1
|
Vera-Peralta H, Ruffié C, Najburg V, Brione M, Combredet C, Frantz P, Tournier JN, Tangy F, Mura M. Induction of tissue resident memory T cells by measles vaccine vector. Hum Vaccin Immunother 2024; 20:2436241. [PMID: 39693193 DOI: 10.1080/21645515.2024.2436241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Measles live attenuated vaccine (MV) induces strong humoral and cellular systemic memory responses allowing the successful control of measles since decades. MV has also been adapted into a promising vaccine platform with several vaccine candidates in clinical development. To understand and document the tissue-scaled memory response induced by MV, we explored the specific induction and persistence of resident memory T cells (Trm) in the lungs and the liver, two critical targeted tissues for vaccine development against several diseases. Trm are a subset of non-circulating highly specialized T cells. They are found at multiple barrier and mucosal sites, conveniently positioned to rapidly react against pathogens. The induction of Trm in different tissues is therefore critical for vaccine development. We demonstrated in mice the rapid generation of MV-specific and vectorized antigen-specific Trm in the liver and the lungs after a single dose, whatever the route of immunization. The intranasal route induced more Trm in the lungs than other routes, confirming the potential of intranasal vaccine administration of replicative viral vectors to generate a strong pulmonary immune response. MV-specific Trm cells were functionally active, with CD8+ Trm secreting granzyme B upon in vitro restimulation and CD4+ Trm cells secreting IFN-γ and TNF-α. We confirmed in human lymphocytes this tissue tropism by showing an overexpression of homing receptors directing them to epithelial and inflamed tissues. Vaccination strategies able to induce Trm cells at key sites represent a promising field to improve current vaccines, prioritize vaccine platforms and design future vaccines with enhanced protective efficacy.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Claude Ruffié
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Valérie Najburg
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Matthias Brione
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Chantal Combredet
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Phanramphoei Frantz
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Jean-Nicolas Tournier
- Division recherche et innovation, Académie du Service de santé des armées, Paris, France
| | - Frédéric Tangy
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Marie Mura
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
2
|
Genova SN, Pencheva MM, Abadjieva TI, Atanasov NG. Cellular and immune response in fatal COVID-19 pneumonia. Pan Afr Med J 2024; 49:130. [PMID: 40190436 PMCID: PMC11971930 DOI: 10.11604/pamj.2024.49.130.45739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025] Open
Abstract
Introduction the severity of COVID-19, causing fatal pneumonia, acute respiratory distress syndrome (ARDS), and thrombotic complications, is linked to intense inflammation. Elevated CD4+ and CD8+ cells in the lungs indicate harmful inflammation in severe cases. This study investigates immune responses in lung tissues of deceased patients across different stages of COVID-19 pneumonia. Methods lung tissues from 160 fatal COVID-19 cases, diagnosed via Real-Time RT-PCR, were histologically analyzed to identify pneumonia stages. Inflammatory cell counts were assessed immunohistochemically. Non-parametric tests analyzed categorical variables, while regression analysis evaluated relationships between continuous variables. Results the average patient age was 68.1 years (± 12.6). Microscopic analysis identified four pneumonia stages. CD4+, CD68 (macrophages), and IgG4 levels peaked by day 14, with notable elevation within seven days of symptom onset. CD4+ levels were significantly lower in DAD pneumonia (49.4% ± 15.7%) compared to ARDS (66.4% ± 19.3%) and thrombosis (70.2% ± 28.9%) (p < 0.05). Male patients had higher CD4+ values (68.5% ± 21.1%) than females (56.9% ± 22.4%) (p < 0.05). B cells (CD20) and NK cells were depleted across all stages. IgG4 expression reached 80-90% in acute phases but was nearly absent during organization and fibrosis stages. Conclusion a sharp decline in CD4+ and CD8+ during acute pneumonia and sepsis reflects immune exhaustion, while their elevation in ARDS and thrombosis likely triggers cytokine storms, causing severe lung damage. Elevated IgG4 levels in acute lung tissue correlate with fatal outcomes in severe COVID-19.
Collapse
Affiliation(s)
- Sylvia Nikolaeva Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University Plovdiv, Plovdiv, Bulgaria
- St George University Hospital, Plovdiv, Bulgaria
| | - Mina Miroslavova Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetana Ivanova Abadjieva
- St George University Hospital, Plovdiv, Bulgaria
- Department of Dermatology and Venereology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Nikolay Georgiev Atanasov
- Department of Health Management and Health Economics, Faculty of Public Health, Medical University Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
3
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
4
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Golden JW, Fitzpatrick CJ, Suschak JJ, Clements TL, Ricks KM, Sanchez-Lockhart M, Garrison AR. Induced protection from a CCHFV-M DNA vaccine requires CD8 + T cells. Virus Res 2023; 334:199173. [PMID: 37459918 PMCID: PMC10388194 DOI: 10.1016/j.virusres.2023.199173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a World Health Organization prioritized disease because its broad distribution and severity of disease make it a global health threat. Despite advancements in preclinical vaccine development for CCHF virus (CCHFV), including multiple platforms targeting multiple antigens, a clear definition of the adaptive immune correlates of protection is lacking. Levels of neutralizing antibodies in vaccinated animal models do not necessarily correlate with protection, suggesting that cellular immunity, such as CD8+ T cells, might have an important role in protection in this model. Using a well-established IFN-I antibody blockade mouse model (IS) and a DNA-based vaccine encoding the CCHFV M-segment glycoprotein precursor, we investigated the role of humoral and T cell immunity in vaccine-mediated protection in mice genetically devoid of these immune compartments. We found that in the absence of the B-cell compartment (µMT knockout mice), protection provided by the vaccine was not reduced. In contrast, in the absence of CD8+ T cells (CD8+ knockout mice) the vaccine-mediated protection was significantly diminished. Importantly, humoral responses to the vaccine in CD8+ T-cell knockout mice were equivalent to wild-type mice. These findings indicated that CD8+ T-cell responses are necessary and sufficient to promote protection in mice vaccinated with the M-segment DNA vaccine. Identifying a crucial role of the cellular immunity to protect against CCHFV should help guide the development of CCHFV-targeting vaccines.
Collapse
Affiliation(s)
- Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| | - Collin J Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - John J Suschak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Tamara L Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Keersten M Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| |
Collapse
|
6
|
Moon Y. Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Front Public Health 2023; 11:1098774. [PMID: 37139365 PMCID: PMC10150023 DOI: 10.3389/fpubh.2023.1098774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent gastrointestinal distress, characterized by fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen presence in the gut. Using a meta-analysis, the present review addressed gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea. Despite limited data on the gut-lung axis, viral transmission to the gut and its influence on gut mucosa and microbial community were found to be associated by means of various biochemical mechanisms. Notably, the prolonged presence of viral antigens and disrupted mucosal immunity may increase gut microbial and inflammatory risks, leading to acute pathological outcomes or post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial diversity and a higher relative abundance of opportunistic pathogens in their gut microbiota than healthy controls. Considering the dysbiotic changes during infection, remodeling or supplementation with beneficial microbial communities may counteract adverse outcomes in the gut and other organs in patients with COVID-19. Moreover, nutritional status, such as vitamin D deficiency, has been associated with disease severity in patients with COVID-19 via the regulation of the gut microbial community and host immunity. The nutritional and microbiological interventions improve the gut exposome including the host immunity, gut microbiota, and nutritional status, contributing to defense against acute or post-acute COVID-19 in the gut-lung axis.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan-si, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
7
|
Diethelm-Varela B, Soto JA, Riedel CA, Bueno SM, Kalergis AM. New Developments and Challenges in Antibody-Based Therapies for the Respiratory Syncytial Virus. Infect Drug Resist 2023; 16:2061-2074. [PMID: 37063935 PMCID: PMC10094422 DOI: 10.2147/idr.s379660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Since the discovery of the human respiratory syncytial virus (hRSV), multiple research efforts have been conducted to develop vaccines and treatments capable of reducing the risk of severe disease, hospitalization, long-term sequelae, and death from this pathogen in susceptible populations. In this sense, therapies specifically directed against hRSV are mainly based on monoclonal and polyclonal antibodies such as intravenous IgG (IVIG)-RSV and the monoclonal antibody palivizumab. However, these therapies are associated with significant limitations, including the need for the recruitment of a high number of convalescent volunteers who donate blood to procure IVIG-RSV and the costs associated with the need for repeated administrations of palivizumab. These limitations render this product not cost-effective for populations other than high-risk patients. These problems have underscored that it is still necessary to identify new safe and effective therapies for human use. However, these new therapies must benefit from a comparatively cheap production cost and the opportunity to be available to the high-risk population and anyone who requires treatment. Here, we review the different antibodies used to prevent the pathology caused by hRSV infection, highlighting therapies currently approved for human use and their clinical value. Also, the new, most promising candidates based on preclinical studies and clinical trial results are revised.
Collapse
Affiliation(s)
- Benjamín Diethelm-Varela
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Rodríguez-Guilarte L, Ramírez MA, Andrade CA, Kalergis AM. LAG-3 Contribution to T Cell Downmodulation during Acute Respiratory Viral Infections. Viruses 2023; 15:147. [PMID: 36680187 PMCID: PMC9865459 DOI: 10.3390/v15010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
LAG-3 is a type I transmembrane protein expressed on immune cells, such as activated T cells, and binds to MHC class II with high affinity. LAG-3 is an inhibitory receptor, and its multiple biological activities on T cell activation and effector functions play a regulatory role in the immune response. Immunotherapies directed at immune checkpoints, including LAG-3, have become a promising strategy for controlling malignant tumors and chronic viral diseases. Several studies have suggested an association between the expression of LAG-3 with an inadequate immune response during respiratory viral infections and the susceptibility to reinfections, which might be a consequence of the inhibition of T cell effector functions. However, important information relative to therapeutic potential during acute viral lower respiratory tract infections and the mechanism of action of the LAG-3 checkpoint remains to be characterized. In this article, we discuss the contribution of LAG-3 to the impairment of T cells during viral respiratory infections. Understanding the host immune response to respiratory infections is crucial for developing effective vaccines and therapies.
Collapse
Affiliation(s)
- Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
9
|
Chiang SF, Huang KCY, Chen WTL, Chen TW, Ke TW, Chao KSC. Polymorphism of formyl peptide receptor 1 (FPR1) reduces the therapeutic efficiency and antitumor immunity after neoadjuvant chemoradiotherapy (CCRT) treatment in locally advanced rectal cancer. Cancer Immunol Immunother 2021; 70:2937-2950. [PMID: 33713152 DOI: 10.1007/s00262-021-02894-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Immunosurveillance and immunoscavenging prompted by preoperative chemoradiotherapy (CCRT) may contribute to improve local control and increase survival outcomes for patients with locally advanced rectal cancer (LARC). In this study, we investigated several genotypes of pattern recognition receptors (PRRs) and their impact on therapeutic efficacy in LARC patients treated with CCRT. We found that homozygosis of formyl peptide receptor 1 (FPR1) (E346A/rs867228) was associated with reduced 5-year overall survival (OS) by Kaplan-Meier analysis (62% vs. 81%, p = 0.014) and multivariate analysis [hazard ratio (HR) = 3.383, 95% CI = 1.374-10.239, p = 0.007]. Moreover, in an animal model, we discovered that the FPR1 antagonist, Boc-MLF (Boc-1), reduced CCRT therapeutic efficacy and decreased cytotoxic T cells and T effector memory cells after chemoradiotherapy treatment. Pharmacologic inhibition of FPR1 by Boc-1 decreased T lymphocyte migration to irradiated tumor cells. Therefore, these results revealed that the FPR1 genotype participates in CCRT-elicited anticancer immunity by reducing T lymphocytes migration and infiltration, and that the FPR1-E346A CC genotype can be considered an independent biomarker for chemo- and radiotherapy outcomes.
Collapse
Affiliation(s)
- Shu-Fen Chiang
- Laboratory of Precision Medicine, Ministry of Health & Welfare Feng Yuan Hospital, Taichung, 42055, Taiwan.,Cancer Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.,Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, Hsinchu China Medical University Hospital, Hsinchu, 40402, Taiwan
| | - Tsung-Wei Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - K S Clifford Chao
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets 2021; 22:254-281. [PMID: 33081670 DOI: 10.2174/1389450121666201020154033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) is becoming the major health issue in recent human history with thousands of deaths and millions of cases worldwide. Newer research and old experience with other coronaviruses highlighted a probable underlying mechanism of disturbance of the renin-angiotensin system (RAS) that is associated with the intrinsic effects of SARS-CoV-2 infection. OBJECTIVE In this review, we aimed to describe the intimate connections between the RAS components, the immune system and COVID-19 pathophysiology. METHODS This non-systematic review article summarizes recent evidence on the relationship between COVID-19 and the RAS. RESULTS Several studies have indicated that the downregulation of membrane-bound ACE2 may exert a key role for the impairment of immune functions and for COVID-19 patients' outcomes. The downregulation may occur by distinct mechanisms, particularly: (1) the shedding process induced by the SARS-CoV-2 fusion pathway, which reduces the amount of membrane-bound ACE2, stimulating more shedding by the high levels of Angiotensin II; (2) the endocytosis of ACE2 receptor with the virus itself and (3) by the interferon inhibition caused by SARS-CoV-2 effects on the immune system, which leads to a reduction of ACE2 receptor expression. CONCLUSION Recent research provides evidence of a reduction of the components of the alternative RAS axis, including ACE2 and Angiotensin-(1-7). In contrast, increased levels of Angiotensin II can activate the AT1 receptor in several organs. Consequently, increased inflammation, thrombosis and angiogenesis occur in patients infected with SARS-COV-2. Attention should be paid to the interactions of the RAS and COVID-19, mainly in the context of novel vaccines and proposed medications.
Collapse
Affiliation(s)
- Cristina Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Nery
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ludimila Martins
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Jabour
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raphael Dias
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Shahbazi M, Moulana Z, Sepidarkish M, Bagherzadeh M, Rezanejad M, Mirzakhani M, Jafari M, Mohammadnia-Afrouzi M. Pronounce expression of Tim-3 and CD39 but not PD1 defines CD8 T cells in critical Covid-19 patients. Microb Pathog 2021; 153:104779. [PMID: 33548481 PMCID: PMC7857983 DOI: 10.1016/j.micpath.2021.104779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Background During viral infection, inhibitory receptors play a key role in regulating CD8 T-cell activity. The objective of this research was to investigate programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3), and CD39 exhaustion markers in CD8 T cells of new coronavirus disease-2019 (COVID-19) patients. Methods A total of 44 patients with COVID-19 (17 subjects in a critical group and 27 patients in a non-critical group) and 14 healthy controls, who were admitted to Hospitals in Babol, were recruited to the study. In subjects' peripheral blood mononuclear cells (PBMCs), we compared the phenotype of CD8 T lymphocytes, expressing PD-1, TIM-3, or CD39, both alone and in various combinations. Results The findings showed that the percentage of CD8+ cells was significantly lower in patients. Critical and non-critical patients were more likely than healthy controls to have an escalated frequency of CD8+ TIM-3+, CD8+ CD39+, and CD8+ TIM-3+ CD39+ cells. No significant differences were observed between all groups in the CD8+ PD-1+ cell counts. There was also no difference between three groups regarding the counts of CD8+ TIM-3+ PD-1+, CD8+ PD-1+ CD39+, and CD8+ TIM-3+ PD-1+ CD39+ cells. The counts of non-exhausted cells were significantly lower in critical and non-critical individuals compared to the healthy individuals’ value. Conclusion Patients, infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), altered exhausted CD8 T lymphocytes with CD39 and TIM-3 exhaustion markers, which may account the dysregulated immune response found in COVID-19.
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Moulana
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Mojgan Bagherzadeh
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Rezanejad
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mirzakhani
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Jafari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mousa Mohammadnia-Afrouzi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
12
|
Luangrath MA, Schmidt ME, Hartwig SM, Varga SM. Tissue-Resident Memory T Cells in the Lungs Protect against Acute Respiratory Syncytial Virus Infection. Immunohorizons 2021; 5:59-69. [PMID: 33536235 PMCID: PMC8299542 DOI: 10.4049/immunohorizons.2000067] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in young children. The T cell response plays a critical role in facilitating clearance of an acute RSV infection, and memory T cell responses are vital for protection against secondary RSV exposures. Tissue-resident memory (TRM) T cells have been identified as a subset of memory T cells that reside in nonlymphoid tissues and are critical for providing long-term immunity. There is currently limited information regarding the establishment and longevity of TRM T cell responses elicited following an acute RSV infection as well as their role in protection against repeated RSV infections. In this study, we examined the magnitude, phenotype, and protective capacity of TRM CD4 and CD8 T cells in the lungs of BALB/c mice following an acute RSV infection. TRM CD4 and CD8 T cells were established within the lungs and waned by 149 d following RSV infection. To determine the protective capacity of TRMs, FTY720 administration was used to prevent trafficking of peripheral memory T cells into the lungs prior to challenge of RSV-immune mice, with a recombinant influenza virus expressing either an RSV-derived CD4 or CD8 T cell epitope. We observed enhanced viral clearance in RSV-immune mice, suggesting that TRM CD8 T cells can contribute to protection against a secondary RSV infection. Given the protective capacity of TRMs, future RSV vaccine candidates should focus on the generation of these cell populations within the lung to induce effective immunity against RSV infection.
Collapse
Affiliation(s)
- Mitchell A Luangrath
- Division of Critical Care, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Stacey M Hartwig
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19), a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly become a great public health hazard globally. Nasal epithelial cells are an important site for SARS-CoV-2 infection and replication. The purpose of this review is to summarize recent findings on the endotypes of chronic rhinosinusitis with nasal polyps (CRSwNP) and the potential impact of SARS-CoV-2 infection. RECENT FINDINGS Endotypes of CRSwNP are characterized by type 1, type 2 and type 3 inflammation according to patterns of inflammatory cells and the cytokines expressed in nasal tissue. Nasal epithelial cells show the highest expression of angiotensin-converting enzyme 2 (ACE2), the receptor for attachment and entry of SARS-CoV-2 into host cells, among all investigated cells in the respiratory tree. SARS-CoV-2 infection likely leads to increased activation of T-helper-1 (Th1) cell responses. Recent studies further suggest that ACE2 may be upregulated by type 1 and downregulated by type 2 inflammatory cytokines in nasal epithelial cells. SUMMARY Expression of ACE2 in nasal epithelial cells is influenced by inflammatory endotypes of CRSwNP. Type 1 inflammation in nasal tissue may increase the risk of SARS-CoV-2 infection by upregulating ACE2 expression. However, clinical association between CRSwNP and COVID-19 is still unclear.
Collapse
|
14
|
Ko EJ, Lee Y, Lee YT, Hwang HS, Park Y, Kim KH, Kang SM. Natural Killer and CD8 T Cells Contribute to Protection by Formalin Inactivated Respiratory Syncytial Virus Vaccination under a CD4-Deficient Condition. Immune Netw 2020; 20:e51. [PMID: 33425436 PMCID: PMC7779866 DOI: 10.4110/in.2020.20.e51] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe pulmonary disease in infants, young children, and the elderly. Formalin inactivated RSV (FI-RSV) vaccine trials failed due to vaccine enhanced respiratory disease, but the underlying immune mechanisms remain not fully understood. In this study, we have used wild type C57BL/6 and CD4 knockout (CD4KO) mouse models to better understand the roles of the CD4 T cells and cellular mechanisms responsible for enhanced respiratory disease after FI-RSV vaccination and RSV infection. Less eosinophil infiltration and lower pro-inflammatory cytokine production were observed in FI-RSV vaccinated CD4KO mice after RSV infection compared to FI-RSV vaccinated C57BL/6 mice. NK cells and cytokine-producing CD8 T cells were recruited at high levels in the airways of CD4KO mice, correlating with reduced respiratory disease. Depletion studies provided evidence that virus control was primarily mediated by NK cells whereas CD8 T cells contributed to IFN-γ production and less eosinophilic lung inflammation. This study demonstrated the differential roles of effector CD4 and CD8 T cells as well as NK cells, in networking with other inflammatory infiltrates in RSV disease in immune competent and CD4-deficient condition.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Veterinary Medicine, College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Yoonsuh Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Sokolowska M, Lukasik ZM, Agache I, Akdis CA, Akdis D, Akdis M, Barcik W, Brough HA, Eiwegger T, Eljaszewicz A, Eyerich S, Feleszko W, Gomez‐Casado C, Hoffmann‐Sommergruber K, Janda J, Jiménez‐Saiz R, Jutel M, Knol EF, Kortekaas Krohn I, Kothari A, Makowska J, Moniuszko M, Morita H, O'Mahony L, Nadeau K, Ozdemir C, Pali‐Schöll I, Palomares O, Papaleo F, Prunicki M, Schmidt‐Weber CB, Sediva A, Schwarze J, Shamji MH, Tramper‐Stranders GA, Veen W, Untersmayr E. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:2445-2476. [PMID: 32584441 PMCID: PMC7361752 DOI: 10.1111/all.14462] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
With the worldwide spread of the novel severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) resulting in declaration of a pandemic by the World Health Organization (WHO) on March 11, 2020, the SARS‐CoV‐2‐induced coronavirus disease‐19 (COVID‐19) has become one of the main challenges of our times. The high infection rate and the severe disease course led to major safety and social restriction measures worldwide. There is an urgent need of unbiased expert knowledge guiding the development of efficient treatment and prevention strategies. This report summarizes current immunological data on mechanisms associated with the SARS‐CoV‐2 infection and COVID‐19 development and progression to the most severe forms. We characterize the differences between adequate innate and adaptive immune response in mild disease and the deep immune dysfunction in the severe multiorgan disease. The similarities of the human immune response to SARS‐CoV‐2 and the SARS‐CoV and MERS‐CoV are underlined. We also summarize known and potential SARS‐CoV‐2 receptors on epithelial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential mechanisms underlying the involvement of comorbidities, gender, and age in development of COVID‐19. Consequently, we highlight the knowledge gaps and urgent research requirements to provide a quick roadmap for ongoing and needed COVID‐19 studies.
Collapse
|
16
|
Zhang LX, Miao SY, Qin ZH, Wu JP, Chen HY, Sun HB, Xie Y, Du YQ, Shen J. Preliminary Analysis of B- and T-Cell Responses to SARS-CoV-2. Mol Diagn Ther 2020; 24:601-609. [PMID: 32710269 PMCID: PMC7380500 DOI: 10.1007/s40291-020-00486-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Without a specific antiviral treatment or vaccine, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, affecting over 200 countries worldwide. A better understanding of B- and T-cell immunity is critical to the diagnosis, treatment and prevention of coronavirus disease 2019 (COVID-19). METHODS A cohort of 129 patients with COVID-19 and 20 suspected cases were enrolled in this study, and a lateral flow immunochromatographic assay (LFIA) and a magnetic chemiluminescence enzyme immunoassay (MCLIA) were evaluated for SARS-CoV-2 IgM/IgG detection. Additionally, 127 patients with COVID-19 were selected for the detection of IgM and IgG antibodies to SARS-CoV-2 to evaluate B-cell immunity, and peripheral blood lymphocyte subsets were quantified in 95 patients with COVID-19 to evaluate T-cell immunity. RESULTS The sensitivity and specificity of LFIA-IgM/IgG and MCLIA-IgM/IgG assays for detecting SARS-CoV infection were > 90%, comparable with reverse transcription polymerase chain reaction detection. IgM antibody levels peaked on day 13 and began to fall on day 21, while IgG antibody levels peaked on day 17 and were maintained until tracking ended. Lymphocyte and subset enumeration suggested that lymphocytopenia occurred in patients with COVID-19. CONCLUSIONS LFIA-IgM/IgG and MCLIA-IgM/IgG assays can indicate SARS-CoV-2 infection, which elicits an antibody response. Lymphocytopenia occurs in patients with COVID-19, which possibly weakens the T-cell response.
Collapse
Affiliation(s)
- Li-Xia Zhang
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Shu-Yan Miao
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Zhong-Hua Qin
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Jun-Pin Wu
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Huai-Yong Chen
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Hai-Bai Sun
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Yi Xie
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Yan-Qing Du
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Jun Shen
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
17
|
Shao J, Yin Z, Wang Y, Yang Y, Tang Q, Zhang M, Jiao J, Liu C, Yang M, Zhen L, Hassouna A, White WL, Lu J. Effects of Different Doses of Eucalyptus Oil From Eucalyptus globulus Labill on Respiratory Tract Immunity and Immune Function in Healthy Rats. Front Pharmacol 2020; 11:1287. [PMID: 32973518 PMCID: PMC7472567 DOI: 10.3389/fphar.2020.01287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Eucalyptol (1,8-cineole), the major constituent of eucalyptus oil (EO), was used in traditional medicine as a remedy for colds and bronchitis. This study aimed at clarifying the effect of eucalyptol on respiratory immune function of CD8 and CD4 cells, and alveolar macrophages (AM). Thirty male Sprague-Dawley rats were divided into experimental and control groups. The drug was given once a day for 3 weeks and the experimental group was divided according to the eucalyptol dose into: 30, 100, and 300 mg·kg-1 groups. Flow cytometry was used to detect the phagocytic function of CD4, CD8 cells, and AM in the bronchopulmonary lavage fluid. The 30 and 100 mg·kg-1 groups had an up-regulation effect on CD8 (p < 0.05), with no significant effect on macrophage phagocytosis. The 300 mg·kg-1 group had an inhibitory effect on CD8 and macrophage phagocytosis (p < 0.05), with no significant difference in CD4 between groups. Further investigation was conducted to evaluate the effect of EO on immune function in rats by detecting blood T, B, and NK cells using flow cytometry, and blood IgA, IgG, IgM, and IFN-γ levels by ELISA. High dosage of eucalyptol significantly reduced the proportion of blood B and NK cells (p < 0.05). IgA was decreased in the 100 and 300 mg·kg-1 groups (p < 0.05). There are no significant differences between the number of T cells and the IgG, IgM, and IFN-γ levels between experimental and control groups. Rational use of EO containing eucalyptol can improve the immune function of the respiratory tract and the body immunity, while high dose could have damaging effects, through modifying the phagocytic function of CD8 cells and reducing the proportion of blood B cells, NK cells, and IgA.
Collapse
Affiliation(s)
- Jie Shao
- 521 Hospital of Norinco Group, Xi'an, China
| | | | - Yaqin Wang
- 521 Hospital of Norinco Group, Xi'an, China
| | | | - Qing Tang
- 521 Hospital of Norinco Group, Xi'an, China
| | | | | | | | | | | | - Amira Hassouna
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
18
|
Soto JA, Gálvez NMS, Andrade CA, Pacheco GA, Bohmwald K, Berrios RV, Bueno SM, Kalergis AM. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Front Immunol 2020; 11:1513. [PMID: 32765522 PMCID: PMC7378533 DOI: 10.3389/fimmu.2020.01513] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and β) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas M S Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V Berrios
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen M, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020; 75:1564-1581. [PMID: 32396996 PMCID: PMC7272948 DOI: 10.1111/all.14364] [Citation(s) in RCA: 733] [Impact Index Per Article: 146.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.
Collapse
Affiliation(s)
- Ahmet Kursat Azkur
- Department of VirologyFaculty of Veterinary MedicineUniversity of KirikkaleKirikkaleTurkey
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and ImmunologyDepartment of PediatricsFaculty of MedicineUniversity of KirikkaleKirikkaleTurkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Marie‐Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
- Hochgebirgsklinik DavosDavosSwitzerland
| | - Liam O’Mahony
- Departments of Medicine and MicrobiologyAPC Microbiome IrelandUniversity College CorkCorkIreland
| | - Yadong Gao
- Department of AllergologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| |
Collapse
|
20
|
Matyushenko V, Kotomina T, Kudryavtsev I, Mezhenskaya D, Prokopenko P, Matushkina A, Sivak K, Muzhikyan A, Rudenko L, Isakova-Sivak I. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res 2020; 182:104864. [PMID: 32585323 PMCID: PMC7313889 DOI: 10.1016/j.antiviral.2020.104864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) can cause recurrent infection in people because it does not stimulate a long-lived immunological memory. There is an urgent need to develop a safe and efficacious vaccine against RSV that would induce immunological memory without causing immunopathology following natural RSV infection. We have previously generated two recombinant live attenuated influenza vaccine (LAIV) viruses that encode immunodominant T-cell epitopes of RSV M2 protein in the neuraminidase or NS1 genes. These chimeric vaccines afforded protection against influenza and RSV infection in mice, without causing pulmonary eosinophilia or inflammatory RSV disease. The current study assessed the formation of influenza-specific and RSV-specific CD4 and CD8 T-cell responses in the lungs of mice, with special attention to the lung tissue-resident memory T cell subsets (TRM). The RSV epitopes did not affect influenza-specific CD4 effector memory T cell (Tem) levels in the lungs. The majority of these cells formed by LAIV or LAIV-RSV viruses had CD69+CD103- phenotype. Both LAIV+NA/RSV and LAIV+NS/RSV recombinant viruses induced significant levels of RSV M282 epitope-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. Surprisingly, the CD69+CD103+ influenza-specific CD8 Tem responses were augmented by the addition of RSV epitopes, possibly as a result of the local microenvironment formed by the RSV-specific memory T cells differentiating to TRM in the lungs of mice immunized with LAIV-RSV chimeric viruses. This study provides evidence that LAIV vector-based vaccination can induce robust lung-localized T-cell immunity to the inserted T-cell epitope of a foreign pathogen, without altering the immunogenicity of the viral vector itself. Two LAIV-RSV vaccine viruses induced RSV M282-specific effector memory CD8 T cells producing both IFNγ and TNFα cytokines. The inserted RSV epitopes did not affect influenza-specific CD4 Tem levels in the lungs of immunized mice. LAIV-RSV viruses induced RSV M282-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. The magnitude of RSV M282-specific CD8 Tem responses correlates with protection against RSV-induced lung pathology. The addition of RSV epitopes into the LAIV strain augmented CD69+CD103+ influenza-specific CD8 Tem responses in the lungs.
Collapse
Affiliation(s)
- Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anastasia Matushkina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Arman Muzhikyan
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| |
Collapse
|
21
|
Rey-Jurado E, Bohmwald K, Correa HG, Kalergis AM. TCR Repertoire Characterization for T Cells Expanded in Response to hRSV Infection in Mice Immunized with a Recombinant BCG Vaccine. Viruses 2020; 12:v12020233. [PMID: 32093256 PMCID: PMC7077260 DOI: 10.3390/v12020233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/02/2023] Open
Abstract
T cells play an essential role in the immune response against the human respiratory syncytial virus (hRSV). It has been described that both CD4+ and CD8+ T cells can contribute to the clearance of the virus during an infection. However, for some individuals, such an immune response can lead to an exacerbated and detrimental inflammatory response with high recruitment of neutrophils to the lungs. The receptor of most T cells is a heterodimer consisting of α and β chains (αβTCR) that upon antigen engagement induces the activation of these cells. The αβTCR molecule displays a broad sequence diversity that defines the T cell repertoire of an individual. In our laboratory, a recombinant Bacille Calmette–Guérin (BCG) vaccine expressing the nucleoprotein (N) of hRSV (rBCG-N-hRSV) was developed. Such a vaccine induces T cells with a Th1 polarized phenotype that promote the clearance of hRSV infection without causing inflammatory lung damage. Importantly, as part of this work, the T cell receptor (TCR) repertoire of T cells expanded after hRSV infection in naïve and rBCG-N-hRSV-immunized mice was characterized. A more diverse TCR repertoire was observed in the lungs from rBCG-N-hRSV-immunized as compared to unimmunized hRSV-infected mice, suggesting that vaccination with the recombinant rBCG-N-hRSV vaccine triggers the expansion of T cell populations that recognize more viral epitopes. Furthermore, differential expansion of certain TCRVβ chains was found for hRSV infection (TCRVβ+8.3 and TCRVβ+5.1,5.2) as compared to rBCG-N-hRSV vaccination (TCRVβ+11 and TCRVβ+12). Our findings contribute to better understanding the T cell response during hRSV infection, as well as the functioning of a vaccine that induces a protective T cell immunity against this virus.
Collapse
MESH Headings
- Animals
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Immunity, Cellular
- Lung/immunology
- Lung/virology
- Male
- Mice
- Mice, Inbred BALB C
- Nucleocapsid Proteins/administration & dosage
- Nucleocapsid Proteins/immunology
- Receptors, Antigen, T-Cell/classification
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Specific Pathogen-Free Organisms
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; (E.R.-J.); (K.B.); (H.G.C.)
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; (E.R.-J.); (K.B.); (H.G.C.)
| | - Hernán G. Correa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; (E.R.-J.); (K.B.); (H.G.C.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; (E.R.-J.); (K.B.); (H.G.C.)
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Correspondence: ; Tel.: +56-2-6862846
| |
Collapse
|