1
|
Chen T, Zhang M, Liu Q, Li W, Zeng Z, Chen C, Zhou Y, Zhou T, Li Y, Wang W, Ming Q, Zhu J, Zeng Z, Zhu F, Yan W, Wang P, Niu Y, Liu Y, Huang L, Liu W, Cheng Q, Feng Y, Liu T, Wang X, Chen G, Wu D, Ning Q. Development and validation of a novel mortality risk stratification simplified scoring scale for severe fever with thrombocytopenia syndrome. Clin Microbiol Infect 2025:S1198-743X(25)00062-X. [PMID: 39922465 DOI: 10.1016/j.cmi.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVES The global incidence of severe fever with thrombocytopenia syndrome (SFTS) has markedly increased over the past decade. There is an urgent need to establish a reliable scoring system for predicting the mortality of patients with SFTS. METHODS In this ambispective study, 714 patients with SFTS were recruited from 11 sites in China. Among these, 544 patients hospitalized for SFTS from May 2012 to June 2022 were included retrospectively in the training cohort, and 170 were prospectively enrolled between April 2021 and November 2023 in the validation cohort. Logistic regression analysis was performed to identify risk factors for 30-day mortality. A nomogram model (SFTS-logistic model) and a simplified scoring system (SFTS-Wuhan model) were established for predicting mortality. The performance of these models in terms of calibration, discrimination, and clinical utility was evaluated and validated. RESULTS The 30-day mortality rate was 12.89% (92/714). The mean age was 65 years old (interquartile range, 57-71), and 322 (45.10%) patients were male. The SFTS-logistic model and SFTS-Wuhan model were developed based on seven independent risk factors, including age (adjusted OR [AOR], 1.062; 95% CI, 1.019-1.106), temperature at admission (AOR, 1.599; 95% CI, 1.095-2.336), white blood cell count (AOR, 0.799; 95% CI, 0.653-0.978), platelet count (AOR, 0.977, 95% CI, 0.959-0.996), aspartate aminotransferase (AOR, 1.001, 95% CI, 1.000-1.003), creatinine (AOR, 1.006; 95% CI, 1.001-1.011), and vasopressors use (AOR, 6.270; 95% CI, 1.397-28.146). Both models demonstrated good discrimination with areas under the receiver operating characteristic curve above 0.84, satisfactory calibration, and comparable clinical net benefit in the training and validation cohorts. DISCUSSION The prognostic scoring model and its simplified surrogate can serve as robust tools for mortality risk stratification in SFTS, allowing the early identification of high-risk patients.
Collapse
Affiliation(s)
- Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Meng Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qian Liu
- Department of Infectious Diseases, The First People's Hospital of Guangshui City, Hubei Province, China
| | - Wensi Li
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhilin Zeng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanwen Chen
- Department of Infectious Diseases, People's Hospital of Shangcheng County, Henan Province, China
| | - Yi Zhou
- Department of Infectious Diseases, People's Hospital of Macheng City, Hubei Province, China
| | - Tiantong Zhou
- Department of Infectious Diseases, Central Hospital of Suizhou City, Hubei Province, China
| | - Yaping Li
- Department of Infectious Diseases, Central Hospital of Huanggang City, Hubei Province, China
| | - Wei Wang
- Department of Infectious Diseases, People's Hospital of Luotian County, Hubei Province, China
| | - Quan Ming
- Department of Infectious Diseases, The Third People's Hospital of Yichang City, Hubei Province, China
| | - Jun Zhu
- Department of Infectious Diseases, Central Hospital of Xianning City, Hubei Province, China
| | - Zhaohai Zeng
- Department of Infectious Diseases, People's Hospital of Guangshan County, Henan Province, China
| | - Feng Zhu
- Department of Infectious Diseases, People's Hospital of Xin County, Henan Province, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuxin Niu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunhui Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lanyue Huang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiuyu Cheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuzhao Feng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tingting Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guang Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
3
|
Xu H, Jian X, Wen Y, Xu M, Jin R, Wu X, Zhou F, Cao J, Xiao G, Peng K, Xie Y, Chen H, Zhang L. A nanoluciferase SFTSV for rapid screening antivirals and real-time visualization of virus infection in mice. EBioMedicine 2024; 99:104944. [PMID: 38176215 PMCID: PMC10806088 DOI: 10.1016/j.ebiom.2023.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that causes severe hemorrhagic fever in humans, but no FDA-approved specific antivirals or vaccines are available to treat or prevent SFTS. METHODS The plasmids construction and transfection were performed to generate the recombinant SFTSV harboring the nanoluciferase gene (SFTSV-Nluc). Immunostaining plaque assay was performed to measure viral titers, and DNA electrophoresis and Sanger sequencing were performed to evaluate the genetic stability. Luciferase assay and quantitative RT-PCR were performed to evaluate the efficacy of antivirals in vitro. Bioluminescence imaging, titration of virus from excised organs, hematology, and histopathology and immunohistochemistry were performed to evaluate the efficacy of antivirals in vivo. FINDINGS SFTSV-Nluc exhibited high genetic stability and replication kinetics similar to those of wild-type virus (SFTSVwt), then a rapid high-throughput screening system for identifying inhibitors to treat SFTS was developed, and a nucleoside analog, 4-FlU, was identified to effectively inhibit SFTSV in vitro. SFTSV-Nluc mimicked the replication characteristics and localization of SFTSVwt in counterpart model mice. Bioluminescence imaging of SFTSV-Nluc allowed real-time visualization and quantification of SFTSV replication in the mice. 4-FlU was demonstrated to inhibit the replication of SFTSV with more efficiency than T-705 and without obvious adverse effect in vivo. INTERPRETATION The high-throughput screening system based on SFTSV-Nluc for use in vitro and in vivo revealed that a safe and effective antiviral nucleoside analog, 4-FlU, may be a basis for the strategic treatment of SFTSV and other bunyavirus infections, paving the way for the discovery of antivirals. FUNDING This work was supported by grants from the National Key Research and Development Plan of China (2021YFC2300700 to L. Zhang, 2022YFC2303300 to L. Zhang), Strategic Priority Research Program of Chinese Academy of Sciences (XDB0490000 to L. Zhang), National Natural Science Foundation of China (31970165 to L. Zhang, U22A20379 to G. Xiao), the Science and Technology Commission of Shanghai Municipality (21S11903100 to Y. Xie), Hubei Natural Science Foundation for Distinguished Young Scholars (2022CFA099 to L. Zhang).
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqin Jian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwei Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyuan Cao
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China.
| | | | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
4
|
Gong C, Xiang X, Hong B, Shen T, Zhang M, Shen S, Ding S. ACCI could be a poor prognostic indicator for the in-hospital mortality of patients with SFTS. Epidemiol Infect 2023; 151:e203. [PMID: 38053350 PMCID: PMC10753457 DOI: 10.1017/s0950268823001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
This study aims to evaluate the predictive role of age-adjusted Charlson comorbidity index (ACCI) scores for in-hospital prognosis of severe fever in thrombocytopenia syndrome (SFTS) patients. A total of 192 patients diagnosed with SFTS were selected as the study subjects. Clinical data were retrospectively collected. Receiver operating characteristic curves were used to evaluate the diagnostic value of ACCI for the mortality of SFTS patients, and Cox regression models were used to assess the association between predictive factors and prognosis. The 192 SFTS patients were divided into two groups according to the clinical endpoints (survivors/non-survivors). The results showed that the mortality of the 192 hospitalized SFTS patients was 26.6%. The ACCI score of the survivor group was significantly lower than that of the non-survivor group. Multivariate Cox regression analysis showed that the increased ACCI score was a significant predictor of poor prognosis in SFTS. Kaplan-Meier survival analysis showed that SFTS patients with an ACCI >2.5 had shorter mean survival times, indicating a poor prognosis. Our findings suggest that ACCI, as an easy-to-use clinical indicator, may offer a simple and feasible approach for clinicians to determine the severity of SFTS.
Collapse
Affiliation(s)
- Chen Gong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinjian Xiang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Baoyu Hong
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Shen
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Li YH, Wang XH, Huang WW, Tian RR, Pang W, Zheng YT. Severe fever with thrombocytopenia syndrome virus induces platelet activation and apoptosis via a reactive oxygen species-dependent pathway. Redox Biol 2023; 65:102837. [PMID: 37544244 PMCID: PMC10428115 DOI: 10.1016/j.redox.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV) and with a high fatality rate. Thrombocytopenia is a major clinical manifestation observed in SFTS patients, but the underlying mechanism remains largely unclear. Here, we explored the effects of SFTSV infection on platelet function in vivo in severely infected SFTSV IFNar-/- mice and on mouse and human platelet function in vitro. Results showed that SFTSV-induced platelet clearance acceleration may be the main reason for thrombocytopenia. SFTSV-potentiated platelet activation and apoptosis were also observed in infected mice. Further investigation showed that SFTSV infection induced platelet reactive oxygen species (ROS) production and mitochondrial dysfunction. In vitro experiments revealed that administration of SFTSV or SFTSV glycoprotein (Gn) increased activation, apoptosis, ROS production, and mitochondrial dysfunction in separated mouse platelets, which could be effectively ameliorated by the application of antioxidants (NAC (N-acetyl-l-cysteine), SKQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) and resveratrol). In vivo experiments showed that the antioxidants partially rescued SFTSV infection-induced thrombocytopenia by improving excessive ROS production and mitochondrial dysfunction and down-regulating platelet apoptosis and activation. Furthermore, while SFTSV and Gn directly potentiated human platelet activation, it was completely abolished by antioxidants. This study revealed that SFTSV and Gn can directly trigger platelet activation and apoptosis in an ROS-MAPK-dependent manner, which may contribute to thrombocytopenia and hemorrhage during infection, but can be abolished by antioxidants.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Hui Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Department of Pediatric Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wen-Wu Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Office of Science and Technology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wei Pang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
6
|
Kloka JA, Friedrichson B, Wülfroth P, Henning R, Zacharowski K. Microvascular Leakage as Therapeutic Target for Ischemia and Reperfusion Injury. Cells 2023; 12:1345. [PMID: 37408180 DOI: 10.3390/cells12101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
Reperfusion injury is a very common complication of various indicated therapies such as the re-opening of vessels in the myocardium or brain as well as reflow in hemodynamic shutdown (cardiac arrest, severe trauma, aortic cross-clamping). The treatment and prevention of reperfusion injury has therefore been a topic of immense interest in terms of mechanistic understanding, the exploration of interventions in animal models and in the clinical setting in major prospective studies. While a wealth of encouraging results has been obtained in the lab, the translation into clinical success has met with mixed outcomes at best. Considering the still very high medical need, progress continues to be urgently needed. Multi-target approaches rationally linking interference with pathophysiological pathways as well as a renewed focus on aspects of microvascular dysfunction, especially on the role of microvascular leakage, are likely to provide new insights.
Collapse
Affiliation(s)
- Jan Andreas Kloka
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | | | | | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
7
|
Comparative Animal Models of Human Viral Infections. Pathogens 2022; 11:pathogens11121395. [PMID: 36558728 PMCID: PMC9785403 DOI: 10.3390/pathogens11121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Comparative animal modeling has long served as a cornerstone for understanding the biological effects of infection by many DNA and RNA viruses [...].
Collapse
|
8
|
Lu S, Xu L, Liang B, Wang H, Wang T, Xiang T, Li S, Fan L, Li J, Peng C, Zheng X. Liver Function Derangement in Patients with Severe Fever and Thrombocytopenia Syndrome. J Clin Transl Hepatol 2022; 10:825-834. [PMID: 36304508 PMCID: PMC9547257 DOI: 10.14218/jcth.2021.00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Patients with severe fever with thrombocytopenia syndrome (SFTS) commonly show liver function impairment. This study aimed to characterize the liver function indices in SFTS patients and investigate their association with mortality. METHODS Clinical information and laboratory results of 459 laboratory-confirmed SFTS patients, including 78 deceased and 381 surviving patients, were retrospectively analyzed. To explore the infectivity of SFTS caused by novel Bunyavirus (SFTSV) in hepatocytes, Huh7 human hepatoma cells were infected with various concentrations of SFTSV in vitro. RESULTS The proportion of SFTS patients developing liver injury during hospitalization was 73.2% (336/459); the hepatocellular injury was the predominant type. The median time to occurrence of liver injury from disease onset was 8 d. Liver injury in the deceased group occurred earlier than that in the surviving group. Alanine aminotransferase (ALT) level between 2-5 times upper limit of normal (ULN) at 4-6 d and between 5-15 ULN at 7-12 d of disease course were independent predictors of mortality. Alkaline phosphatase (ALP) >2 ULN at 7-9 d and elevated ALP at 10-12 days after disease onset were risk factors for death. ALT and aspartate transaminase (AST) levels were correlated with lymphocyte count and platelet-to-lymphocyte ratio (PLR). Total bilirubin (TB), ALT, AST levels showed positive correlation with viral load. In the in vitro experiment, SFTSV infected and replicated inside Huh7 cells. CONCLUSIONS Liver injury is common in SFTS patients. ALT and ALP were independent predictors of SFTS-related mortality. Frequent monitoring and evaluation of liver function indices are needed for SFTS patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng Peng
- Correspondence to: Xin Zheng and Cheng Peng, Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China. ORCID: https://orcid.org/0000-0001-6564-7807 (XZ) and https://orcid.org/0000-0002-1241-4388 (CP). Tel: +86-27-85726978 (XZ) and +86-27-85726968 (CP), Fax: +86-27-85726398, E-mail: mailto: (XZ) and (CP)
| | - Xin Zheng
- Correspondence to: Xin Zheng and Cheng Peng, Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China. ORCID: https://orcid.org/0000-0001-6564-7807 (XZ) and https://orcid.org/0000-0002-1241-4388 (CP). Tel: +86-27-85726978 (XZ) and +86-27-85726968 (CP), Fax: +86-27-85726398, E-mail: mailto: (XZ) and (CP)
| |
Collapse
|
9
|
Wang M, Tan W, Li J, Fang L, Yue M. The Endless Wars: Severe Fever With Thrombocytopenia Syndrome Virus, Host Immune and Genetic Factors. Front Cell Infect Microbiol 2022; 12:808098. [PMID: 35782112 PMCID: PMC9240209 DOI: 10.3389/fcimb.2022.808098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/10/2022] [Indexed: 01/10/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging arboviral infectious disease with a high rate of lethality in susceptible humans and caused by severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). Currently, neither vaccine nor specific antiviral drugs are available. In recent years, given the fact that both the number of SFTS cases and epidemic regions are increasing year by year, SFTS has become a public health problem. SFTSV can be internalized into host cells through the interaction between SFTSV glycoproteins and cell receptors and can activate the host immune system to trigger antiviral immune response. However, SFTSV has evolved multiple strategies to manipulate host factors to create an optimal environment for itself. Not to be discounted, host genetic factors may be operative also in the never-ending winning or losing wars. Therefore, the identifications of SFTSV, host immune and genetic factors, and their interactions are critical for understanding the pathogenic mechanisms of SFTSV infection. This review summarizes the updated pathogenesis of SFTS with regard to virus, host immune response, and host genetic factors to provide some novel perspectives of the prevention, treatment, as well as drug and vaccine developments.
Collapse
Affiliation(s)
- Min Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weilong Tan
- Department of Infection Disease, Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liqun Fang
- State Key Lab Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Khan D, Naderi S, Ahmadi M, Ghorbani A, Cornelius JF, Hänggi D, Muhammad S. Intracranial Aneurysm Rupture after SARS-CoV2 Infection: Case Report and Review of Literature. Pathogens 2022; 11:pathogens11060617. [PMID: 35745471 PMCID: PMC9227511 DOI: 10.3390/pathogens11060617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/08/2023] Open
Abstract
Background: SARS-CoV virus infection results in a dysbalanced and severe inflammatory response with hypercytokinemia and immunodepression. Viral infection triggers systemic inflammation and the virus itself can potentially cause vascular damage, including blood–brain barrier (BBB) disruption and alterations in the coagulation system, which may result in cardiovascular and neurovascular events. Here, we review the literature and present a case of COVID-19 infection leading to an aneurysmal subarachnoid haemorrhage (aSAH). Case Description: A 61-year-old woman presented with dyspnea, cough, and fever. She had a history of hypertension and was overweight with a body mass-index of 34. There was no history of subarachnoid hemorrhage in the family. Due to low oxygen saturation (89%) she was admitted into ICU. A chest CT showed a typical picture of COVID-19 pneumonia. The PCR-based test of an oropharyngeal swab was COVID-19-positive. In addition to oxygen support she was prescribed with favipiravir and hydroxychloroquine. She experienced a sudden headache and lost consciousness on the second day. Computer tomography (CT) with CT-angiography revealed a subarachnoid haemorrhage in the basal cisterns from a ruptured anterior communicating artery aneurysm. The aneurysm was clipped microsurgically through a left-sided standard pterional approach and the patient was admitted again to the intensive care unit for further intensive medical treatment. Post-operatively, the patient showed slight motor dysphasia. No other neurological deficits. Conclusion: Systemic inflammation and ventilator support-associated blood pressure fluctuations may trigger aneurysmal subarachnoid haemorrhage secondary to COVID-19 infection. COVID-19 infection could be considered as one of the possible risk factors leading to instability and rupture of intracranial aneurysm.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.K.); (J.F.C.); (D.H.)
| | - Soheil Naderi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran 1419733141, Iran; (S.N.); (M.A.)
| | - Mostafa Ahmadi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran 1419733141, Iran; (S.N.); (M.A.)
| | - Askar Ghorbani
- Department of Neurology, Tehran University of Medical Sciences, Tehran 1419733141, Iran;
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.K.); (J.F.C.); (D.H.)
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.K.); (J.F.C.); (D.H.)
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (D.K.); (J.F.C.); (D.H.)
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
- Correspondence: ; Tel.: +49-15168-460755 or +49-21181-07823
| |
Collapse
|
11
|
Wang L, Xu Y, Zhang S, Bibi A, Xu Y, Li T. The AST/ALT Ratio (De Ritis Ratio) Represents an Unfavorable Prognosis in Patients in Early-Stage SFTS: An Observational Cohort Study. Front Cell Infect Microbiol 2022; 12:725642. [PMID: 35211422 PMCID: PMC8861437 DOI: 10.3389/fcimb.2022.725642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS), a widely prevalent infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV) that carries with it a high mortality rate, has emerged to be a public health concern. This study aimed to investigate the epidemiological and clinical characteristics of patients infected with SFTSV, seeking novel prognostic risk factors for SFTS. Methods In this retrospective and cross-sectional study, confirmed SFTS patients from the First Affiliated Hospital of Anhui Medical University were enrolled from September 1, 2019, to December 12, 2020. Cases were analyzed for epidemiological, demographic, clinical, and laboratory data. Logistic regression models were used to assess the association between predictors and outcome variables. A generalized additive mixed model (GAMM) was conducted to analyze the trending shift of aspartate aminotransferase/alanine transaminase-ratio (AST/ALT-ratio) and platelet (PLT) in SFTS patients treated with ribavirin. p values ≤ 0.05 were considered statistically significant. Results Clinical and laboratory results of 107 hospitalized patients with SFTSV infection were retrospectively described. The mean age at onset of disease was 60.38 ± 11.29 years old and the ratio between male and female was 1:1.2. Fever and thrombocytopenia are hallmark features of SFTS. Furthermore, multiple cases also experienced neurological complications, gastrointestinal/skeletal muscle symptoms together with other non-specific clinical manifestations; laboratory dataset outcomes reported dysregulated levels for routine blood biomarkers, coagulation function, and biochemistry. Overall, 107 patients were segregated into two groups according to patient condition at the clinical endpoint (survivors/non-survivors). SFTS survivors had a higher level of PLT- counts, total protein (TP), and estimated glomerular filtration rate (eGFR), while levels of activated partial thromboplastin time (APTT), thrombin time (TT), D-dimer (D-D), fibrinogen degradation products (FDP), ALT, AST, AST/ALT-ratio, creatinine (Cr), creatine phosphokinase (CK) and procalcitonin (PCT) was higher in non-survivors. Results from univariate Cox regression revealed that elevated levels of FDP, TT, AST/ALT-ratio, PCT, as well as decreased eGFR level and presence of central nervous system symptoms (CNS), were significant predictors for SFTS prognostic, results from multivariate logistic regression analysis in three adjusted models showed AST/ALT-ratio and PCT were independent risk factors for the prognosis of SFTS patients. Kaplan–Meier survival analysis showed that SFTS patients with AST/ALT-ratio >2.683 were associated with a shorter futime (means survival time), therefore indicating an unfavorable prognosis. Treatment with ribavirin could increase PLT count while decreasing AST/ALT-ratio within SFTS patients. Conclusion SFTS is an emerging infectious disease, possibly leading to multiple-organ injury; AST/ALT-ratio was an independent risk factor for the prognosis of SFTS patients. Further investigation should be performed in order to gain more knowledge on this disease and guide clinical management.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Li
- *Correspondence: Tao Li, ; Yuanhong Xu,
| |
Collapse
|
12
|
Sun J, Min YQ, Li Y, Sun X, Deng F, Wang H, Ning YJ. Animal Model of Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2022; 12:797189. [PMID: 35087498 PMCID: PMC8787146 DOI: 10.3389/fmicb.2021.797189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), an emerging life-threatening infectious disease caused by SFTS bunyavirus (SFTSV; genus Bandavirus, family Phenuiviridae, order Bunyavirales), has been a significant medical problem. Currently, there are no licensed vaccines or specific therapeutic agents available and the viral pathogenesis remains largely unclear. Developing appropriate animal models capable of recapitulating SFTSV infection in humans is crucial for both the study of the viral pathogenic processes and the development of treatment and prevention strategies. Here, we review the current progress in animal models for SFTSV infection by summarizing susceptibility of various potential animal models to SFTSV challenge and the clinical manifestations and histopathological changes in these models. Together with exemplification of studies on SFTSV molecular mechanisms, vaccine candidates, and antiviral drugs, in which animal infection models are utilized, the strengths and limitations of the existing SFTSV animal models and some important directions for future research are also discussed. Further exploration and optimization of SFTSV animal models and the corresponding experimental methods will be undoubtedly valuable for elucidating the viral infection and pathogenesis and evaluating vaccines and antiviral therapies.
Collapse
Affiliation(s)
- Jiawen Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yunjie Li
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021; 55:101508. [PMID: 34728121 PMCID: PMC8547971 DOI: 10.1016/j.smim.2021.101508] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
One and half year following the occurrence of COVID-19 pandemic, significant efforts from laboratories all over the world generated a huge amount of data describing the prototypical features of immunity in the course of SARS-CoV-2 infection. In this Review, we rationalize and organize the main observations, trying to define a "core" signature of immunity in COVID-19. We identified six hallmarks describing the main alterations occurring in the early infection phase and in the course of the disease, which predispose to severe illness. The six hallmarks are dysregulated type I IFN activity, hyperinflammation, lymphopenia, lymphocyte impairment, dysregulated myeloid response, and heterogeneous adaptive immunity to SARS-CoV-2. Dysregulation and exhaustion came out as the trait d'union, connecting abnormalities affecting both innate and adaptive immunity, humoral and cellular responses.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
King C, Sprent J. Dual Nature of Type I Interferons in SARS-CoV-2-Induced Inflammation. Trends Immunol 2021; 42:312-322. [PMID: 33622601 PMCID: PMC7879020 DOI: 10.1016/j.it.2021.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ability of our cells to secrete type I interferons (IFN-Is) is essential for the control of virus replication and for effective antiviral immune responses; for this reason, viruses have evolved the means to antagonize IFN-I. Inhibition of IFN-I production is pronounced in SARS-CoV-2 infection, which can impair the adaptive immune response and exacerbate inflammatory disease at late stages of infection. However, therapeutic boosting of IFN-I offers a narrow time window for efficacy and safety. Here, we discuss how limits placed on IFN-I by SARS-CoV-2 shape the immune response and whether this might be countered with therapeutic approaches and vaccine design.
Collapse
Affiliation(s)
- Cecile King
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, UNSW, Sydney, NSW 2010, Australia.
| | - Jonathan Sprent
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, UNSW, Sydney, NSW 2010, Australia
| |
Collapse
|