lungs to cause serious disease and also enhance its airborne transmission to others. Recent studies of the nasopharyngeal microbiota of patients with SARS-CoV-2 infection have revealed significant increases in the proportions of IgA1 protease-producing bacteria in comparison with healthy subjects. Similar considerations might apply also to other respiratory viral infections including influenza, possibly explaining the original attribution of influenza to Haemophilus influenzae, which produces IgA1 protease.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, University at Buffalo,
Buffalo, New York, USA
| | - Mogens Kilian
- Department of
Biomedicine, Aarhus University,
Aarhus, Denmark
| | - Jiri Mestecky
- Department of
Microbiology, Heersink School of Medicine, University of Alabama at
Birmingham, Birmingham,
Alabama, USA
- />Institute of
Microbiology, laboratory of Cellular and Molecular Immunology, Czech
Academy of Sciences,
Prague, Czechia
| |
Collapse
|
2
|
Jackson S, Marshall JL, Mawer A, Lopez-Ramon R, Harris SA, Satti I, Hughes E, Preston-Jones H, Cabrera Puig I, Longet S, Tipton T, Laidlaw S, Doherty RP, Morrison H, Mitchell R, Tanner R, Ateere A, Stylianou E, Wu MS, Fredsgaard-Jones TPW, Breuer J, Rapeport G, Ferreira VM, Gleeson F, Pollard AJ, Carroll M, Catchpole A, Chiu C, McShane H. Safety, tolerability, viral kinetics, and immune correlates of protection in healthy, seropositive UK adults inoculated with SARS-CoV-2: a single-centre, open-label, phase 1 controlled human infection study. THE LANCET. MICROBE 2024; 5:655-668. [PMID: 38703782 PMCID: PMC7616636 DOI: 10.1016/s2666-5247(24)00025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals. METHODS Healthy, UK volunteers aged 18-30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal-nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete. FINDINGS Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events. INTERPRETATION Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development. FUNDING Wellcome Trust and Department for Health and Social Care.
Collapse
Affiliation(s)
- Susan Jackson
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Julia L Marshall
- Department of Paediatrics, University of Oxford, Oxford, UK; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Mawer
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Iman Satti
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eileen Hughes
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Stephanie Longet
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Tipton
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Laidlaw
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Hazel Morrison
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Rachel Tanner
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Alberta Ateere
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Meng-San Wu
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Judith Breuer
- Institute of Child Health, University College London, London, UK
| | - Garth Rapeport
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Fergus Gleeson
- Oxford Radiology Research Unit, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Miles Carroll
- The Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Helen McShane
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
4
|
Chwa JS, Kim M, Lee Y, Cheng WA, Shin Y, Jumarang J, Bender JM, Pannaraj PS. Detection of SARS-CoV-2-Specific Secretory IgA and Neutralizing Antibodies in the Nasal Secretions of Exposed Seronegative Individuals. Viruses 2024; 16:852. [PMID: 38932145 PMCID: PMC11209246 DOI: 10.3390/v16060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Mucosal immunity may contribute to clearing SARS-CoV-2 infection prior to systemic infection, thereby allowing hosts to remain seronegative. We describe the meaningful detection of SARS-CoV-2-specific nasal mucosal antibodies in a group of exposed-household individuals that evaded systemic infection. Between June 2020 and February 2023, nasopharyngeal swab (NPS) and acute and convalescent blood were collected from individuals exposed to a SARS-CoV-2-confirmed household member. Nasal secretory IgA (SIgA) antibodies targeting the SARS-CoV-2 spike protein were measured using a modified ELISA. Of the 36 exposed individuals without SARS-CoV-2 detected by the RT-PCR of NPS specimens and seronegative for SARS-CoV-2-specific IgG at enrollment and convalescence, 13 (36.1%) had positive SARS-CoV-2-specific SIgA levels detected in the nasal mucosa at enrollment. These individuals had significantly higher nasal SIgA (median 0.52 AU/mL) compared with never-exposed, never-infected controls (0.001 AU/mL) and infected-family participants (0.0002 AU/mL) during the acute visit, respectively (both p < 0.001). The nasal SARS-CoV-2-specific SIgA decreased rapidly over two weeks in the exposed seronegative individuals compared to a rise in SIgA in infected-family members. The nasal SARS-CoV-2-specific SIgA may have a protective role in preventing systemic infection.
Collapse
Affiliation(s)
- Jason S. Chwa
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Minjun Kim
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yesun Lee
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Wesley A. Cheng
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yunho Shin
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Jaycee Jumarang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Jeffrey M. Bender
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
5
|
Le Bert N, Samandari T. Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. Cell Mol Immunol 2024; 21:159-170. [PMID: 38221577 PMCID: PMC10805869 DOI: 10.1038/s41423-024-01127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
SARS-CoV-2 infections manifest with a broad spectrum of presentations, ranging from asymptomatic infections to severe pneumonia and fatal outcomes. This review centers on asymptomatic infections, a widely reported phenomenon that has substantially contributed to the rapid spread of the pandemic. In such asymptomatic infections, we focus on the role of innate, humoral, and cellular immunity. Notably, asymptomatic infections are characterized by an early and robust innate immune response, particularly a swift type 1 IFN reaction, alongside a rapid and broad induction of SARS-CoV-2-specific T cells. Often, antibody levels tend to be lower or undetectable after asymptomatic infections, suggesting that the rapid control of viral replication by innate and cellular responses might impede the full triggering of humoral immunity. Even if antibody levels are present in the early convalescent phase, they wane rapidly below serological detection limits, particularly following asymptomatic infection. Consequently, prevalence studies reliant solely on serological assays likely underestimate the extent of community exposure to the virus.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Taraz Samandari
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Dowell AC, Tut G, Begum J, Bruton R, Bentley C, Butler M, Uwenedi G, Zuo J, Powell AA, Brent AJ, Brent B, Baawuah F, Okike I, Beckmann J, Ahmad S, Aiano F, Garstang J, Ramsay ME, Moss P, Ladhani SN. Nasal mucosal IgA levels against SARS-CoV-2 and seasonal coronaviruses are low in children but boosted by reinfection. J Infect 2023; 87:403-412. [PMID: 37660754 DOI: 10.1016/j.jinf.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Repeated coronavirus infections in childhood drive progressive maturation of systemic immune responses into adulthood. Analyses of immune responses in children have focused primarily upon systemic assessment but the importance of mucosal immunity is increasingly recognised. We studied virus-specific antibody responses in contemporaneous nasal swabs and blood samples from 99 children (4-15 years) and 28 adults (22-56 years), all of whom had prior SARS-CoV-2 infection. Whilst mucosal IgA titres against Influenza and Respiratory Syncytial virus were comparable between children and adults, those against all coronaviruses, including SARS-CoV-2, were lower in children. Mucosal IgA antibodies demonstrated comparable relative neutralisation capacity in both groups and retained activity against recent omicron variants such as XBB.1 which are highly evasive of IgG neutralisation. SARS-CoV-2 reinfection preferentially enhanced mucosal IgA responses whilst the impact of vaccination was more modest. Nasal IgA levels against coronaviruses thus display a pattern of incremental response to reinfection which likely determines the natural history of reinfection. This highlights the particular significance of developing mucosal vaccines against coronaviruses in children.
Collapse
Affiliation(s)
- Alexander C Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gokhan Tut
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jusnara Begum
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Bruton
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Bentley
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Megan Butler
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Grace Uwenedi
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Annabel A Powell
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Andrew J Brent
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, United Kingdom; University of Oxford, Wellington Square, Oxford, United Kingdom
| | - Bernadette Brent
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, United Kingdom
| | - Frances Baawuah
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Ifeanyichukwu Okike
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom; University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter New Road, Derby, United Kingdom
| | - Joanne Beckmann
- East London NHS Foundation Trust, 9 Allie Street, London, United Kingdom
| | - Shazaad Ahmad
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, United Kingdom
| | - Felicity Aiano
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Joanna Garstang
- Birmingham Community Healthcare NHS Trust, Holt Street, Aston, United Kingdom
| | - Mary E Ramsay
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Shamez N Ladhani
- Immunisation Department, UK Health Security Agency, 61 Colindale Avenue, London, United Kingdom.
| |
Collapse
|
8
|
Ramasamy R. COVID-19 Vaccines for Optimizing Immunity in the Upper Respiratory Tract. Viruses 2023; 15:2203. [PMID: 38005881 PMCID: PMC10674974 DOI: 10.3390/v15112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Rapid development and deployment of vaccines greatly reduced mortality and morbidity during the COVID-19 pandemic. The most widely used COVID-19 vaccines approved by national regulatory authorities require intramuscular administration. SARS-CoV-2 initially infects the upper respiratory tract, where the infection can be eliminated with little or no symptoms by an effective immune response. Failure to eliminate SARS-CoV-2 in the upper respiratory tract results in lower respiratory tract infections that can lead to severe disease and death. Presently used intramuscularly administered COVID-19 vaccines are effective in reducing severe disease and mortality, but are not entirely able to prevent asymptomatic and mild infections as well as person-to-person transmission of the virus. Individual and population differences also influence susceptibility to infection and the propensity to develop severe disease. This article provides a perspective on the nature and the mode of delivery of COVID-19 vaccines that can optimize protective immunity in the upper respiratory tract to reduce infections and virus transmission as well as severe disease.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA
| |
Collapse
|
9
|
Wang X, Zhang J, Wu Y, Xu Y, Zheng J. SIgA in various pulmonary diseases. Eur J Med Res 2023; 28:299. [PMID: 37635240 PMCID: PMC10464380 DOI: 10.1186/s40001-023-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/12/2023] [Indexed: 08/29/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) is one of the most abundant immunoglobulin subtypes among mucosa, which plays an indispensable role in the first-line protection against invading pathogens and antigens. Therefore, the role of respiratory SIgA in respiratory mucosal immune diseases has attracted more and more attention. Although the role of SIgA in intestinal mucosal immunity has been widely studied, the cell types responsible for SIgA and the interactions between cells are still unclear. Here, we conducted a wide search of relevant studies and sorted out the relationship between SIgA and some pulmonary diseases (COPD, asthma, tuberculosis, idiopathic pulmonary fibrosis, COVID-19, lung cancer), which found SIgA is involved in the pathogenesis and progression of various lung diseases, intending to provide new ideas for the prevention, diagnosis, and treatment of related lung diseases.
Collapse
Affiliation(s)
- Xintian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medicine, Aoyang Hospital Affiliated to Jiangsu University, No. 279, Jingang Avenue, Zhangjiagang, Suzhou, Jiangsu China
| | - Yan Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Yuncong Xu
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Jinxu Zheng
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| |
Collapse
|
10
|
Gromowski GD, Cincotta CM, Mayer S, King J, Swafford I, McCracken MK, Coleman D, Enoch J, Storme C, Darden J, Peel S, Epperson D, McKee K, Currier JR, Okulicz J, Paquin-Proulx D, Cowden J, Peachman K. Humoral immune responses associated with control of SARS-CoV-2 breakthrough infections in a vaccinated US military population. EBioMedicine 2023; 94:104683. [PMID: 37413891 PMCID: PMC10345251 DOI: 10.1016/j.ebiom.2023.104683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND COVID-19 vaccines have been critical for protection against severe disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but gaps remain in our understanding of the immune responses that contribute to controlling subclinical and mild infections. METHODS Vaccinated, active-duty US military service members were enrolled in a non-interventional, minimal-risk, observational study starting in May, 2021. Clinical data, serum, and saliva samples were collected from study participants and were used to characterise the humoral immune responses to vaccination and to assess its impact on clinical and subclinical infections, as well as virologic outcomes of breakthrough infections (BTI) including viral load and infection duration. FINDINGS The majority of VIRAMP participants had received the Pfizer COVID-19 vaccine and by January, 2022, N = 149 had a BTI. The median BTI duration (PCR+ days) was 4 days and the interquartile range was 1-8 days. Participants that were nucleocapsid seropositive prior to their BTI had significantly higher levels of binding and functional antibodies to the spike protein, shorter median duration of infections, and lower median peak viral loads compared to seronegative participants. Furthermore, levels of neutralising antibody, ACE2 blocking activity, and spike-specific IgA measured prior to BTI also correlated with the duration of infection. INTERPRETATION We extended previous findings and demonstrate that a subset of vaccine-induced humoral immune responses, along with nucleocapsid serostatus are associated with control of SARS-CoV-2 breakthrough infections in the upper airways. FUNDING This work was funded by the DoD Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) in collaboration with the Defense Health Agency (DHA) COVID-19 funding initiative for the VIRAMP study.
Collapse
Affiliation(s)
- Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Camila Macedo Cincotta
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra Mayer
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dante Coleman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jennifer Enoch
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Casey Storme
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Janice Darden
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheila Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane Epperson
- Booz Allen Hamilton, McLean, VA, USA; Enabling Biotechnologies, Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Frederick, MD, USA
| | | | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason Okulicz
- Department of Infectious Disease, Brooke Army Medical Center, San Antonio, TX, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jessica Cowden
- Enabling Biotechnologies, Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Frederick, MD, USA; Department of Retrovirology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Kristina Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
11
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
12
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Liu S, Tsun JGS, Fung GPG, Lui GCY, Chan KYY, Chan PKS, Chan RWY. Comparison of the mucosal and systemic antibody responses in Covid-19 recovered patients with one dose of mRNA vaccine and unexposed subjects with three doses of mRNA vaccines. Front Immunol 2023; 14:1127401. [PMID: 36793736 PMCID: PMC9922846 DOI: 10.3389/fimmu.2023.1127401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background Immunity acquired from natural SARS-CoV-2 infection and vaccine wanes overtime. This longitudinal prospective study compared the effect of a booster vaccine (BNT162b2) in inducing the mucosal (nasal) and serological antibody between Covid-19 recovered patients and healthy unexposed subjects with two dose of mRNA vaccine (vaccine-only group). Method Eleven recovered patients and eleven gender-and-age matched unexposed subjects who had mRNA vaccines were recruited. The SARS-CoV-2 spike 1 (S1) protein specific IgA, IgG and the ACE2 binding inhibition to the ancestral SARS-CoV-2 and omicron (BA.1) variant receptor binding domain were measured in their nasal epithelial lining fluid and plasma. Result In the recovered group, the booster expanded the nasal IgA dominancy inherited from natural infection to IgA and IgG. They also had a higher S1-specific nasal and plasma IgA and IgG levels with a better inhibition against the omicron BA.1 variant and ancestral SARS-CoV-2 when compared with vaccine-only subjects. The nasal S1-specific IgA induced by natural infection lasted longer than those induced by vaccines while the plasma antibodies of both groups maintained at a high level for at least 21 weeks after booster. Conclusion The booster benefited all subjects to obtain neutralizing antibody (NAb) against omicron BA.1 variant in plasma while only the Covid-19 recovered subjects had an extra enrichment in nasal NAb against omicron BA.1 variant.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joseph G. S. Tsun
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Genevieve P. G. Fung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace C. Y. Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kathy Y. Y. Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Renee W. Y. Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,The Chinese University of Hong Kong (CUHK)- University Medical Center Utrecht (UMCU) Joint Research Laboratory of Respiratory Virus & Immunobiology, Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,*Correspondence: Renee W. Y. Chan,
| |
Collapse
|
14
|
Mu R, Huang Y, Bouquet J, Yuan J, Kubiak RJ, Ma E, Naser S, Mylott WR, Ismaiel OA, Wheeler AM, Burkart R, Cortes DF, Bruton J, Arends RH, Liang M, Rosenbaum AI. Multiplex Hybrid Antigen-Capture LC-MRM Quantification in Sera and Nasal Lining Fluid of AZD7442, a SARS-CoV-2-Targeting Antibody Combination. Anal Chem 2022; 94:14835-14845. [PMID: 36269894 DOI: 10.1021/acs.analchem.2c01320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jerome Bouquet
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Robert J Kubiak
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Eric Ma
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Sami Naser
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - William R Mylott
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Omnia A Ismaiel
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States.,Faculty of Pharmacy, Zagazig University, Zagazig 2, Zagazig, Egypt
| | - Aaron M Wheeler
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rebecca Burkart
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Diego F Cortes
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - James Bruton
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rosalinda H Arends
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
15
|
Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol 2022; 13:957107. [PMID: 36059541 PMCID: PMC9428579 DOI: 10.3389/fimmu.2022.957107] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is primarily an airborne infection of the upper respiratory tract, which on reaching the lungs causes the severe acute respiratory disease, COVID-19. Its first contact with the immune system, likely through the nasal passages and Waldeyer's ring of tonsils and adenoids, induces mucosal immune responses revealed by the production of secretory IgA (SIgA) antibodies in saliva, nasal fluid, tears, and other secretions within 4 days of infection. Evidence is accumulating that these responses might limit the virus to the upper respiratory tract resulting in asymptomatic infection or only mild disease. The injectable systemic vaccines that have been successfully developed to prevent serious disease and its consequences do not induce antibodies in mucosal secretions of naïve subjects, but they may recall SIgA antibody responses in secretions of previously infected subjects, thereby helping to explain enhanced resistance to repeated (breakthrough) infection. While many intranasally administered COVID vaccines have been found to induce potentially protective immune responses in experimental animals such as mice, few have demonstrated similar success in humans. Intranasal vaccines should have advantage over injectable vaccines in inducing SIgA antibodies in upper respiratory and oral secretions that would not only prevent initial acquisition of the virus, but also suppress community spread via aerosols and droplets generated from these secretions.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jiri Mestecky
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|